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ABSTRACT 
 
Perceptual systems heavily rely on prior knowledge and predictions to make sense of the 
environment. Predictions can originate from multiple sources of information, including 
contextual short-term priors, based on isolated temporal situations, and context-
independent long-term priors, arising from extended exposure to statistical regularities. 
While the effects of short-term predictions on auditory perception have been well-
documented, how long-term predictions shape early auditory processing is poorly 
understood. To address this, we recorded magnetoencephalography data from native 
speakers of two languages with different word orders (Spanish: functor-initial versus 
Basque: functor-final) listening to simple sequences of binary sounds alternating in 
duration with occasional omissions. We hypothesized that, together with contextual 
transition probabilities, the auditory system uses the characteristic prosodic cues 
(duration) associated with the native language’s word order as an internal model to 
generate long-term predictions about incoming non-linguistic sounds. Consistent with 
our hypothesis, we found that the amplitude of the mismatch negativity elicited by sound 
omissions varied orthogonally depending on the speaker’s linguistic background and was 
most pronounced in the left auditory cortex. Importantly, listening to binary sounds 
alternating in pitch instead of duration did not yield group differences, confirming that the 
above results were driven by the hypothesized long-term “duration” prior. These findings 
show that experience with a given language can shape a fundamental aspect of human 
perception – the neural processing of rhythmic sounds – and provides direct evidence 
for a long-term predictive coding system in the auditory cortex that uses auditory 
schemes learned over a lifetime to process incoming sound sequences. 
 
Keywords: predictive coding, sequence processing, cross-linguistic effects, mismatch 
negativity, auditory perception, magnetoencephalography 
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Introduction 

 
According to predictive coding theories of perception, sensory processes and 
perceptual decisions are described as a process of inference, which is strongly 
shaped by prior knowledge and predictions (Clark 2013; Friston 2005; Rao & 
Ballard 1999). Predictions can be derived from different sources of information, 
forming a hierarchical predictive system (De Lange et al., 2018). Each level of the 
predictive hierarchy houses an internal model encoding prior information about 
the structure of the external environment. When a prediction is violated, the 
prediction error is computed and used to adjust the corresponding prior and 
internal model. This results in a constantly evolving system that generates and 
refines predictions based on incoming sensory input and prior experience. 

In the auditory domain, great progress in the understanding of the 
predictive capabilities of the auditory system has been made using the oddball 
design and its variations (see Heilbron and Chait, 2018, for a review). In these 
designs, participants are usually presented with sequences of tones encoding a 
certain rule that is then violated by a ‘deviant’ event. Such deviants elicit a sharp 
evoked response in the EEG signal which has been defined as “mismatch 
negativity” (MMN). The MMN peaks at about 0.100 – 0.250 seconds from stimulus 
onset and exhibits enhanced intensity over secondary temporal, central, and 
frontal areas of topographic scalp maps (Sams et al., 1985, Garrido et al., 2009). 
Within the predictive coding framework, the MMN is putatively considered an 
index of cortical prediction error. 

Functionally, the mechanism underlying the MMN operates over both 
conscious and preconscious memory representations. MMN responses to 
auditory violations are observable when the participant is not paying attention to 
the auditory task and have been reported even in states of sleep (Sallinen et al., 
1994, Sculthorpe et al., 2009, Strauss et al. 2015) and coma (Fischer et al., 2000). 
Given its automatic nature, the anticipatory mechanism underlying the MMN has 
been suggested to reflect a form of ‘primitive intelligence’ in the auditory cortex 
(Näätänen et al., 2001). In the present study, we show that life-long experience 
with a spoken language can shape this automatic anticipatory mechanism. 

Experimental studies using the oddball design and its derivations have 
been important to unveil the sensitivity of the auditory predictive system to local 
statistical regularities and transition probabilities (Heilbron and Chait, 2018). 
However, these studies have primarily examined so called contextual (or short-
term) predictive signals. These predictions are usually based on rules acquired in 
the context of an experimental task – that is, rules linked to short-term memory – 
and have a short-lived impact on sensory processing. Yet, one core assumption 
of current predictive coding models is that the brain also deploys predictions 
based on long-term memory representations (Seriès & Seitz, 2013; Yon & De 
Lange, 2018; Teufel & Fletcher, 2020). Such long-term predictions may emerge 
via learning of regularities and co-occurring patterns that are relatively stable 
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throughout the lifespan of an organism. Because arising over long timescales, 
these experiential priors become encoded into the tuning properties of sensory 
cortices, forming a computational constraint on bottom-up sensory processing 
(Teufel & Fletcher, 2020).  

Long-term priors may have long-lasting effects on perception. One 
example from the visual domain is the systematic bias in humans toward the 
perception of cardinal orientations (Girshick et al., 2011). This bias has been linked 
to the presence of a long-term prior that mirrors the statistics of the visual 
environment, that is, the preponderance of cardinal orientations in visual input 
(Girshick et al., 2011). Monkey studies on visual processing have shown that the 
visual system employs long-term priors to generate long-term predictions of 
incoming data (Meyer & Olson, 2011). Yet, whether similar predictive coding 
schemes subserve cortical computation in the human auditory system remains 
unsettled.  

Here, we take a cross-linguistic approach to test whether the auditory 
system generates long-term predictions based on life-long exposure to auditory 
regularities, using rules that extend beyond those acquired in the recent past. 
Currently, one critical behavioral example of the effect of long-term experience on 
auditory perception is the influence of language on rhythmic grouping (Iversen et 
al., 2008, Molnar et al., 2016): Sequences of two tones alternating in duration are 
usually perceived by speakers of functor-initial languages (e.g., Spanish, English) 
as repetition of short-long groups separated by a pause, while speakers of 
functor-final languages (e.g., Basque, Japanese) report a bias for the opposite 
long-short grouping pattern. This perceptual effect has been linked to the co-
occurrence statistics underlying the word order properties of these languages. 
Specifically, the effect has been proposed to depend on the quasi-periodic 
alternation of short and long auditory events in the speech signal – reported in 
previous acoustic analyses (Molnar et al., 2016) – which reflect the linearization of 
function words (e.g., articles, prepositions) and content words (e.g., nouns, 
adjectives, verbs). In functor-initial languages, like English or Spanish, short 
events (i.e., function words; e.g., un, a) normally combine with long ones (i.e., 
content words; e.g., ordenador, computer) to form “short-long” auditory chunks 
(Fig. 1, A). By contrast, in functor-final languages like Japanese and Basque, short 
events (i.e., function words; e.g., bat, a) normally follow long ones (i.e., content 
words; e.g., ordenagailu, computer), resulting in “long-short” phrasal units (Fig. 1, 
B). Regular exposure to such language-specific phrasal structures has been 
proposed to underlie the automatic grouping biases of non-linguistic sounds 
(Iversen et al., 2008, Molnar et al., 2016), suggesting the presence of an auditory 
“duration prior” that mirrors the word-order and prosodic properties of a given 
language.  

We hypothesize that the auditory system uses the proposed “duration 
prior” as an internal model to generate long-term predictions about incoming 
sound sequences. In predictive coding terms, our hypothesis posits that the 
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human auditory system upweights neural activity towards the onset of certain 
high-level events, based on the statistics of a given language.  

To test this hypothesis, two groups of Basque (n = 20) and Spanish (n = 
20) dominant participants were presented with 30 second rhythmic sequences of 
two tones alternating in duration at fixed inter-stimulus intervals (Fig. 1, C), while 
magnetoencephalography (MEG) was monitoring their cortical activity. To 
measure prediction error, random omissions of long and short tones were 
introduced in each sequence. Omission responses allow to examine the presence 
of putative error signals decoupled from bottom-up sensory input, offering a 
critical test for predictive coding (Walsh et al 2020, Heilbron and Chait, 2018).  

If, in line with our hypothesis, the human auditory system uses long-term 
linguistic priors as an internal model to predict incoming sounds, the following 
predictions ensue. The omission of a long tone should represent the violation of 
two predictions in the Basque, but not in the Spanish group: a short-term 
prediction based on the statistics of the previous stimuli (i.e., a prediction about 
a new tone), and a long-term prediction based on the statistics of the Basque’s 
phrasal structure (i.e., a prediction about a new phrasal chunk). Consequently, 
such an omission response should lead to a larger prediction error in the Basque 
compared to the Spanish group (Fig. 1, E). An orthogonally opposite pattern is 
expected when the deviant event is reflected in the omission of a short tone (Fig. 
1, E).  

The expectation that stronger error responses would be elicited by the 
omission of the first element rather than the second element of a perceptual chunk 
(“long” for the Basque, “short” for the Spanish group) is primarily based on 
previous work on rhythm and music perception (e.g., Ladinig et al., 2009; Bouwer 
et al., 2016; Brochard et al., 2003; Potter et al., 2009). These studies have shown 
that the amplitude of evoked responses is larger when deviants occur at the 
“start” of a perceptual group and decline toward the end of the chunk, suggesting 
that the auditory system generates predictions about the onset of higher-level, 
internally formed auditory chunks.  

We tested the predictions above against a control condition having the 
same alternation design as the experimental condition, but with the two tones 
alternating in pitch instead of duration (Fig. 1, D). Here, no difference between 
groups is expected, as both groups should rely on short-term, but not long-term 
priors (Fig. 1, F). Finally, we performed reconstruction of cortical sources to 
identify the regions supporting long-term auditory priors. 
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Figure 1. Experimental design and rationale of the study. Panels A and B illustrate the contrast between 
functor-initial and functor-final word order in Spanish and Basque, as well as its consequences on their 
prosodic structure. Panels C and D show the design of the experimental and control conditions, respectively. 
Notes represent individual tones. The structure of the design is the same in both conditions (ababab), with 
30 s sequences of two tones alternating at fixed inter-stimulus intervals and occasional omissions. In the 
experimental condition, tones alternate in duration but not frequency, whereas in the control condition tones 
alternate in frequency but not duration. Panels E and F depict the hypothesized error responses associated 
with the different types of omissions for experimental and control conditions, respectively. Round brackets 
above the tones reflect the grouping bias of the two languages, based on their word order constraints. Dotted 
lines reflect short-term predictions based on the transition probabilities of the previous stimuli. Solid lines 
reflect long-term predictions based on the phrasal chunking scheme of the two languages. 
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Results 

 
We first examined the responses evoked by the omissions of tones. MEG 

responses time-locked to the onset of the tones and omissions from the Basque 
and Spanish dominant groups were pulled together and compared via cluster-
based permutation test analysis (Maris & Oostenveld, 2007). Cluster analysis was 
performed over several time-points to identify spatiotemporal clusters of 
neighboring sensors where the two conditions differ (Methods). This analysis 
revealed an early effect of omission responses arising around 0.100 s from 
deviance onset (P < 0.0001), including several channels over the entire scalp (Fig. 
2 A, B)1. The latency and topographical distribution of the effect resemble the one 
elicited by a classical mismatch response, with strong activations over left and 
right temporal regions (Fig. 2 A, B). This finding aligned with previous reports 
showing that the omission of an expected tone in a regular sequence of sounds 
generates larger event-related fields (ERF) than an actual tone (e.g., Yabe et al., 
1997; Raij et al., 1997). 

Our main question was on the presence of long-term predictions induced 
by the linguistic background of the participants during the processing of simple 
binary auditory sequences. To assess this, we tested for the presence of an 
interaction effect between the linguistic background of the participants (Basque, 
Spanish) and the type of tone omitted (long, short) in modulating the amplitude of 
the MMN. Omission-MMN responses in this analysis were calculated by 
subtracting the ERF elicited by a given type of tone (i.e., long, short) from its 
corresponding omission (Garrido et al., 2009). A cluster-based permutation test 
was used to test the interaction effect between omission type (long vs short) and 
the linguistic background of the participants (Basque vs Spanish). As the cluster-
based permutation test is designed to compare two conditions at a time, we 
tested for an interaction effect by subtracting the MMN elicited by the omission 
of a long tone from the MMN elicited by the omission of a short tone for each 
participant, and then compared the resulting differences between groups.  
 

 
1 A smaller cluster (P = 0.043) with lower amplitude was also detected in an earlier time window 
(~0.030 – 0.050 s post-stimulus/omission onset). This cluster primarily includes left centro-
temporal channels. The directionality of the effect is the same as the later cluster, i.e., larger 
responses to omissions compared to tones (Supplementary Fig. 1 A, B). 
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Figure 2. Sensor-level topography and time course of neural responses to omitted sounds across 
groups and conditions. Panel A shows the temporal unfolding and topographical distribution of the overall 
effect of omission (omissions minus tones). Channels belonging to the significant cluster are highlighted. 
Panel B shows the ERF generated by omissions and tones in a representative channel. Panel C (left) shows 
the topography of the t distribution of the interaction effect between the language background of the 
participants (Spanish, Basque) and the type of omission MMN (short, long). Channels belonging to the 
significant interaction cluster are highlighted. The interaction effect was present only in the experimental 
condition. Panel C (right) shows the averaged MEG activity over the 0.100 – 0.250 s time window and 
channels belonging to the significant cluster for each group and condition separately. Panels D, E, F, G show 
the effect of language experience in modulating the amplitude of the omission MMN associated with each 
experimental and control contrast. Topographies (top) show the scalp distribution of the averaged activity 
over the 0.100 – 0.250 s time window. Channels belonging to the significant interaction cluster are 
highlighted. ERFs (middle) show the temporal unfolding of brain activity averaged over the channels 
belonging to the significant interaction cluster for each contrast and group. The shaded area indicates the 
time window of interest for the statistical analysis. Box-plots (down) show the mean MEG activity for each 
participant over the 0.100 – 0.250 s time window and the channels belonging to the significant interaction 
cluster. The center of the boxplot indicates the median, and the limits of the box define the interquartile range 
(IQR = middle 50% of the data). The notches indicate the 95% confidence interval around the median. Dots 
reflect individual subjects. In D–G, asterisks indicate statistical significance for each contrast using a one-
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sided, independent sample t-test with FDR correction for multiple comparisons (statistical significance: **p 
< 0.01, *p < 0.05, and ns p > 0.05, respectively). 

 
For this and the following contrasts, we selected a predefined time window 

of interest between 0.100 and 0.250 s, which covers the typical latency of the 
MMN (Näätänen et al., 2007; Garrido et al., 2009). Cluster analysis revealed a 
significant interaction (P = 0.03), which was particularly pronounced over left 
frontotemporal channels (see figure 2, C). To unpack the interaction, we averaged 
data samples for each participant and condition over the channels belonging to 
the significant cluster and time points of interest. This resulted in two ERFs for 
each participant, one for each type of omission-MMN (long, short). We then 
compared ERFs for each omission type between the two groups using a one-
sided independent sample t-test, testing the hypothesis that participants deploy 
long-term expectations about the onset of abstract language-like grouping units 
(fig. 1, E). Specifically, we compared (i) the omission-MMN responses generated 
by the omission of long tones in the Basque vs the Spanish group, and (ii) the 
MMN responses generated by the omission of short tones in the Basque vs the 
Spanish group. Consistent with the hypothesis, we found that omissions of long 
tones generated a larger MMN response in the Basque compared Spanish group 
(t(38) = 2.22; P = 0.03 FDR-corrected; d = 0.70), while the omission of short tones 
generated a larger omission-MMN in the Spanish compared to Basque group 
(t(38) = -2; P = 0.03 FDR-corrected; d = 0.63) (fig. 2, D, E). Notice that, given the 
structure of our design, a between-group comparison (e.g., comparing the ERF 
between the Basque and Spanish groups) is more suited to test our hypothesis 
than a within-group comparison (e.g., comparing the ERF evoked by the omission 
of long vs short tones within the Basque group), as the pre-stimulus baseline 
activity is virtually identical across conditions only in the between-group contrast.  

To further assess that the interaction was driven by the hypothesized long-
term “duration prior”, the same analysis pipeline was applied to the data from the 
control condition. Here, no significant omission-type x language background 
interaction was detected (no cluster with P < 0.05). To further check that no 
interaction was present in the control study, we averaged the data samples over 
the channels and time points in which we detected a significant interaction in the 
test condition and ran an independent sample t-test by comparing MMN 
responses elicited by the omission of high and low-frequency tones in both 
groups (Methods). Even within this subset of channels, no between-group 
difference was detected between MMN responses evoked by omissions of high 
(t(38) = -1.6; P = 0.12 FDR-corrected; d = -0.51), and low-frequency tones (t(38) = 
-1.1; P = 0.55 FDR-corrected; d = -0.04) (fig. 2, F, G). 

A linearly constrained minimum variance (LCMV) beamformer approach 
(Van Veen et al., 1997) was used to reconstruct the cortical sources of the MEG 
signal. We first focused on the source activity underlying the effect of omission 
(Fig. 2 A, B). Source activity was calculated for the epochs averaged in the 0.100 
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– 0.250 s interval for both tones and omissions. In order to isolate regions 
underlying the effect of omission, whole-brain maps for the ratio of the source 
activity associated with omission responses and tones were created (Fig. 3 A). A 
large network of regions showed a stronger response to omissions compared to 
auditory tones, including the bilateral inferior frontal gyri, premotor cortices, 
angular gyri, as well as the superior temporal gyri (Fig. 3 A).  

We then examined the cortical origin of the interaction effect that emerged 
at the sensor level (Fig. 2 C). In line with the MMN analysis at the sensor level, we 
focused on the source activity of the difference between omissions and tones for 
each omission type (short, long) and language group (Basque, Spanish). This 
analysis was aimed at identifying the cortical origin of the hypothesized long-term 
predictions. We hypothesized that such long-term priors might be linked to long-
term experience with the rhythmic properties of the two languages. As such, they 
would be expected to arise around early auditory areas, such as the superior 
temporal gyrus (STG). An alternative hypothesis is that these priors are linked to 
the abstract syntactic structure of the two languages. Under this account, long-
term predictions would be generated via long-range feedback from regions 
associated with syntactic processing, such as the left inferior frontal gyrus (IFG) 
(Ben-Shachar et al., 2003). To disentangle these possibilities, we performed an 
analysis on three regions of interest (ROI, based on the Brainnetome atlas, Fan et 
al., 2016) within the left STG, (Brodmann areas (BA) 41/42 of the auditory cortex, 
rostral portion of BA 22, caudal portion of BA 22), and three ROIs within the left 
IFG (dorsal, ventral and opercular portions of BA 44). We restricted our analysis 
to the left hemisphere only, which is where the significant interaction effect 
emerged at the sensor level (Fig. 2 C). We first performed a cluster-based 
permutation analysis in the whole left STG and the left IFG in the 0.100 – 0.250 s 
time interval, testing for the presence of an interaction between omission type and 
language group. This strategy is similar to the one performed at the sensor level, 
but is more time-sensitive as individual time points in the 0.100 – 0.250 s time-
interval are considered. No significant interaction was detected in the left IFG (no 
cluster with P < 0.05), while two temporally distinct effects emerged in the left 
STG: an early effect arising in the 0.110 – 0.145 s time-interval (P = 0.01) and a 
later effect in the 0.200 – 0.220 s (P = 0.04) (Fig. 3, B, C, D). It is possible that these 
two clusters reflect different temporal responses of the two groups to long and 
short omissions. To better understand the nature of the interaction effect within 
the left STG, pairwise comparisons were performed on each ROI and cluster using 
one-sided independent sample t-tests, following the same contrasts that were 
performed at the sensor level. Despite the high redundancy of activity across 
neighboring brain regions due to MEG source-reconstruction limitations 
(Bourguignon et al., 2018), we were interested in verifying whether the more 
robust interaction effect, both in magnitude and reliability, was emerging in 
primary (BA 41/42) or associative (BAs 22) auditory regions. Given the limitations 
of the cluster-based statistical approach in the definition of the timing of 
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significant effects (Sassenhagen & Draschkow, 2019), peak activity within each 
temporal cluster in the STG was selected and used for the pairwise comparisons 
on each ROI (early peak: 0.120 s; late peak: 0.210 s). Pairwise comparisons 
showed that the omission of long tones generated larger responses on the latency 
of the early peak (0.120 s) in the Basque compared to the Spanish dominant group 
over BA 41/42 and BA 22c (BA 41/42 (t (38)= 1.88, P = 0.03, d = 0.59; BA 22c (t 
(38)= 2.04, P = 0.02, d = 0.64), while no difference emerged for later peak 
responses (0.210 s) (BA 41/42: t (38)= 0.59, P = 0.27, d = 0.32; BA 22c: t (38)= -
1.14, P = 0.87, d = -0.36) (Fig. 3 C). On the contrary, the omission of short tones 
led to stronger responses over the later peak latency (0.210 s) in the Spanish 
compared to the Basque group in BA 41/42 (t (38)= -1.98, P = 0.02, d = -0.62), 
while no difference was observed on the latency of the earlier peak (BA 41/42: t 
(38)= 0.32, P = 0.62, d = 0.10) (Fig. 3 C). No significant effect emerged in BA22r. 
Overall, these findings suggest that segments of the left STG, in particular 
BA41/42, exhibit distinct sensitivity to omission responses in the two groups. The 
Basque group shows larger responses to the omission of long tones at an earlier 
time interval, whereas the Spanish group displays increased responses to the 
omission of short tones at a later time interval (Fig. 3 C). 

Besides documenting an interaction, which was the analysis of interest of 
our study, we also searched for a main effect of omission type. A cluster-based 
permutation test was used to compare the MMN responses elicited by omissions 
of long tones and omissions of short tones averaged across the two groups. The 
results showed that long-tone omissions generated a larger omission MMN 
response than short-tone omissions (P = 0.03), with the cluster including several 
frontal channels (Supplementary Fig. 2 A). This effect was consistent in the 
Basque (P = 0.003), but not in the Spanish group (no clusters with P < 0.05). No 
main effect of language background was detected (no clusters with P < 0.05) 
(Supplementary Fig. 2 B). In the control condition, neither a main effect of 
omission type nor an effect of language background was detected (no clusters 
with P < 0.05). 
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Figure 3. Source activity underlying the omission response network and long-term predictions. Panel 
A shows brain maps representing the ratio of source activity of tone to the omission (NAI = SOmission / STone) 
over the 0.100 – 0.250 s time window. Panel B shows the source activity peaks from the two clusters in the 
left STG for each group and condition separately. Panels C and D show the time course of source activity 
associated with the omission-MMN over distinct ROIs of the left STG and IFG. Dashed rectangles indicate 
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the two temporal clusters within the 0.100 – 0.250 s time window. Error bars reflect standard errors. In panels 
C-D, asterisks indicate statistical significance for each contrast using a one-sided, independent sample t-
test (statistical significance: **p < 0.01, *p < 0.05, and ns p > 0.05, respectively). 

 
Discussion  
 
By comparing MEG data from native speakers of functor-initial (i.e., Spanish) and 
functor-final languages (i.e., Basque) listening to simple binary sequences of 
tones with occasional violations, we show that experience with a given language 
can shape a very simple aspect of human perception, such as the neural 
processing of a binary rhythmic sound. This finding suggests that the human 
auditory system uses structural patterns of their native language to generate 
predictive models of non-linguistic sound sequences. This result highlights the 
presence of an active predictive system that relies on natural sound statistics 
learned over a lifetime to process incoming auditory input. 

We first looked at the responses generated by sound omissions. In line with 
previous reports, we found that omissions of expected tones in an auditory 
sequence generate a sharp response in the event-related field. Such omission 
responses have been suggested to reflect pure error signals decoupled from 
bottom-up sensory input (Hughes et al., 2001; Wacogne et al., 2011). On the other 
hand, other studies have proposed that omission responses could reflect pure 
predictions (Bendixen et al., 2009, San Miguel et al., 2013). While the exact nature 
of such responses is currently debated and likely dependent on factors such as 
task and relevance, the latency and topography of the omission response in our 
data resemble those evoked by a classical mismatch response (Fig. 2 A, B). 
Analysis of cortical sources also supports this interpretation. Indeed, source 
activity associated with omissions leads to stronger responses compared to tones 
over a distributed network of regions, including the bilateral inferior frontal gyri, 
premotor areas, angular gyri, and right superior temporal gyrus. Since sensory 
predictive signals primarily arise in the same regions as the actual input, the 
activation of a broader network of regions in omission responses compared to 
tones suggests that omission responses reflect, at least in part, prediction error 
signals. 

Importantly, we showed that when an unexpected omission disrupts a 
binary sequence of sounds, the amplitude of the omission MMN varies 
orthogonally depending on the speaker’s linguistic background. Omissions of 
long auditory events generate a larger omission MMN in the Basque compared to 
the Spanish group, while omissions of short sounds lead to a larger omission 
MMN responses in the Spanish compared to the Basque group. We hypothesized 
that this effect is linked to a long-term “duration prior” originating from the 
acoustic properties of the two languages, specifically from the alternation of short 
and long auditory events in their prosody. Importantly, no difference between 
groups was detected in a control task in which tones alternate in frequency 
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instead of duration, suggesting that the reported effect was driven by the 
hypothesized long-term linguistic priors instead of uncontrolled group 
differences.  

It is important to note that both Spanish and Basque speakers are part of 
the same cultural community in Northern Spain. These languages share almost 
the same phonology and orthography. However, Basque is a non-Indo-European 
language (an isolated language) with no typological relationship with Spanish. It 
is thus very unlikely that the current findings are driven by cultural factors that are 
not language-specific (e.g., exposure to different musical traditions or educational 
and writing systems). 

How would such long-term priors arise? One possible interpretation is that 
long-term statistical learning of the duration prosodic pattern of native language 
shapes the tuning properties of early auditory regions, affecting predictive coding 
at early stages. Such language-driven tuning is arguably important for reducing 
the prediction error during the segmentation of speech material into phrasal units, 
as it allows the auditory system to generate a functional coding scheme, or 
auditory template, against which the incoming speech input can be parsed. Such 
an auditory template is likely to be recycled by the auditory system to build top-
down predictive models of non-linguistic auditory sequences.  

The idea that the auditory system implements long-term predictions based 
on the prosodic structure of the native language could explain the previously 
reported behavioral influence of language experience on rhythmic grouping 
(Iversen et al., 2008, Molnar et al., 2016): when listening to sequences of two tones 
alternating in duration, like those used in the present study, speakers of functor-
initial languages report to perceive the rhythmic sequences as a repetition of 
“short-long” units, while speakers of functor-final languages have the opposite 
“long-short” grouping bias (Iversen et al., 2008, Molnar et al., 2016). Despite 
lacking a direct behavioral assessment (but see Molnar et al., 2016, for related 
behavioral evidence), our results indicate that this perceptual grouping effect can 
be explained within a predictive coding framework that incorporates long-term 
prior knowledge into perceptual decisions. Under such an account, the auditory 
system internalizes the statistics underlying the prosodic structure of language 
and uses this knowledge to make long-term predictions of incoming sound 
sequences. Such long-term predictions would bias auditory processing at early, 
rather than later decision-making stages, affecting how rhythmic sounds are 
experienced.  

Our work capitalized on a specific aspect of natural sound acoustic – the 
duration pattern in Basque and Spanish prosody – as a testbed to assess the 
presence of long-term priors in the auditory system. Despite our work being 
restricted to this specific feature, it is likely that the auditory system forms several 
other types of long-term priors using the spectrotemporal features that dominate 
the auditory environment. Support for this claim comes from (i) studies showing 
that the human auditory system uses the statistics underlying the acoustic 
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structure of speech and music to form perceptual grouping decisions (Młynarski 
& McDermott, 2019); and (ii) behavioral experiments reporting off-line effects of 
language experience on auditory perception based on different acoustic features 
(Liu et al., 2023). For instance, native speakers of languages in which pitch carries 
phonemically meaningful information (i.e., tone languages, e.g., Mandarin 
Chinese) benefit from a behavioral advantage in non-linguistic pitch discrimination 
tasks as compared to speakers of non-tone languages like English (Bidelman et 
al., 2013). Similarly, speakers of languages that use duration to differentiate 
between phonemes (e.g., Finnish, Japanese) manifest an enhanced ability to 
discriminate the duration of non-linguistic sounds (Tervaniemi et al., 2006). Our 
results, in conjunction with these studies, suggest that the auditory system forms 
long-term priors and predictions over development, using the co-occurrences 
that dominate the natural stimulus statistics. Yet, our results leave open the 
question of whether these long-term priors can be updated during adulthood, 
following extensive exposure to new statistical dependencies. This can be tested 
by exposing adult speakers to natural sounds encoding rules that “violate” the 
long-term prior (e.g., a language with opposite prosodic structure) and exploring 
the effects of such short-term exposure to behavioral and neural performance.  

One potential alternative to the conjecture that the “duration prior” is linked 
to the spectro-temporal features of a language is that the prior depends on 
abstract syntactic/word-order rules. This latter account would predict that 
violations of long-term predictions in our study would lead to larger error 
responses in regions sensitive to syntactic variables, such as the left IFG (Ben-
Shachar et al., 2003). Instead, the former account would predict that violations of 
long-term predictions elicit stronger responses in early left-lateralized auditory 
regions, which are putatively associated with early speech processing (Bhaya-
Grossman & Chang, 2021). The reconstruction of cortical sources associated with 
the omission of short and long tones in the two groups showed that an interaction 
effect mirroring the one at the sensor level was present in the left STG, but not in 
the left IFG (fig. 3, B, C, D). Pairwise comparisons within different ROIs of the left 
STG indicated that the interaction effect was stronger over primary (BA 41/42) 
rather than associative (BAs 22) portions of the auditory cortex. Overall, these 
results suggest that the “duration prior” is linked to the acoustic properties of a 
given language rather than its syntactic configurations. 

Our results are in line with predictive coding models stating that predictions 
are organized hierarchically. When two predictive signals, one short-term and one 
long-term are violated, the amplitude of the prediction error is larger compared to 
a scenario in which only one short-term prediction is violated. This result 
complements previous studies using the local-global design showing that the 
same deviancy presented in different contexts gives rise to different error signals, 
such as the MMN and the P3 (Bekinschtein et al., 2009; Wacongne et al., 2011). 
These studies provide empirical evidence that predictive coding of auditory 
sequences is organized at different functional levels, with early sensory regions 
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using transition probabilities to generate expectations about the present, and 
frontal and associative regions inferring the global structure of an auditory event. 
Our results extend this work by providing direct evidence for the presence of a 
system in the auditory cortex that uses long-term natural sound statistics to 
generate long-term predictions. This interpretation is also supported by the 
reconstruction of cortical sources. Indeed, while the overall omission effect is 
larger in the right hemisphere (Fig. 2A; 3 A), the interaction effect arises in the left 
hemisphere (Fig. 2 C; 3 B, C). This finding further suggests that distinct cortical 
systems, supporting different predictive models, underlie the generation of the 
omission MMN. 

Our findings are also consistent with more recent predictive coding models 
incorporating the idea of “stubborn” predictive signals – that is, predictions 
resilient to model updates. Unlike short-term expectations, long-term predictions 
are usually implemented as a computational constraint on input data, thus being 
largely unaffected by short-term experience (Teufel & Fletcher, 2020). In our study, 
the deployment of long-term predictions does not represent an effective coding 
strategy to perform the task. Yet, listeners still seem to assign different weights 
to incoming data, using a “default” predictive coding scheme that resembles the 
segmentation strategy used to parse speech material. Why should a neural 
system rely on such stubborn priors even when irrelevant to solving a given 
perceptual task? One possibility is that implementing stable priors as a constraint 
on perception is computationally less expensive in terms of metabolic costs than 
recalibrating cortical internal models anew based on any type of novel experience. 
Another possibility is that relying on unchanging predictive schemes helps the 
system to form coherent models in front of environmental contingencies, thus 
reflecting an effective computational strategy for the reduction of the long-term 
prediction error. Defining how stubborn predictions emerge during learning and 
what their computational role is represents an important challenge to 
understanding the role of prior experience in perceptual inference. 

We also reported a main effect of omission type, indicating that the MMN 
generated by the omission of a long tone was generally larger compared to that 
generated by the omission of a short one. Because such group effect was 
consistent only in the Basque group, it is possible that it merely reflects a larger 
sensitivity of the auditory system of this group to the omission of long events, in 
line with the interaction reported above. Alternatively, this effect could be driven 
by the fact that, during language processing, major predictive resources are 
invested in predicting the onset of long events, compared to short ones, as the 
formers usually refer to content words i.e., semantically relevant events. 
Consequently, the auditory system may apply a similar predictive scheme also 
during the processing of non-linguistic sound sequences, independently of 
language background. Independently on the interpretation, the lack of a main 
effect of omission type in the control condition suggests that the long omission 
effect is driven by experience with the native language. 
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Our results also refine previous studies showing modulatory effects of 
(long-term) musical expertise on the MMN (e.g., Vuust et al., 2005; 2009). These 
studies indicate that responses to violation during auditory rhythm perception are 
larger when the listener is an expert musician compared to a non-musician, 
pointing to the role of long-term auditory experience in shaping early predictive 
mechanisms. In our study, we manipulated long-term prediction orthogonally, 
with clear-cut predictions about the effect of language experience on early 
auditory predictive processing. Our results thus provide direct evidence for the 
presence of an active system in the auditory cortex that uses long-term priors to 
constrain information processing of incoming auditory stimuli. 
 
 
Materials and Methods 
 
Participants. In total, 20 native speakers of Spanish (mean age: 25.6 years, range: 
20–33, 13 females) and 20 native speakers of Basque (mean age: 27.11 years, 
range: 22–40, 17 females) took part in the experiment. It must be noted that in the 
original Molnar et al.’s (2016) experiment, a sample size of 16 subjects per group 
was sufficient to detect a behavioral perceptual grouping effect2. Members of the 
two groups were selected based on self-reported scores for exposure 
(percentage of time exposed to a given language at the time of testing) and 
speaking (percentage of time speaking a given language at the time of testing). 
Participants from the Basque group were living in a Basque-speaking region of 
the Basque Country. They all reported having learned Basque as a first language, 
being primarily exposed to Basque during daily life (mean exposure: 69%; SD: 
13.28, range: 50-90%) and using it as a main language for communication (mean 
speaking: 77%; SD: 10.56; range: 60-90%). All native speakers of Basque 
reported having learned Spanish as a second language. However, they had overall 
low exposure (mean exposure: 22%; SD: 10.31, range: 10-40%) and speaking 
scores for Spanish (mean speaking: 17%; SD: 7.33; range: 10-30%). In this 
respect, it is important to notice that previous behavioral studies on perceptual 
grouping in Basque bilinguals showed that language dominance is the main factor 
driving non-linguistic rhythmic grouping (Molnar et al., 2016). Therefore, despite 
limited exposure to the Spanish language, the formation of the hypothesized 
“duration prior” in the Basque group should be primarily linked to experience with 
the dominant language (i.e., Basque), with no or only minimal influence from 
Spanish. Participants from the Spanish dominant group were coming from 
different regions of Spain. All of them learned Spanish as their first language, and 
had high self-reported scores for Spanish exposure (mean exposure: 79%; SD: 

 
2 Under the request of a reviewer, we report a post-hoc power analysis indicating an achieved 
power of 46% for medium effect sizes (d = 0.5, and alpha = 0.05, one-sided test) in a between-
groups design with 20 subjects per group; while a sensitivity analysis indicates that the experiment 
possesses 80% power for effect sizes of d = 0.8 and above.  
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9.67, range: 60-100%) and speaking (mean speaking: 88.5%; SD: 6.7; range: 80-
100%). Spanish participants reported having learned a second or third language 
after childhood (e.g., Basque, English, Italian, and Catalan).  

Participants were recruited through the participant recruitment system of 
the Basque Center on Cognition, Brain and Language. The experiment and 
methods received approval from both the ethical committee and scientific 
committee of the Basque Center on Cognition, Brain and Language, following 
with the principles of the Declaration of Helsinki. Written informed consent was 
obtained from all participants in line with the guidelines of the Research 
Committees of the BCBL. 
Stimuli and experimental design. Stimuli were created using Matlab Psychtoolbox 
and presented binaurally via MEG-compatible headphones. Experimental stimuli 
consisted of 60 sequences of two tones alternating in duration (short tones: 0.250 
s; long tones: 0.437 s) with fixed inter-stimulus intervals (0.020 s). Both long and 
short tones had a frequency of 500 Hz. The beginning and end of each tone was 
faded in and out of 0.015 s. Overall, each sequence consisted of 40 short-long 
tone pairs, for a total of 80 unique tones per sequence, and lasted around 30 s. 
Half of the sequences started with a long tone and half with a short tone. The 
beginning and the end of each sequence were faded in and faded out of 2.5 s to 
mask possible grouping biases. In each sequence, 2 to 6 tones were omitted and 
substituted with a 0.6 s silence gap. The larger gap was introduced to avoid that 
activity related to the onset of the tone following the omission overlaps with the 
activity generated by the omitted tone. Tone omissions occurred 
pseudorandomly, for a total of 240 omissions (120 short and 120 long). The 
pseudorandomization of the omissions consisted in separating the omissions 
within each sequence of at least 7 tones. In the control condition, sequences 
consisted of tones alternating in frequency at fixed inter-stimulus intervals (0.020 
s). High-frequency tones had a frequency of 700 Hz, while low-frequency tones 
had a frequency of 300 Hz. Both high and low-frequency tones had an overall 
duration of 0.343 s. This duration was selected to keep the overall length of the 
sequences equal to that of the test condition, by keeping the total number of 80 
tones per sequence. As in the test condition, tones and sequences were faded in 
and out of 0.015s and 2.5 s respectively. In each sequence, 2 to 6 tones were 
omitted and substituted with a 0.600 s silence gap.  

Overall, the experiment was divided into two main blocks: test and control. 
The order in which the blocks were presented was counterbalanced across 
participants. Each block consisted of 60 sequences and lasted around 35 
minutes. Each sequence was separated by an 8 s silence gap. Every twenty 
sequences, a short pause was introduced. The end of each block was followed 
by a longer pause.  

Participants were requested to minimize movement throughout the 
experiment, except during pauses. Subjects were asked to keep their eyes open, 
to avoid eye movements by fixating on a cross on the screen. Similarly to previous 
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studies, the only task that was asked to subjects was to count how many 
omissions were present in each sequence (e.g., Bekinschtein et al., 2009) - and 
report it at the end of the sequence during the 8 s silence gap. Participants only 
received instructions at the very beginning of the task, and no verbal or written 
instructions were introduced during the task. 
MEG Recordings. Measurements were carried out with the Elekta Neuromag 
VectorView system (Elekta Neuromag) of the Basque Center on Cognition Brain 
and Language, which comprises 204 planar gradiometers and 102 
magnetometers in a helmet-shaped array. ECG and electrooculogram (EOG) 
(horizontal and vertical) were recorded simultaneously as auxiliary channels. MEG 
and auxiliary channels were low-pass filtered at 330 Hz, high-pass filtered at 0.03 
Hz, and sampled at 1 KHz. The head position with respect to the sensor array was 
determined by five head-position indicator coils attached to the scalp. The 
locations of the coils were digitized with respect to three anatomical landmarks 
(nasion and preauricular points) with a 3D digitizer (Polhemus Isotrak system). 
Then, the head position with respect to the device origin was acquired before 
each block.  
Preprocessing. Signal space separation correction, head movement 
compensation, and bad channels correction were applied using the MaxFilter 
Software 2.2 (Elekta Neuromag). After that, data were analyzed using the FieldTrip 
toolbox (Oostenveld et al., 2011) in Matlab (MathWorks). Trials were initially 
epoched from 1.200 s before to 1.200 s after the onset of each tone or omitted 
tone. Epochs time-locked to the onset of short and long tones were 
undersampled to match approximately the number of their corresponding 
omissions. Trials containing muscle artifacts and jumps in the MEG signal were 
detected using an automatic procedure and removed after visual inspection. 
Subsequently, independent component analysis (Bell and Sejnowski, 1995) was 
performed to partially remove artifacts attributable to eye blinks and heartbeat 
artifacts (Jung et al., 2000). To facilitate the detection of components reflecting 
eye blinks and heartbeat artifacts, the coherence between all components and 
the ECG/EOG electrodes was computed. Components were inspected visually 
before rejection. On average, we removed 14.28% (SD = 5.71) of the trials and 
2.45 (SD = 0.55) components per subject. After artifact rejection, trials were low-
pass filtered at 40 Hz and averaged per condition and per subject. ERFs were 
baseline corrected using the 0.050 s preceding trial onset and resampled to 256 
Hz. The latitudinal and longitudinal gradiometers were combined by computing 
the root mean square of the signals at each sensor position to facilitate the 
interpretation of the sensor-level data.   
ERF analysis. Statistical analyses were performed using FieldTrip (Oostenveld et 
al., 2011) in Matlab 2014 (MathWorks) and R studio for post-hoc analysis. For 
data visualization, we used Matlab or FieldTrip plotting functions, R studio and 
the RainCloud plots tool (Allen et al., 2019). Plots were then arranged as cohesive 
images using Inkscape (https://inkscape.org/). All comparisons were performed 
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on combined gradiometer data. For statistical analyses, we used a univariate 
approach in combination with cluster-based permutations (Maris & Oostenveld, 
2007) for family-wise error correction. This type of test controls the type I error 
rate in the context of multiple comparisons by identifying clusters of significant 
differences over space and time, instead of performing a separate test on each 
sensor and sample pair. Two-sided paired- and independent-samples t-tests 
were used for within- and between-subjects contrasts, respectively. The minimum 
number of neighboring channels required for a sample to be included in the 
clustering algorithm was set at 3. The cluster-forming alpha level was set at 0.05. 
The cluster-level statistic was the maximum sum of t-values (maxsum) and the 
number of permutations was set to 100000. To control for the false alarm rate, we 
selected the standard α = 0.05. For the first analysis only, in which we compared 
ERF generated by pure tones vs omitted tones, we used a time-window between 
-0.050 and 0.350 s and considered both the spatial and temporal dimensions in 
the cluster-based permutation test. This explorative analysis was performed to 
assess the effect of unexpected omission, as well as its temporal unfolding. In all 
the remaining analyses, MMN responses were calculated by subtracting the ERFs 
of each type of tone (i.e., long, short) from the ERFs of the corresponding 
omission. Moreover, all the contrasts were conducted using the average activity 
in the latency range between 0.100 and 0.250 s, which covers the typical latency 
of the MMN (Näätänen et al., 2007; Garrido et al., 2009). This approach uses 
spatial clusters to test for the difference between conditions. When multiple 
clusters emerged from a comparison, only the most significant cluster was 
reported. When an interaction effect was detected, post hoc analyses were 
performed to assess its directionality. This was done by averaging data for each 
participant and condition over the preselected latency and channels belonging to 
the significant clusters (see Results). The ERFs generated by this averaging were 
compared using one-sided independent sample t-tests. All p-values resulting 
from the post hoc t-test comparisons were FDR-corrected for multiple 
comparisons. All effect sizes reported are Cohen’s d (Cohen, 1988). 
Source reconstruction. Source reconstruction mainly focused on the statistically 
significant effects observed at the sensor-level ERF analysis. Individual T1-
weighted MRI images were first segmented into scalp, skull, and brain 
components using the segmentation algorithm implemented in Fieldtrip 
(Oostenveld et al., 2011). A standard Montreal Neurological Institute (MNI) brain 
template available in SPM toolbox was used for the participants whose MRI was 
not available. Co-registration of the anatomical MRI images with MEG signal was 
performed using the manual co-registration tool available in Fieldtrip. The source 
space was defined as a regular 3D grid with a 5 mm resolution, and the lead fields 
were computed using a single-sphere head model for three orthogonal source 
orientations. The whole brain cortical sources of the MEG signals were estimated 
using a linearly constrained minimum variance (LCMV) beamformer approach 
(Van Veen et al., 1997). Only planar gradiometers were used for modelling source 
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activity. First, we compared the average source activity associated with pure 
omissions and standard tones in the time range of 0.100 – 0.250 s after the 
stimulus onset, extracted from the individual epochs. The covariance matrix used 
to derive LCMV beamformer weights was calculated from the 0.2 s preceding and 
0.4 s following the onset of events (i.e., tones and omissions). Neural activity index 
(NAI) was computed as the ratio of source activity of tone to the omission (NAI = 
SOmission / STone). A non-linear transformation using the spatial-normalization 
algorithm (implemented in SPM8; Friston et al., 1994) was employed to transform 
individual MRIs to the standard Montreal Neurological Institute (MNI) brain. The 
source maps were plotted using the Surf Ice tool 
(https://www.nitrc.org/projects/surfice/)  

Further, we selected predefined regions of interest for the subsequent 
analysis using the Brainnetome atlas (Fan et al., 2016). The regions of interest 
included three areas within the left STG (BA 41/42 of the auditory cortex, rostral 
portion of BA 22, caudal portion of BA 22) and left IFG (dorsal, ventral and 
opercular portions of BA 44). We created an LCMV filter using the same 
parameters used for whole brain source reconstruction. The virtual electrode in 
the source space corresponding to each ROI was generated. Singular vector 
decomposition (SVD) was applied to select the component with maximum 
variance. Later, the differential omission mismatch negativity was computed by 
subtracting the power of the long tones from the power of the long omissions, 
and the power of the short tones from the power of the short omissions. This 
procedure was applied to each group separately (i.e., Spanish and Basque 
natives).  

To examine the presence of an interaction effect at the source level, we 
first averaged the source activity time-series across ROIs for both the STG and 
IFG. A cluster-based permutation test was then applied on source activity data to 
identify temporal clusters over the 0.100 – 0.250 s time interval, following the 
same contrasts that were performed at the sensor-level. This was done separately 
for the STG and IFG. This approach is similar to the one performed at the sensor 
level, but provides higher temporal sensitivity by considering individual time 
points within the 0.100 – 0.250 s interval. All the remaining parameters of the 
cluster-based permutation test are the same as the test used for the sensor level 
analysis. When a cluster associated with a significant P value was detected, the 
highest peak within the cluster was selected and used for the subsequent pairwise 
comparisons. Between-group comparisons were performed on each ROI and 
peak using a one-sided independent sample t-test, following the same contrasts 
employed at the sensor level. 
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Supplementary material 

 
 

 
 

Supplementary Figure 1. Panel A shows the temporal unfolding and topographical distribution of the second 
cluster that emerged from the comparisons between omissions vs tones. Channels belonging to the 
significant cluster are highlighted. Panel B shows the ERF generated by omissions and tones over all the 
channels belonging to the significant cluster. Shaded gray area indicates the latency of the cluster. The upper 
part of the scale has been lowered compared to Figure 1 to match the smaller amplitude of the effect. The 
temporal scale of the topographies has also been lowered compared to Figure 1, in order to allow the 
visualization of the cluster, which has a latency of around 0.020 s. 
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Supplementary Figure 2. Effects of omission type and language background. Panel A shows the ERFs 
and topographies reflecting the main effect of omission type, with omissions of long auditory events 
generating larger omission MMN than short events between groups. Panel B shows the ERFs and 
topographies reflecting the (lack of) main effect of language background, with overall no group differences 
in the amplitude of the omission MMN. Because no main effect of language background was detected, Panel 
B uses the same channels of Panel A as representative channels for plotting the ERF. The remaining 
conventions for the plot are the same as in Figure 2. 
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