

1 **A novel resistance reversion mechanism in a vancomycin-variable**
2 ***Enterococcus faecium* strain**

3

4

5 Ross S. McInnes¹, Ann E. Snaith¹, Steven J. Dunn¹, Maria Papangeli², Katherine J. Hardy³, Abid
6 Hussain³, Willem van Schaik^{1*}

7

8 ¹ Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT.

9 ² Biodiscovery Institute, National Biofilms Innovation Centre and School of Life Sciences, University
10 of Nottingham, Nottingham, NG7 2RD, UK

11 ³ Birmingham Public Health Laboratory, UK Health Security Agency, Birmingham, B9 5SS.

12

13 * Corresponding author: w.vanschaik@bham.ac.uk

14

15 **Abstract**

17

18 **Objectives**

19 To investigate an outbreak of *Enterococcus faecium* in a hospital haematology ward and uncover the
20 mechanism of a vancomycin resistance phenotype-genotype disparity in an isolate from this outbreak.

21 **Methods**

22 Whole genome shotgun sequencing was used for the phylogenetic analysis of *E. faecium* isolates (n
23 = 39) and to identify the carriage of antibiotic resistance genes. A long-read sequencing approach
24 was adopted to identify structural variations in the vancomycin resistance region of a vancomycin-
25 variable *E. faecium* (VVE) and to uncover the resistance reversion mechanism in this isolate. RT-
26 qPCR and RT-PCR were used to determine differences in the expression of *vanRS* and *vanHAX*
27 among strains.

28 **Results**

29 The *E. faecium* strains isolated in the hospital haematology ward were extensively drug resistant and
30 highly diverse. The notable expansion of ST262 among patients was the likely driver of a VRE
31 outbreak. A VVE isolate was identified that could rapidly revert to a vancomycin-resistant state in
32 the presence of vancomycin. Disruption of the *vanR* gene in this isolate by an IS6-family element
33 impaired its response to vancomycin. However, when the isolate was evolved to vancomycin
34 resistance, it could constitutively express the *vanHAX* genes at levels up to 36,000-fold greater than
35 the parent isolate via co-transcription with a ribosomal RNA operon.

36 **Conclusion**

37 In this study, we report a VVE isolate that was isolated during a VRE outbreak. This strain was
38 capable of rapidly reverting to a resistant phenotype through a novel mechanism involving integration
39 of *vanHAX* downstream of a ribosomal RNA operon. During VRE outbreaks, attention should be
40 paid to contemporaneous vancomycin-susceptible strains as these may carry silent vancomycin
41 resistance genes that can be activated through genomic rearrangements upon exposure to
42 vancomycin.

43 **Introduction**

44

45 *Enterococcus faecium* is a Gram-positive bacterium that is a commensal of the human gastrointestinal

46 tract¹. However, it is also an opportunistic pathogen that can cause bacteraemia, endocarditis and

47 urinary tract infections in immunocompromised hosts². Genomic studies have revealed that the vast

48 majority of clinical infections are caused by a phylogenetically defined cluster of *E. faecium* strains,

49 which was termed clade A1¹. *E. faecium* infections are difficult to treat as they are often resistant to

50 aminoglycoside, fluoroquinolone, β -lactam, and glycopeptide drugs³.

52

53 Vancomycin is a bactericidal glycopeptide antibiotic that targets peptidoglycan of the bacterial cell

54 wall⁴. Resistance to vancomycin is conferred by clusters of genes which replace the terminal D-alanyl

55 D-alanine motif of the lipid II stem peptide with a D-alanyl D-lactate or D-alanyl D-serine motif,

56 thereby greatly reducing the binding affinity of vancomycin⁵. There are currently 9 known gene

57 clusters that confer resistance to vancomycin in *E. faecium*, but the *vanA* and *vanB*-type clusters are

58 the most prevalent⁶. Vancomycin resistance gene clusters are generally carried on integrative and

59 mobilizable elements of which Tn1546 and Tn1549 encode *vanA*- and *vanB*-type resistance,

60 respectively^{7,8}.

61

62 An increasing number of *E. faecium* strains are being identified that contain the gene clusters required

63 for vancomycin resistance but are phenotypically susceptible⁹⁻¹¹. These strains are known as

64 vancomycin-variable *E. faecium* (VVE)¹². The mechanisms which lead to the susceptibility of these

65 isolates are varied. Full or partial deletion of genes within the vancomycin resistance gene cluster is

66 common, including deletion of the regulatory genes *vanR-vanS*, the D-alanyl D-alanine dipeptidase

67 gene *vanX*, or partial deletion of the D-alanyl D-alanine ligase gene *vanA*¹²⁻¹⁶. As well as gene

68 deletions, integration of insertion sequence (IS) elements into the promoter regions of vancomycin

69 resistance genes has also led to the evolution of VVE strains^{17,18}. Vancomycin-variable isolates are

70 of particular concern in the treatment of patients as some of these isolates can rapidly revert to the

71 resistant phenotype under vancomycin selection, which may, in turn, lead to treatment failure.

72
73 Here we investigate an outbreak of vancomycin resistant *Enterococcus faecium* in a haematology
74 ward within a UK hospital. Within the outbreak we identified a vancomycin-variable isolate that was
75 able to rapidly revert to a vancomycin-resistant phenotype under low-level vancomycin selection and
76 we uncovered both the cause of its susceptibility and the mechanism by which it could revert to a
77 vancomycin resistant phenotype.

78 **Materials and methods**

79

80 **Collection and isolation of *Enterococcus faecium***

81

82 *Enterococcus faecium* strains were isolated from a haematology ward in a hospital in Birmingham
83 (United Kingdom) over a two-year period (2016-2017) of increased vancomycin resistant *E. faecium*
84 (VRE) bacteraemia. 39 isolates were collected in total from 24 patients by blood culture and rectal
85 screening. The blood culture samples were taken from febrile patients, while rectal screening samples
86 were collected from all patients on the ward. Only vancomycin-resistant rectal screening isolates from
87 patients with VSE bacteraemia were included in this study. Bacteria were initially isolated on
88 Columbia CNA agar (Oxoid) plates and were confirmed as *Enterococcus faecium* by MALDI-TOF
89 (Bruker). The *vanA*⁺ isolate *E. faecium* E8202 was used as a control for gene expression in Tn1546¹⁹.

90

91 **Short- and long-read sequencing**

92

93 DNA extraction and whole genome shotgun sequencing (WGS) using Illumina technology was
94 carried out by MicrobesNG (<http://www.microbesng.com>). Isolates were lysed by suspending in TE
95 buffer (Invitrogen) containing 0.1 mg/ml lysozyme (Thermo Scientific) and 0.1 mg/ml RNase A
96 (ITW Reagents), the suspension was incubated at 37°C for 25 mins. Proteinase K (VWR Chemicals)
97 and SDS (Sigma Aldrich) were added to a final concentration of 0.1 mg/ml and 0.5% v/v respectively
98 and incubated for a further 5 mins at 65°C. DNA was purified using an equal volume of SPRI beads
99 and resuspended in EB buffer (Qiagen). DNA libraries were prepared using the Nextera XT Library
100 Prep Kit (Illumina) and pooled libraries were sequenced on an Illumina HiSeq instrument using a 250
101 bp paired-end protocol.

102

103 High molecular weight DNA was extracted from isolate OI25 and its revertants using the Monarch®
104 HMW DNA Extraction Kit for Tissue (New England Biolabs) according to the manufacturer's
105 protocol with the addition of 50 µg/ml lysozyme (Sigma Aldrich) to weaken the cell wall during the
106 lysis step. The DNA libraries were prepared using the ligation sequencing kit SQK-LSK109 (Oxford

107 Nanopore Technologies) and sequenced on the MinION platform (Oxford Nanopore Technologies)
108 using a R9.4.1 flowcell (Oxford Nanopore Technologies).

109
110 Raw sequencing reads have been deposited in the European Nucleotide Archive under accession
111 number PRJEB57409.

112
113 **DNA assembly**

114 Adapters were removed from the short-read data and quality trimmed using fastp v.0.20.1²⁰. Reads
115 less than 50 bp were discarded and a sliding window quality cut-off of 15 was used. The short-read
116 data was then assembled using shovill v.1.0.4 (<https://github.com/tseemann/shovill>) using the default
117 parameters. Hybrid assemblies were created by Unicycler v.0.4.8²¹ using both short and long reads,
118 Unicycler was run using the default parameters. Both the short-read and hybrid assemblies were
119 annotated using PROKKA v.1.14.6²².

120 Hybrid assemblies of the VVE strain OI25 and its revertants have been deposited in Genbank under
121 accession numbers GCA_947511065.1, GCA_947511075.1 and GCA_947510805.1.

123
124 **Phylogenetic analysis**

125 A core genome alignment was created with Panaroo v.1.2.2²³ using –clean-mode strict. Phylogenetic
126 trees were created from the core genome alignments using RAxML v.8.1.15²⁴ implementing the
127 GTRGAMMA substitution model with 100 bootstraps. Recombination was removed from the trees
128 using ClonalFrameML v.1.12²⁵. Trees were midpoint rooted and visualised using iTOL v.5²⁶. Isolates
129 were typed with PubMLST²⁷ using mlst v.2.18.0 (Seemann T, mlst, Github
130 <https://github.com/tseemann/mlst>).

131
132 **Identification of antibiotic resistance determinants in *E. faecium* genomes**

133
134 Antibiotic resistance genes were identified in the *E. faecium* isolates by querying the short-read
135 assemblies against the ResFinder database²⁸ using ABRicate v.0.9.8 (Seemann T, Abricate, Github

136 https://github.com/tseemann/abricate). A minimum identity and coverage cut-off of 95% and 50%
137 respectively was used to determine that the antibiotic resistance genes were present.

138
139 **Antibiotic susceptibility testing**

140 All outbreak isolates were tested for their antibiotic susceptibility using the VITEK2 system
141 (Biomérieux). A subset of the isolates was also tested using the broth microdilution method²⁹ and
142 interpreted with the EUCAST breakpoints. Assays were carried out in biological triplicate and the
143 mode of the minimum inhibitory concentration was recorded. *E. faecium* E745 was used as a positive
144 control in all assays³⁰.

145
146 **Reversion of VVE from a vancomycin susceptible to vancomycin resistant phenotype**

147 A colony of isolate OI25 was inoculated into 5 ml of Brain Heart Infusion (BHI) broth (VWR) and
148 grown at 37°C for 16 hours with shaking (200 rpm). The culture was then diluted 1:100 into 5 ml of
149 BHI broth containing 8 µg/ml vancomycin. The culture was grown at 37°C (200 rpm) and observed
150 every 24 hours for growth. When growth was observed, the culture was diluted 10⁶-fold and 100 µl
151 was spread onto BHI agar plates containing 8 µg/ml vancomycin. Two colonies were picked from
152 the plate and stored for further analysis.

153
154 **Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Reverse**
155 **transcription polymerase chain reaction (RT-PCR)**

156
157 RNA was extracted from cells collected in mid-log phase (OD₆₀₀ = 0.5) and cells that had been
158 exposed to 8 µg/ml vancomycin at mid-log phase for one hour, using the Monarch® Total RNA
159 Miniprep Kit (New England Biolabs). Residual DNA was removed by treating the RNA with TURBO
160 DNase™ (Invitrogen). cDNA was synthesised from the total RNA using the Maxima First Strand
161 cDNA Synthesis Kit for RT-qPCR (Thermo Scientific). qPCR was carried out using PrimeTime®
162 Gene Expression Master Mix (2X) (Integrated DNA Technologies (IDT)) and PrimeTime® qPCR
163 Assays (20X) (IDT), which contained the forward primer, reverse primer and probe, for the *vanRS*
164 and *vanHAX* operons, and the *tufA* housekeeping control gene (Table S1). The qPCR reaction was

165 performed in a QuantStudio 1 Real-Time PCR system (Applied BiosystemsTM) with the following
166 program: 95°C for 3 mins, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. Fold expression
167 was calculated using the Livak method relative to the internal control gene *tufA*³¹.

168

169 The cDNA of isolate OI25rev2 was also used to perform RT-PCR assays across the rRNA-*vanHAX*
170 junction. RT-PCR reactions were carried out using DreamTaq 2x Mastermix (Thermo Fisher
171 Scientific) and forward and reverse primers that bridged between the 23S rRNA gene and the *vanH*,
172 *vanA* and *vanX* genes (Table S2). The reactions were performed in a Mastercycler Pro Thermal Cycler
173 (Eppendorf) with the following program: 95°C for 3 mins, followed by 30 cycles of 95°C for 30 s,
174 50°C for 30 s and 72°C for 2 mins, followed by a final incubation at 72°C for 10 mins. A reaction
175 with a sample from which reverse transcriptase was omitted was used to control for residual DNA.

176

177 **Terminator analysis**

178

179 The rho-independent terminator of the ribosomal RNA gene operon was identified in isolate OI25 by
180 analysing 100 nucleotides downstream of the 5S rRNA gene stop codon via RNAfold Web Server³².

181

182 The output was then manually inspected to identify the typical A-tail, loop, T-tail structure of a rho-
independent terminator³³.

183

184 **Fitness evaluation**

185

186 Bacterial fitness was evaluated by comparing the maximum growth rate (μ_{\max} ; h⁻¹) and maximum
187 growth (maximum A₆₀₀) of the revertant isolates compared to isolate OI25. Bacterial cultures were
188 grown for 16 hours at 37°C in BHI broth, diluted 1:1000 in BHI broth and added to a clear flat-bottom
189 96-well plate. Wells were included that contained only BHI broth to control for changes in A₆₀₀ not
190 caused by bacterial growth. The 96-well plate was incubated at 37°C with agitation (240 rpm) for 16
191 hours, absorbance measurements (600 nm) were taken at 10-minute intervals using a Spark
192 microplate reader (TECAN). The experiment was carried out in biological and technical triplicates.

193 Maximum growth rate and maximum growth were determined using the R package Growthcurver
194 v.0.3.1³⁴.

195

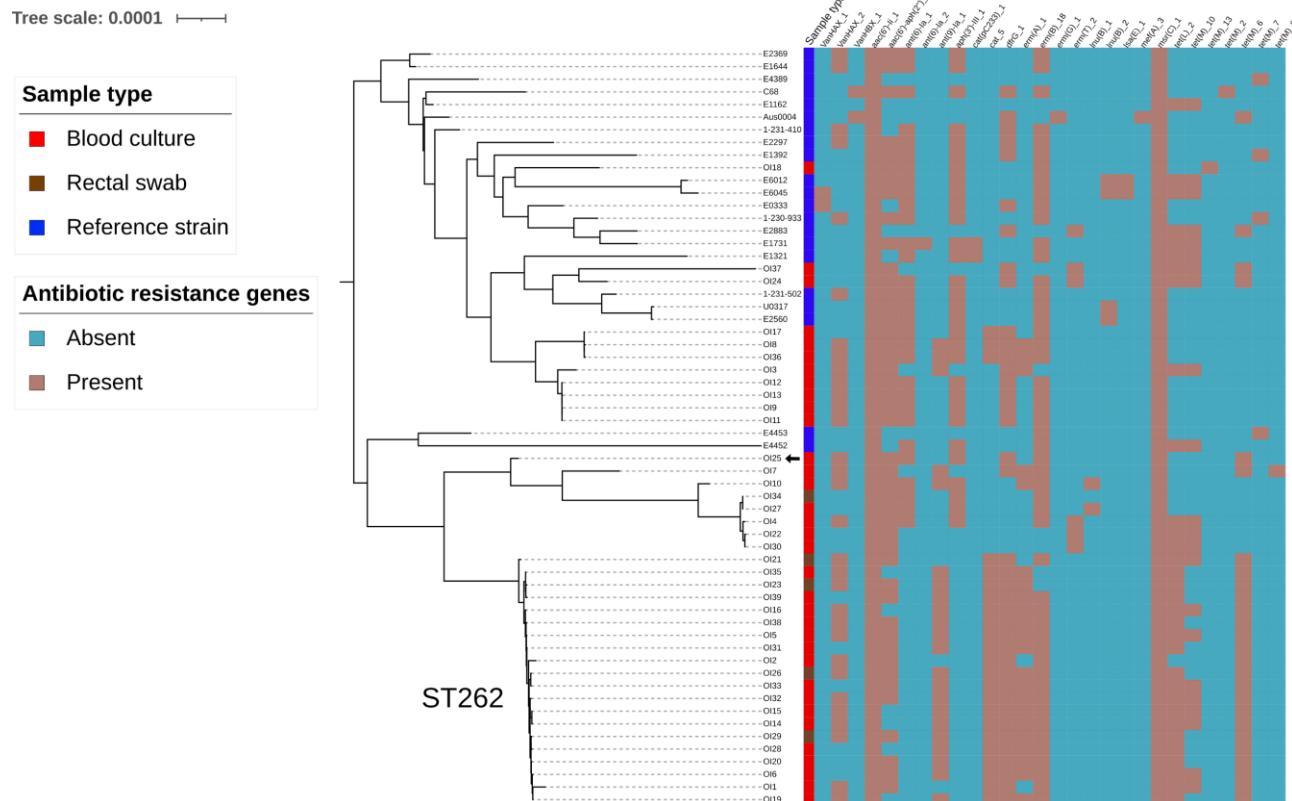
196 **Statistical analyses**

197

198 Tests for determining statistical significance were performed as described in the text and implemented
199 in GraphPad Prism v.9.4.1.

201 **Results**

202 **Genome sequence analysis revealed a multi-clonal, nosocomial VRE outbreak**


203 A total of 39 isolates were collected in this study from 24 patients. 26 of the isolates were
204 phenotypically resistant to vancomycin and 13 were phenotypically susceptible (Table S3). Thirty-
205 four of the isolates were from blood culture samples and five were isolated from rectal screening
206 swabs of patients.

207

208 Phylogenetic analysis of the clinical *E. faecium* isolates uncovered a complex population of isolates
209 belonging to clade A1 (Figure S1). Eight different sequence types (ST262, ST80, ST1478, ST780,
210 ST117, ST203, ST412 and ST787) were isolated on the ward during the period of the outbreak. A
211 dominant ST262 clone that was present in 13 patients was the likely driver of the outbreak within the
212 haematology ward. While all isolates could be assigned to clade A1, they were distinct from the clade
213 A1 reference isolates (Figure 1). The outbreak isolates contained a large repertoire of antibiotic
214 resistance genes. Aminoglycoside resistance was common among the isolates, with isolates carrying
215 between two and five aminoglycoside resistance genes. All outbreak isolates carried the *E. faecium*
216 specific *aac(6')-Ii* gene and 33 of the 39 isolates carried the *aac(6')-aph(2'')* gene³⁵. Erythromycin
217 resistance genes were also found in all outbreak isolates: *erm(B)* was the most common macrolide
218 resistance gene and was found in 33 of the isolates. Tetracycline resistance genes were found in 29
219 isolates, including *tet(L)* and four different alleles of *tet(M)*. Vancomycin resistance was widespread
220 in the isolates with 25 out of 39 isolates carrying vancomycin resistance genes, all of which were the
221 *vanA*-type. It was noted that isolate OI25 was phenotypically susceptible to vancomycin but carried
222 the *vanHAX* genes necessary to confer phenotypic resistance, which suggested that it was a
223 vancomycin-variable *Enterococcus faecium* (VVE) isolate. To confirm the result of the VITEK 2
224 susceptibility testing, *E. faecium* isolate OI25 was subjected to a broth microdilution MIC against
225 vancomycin. Isolate OI25 had a vancomycin MIC of 1 µg/ml, which is below the EUCAST clinical

226 breakpoint of 4 µg/ml, confirming that this isolate was indeed susceptible to vancomycin despite
227 carrying the genes required for phenotypic resistance to vancomycin.

228

229

230

231 **Figure 1: Maximum likelihood core genome phylogenetic tree of the clinical *E. faecium***

232 **isolates and representative clade A1 isolates.** Metadata includes the sample type (Blood culture,

233 Rectal swab or Reference strain) and the presence or absence of antibiotic resistance genes. The

234 scale bar indicates the number of substitutions per site. The arrow indicates the VVE isolate OI2.

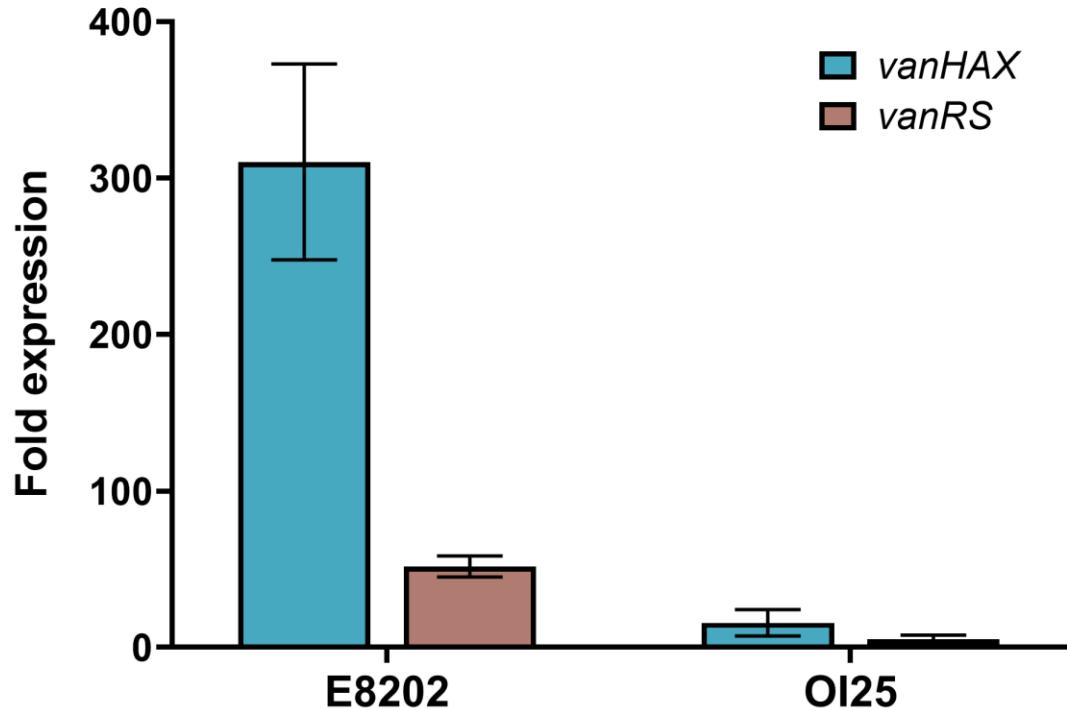
236 OI25 had an impaired transcriptional response to vancomycin

237

238 RT-qPCR analysis was used to compare the transcriptional response of the vancomycin resistance

239 operons *vanRS* and *vanHAX* in isolate OI25 to the vancomycin-resistant isolate E8202 when exposed

240 to 8 μ g/ml vancomycin (Figure 2). Expression of the *vanHAX* operon increased 310-fold in isolate


241 E8202 when exposed to vancomycin but increased only 16-fold in isolate OI25. Similarly, upon

242 exposure to vancomycin, expression of the *vanRS* genes increased 52-fold in the wildtype VRE

isolate but only 5-fold in isolate OI25. This demonstrated that the susceptibility of isolate OI25 to

244 vancomycin was due to its reduced ability to increase gene expression of the *vanHAX* operon in the
245 presence of vancomycin.

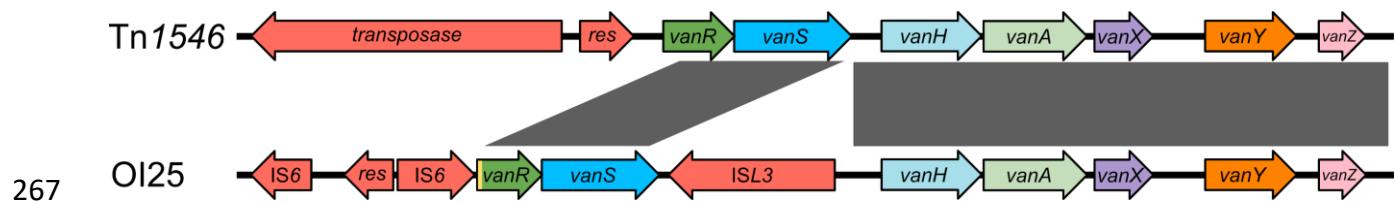
246

247

248 **Figure 2: Expression of *vanHAX* and *vanRS* in *E. faecium* E8202 and the VVE isolate OI25.**

249 RT-qPCR analysis Expression of the vancomycin resistance gene operons *vanHAX* and *vanRS* of
250 E8202 and the VVE isolate OI25 was determined by qRT-PCR analysis before and after exposure
251 to 8 µg/ml vancomycin. Expression data was normalised to the internal control gene *tufA*.

252 Experiments were carried out with biological triplicates and technical duplicates. Error bars
253 represent standard deviation.


254

255 **An IS6-family element disrupted the *vanR* gene and its promoter in OI25**

256 A genome assembly, incorporating both long- and short reads, of isolate OI25 was generated to
257 analyse the vancomycin resistance region, in order to identify a possible mechanism that abolished
258 vancomycin resistance in this isolate. Compared to the prototypical Tn1546 transposon (GenBank:
259 M97297.1), isolate OI25 had an insertion of an ISL3-family element between the *vanS* and *vanH*

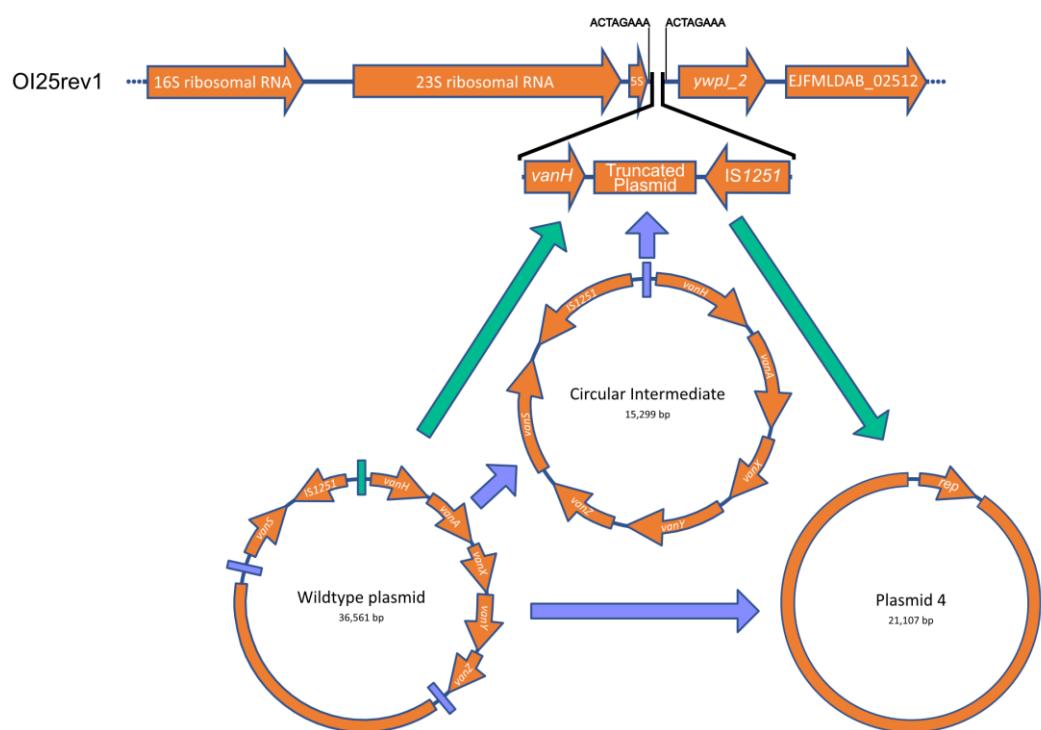
261 genes (Figure 3). However, this insertion did not occur within the previously characterised promoter
262 region of *vanH* and thus did not disrupt the two VanR binding sites upstream of *vanH*³⁶. OI25 also
263 had an insertion of an IS6-family element within the promoter region and the first 50 bp of the *vanR*
264 gene. It was likely that this inactivated *vanR*, thus preventing activation of the *vanHAX* genes in the
265 presence of vancomycin, leading to the vancomycin-susceptible phenotype of OI25.

266

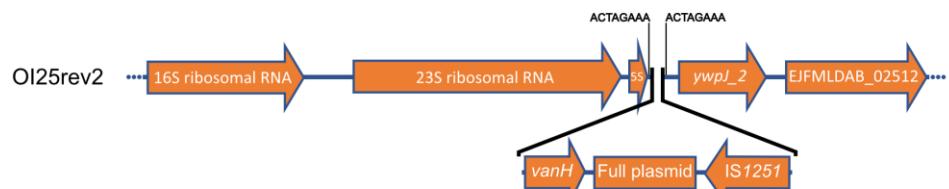
267 **Figure 3: Alignment of the vancomycin resistance region of *E. faecium* isolate OI25 against
268 the vancomycin resistance region of the prototypical Tn1546 transposon.** The Tn1546 sequence
269 was obtained from NCBI Genbank (accession number: M97297.1). Grey boxes represent regions
270 which are identical between isolates. The yellow box represents the deletion in *vanR*.
271

272 **Rapid reversion to a high-level vancomycin resistant phenotype**

273 Isolate OI25 was exposed to 8 µg/ml vancomycin to investigate whether it could revert to a
274 vancomycin-resistant phenotype in the presence of a low concentration of vancomycin. Growth was
275 observed within the OI25 culture after 48 hours. Two isolates taken from this culture had a
276 vancomycin MIC of 512 µg/ml, thus showing that isolate OI25 could revert to a vancomycin resistant
277 phenotype under vancomycin selection.


279

280 **Insertion of vancomycin resistance genes downstream of a ribosomal RNA operon led to a 281 vancomycin-resistant phenotype.**


282 Complete genome assemblies of OI25 and its revertant isolates were generated by combining short-
283 and long-read data, to identify a potential mechanism behind the reversion of isolate OI25 to a
284 vancomycin-resistant phenotype. Both OI25 revertant isolates (OI25rev1 and OI25rev2) had similar
285 genomic rearrangements compared to the parent isolate (Figure 4). The rearrangements led to the
286

287 insertion of the vancomycin resistance genes into the chromosome, with the *vanHAX* operon
288 becoming inserted immediately downstream of a ribosomal RNA operon, whereas the *vanRS* operon
289 was inserted in such a way that it and its surrounding DNA remained unchanged. In isolate OI25rev2
290 the entire plasmid was integrated into the chromosome whereas in isolate OI25rev1 a 15,299-bp
291 fragment of the plasmid DNA was integrated in the chromosome while a 21,107-bp plasmid
292 remained. It could not be ascertained whether in isolate OI25rev1 the whole plasmid was integrated
293 and then excised leaving the vancomycin resistance genes behind in the chromosome (Figure 4; green
294 arrows) or whether the vancomycin resistance genes were excised and formed an intermediate mobile
295 genetic element that was then integrated into the chromosome (Figure 4; purple arrows). In both
296 isolates there was an 8-bp target site duplication (ACTAGAAA) surrounding the DNA inserted into
297 the chromosome that is consistent with the action of an IS element.

A

B

298

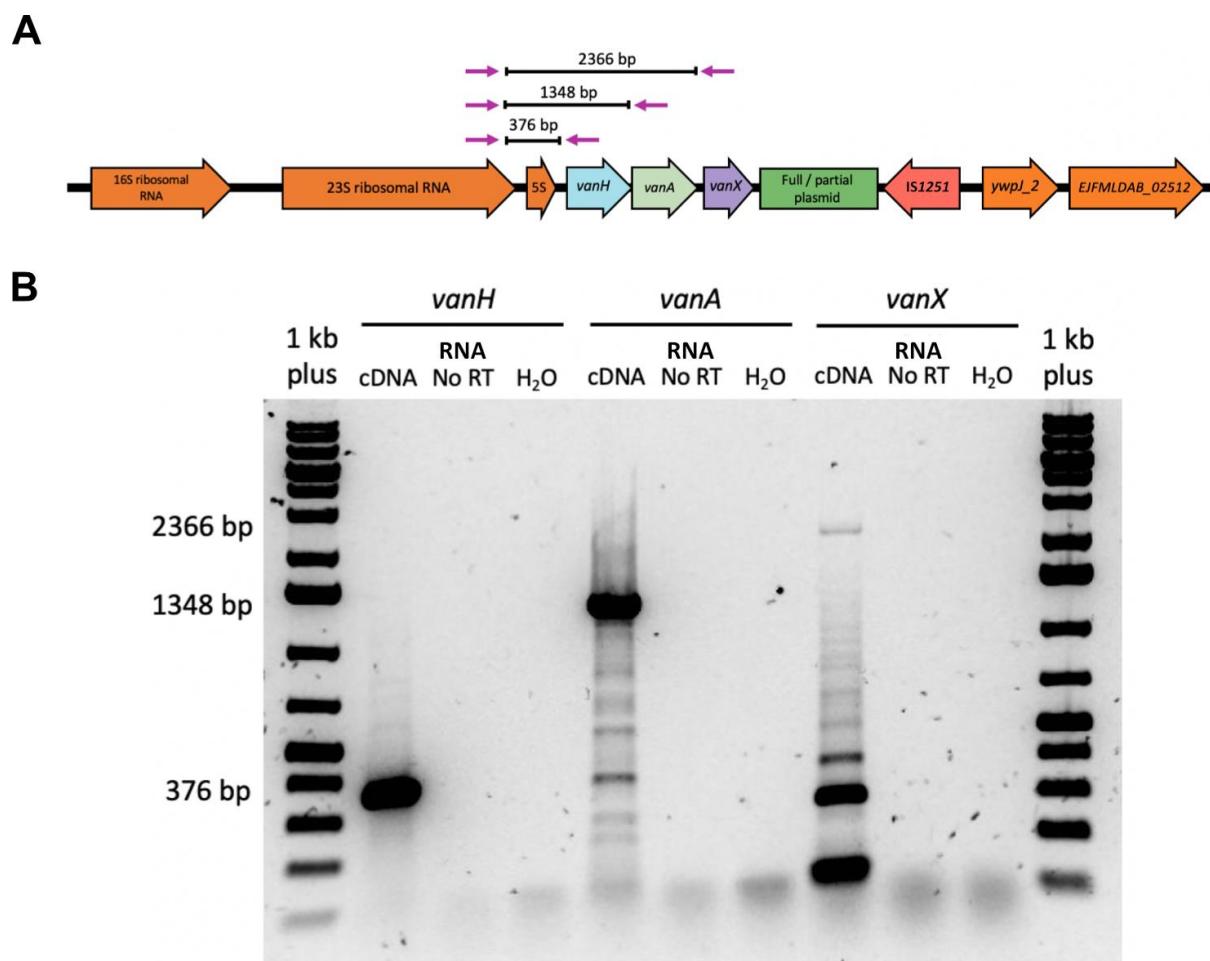
299

300 **Figure 4: Mechanisms of VVE reversion to vancomycin resistance.** A. Insertion of the
301 vancomycin resistance plasmid into the chromosome of OI25rev1 and the possible intermediate
302 stages in the insertion. B. Insertion of the vancomycin resistance genes into the chromosome of
303 OI25rev2.

304

305 **Substantial, constitutive upregulation of *vanHAX* expression in revertant isolates**

306


307 As the insertion of the plasmid DNA into the chromosome did not restore the *vanR* gene it was
308 hypothesised that the *vanHAX* genes were instead being constitutively expressed. To determine
309 whether the expression of the *vanHAX* operon had changed at this new locus, RT-qPCR was used to
310 compare the expression of the *vanHAX* and *vanRS* operons in the revertant isolates compared to OI25.
311 Although the insertions that occurred in both revertant isolates were different, the change in
312 expression of the *vanHAX* and *vanRS* operons was similar. In the absence of vancomycin, the
313 expression of the *vanHAX* operon in the two revertant strains OI25rev1 and OI25rev2 was on average
314 (\pm standard deviation) $2.7 \times 10^4 \pm 1.1 \times 10^4$ -fold and $3.6 \times 10^4 \pm 1.3 \times 10^4$ -fold greater than in OI25.
315 The expression of the *vanRS* operon was also 39.4 ± 22.8 -fold (OI25rev1) and 34.2 ± 16.3 -fold
316 (OI25rev2) higher in the revertants, compared to OI25, despite the continued disruption of the *vanR*
317 gene. This demonstrated that the revertant isolates were expressing the *vanHAX* genes needed to
318 confer resistance to vancomycin, even in the absence of vancomycin.

319

320 The genomic insertion site was inspected in both the revertant and parent isolates to determine a
321 mechanism behind the constitutive expression of the *vanHAX* genes. In the parental OI25 strain, a
322 putative rho-independent terminator of the ribosomal RNA operon was uncovered (Figure S2). The
323 chromosomal insertion of plasmid DNA in isolates OI25rev1 and OI25rev2 occurred 27 bp
324 downstream of the 5S rRNA gene stop codon. This insertion occurred approximately halfway through
325 the putative rho-independent terminator leading to the disruption of its secondary structure. It was

326 hypothesised that disruption of the rho-independent terminator could lead to the co-transcription of
327 the ribosomal RNA genes and the *vanHAX* genes.

328
329 To determine whether the *vanHAX* operon was co-transcribed with the upstream ribosomal RNA
330 gene operon, RNA was reverse transcribed from isolates OI25rev1 and OI25rev2 and PCR was
331 performed across the rRNA - *vanHAX* operon junction. Three PCR reactions were performed on the
332 cDNA each of which spanned from the 23S ribosomal RNA gene into the *vanH*, *vanA* and *vanX* genes
333 (Figure 5). PCR amplicons of the expected lengths were present for all three gene which confirmed
334 that the *vanHAX* genes were indeed co-transcribed with the ribosomal RNA genes.

335
336 **Figure 5: RT-PCR on the rRNA-*vanHAX* junction in OI25rev2. A.** Schematic showing the
337 expected amplicon sizes. **B.** 1% agarose gel showing the amplicons with the expected products
338 sizes from panel **A** indicated for the RT-PCR reactions between the 23S rRNA gene and *vanH* (376

339 bp), *vanA* (1348 bp) and *vanX* (2366 bp). Ladder: GeneRuler 1kb Plus (Thermo Scientific). RT =
340 Reverse Transcriptase.

341
342 **Vancomycin-resistant revertant isolates do not show a growth defect**
343
344 It was hypothesised that co-transcription of the vancomycin resistance genes with the ribosomal RNA
345 genes would impose a high fitness cost in the revertant isolates. However, when the wildtype isolate
346 OI25 and its revertants were grown in the absence of vancomycin selection (Figure S3), μ_{\max} of isolate
347 OI25 (1.7 h^{-1}) was not significantly different to that of OI25rev1(1.7 h^{-1} , Kruskal-Wallis, $P > 0.99$)
348 or OI25rev2 (1.8 h^{-1} , Kruskal-Wallis, $P = 0.11$). Similarly, the maximum growth reached by OI25rev1
349 ($A_{600} 0.29$) and OI25rev2 ($A_{600} 0.25$) was lower, but not significantly different, from that of OI25
350 ($A_{600} 0.36$; Kruskal-Wallis versus OI25rev1 $P = 0.22$ and versus OI25rev2 $P = 0.08$). Despite the
351 vancomycin resistance genes being transcribed at a high level in the revertant isolates, this did not
352 impose a significant fitness cost.

355 **Discussion**

356
362 The present study aimed to investigate a VRE outbreak in a haematology ward. The isolates in this
363 study belonged to 8 different sequence types within the hospital-associated clade A1¹. The major
364 clone driving the outbreak belonged to ST262, with the presence of highly related ST262 isolates in
365 13 different patients suggesting spread within the ward. ST262 has previously been associated with
366 the hospital environment in the UK and Europe but has not thus far been identified as a prominent
367 driver of a VRE outbreak³⁷⁻³⁹. Other isolates belonged to ST80 which has been linked to VRE
368 outbreaks in Ireland and Sweden^{40,41}.

369
370 An isolate (OI25) belonging to ST787 was identified that was genotypically resistant to vancomycin
371 but phenotypically susceptible. Long-read sequencing uncovered multiple IS element insertions into
372 the vancomycin resistance regions compared to the wildtype transposon Tn1546⁷. An ISL3 family
373 element was inserted between the *vanS* and *vanH* genes. This insertion likely did not contribute to
374 the susceptibility of the isolate as it occurred outside of the promoter region and an identical insertion
375 has been found in other isolates which maintain a resistant phenotype⁴². There was also a further
376 insertion of an IS1216 element into the promoter region and first 50 bp of the *vanR* gene. This
377 insertion was unique among global isolates, but a similar vancomycin-variable *E. faecium* isolate has
378 been described, which also contained an insertion of an IS1216 family element that deleted the first
379 55 bp of the *vanR* gene¹⁷. As the insertion of the IS1216 element occurred within the *vanR* gene and
380 its promoter region it was likely that isolate OI25 could not respond to vancomycin which was
381 subsequently confirmed by RT-qPCR.

382
383 Although vancomycin-variable enterococci are phenotypically susceptible to vancomycin, some
384 isolates can revert to a resistant phenotype under antibiotic selection. Several mechanisms have been
385 uncovered including the excision of IS elements leading to the formation of constitutive promoters¹⁷,
386 gene duplication events⁴³ and the acquisition of plasmids containing vancomycin resistance genes¹⁵.
387 Exposure of isolate OI25 to 8 µg/ml vancomycin led to a rapid reversion of the isolate to high-level

388 vancomycin resistance. Long-read read sequencing of two revertant isolates uncovered that the
389 vancomycin resistance genes *vanH*, *vanA* and *vanX* had become inserted into the chromosome
390 directly downstream of a ribosomal RNA operon. This insertion caused a disruption of the rho-
391 independent terminator of the operon and led to the co-transcription of the vancomycin resistance
392 genes in a constitutive manner. The native high-level expression of the ribosomal RNA genes led to
393 a significant upregulation in the *vanHAX* genes⁴⁴. The presence of an 8 bp target site duplication and
394 an *IS1251* family element at the 3' end of the inserted DNA suggested an IS mediated rearrangement
395 of the DNA through a currently uncharacterised mechanism⁴⁵.

396
397 Our findings highlight the diversity of mechanisms that enable VVE isolates to revert to their resistant
398 state. While vancomycin-variable *E. faecium* typically make up a small percentage of the *E. faecium*
399 strains isolated within the clinical environment, they have in places become the dominant clone¹⁰. As
400 VVE isolates become more common in the hospital environment it may be necessary for the
401 successful treatment of these infections to include whole genome long-read sequencing in routine
402 pathogen diagnostics to rapidly identify strains that are phenotypically susceptible to vancomycin but
403 can potentially revert to high-level vancomycin resistance.

404
405 **Funding information**

406 This study was funded by a JPIAMR grant (MR/W031191/1) and a Wolfson Research Merit Award
407 (WM160092) to W.v.S.. R.S.M is funded by the Wellcome Trust Antimicrobials and Antimicrobial
408 Resistance Doctoral Training Programme (215154/Z/18/Z).

409
410 **Acknowledgements**

411 We would like to thank the laboratory staff at UKHSA for the collection of the *E. faecium* isolates
412 and MicrobesNG for genome sequencing of *E. faecium* isolates.

413
414
415 **Author contributions**
416
417

424 W.V.S. and A.H. conceived this study. A.H. and K.H. collected the bacterial isolates. R.S.M., A.E.S.,
425 M.P., S.J.D and W.V.S. prepared the samples for sequencing. R.S.M., A.E.S and S.J.D. analysed the
426 data. R.S.M. and W.V.S. wrote the manuscript with input from all authors.

427

428 **Conflicts of interest**

429

430 The authors declare that there are no conflicts of interest.

433

434 **Ethical statement**

437

438 This study did not require ethical approval as it was part of a hospital infection control investigation
439 into a local outbreak.

440

441

442

443 **References**

444

445 1. Lebreton F, Schaik W van, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng
446 L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJL, Earl AM, Gilmore MS.
447 Emergence of Epidemic Multidrug-Resistant *Enterococcus faecium* from Animal and Commensal
448 Strains. *mBio* 2013. doi:10.1128/mBio.00534-13.

449

450 2. Agudelo Higuita NI, Huycke MM. Enterococcal Disease, Epidemiology, and Implications for
451 Treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, eds. *Enterococci: From Commensals to*
452 *Leading Causes of Drug Resistant Infection*. Boston: Massachusetts Eye and Ear Infirmary, 2014.

453

454 3. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. *Expert*
455 *Rev Anti Infect Ther* 2014; **12**: 1221–36. doi:10.1586/14787210.2014.956092.

456

455 4. Watanakunakorn C. Mode of action and in-vitro activity of vancomycin. *Journal of*
456 *Antimicrobial Chemotherapy* 1984; **14**: 7–18. doi:10.1093/jac/14.suppl_D.7.

457

456 5. Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. *Protein Science*
457 2020; **29**: 654–69. doi:10.1002/pro.3819.

458

459 6. Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial
460 resistance pattern, virulence determinants and molecular analysis of *Enterococcus faecium* isolated
461 from children infections in Iran. *BMC Microbiology* 2019; **19**: 156. doi:10.1186/s12866-019-1539-
462 y.

463

464 7. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related
465 transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan
466 precursors in *Enterococcus faecium* BM4147. *J Bacteriol* 1993; **175**: 117–27.
467 doi:10.1128/jb.175.1.117-127.1993.

468

469 8. Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. Characterization of transposon
470 Tn1549, conferring VanB-type resistance in *Enterococcus spp*. The GenBank accession number for
471 the 33803 bp sequence of Tn1549 is AJ192329. *Microbiology* 2000; **146**: 1481–9.
472 doi:10.1099/00221287-146-6-1481.

473

474 9. Kohler P, Eshaghi A, Kim HC, Plevneshi A, Green K, Willey BM, McGeer A, Patel SN, Toronto
475 Invasive Bacterial Diseases Network (TIBDN). Prevalence of vancomycin-variable *Enterococcus*
476 *faecium* (VVE) among *vanA*-positive sterile site isolates and patient factors associated with VVE
477 bacteremia. *PLoS One* 2018; **13**: e0193926. doi:10.1371/journal.pone.0193926.

478

479 10. Hammerum AM, Justesen US, Pinholt M, Roer L, Kaya H, Worning P, Nygaard S, Kemp M,
480 Clausen ME, Nielsen KL, Samulioniené J, Kjærsgaard M, Østergaard C, Coia J, Søndergaard TS,
481 Gaini S, Schønning K, Westh H, Hasman H, Holzknecht BJ. Surveillance of vancomycin-resistant
482 enterococci reveals shift in dominating clones and national spread of a vancomycin-variable *vanA*
483 *Enterococcus faecium* ST1421-CT1134 clone, Denmark, 2015 to March 2019. *Euro Surveill* 2019;
484 **24**. doi:10.2807/1560-7917.ES.2019.24.34.1900503.

485

486 11. Viswanath LS, Sugumar M, Chandra Murthy Peela S, Walia K, Sistla S. Detection of
487 vancomycin variable enterococci (VVE) among clinical isolates of *Enterococcus faecium* collected
488 across India-first report from the subcontinent. *Indian Journal of Medical Microbiology* 2022.
489 doi:10.1016/j.ijmmb.2021.12.011.

484 12. Coburn B, Low DE, Patel SN, Poutanen SM, Shahinas D, Eshaghi A, Willey BM, McGeer A.
485 *Vancomycin-Variable Enterococcus faecium*: In Vivo Emergence of Vancomycin Resistance in a
486 Vancomycin-Susceptible Isolate. *Journal of Clinical Microbiology* 2014; **52**: 1766–7.
487 doi:10.1128/JCM.03579-13.

488 13. Szakacs TA, Kalan L, McConnell MJ, Eshaghi A, Shahinas D, McGeer A, Wright GD, Low
489 DE, Patel SN. Outbreak of Vancomycin-Susceptible *Enterococcus faecium* Containing the Wild-
490 Type *vanA* Gene. *Journal of Clinical Microbiology* 2014; **52**: 1682–6. doi:10.1128/JCM.03563-13.

491 14. Thaker MN, Kalan L, Waglechner N, Eshaghi A, Patel SN, Poutanen S, Willey B, Coburn B,
492 McGeer A, Low DE, Wright GD. Vancomycin-Variable Enterococci Can Give Rise to Constitutive
493 Resistance during Antibiotic Therapy. *Antimicrobial Agents and Chemotherapy* 2015; **59**: 1405–10.
494 doi:10.1128/AAC.04490-14.

495 15. Hansen TA, Pedersen MS, Nielsen LG, Ma CMG, Søes LM, Worning P, Østergaard C, Westh
496 H, Pinholt M, Schønning K. Emergence of a vancomycin-variable *Enterococcus faecium* ST1421
497 strain containing a deletion in *vanX*. *Journal of Antimicrobial Chemotherapy* 2018; **73**: 2936–40.
498 doi:10.1093/jac/dky308.

499 16. Merlino J, Gray T. Vancomycin variable *Enterococcus* (VVE), *E. faecium*, harbouring the *vanA*
500 gene complex. *Pathology* 2021; **53**: 680–2. doi:10.1016/j.pathol.2020.08.030.

501 17. Wagner TM, Janice J, Sivertsen A, Sjögren I, Sundsfjord A, Hegstad K. Alternative *vanHAX*
502 promoters and increased *vanA*-plasmid copy number resurrect silenced glycopeptide resistance in
503 *Enterococcus faecium*. *Journal of Antimicrobial Chemotherapy* 2021; **76**: 876–82.
504 doi:10.1093/jac/dkaa541.

505 18. Sivertsen A, Pedersen T, Larssen KW, Bergh K, Rønning TG, Radtke A, Hegstad K. A Silenced
506 *vanA* Gene Cluster on a Transferable Plasmid Caused an Outbreak of Vancomycin-Variable
507 Enterococci. *Antimicrobial Agents and Chemotherapy* 2016. doi:10.1128/AAC.00286-16.

508 19. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuur TD, Top J, Corander J, Willems
509 RJL, Schürch AC. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived
510 sequences for single species. *Microbial Genomics* 2018; **4**: e000224. doi:10.1099/mgen.0.000224.

511 20. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
512 *Bioinformatics* 2018; **34**: i884–90. doi:10.1093/bioinformatics/bty560.

513 21. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies
514 from short and long sequencing reads. *PLOS Computational Biology* 2017; **13**: e1005595.
515 doi:10.1371/journal.pcbi.1005595.

516 22. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014; **30**: 2068–9.
517 doi:10.1093/bioinformatics/btu153.

518 23. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, Gladstone RA, Lo S,
519 Beaudoin C, Floto RA, Frost SDW, Corander J, Bentley SD, Parkhill J. Producing polished
520 prokaryotic pangenomes with the Panaroo pipeline. *Genome Biology* 2020; **21**: 180.
521 doi:10.1186/s13059-020-02090-4.

522 24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
523 phylogenies. *Bioinformatics* 2014; **30**: 1312–3. doi:10.1093/bioinformatics/btu033.

524 25. Didelot X, Wilson DJ. ClonalFrameML: Efficient Inference of Recombination in Whole
525 Bacterial Genomes. *PLOS Computational Biology* 2015; **11**: e1004041.
526 doi:10.1371/journal.pcbi.1004041.

527 26. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
528 display and annotation. *Nucleic Acids Research* 2021; **49**: W293–6. doi:10.1093/nar/gkab301.

529 27. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb
530 software, the PubMLST.org website and their applications. *Wellcome Open Res* 2018; **3**: 124.
531 doi:10.12688/wellcomeopenres.14826.1.

532 28. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL,
533 Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl
534 K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF,
535 Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J,
536 Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from
537 genotypes. *Journal of Antimicrobial Chemotherapy* 2020; **75**: 3491–500. doi:10.1093/jac/dkaa345.

538 29. Andrews JM. Determination of minimum inhibitory concentrations. *Journal of Antimicrobial
539 Chemotherapy* 2001; **48**: 5–16. doi:10.1093/jac/48.suppl_1.5.

540 30. Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR, de Been M, Rogers MRC,
541 Bonten MJM, Mesnage S, Willems RJL, van Schaik W. RNA-seq and Tn-seq reveal fitness
542 determinants of vancomycin-resistant *Enterococcus faecium* during growth in human serum. *BMC
543 Genomics* 2017; **18**: 893. doi:10.1186/s12864-017-4299-9.

544 31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative
545 PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001; **25**: 402–8. doi:10.1006/meth.2001.1262.

546 32. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA Websuite.
547 *Nucleic Acids Research* 2008; **36**: W70–4. doi:10.1093/nar/gkn188.

548 33. Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computational discovery of Rho-
549 independent transcription terminators illuminates their relationship to DNA uptake. *Genome
550 Biology* 2007; **8**: R22. doi:10.1186/gb-2007-8-2-r22.

551 34. Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from
552 microbial growth curves. *BMC Bioinformatics* 2016; **17**: 172. doi:10.1186/s12859-016-1016-7.

553 35. Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P. Characterization of the chromosomal
554 *aac(6')-Ii* gene specific for *Enterococcus faecium*. *Antimicrob Agents Chemother* 1993; **37**: 1896–
555 903.

556 36. Holman TR, Wu Z, Wanner BL, Walsh CT. Identification of the DNA-binding site for the
557 phosphorylated VanR protein required for vancomycin resistance in *Enterococcus faecium*.
558 *Biochemistry* 1994; **33**: 4625–31. doi:10.1021/bi00181a024.

559 37. Lemonidis K, Salih TS, Dancer SJ, Hunter IS, Tucker NP. Emergence of an Australian-like
560 *pstS*-null vancomycin resistant *Enterococcus faecium* clone in Scotland. *PLOS ONE* 2019; **14**:
561 e0218185. doi:10.1371/journal.pone.0218185.

562 38. Falgenhauer L, Fritzenwanker M, Imirzalioglu C, Steul K, Scherer M, Albert-Braun S, Hunfeld
563 K-P, Kempf V, Kneifel A, Kukic A, Jahn-Mühl B, Madlener K, Oberdorfer K, Oeltze J-P, Schulze
564 J, Sotoudeh N, Tessmann R, Heudorf U, Chakraborty T, Rhine-Main VREfm study group. Near-

565 ubiquitous presence of a vancomycin-resistant *Enterococcus faecium* ST117/CT71/*vanB* –clone in
566 the Rhine-Main metropolitan area of Germany. *Antimicrobial Resistance & Infection Control* 2019;
567 **8**: 128. doi:10.1186/s13756-019-0573-8.

568 39. Egan SA, Kavanagh NL, Shore AC, Mollerup S, Samaniego Castruita JA, O'Connell B,
569 McManus BA, Brennan GI, Pinholt M, Westh H, Coleman DC. Genomic analysis of 600
570 vancomycin-resistant *Enterococcus faecium* reveals a high prevalence of ST80 and spread of
571 similar *vanA* regions via IS1216E and plasmid transfer in diverse genetic lineages in Ireland.
572 *Journal of Antimicrobial Chemotherapy* 2022; **77**: 320–30. doi:10.1093/jac/dkab393.

573 40. Egan SA, Corcoran S, McDermott H, Fitzpatrick M, Hoyne A, McCormack O, Cullen A,
574 Brennan GI, O'Connell B, Coleman DC. Hospital outbreak of linezolid-resistant and vancomycin-
575 resistant ST80 *Enterococcus faecium* harbouring an *optrA*-encoding conjugative plasmid
576 investigated by whole-genome sequencing. *Journal of Hospital Infection* 2020; **105**: 726–35.
577 doi:10.1016/j.jhin.2020.05.013.

578 41. Fang H, Fröding I, Ullberg M, Giske CG. Genomic analysis revealed distinct transmission
579 clusters of vancomycin-resistant *Enterococcus faecium* ST80 in Stockholm, Sweden. *Journal of*
580 *Hospital Infection* 2021; **107**: 12–5. doi:10.1016/j.jhin.2020.10.019.

581 42. Rubin IMC, Pedersen MS, Mollerup S, Kaya H, Petersen AM, Westh H, Pinholt M. Association
582 between vancomycin-resistant *Enterococcus faecium* colonization and subsequent infection: a
583 retrospective WGS study. *Journal of Antimicrobial Chemotherapy* 2020; **75**: 1712–5.
584 doi:10.1093/jac/dkaa074.

585 43. Sun L, Chen Y, Hua X, Chen Y, Hong J, Wu X, Jiang Y, van Schaik W, Qu T, Yu Y. Tandem
586 amplification of the *vanM* gene cluster drives vancomycin resistance in vancomycin-variable
587 enterococci. *Journal of Antimicrobial Chemotherapy* 2020; **75**: 283–91. doi:10.1093/jac/dkz461.

588 44. Paul BJ, Ross W, Gaal T, Gourse RL. rRNA Transcription in *Escherichia coli*. *Annual Review*
589 of *Genetics* 2004; **38**: 749–70. doi:10.1146/annurev.genet.38.072902.091347.

590 45. Handwerger S, Skoble J, Discotto LF, Pucci MJ. Heterogeneity of the *vanA* gene cluster in
591 clinical isolates of enterococci from the northeastern United States. *Antimicrob Agents Chemother*
592 1995; **39**: 362–8.

593