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Abstract

Objectives

To investigate an outbreak of Enterococcus faecium in a hospital haematology ward and uncover the
mechanism of a vancomycin resistance phenotype-genotype disparity in an isolate from this outbreak.
Methods

Whole genome shotgun sequencing was used for the phylogenetic analysis of E. faecium isolates (n
= 39) and to identify the carriage of antibiotic resistance genes. A long-read sequencing approach
was adopted to identify structural variations in the vancomycin resistance region of a vancomycin-
variable E. faecium (VVE) and to uncover the resistance reversion mechanism in this isolate. RT-
gPCR and RT-PCR were used to determine differences in the expression of vanRS and vanHAX
among strains.

Results

The E. faecium strains isolated in the hospital haematology ward were extensively drug resistant and
highly diverse. The notable expansion of ST262 among patients was the likely driver of a VRE
outbreak. A VVE isolate was identified that could rapidly revert to a vancomycin-resistant state in
the presence of vancomycin. Disruption of the vanR gene in this isolate by an 1S6-family element
impaired its response to vancomycin. However, when the isolate was evolved to vancomycin
resistance, it could constitutively express the vanHAX genes at levels up to 36,000-fold greater than

the parent isolate via co-transcription with a ribosomal RNA operon.

Conclusion

In this study, we report a VVE isolate that was isolated during a VRE outbreak. This strain was
capable of rapidly reverting to a resistant phenotype through a novel mechanism involving integration
of vanHAX downstream of a ribosomal RNA operon. During VRE outbreaks, attention should be
paid to contemporaneous vancomycin-susceptible strains as these may carry silent vancomycin
resistance genes that can be activated through genomic rearrangements upon exposure to

vancomycin.
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Introduction

Enterococcus faecium is a Gram-positive bacterium that is a commensal of the human gastrointestinal
tract'. However, it is also an opportunistic pathogen that can cause bacteriaemia, endocarditis and
urinary tract infections in immunocompromised hosts?. Genomic studies have revealed that the vast
majority of clinical infections are caused by a phylogenetically defined cluster of E. faecium strains,
which was termed clade A1, E. faecium infections are difficult to treat as they are often resistant to

aminoglycoside, fluoroquinolone, p-lactam, and glycopeptide drugs®.

Vancomycin is a bactericidal glycopeptide antibiotic that targets peptidoglycan of the bacterial cell
wall*. Resistance to vancomycin is conferred by clusters of genes which replace the terminal D-alany!
D-alanine motif of the lipid Il stem peptide with a D-alanyl D-lactate or D-alanyl D-serine motif,
thereby greatly reducing the binding affinity of vancomycin®. There are currently 9 known gene
clusters that confer resistance to vancomycin in E. faecium, but the vanA and vanB-type clusters are
the most prevalent®. Vancomycin resistance gene clusters are generally carried on integrative and
mobilizable elements of which Tn1546 and Tn1549 encode vanA- and vanB-type resistance,

respectively”®,

An increasing number of E. faecium strains are being identified that contain the gene clusters required
for vancomycin resistance but are phenotypically susceptible®!'. These strains are known as
vancomycin-variable E. faecium (VVE)!2. The mechanisms which lead to the susceptibility of these
isolates are varied. Full or partial deletion of genes within the vancomycin resistance gene cluster is
common, including deletion of the regulatory genes vanR-vans, the D-alanyl D-alanine dipeptidase
gene vanX, or partial deletion of the D-alanyl D-alanine ligase gene vanA?6 As well as gene
deletions, integration of insertion sequence (IS) elements into the promoter regions of vancomycin
resistance genes has also led to the evolution of VVE strains'’!8, Vancomycin-variable isolates are
of particular concern in the treatment of patients as some of these isolates can rapidly revert to the

resistant phenotype under vancomycin selection, which may, in turn, lead to treatment failure.
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Here we investigate an outbreak of vancomycin resistant Enterococcus faecium in a haematology
ward within a UK hospital. Within the outbreak we identified a vancomycin-variable isolate that was
able to rapidly revert to a vancomycin-resistant phenotype under low-level vancomycin selection and
we uncovered both the cause of its susceptibility and the mechanism by which it could revert to a

vancomycin resistant phenotype.
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Materials and methods

Collection and isolation of Enterococcus faecium

Enterococcus faecium strains were isolated from a haematology ward in a hospital in Birmingham
(United Kingdom) over a two-year period (2016-2017) of increased vancomycin resistant E. faecium
(VRE) bacteraemia. 39 isolates were collected in total from 24 patients by blood culture and rectal
screening. The blood culture samples were taken from febrile patients, while rectal screening samples
were collected from all patients on the ward. Only vancomycin-resistant rectal screening isolates from
patients with VSE bacteraemia were included in this study. Bacteria were initially isolated on
Columbia CNA agar (Oxoid) plates and were confirmed as Enterococcus faecium by MALDI-TOF

(Bruker). The vanA* isolate E. faecium E8202 was used as a control for gene expression in Tn1546%°.

Short- and long-read sequencing

DNA extraction and whole genome shotgun sequencing (WGS) using Illumina technology was
carried out by MicrobesNG (http://www.microbesng.com). Isolates were lysed by suspending in TE
buffer (Invitrogen) containing 0.1 mg/ml lysozyme (Thermo Scientific) and 0.1 mg/ml RNase A
(ITW Reagents), the suspension was incubated at 37°C for 25 mins. Proteinase K (VWR Chemicals)
and SDS (Sigma Aldrich) were added to a final concentration of 0.1 mg/ml and 0.5% v/v respectively
and incubated for a further 5 mins at 65°C. DNA was purified using an equal volume of SPRI beads
and resuspended in EB buffer (Qiagen). DNA libraries were prepared using the Nextera XT Library
Prep Kit (Illumina) and pooled libraries were sequenced on an Illumina HiSeq instrument using a 250

bp paired-end protocol.

High molecular weight DNA was extracted from isolate O125 and its revertants using the Monarch®
HMW DNA Extraction Kit for Tissue (New England Biolabs) according to the manufacturer’s
protocol with the addition of 50 pug/ml lysozyme (Sigma Aldrich) to weaken the cell wall during the

lysis step. The DNA libraries were prepared using the ligation sequencing kit SQK-LSK109 (Oxford
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Nanopore Technologies) and sequenced on the MinlON platform (Oxford Nanopore Technologies)

using a R9.4.1 flowcell (Oxford Nanopore Technologies).

Raw sequencing reads have been deposited in the European Nucleotide Archive under accession

number PRIJEB57409.

DNA assembly

Adapters were removed from the short-read data and quality trimmed using fastp v.0.20.1%. Reads
less than 50 bp were discarded and a sliding window quality cut-off of 15 was used. The short-read
data was then assembled using shovill v.1.0.4 (https://github.com/tseemann/shovill) using the default
parameters. Hybrid assemblies were created by Unicycler v.0.4.8% using both short and long reads,
Unicycler was run using the default parameters. Both the short-read and hybrid assemblies were

annotated using PROKKA v.1.14.6%.

Hybrid assemblies of the VVE strain OI25 and its revertants have been deposited in Genbank under

accession numbers GCA 947511065.1, GCA 947511075.1 and GCA_947510805.1.

Phylogenetic analysis

A core genome alignment was created with Panaroo v.1.2.2% using —clean-mode strict. Phylogenetic
trees were created from the core genome alignments using RAXML v.8.1.15% implementing the
GTRGAMMA substitution model with 100 bootstraps. Recombination was removed from the trees
using ClonalFrameML v.1.122°, Trees were midpoint rooted and visualised using iTOL v.5%. Isolates
were typed with PubMLST? using mist v.2.18.0 (Seemann T, mlst, Github

https://github.com/tseemann/mist).

Identification of antibiotic resistance determinants in E. faecium genomes

Antibiotic resistance genes were identified in the E. faecium isolates by querying the short-read

assemblies against the ResFinder database?® using ABRicate v.0.9.8 (Seemann T, Abricate, Github
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https://github.com/tseemann/abricate). A minimum identity and coverage cut-off of 95% and 50%

respectively was used to determine that the antibiotic resistance genes were present.

Antibiotic susceptibility testing

All outbreak isolates were tested for their antibiotic susceptibility using the VITEK2 system
(Biomérieux). A subset of the isolates was also tested using the broth microdilution method?® and
interpreted with the EUCAST breakpoints. Assays were carried out in biological triplicate and the
mode of the minimum inhibitory concentration was recorded. E. faecium E745 was used as a positive

control in all assays®.

Reversion of VVE from a vancomycin susceptible to vancomycin resistant phenotype

A colony of isolate O125 was inoculated into 5 ml of Brain Heart Infusion (BHI) broth (VWR) and
grown at 37°C for 16 hours with shaking (200 rpm). The culture was then diluted 1:100 into 5 ml of
BHI broth containing 8 pg/ml vancomycin. The culture was grown at 37°C (200 rpm) and observed
every 24 hours for growth. When growth was observed, the culture was diluted 106-fold and 100 pl
was spread onto BHI agar plates containing 8 pug/ml vancomycin. Two colonies were picked from

the plate and stored for further analysis.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Reverse
transcription polymerase chain reaction (RT-PCR)

RNA was extracted from cells collected in mid-log phase (ODeoo = 0.5) and cells that had been
exposed to 8 pg/ml vancomycin at mid-log phase for one hour, using the Monarch® Total RNA
Miniprep Kit (New England Biolabs). Residual DNA was removed by treating the RNA with TURBO
DNase™ (Invitrogen). cDNA was synthesised from the total RNA using the Maxima First Strand
cDNA Synthesis Kit for RT-qPCR (Thermo Scientific). g°PCR was carried out using PrimeTime®
Gene Expression Master Mix (2X) (Integrated DNA Technologies (IDT)) and PrimeTime® gqPCR
Assays (20X) (IDT), which contained the forward primer, reverse primer and probe, for the vanRS

and vanHAX operons, and the tufA housekeeping control gene (Table S1). The gPCR reaction was
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performed in a QuantStudio 1 Real-Time PCR system (Applied Biosystems™) with the following
program: 95°C for 3 mins, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. Fold expression

was calculated using the Livak method relative to the internal control gene tufA3.

The cDNA of isolate Ol25rev2 was also used to perform RT-PCR assays across the rRNA-vanHAX
junction. RT-PCR reactions were carried out using DreamTag 2x Mastermix (Thermo Fisher
Scientific) and forward and reverse primers that bridged between the 23S rRNA gene and the vanH,
vanA and vanX genes (Table S2). The reactions were performed in a Mastercycler Pro Thermal Cycler
(Eppendorf) with the following program: 95°C for 3 mins, followed by 30 cycles of 95°C for 30 s,
50°C for 30 s and 72°C for 2 mins, followed by a final incubation at 72°C for 10 mins. A reaction

with a sample from which reverse transcriptase was omitted was used to control for residual DNA.

Terminator analysis

The rho-independent terminator of the ribosomal RNA gene operon was identified in isolate OI25 by
analysing 100 nucleotides downstream of the 5S rRNA gene stop codon via RNAfold Web Server?,
The output was then manually inspected to identify the typical A-tail, loop, T-tail structure of a rho-

independent terminator®,

Fitness evaluation

Bacterial fitness was evaluated by comparing the maximum growth rate (Umax; h™) and maximum
growth (maximum Aeoo) Of the revertant isolates compared to isolate O125. Bacterial cultures were
grown for 16 hours at 37°C in BHI broth, diluted 1:1000 in BHI broth and added to a clear flat-bottom
96-well plate. Wells were included that contained only BHI broth to control for changes in Agoo not
caused by bacterial growth. The 96-well plate was incubated at 37°C with agitation (240 rpm) for 16
hours, absorbance measurements (600 nm) were taken at 10-minute intervals using a Spark

microplate reader (TECAN). The experiment was carried out in biological and technical triplicates.
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Maximum growth rate and maximum growth were determined using the R package Growthcurver

v.0.3.1%,

Statistical analyses

Tests for determining statistical significance were performed as described in the text and implemented

in GraphPad Prism v.9.4.1.
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Results

Genome sequence analysis revealed a multi-clonal, nosocomial VRE outbreak

A total of 39 isolates were collected in this study from 24 patients. 26 of the isolates were
phenotypically resistant to vancomycin and 13 were phenotypically susceptible (Table S3). Thirty-
four of the isolates were from blood culture samples and five were isolated from rectal screening

swabs of patients.

Phylogenetic analysis of the clinical E. faecium isolates uncovered a complex population of isolates
belonging to clade Al (Figure S1). Eight different sequence types (ST262, ST80, ST1478, ST780,
ST117, ST203, ST412 and ST787) were isolated on the ward during the period of the outbreak. A
dominant ST262 clone that was present in 13 patients was the likely driver of the outbreak within the
haematology ward. While all isolates could be assigned to clade A1, they were distinct from the clade
Al reference isolates (Figure 1). The outbreak isolates contained a large repertoire of antibiotic
resistance genes. Aminoglycoside resistance was common among the isolates, with isolates carrying
between two and five aminoglycoside resistance genes. All outbreak isolates carried the E. faecium
specific aac(6")-1i gene and 33 of the 39 isolates carried the aac(6')-aph(2") gene®. Erythromycin
resistance genes were also found in all outbreak isolates: erm(B) was the most common macrolide
resistance gene and was found in 33 of the isolates. Tetracycline resistance genes were found in 29
isolates, including tet(L) and four different alleles of tet(M). Vancomycin resistance was widespread
in the isolates with 25 out of 39 isolates carrying vancomycin resistance genes, all of which were the
vanA-type. It was noted that isolate O125 was phenotypically susceptible to vancomycin but carried
the vanHAX genes necessary to confer phenotypic resistance, which suggested that it was a
vancomycin-variable Enterococcus faecium (VVE) isolate. To confirm the result of the VITEK 2
susceptibility testing, E. faecium isolate OI25 was subjected to a broth microdilution MIC against

vancomycin. Isolate OI25 had a vancomycin MIC of 1 ug/ml, which is below the EUCAST clinical
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breakpoint of 4 ug/ml, confirming that this isolate was indeed susceptible to vancomycin despite

carrying the genes required for phenotypic resistance to vancomycin.

Tree scale: 0.0001 +——

Sample type

B Blood culture
B Rectal swab

B Reference strain

Antibiotic resistance genes

| Absent

| Present

Figure 1: Maximum likelihood core genome phylogenetic tree of the clinical E. faecium
isolates and representative clade Al isolates. Metadata includes the sample type (Blood culture,
Rectal swab or Reference strain) and the presence or absence of antibiotic resistance genes. The

scale bar indicates the number of substitutions per site. The arrow indicates the VVE isolate OI25.

0125 had an impaired transcriptional response to vancomycin

RT-gPCR analysis was used to compare the transcriptional response of the vancomycin resistance
operons vanRS and vanHAX in isolate OI125 to the vancomycin-resistant isolate E8202 when exposed
to 8 ug/ml vancomycin (Figure 2). Expression of the vanHAX operon increased 310-fold in isolate
E8202 when exposed to vancomycin but increased only 16-fold in isolate O125. Similarly, upon
exposure to vancomycin, expression of the vanRS genes increased 52-fold in the wildtype VRE

isolate but only 5-fold in isolate OI25. This demonstrated that the susceptibility of isolate OI25 to
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vancomycin was due to its reduced ability to increase gene expression of the vanHAX operon in the

presence of vancomycin.

4001
B vanHAX

B vanRkRS

Fold expression

E8202 OI125

Figure 2: Expression of vanHAX and vanRS in E. faecium E8202 and the VVE isolate OI125.
RT-qPCR analysis Expression of the vancomycin resistance gene operons vanHAX and vanRS of
E8202 and the VVE isolate O125 was determined by gRT-PCR analysis before and after exposure
to 8 ng/ml vancomycin. Expression data was normalised to the internal control gene tufA.
Experiments were carried out with biological triplicates and technical duplicates. Error bars

represent standard deviation.

An 1S6-family element disrupted the vanR gene and its promoter in O125

A genome assembly, incorporating both long- and short reads, of isolate OI25 was generated to
analyse the vancomycin resistance region, in order to identify a possible mechanism that abolished
vancomycin resistance in this isolate. Compared to the prototypical Tn1546 transposon (GenBank:

M97297.1), isolate OI25 had an insertion of an ISL3-family element between the vanS and vanH
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genes (Figure 3). However, this insertion did not occur within the previously characterised promoter
region of vanH and thus did not disrupt the two VanR binding sites upstream of vanH®¢. 0125 also
had an insertion of an 1S6-family element within the promoter region and the first 50 bp of the vanR
gene. It was likely that this inactivated vanR, thus preventing activation of the vanHAX genes in the

presence of vancomycin, leading to the vancomycin-susceptible phenotype of OI25.

Tn1546 — T immsesa s> Cvart. Y vana Aiamp——{an p—ferd

0125 B ot varh ] p—fer>—

Figure 3: Alignment of the vancomycin resistance region of E. faecium isolate O125 against

the vancomycin resistance region of the prototypical Tn1546 transposon. The Tn1546 sequence
was obtained from NCBI Genbank (accession number: M97297.1). Grey boxes represent regions

which are identical between isolates. The yellow box represents the deletion in vanR.

Rapid reversion to a high-level vancomycin resistant phenotype

Isolate OI25 was exposed to 8 pg/ml vancomycin to investigate whether it could revert to a
vancomycin-resistant phenotype in the presence of a low concentration of vancomycin. Growth was
observed within the OI25 culture after 48 hours. Two isolates taken from this culture had a
vancomycin MIC of 512 ug/ml, thus showing that isolate OI25 could revert to a vancomycin resistant

phenotype under vancomycin selection.

Insertion of vancomycin resistance genes downstream of a ribosomal RNA operon led to a
vancomycin-resistant phenotype.

Complete genome assemblies of OI25 and its revertant isolates were generated by combining short-
and long-read data, to identify a potential mechanism behind the reversion of isolate OI25 to a
vancomycin-resistant phenotype. Both O125 revertant isolates (O125rev1 and OI25rev2) had similar

genomic rearrangements compared to the parent isolate (Figure 4). The rearrangements led to the
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insertion of the vancomycin resistance genes into the chromosome, with the vanHAX operon
becoming inserted immediately downstream of a ribosomal RNA operon, whereas the vanRS operon
was inserted in such a way that it and its surrounding DNA remained unchanged. In isolate Ol125rev2
the entire plasmid was integrated into the chromosome whereas in isolate OI25revl a 15,299-bp
fragment of the plasmid DNA was integrated in the chromosome while a 21,107-bp plasmid
remained. It could not be ascertained whether in isolate OI25rev1 the whole plasmid was integrated
and then excised leaving the vancomycin resistance genes behind in the chromosome (Figure 4; green
arrows) or whether the vancomycin resistance genes were excised and formed an intermediate mobile
genetic element that was then integrated into the chromosome (Figure 4; purple arrows). In both
isolates there was an 8-bp target site duplication (ACTAGAAA) surrounding the DNA inserted into

the chromosome that is consistent with the action of an IS element.

A

(O] VT -\ BEE 165 ribosomal RNA 23S ribosomal RNA EJFMLDAB_02512 228

Truncated
vanH Bl 1S1251

Circular Intermediate
15,299 bp

Wildtype plasmid
36,561 bp

Plasmid 4
21,107 bp

ACTAGAAA ACTAGAAA

Ol25rev2

23S ribosomal RNA

vanH ZFull plasmid 2 1572571

R 165 ribosomal RNA EJFMLDAB_02512 2
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Figure 4: Mechanisms of VVE reversion to vancomycin resistance. A. Insertion of the
vancomycin resistance plasmid into the chromosome of Ol25revl and the possible intermediate
stages in the insertion. B. Insertion of the vancomycin resistance genes into the chromosome of

Ol25rev2.

Substantial, constitutive upregulation of vanHAX expression in revertant isolates

As the insertion of the plasmid DNA into the chromosome did not restore the vanR gene it was
hypothesised that the vanHAX genes were instead being constitutively expressed. To determine
whether the expression of the vanHAX operon had changed at this new locus, RT-qPCR was used to
compare the expression of the vanHAX and vanRS operons in the revertant isolates compared to O125.
Although the insertions that occurred in both revertant isolates were different, the change in
expression of the vanHAX and vanRS operons was similar. In the absence of vancomycin, the
expression of the vanHAX operon in the two revertant strains Ol125rev1 and OI125rev2 was on average
(+ standard deviation) 2.7 x 10*+ 1.1 x 10*-fold and 3.6 x 10* + 1.3 x 10*-fold greater than in OI25.
The expression of the vanRS operon was also 39.4 + 22.8-fold (Ol125revl) and 34.2 + 16.3-fold
(Ol125rev2) higher in the revertants, compared to OI25, despite the continued disruption of the vanR
gene. This demonstrated that the revertant isolates were expressing the vanHAX genes needed to

confer resistance to vancomycin, even in the absence of vancomycin.

The genomic insertion site was inspected in both the revertant and parent isolates to determine a
mechanism behind the constitutive expression of the vanHAX genes. In the parental OI25 strain, a
putative rho-independent terminator of the ribosomal RNA operon was uncovered (Figure S2). The
chromosomal insertion of plasmid DNA in isolates OI25revl and OI25rev2 occurred 27 bp
downstream of the 5S rRNA gene stop codon. This insertion occurred approximately halfway through

the putative rho-independent terminator leading to the disruption of its secondary structure. It was
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hypothesised that disruption of the rho-independent terminator could lead to the co-transcription of

the ribosomal RNA genes and the vanHAX genes.

To determine whether the vanHAX operon was co-transcribed with the upstream ribosomal RNA
gene operon, RNA was reverse transcribed from isolates OI25revl and OI25rev2 and PCR was
performed across the rRNA - vanHAX operon junction. Three PCR reactions were performed on the
cDNA each of which spanned from the 23S ribosomal RNA gene into the vanH, vanA and vanX genes
(Figure 5). PCR amplicons of the expected lengths were present for all three gene which confirmed

that the vanHAX genes were indeed co-transcribed with the ribosomal RNA genes.

A

2366 bp
1348 bp

376 bp
s — S

L DR T K )

-

B vanH vanA vanX
1kb RNA RNA RNA 1kb
plus ¢cDNA NoRT H,0 cDNA NoRT H,0 cDNA NoRT H,0 plus
2366 bp - !
= -
1348 pp :
=
o
-
' > -
—_— — ammeny
376bp M- gy o= am an
- : T -
- . - -

Figure 5: RT-PCR on the rRNA-vanHAX junction in Ol25rev2. A. Schematic showing the
expected amplicon sizes. B. 1% agarose gel showing the amplicons with the expected products

sizes from panel A indicated for the RT-PCR reactions between the 23S rRNA gene and vanH (376
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bp), vanA (1348 bp) and vanX (2366 bp). Ladder: GeneRuler 1kb Plus (Thermo Scientific). RT =

Reverse Transcriptase.

Vancomycin-resistant revertant isolates do not show a growth defect

It was hypothesised that co-transcription of the vancomycin resistance genes with the ribosomal RNA
genes would impose a high fitness cost in the revertant isolates. However, when the wildtype isolate
OI25 and its revertants were grown in the absence of vancomycin selection (Figure S3), imax Of isolate
0125 (1.7 h'Y) was not significantly different to that of O125rev1(1.7 h'?, Kruskal-Wallis, P > 0.99)
or O125rev2 (1.8 h, Kruskal-Wallis, P = 0.11). Similarly, the maximum growth reached by OI25rev1
(Aeoo 0.29) and OI25rev2 (Asoo 0.25) was lower, but not significantly different, from that of O125
(As00 0.36; Kruskal-Wallis versus OI25revl P = 0.22 and versus Ol25rev2 P = 0.08). Despite the
vancomycin resistance genes being transcribed at a high level in the revertant isolates, this did not

impose a significant fitness cost.
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Discussion

The present study aimed to investigate a VRE outbreak in a haematology ward. The isolates in this
study belonged to 8 different sequence types within the hospital-associated clade A1l. The major
clone driving the outbreak belonged to ST262, with the presence of highly related ST262 isolates in
13 different patients suggesting spread within the ward. ST262 has previously been associated with
the hospital environment in the UK and Europe but has not thus far been identified as a prominent
driver of a VRE outbreak® 3. Other isolates belonged to ST80 which has been linked to VRE

outbreaks in Ireland and Sweden*%41,

An isolate (OI125) belonging to ST787 was identified that was genotypically resistant to vancomycin
but phenotypically susceptible. Long-read sequencing uncovered multiple IS element insertions into
the vancomycin resistance regions compared to the wildtype transposon Tn1546’. An ISL3 family
element was inserted between the vanS and vanH genes. This insertion likely did not contribute to
the susceptibility of the isolate as it occurred outside of the promoter region and an identical insertion
has been found in other isolates which maintain a resistant phenotype*2. There was also a further
insertion of an 1S1216 element into the promoter region and first 50 bp of the vanR gene. This
insertion was unique among global isolates, but a similar vancomycin-variable E. faecium isolate has
been described, which also contained an insertion of an 1S1216 family element that deleted the first
55 bp of the vanR gene!’. As the insertion of the 151216 element occurred within the vanR gene and
its promoter region it was likely that isolate OI25 could not respond to vancomycin which was

subsequently confirmed by RT-gPCR.

Although vancomycin-variable enterococci are phenotypically susceptible to vancomycin, some
isolates can revert to a resistant phenotype under antibiotic selection. Several mechanisms have been
uncovered including the excision of IS elements leading to the formation of constitutive promoters®’,
gene duplication events* and the acquisition of plasmids containing vancomycin resistance genes®®.

Exposure of isolate OI25 to 8 pg/ml vancomycin led to a rapid reversion of the isolate to high-level
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vancomycin resistance. Long-read read sequencing of two revertant isolates uncovered that the
vancomycin resistance genes vanH, vanA and vanX had become inserted into the chromosome
directly downstream of a ribosomal RNA operon. This insertion caused a disruption of the rho-
independent terminator of the operon and led to the co-transcription of the vancomycin resistance
genes in a constitutive manner. The native high-level expression of the ribosomal RNA genes led to
a significant upregulation in the vanHAX genes**. The presence of an 8 bp target site duplication and
an 1S1251 family element at the 3’ end of the inserted DNA suggested an IS mediated rearrangement

of the DNA through a currently uncharacterised mechanism®.

Our findings highlight the diversity of mechanisms that enable VVVE isolates to revert to their resistant
state. While vancomycin-variable E. faecium typically make up a small percentage of the E. faecium
strains isolated within the clinical environment, they have in places become the dominant clone'. As
VVE isolates become more common in the hospital environment it may be necessary for the
successful treatment of these infections to include whole genome long-read sequencing in routine
pathogen diagnostics to rapidly identify strains that are phenotypically susceptible to vancomycin but

can potentially revert to high-level vancomycin resistance.
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