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Abstract

Single-cell sequencing technology has enabled the characterization of cellular heterogeneity
at an unprecedented resolution. To analyze single-cell RNA-sequencing data, numerous tools
have been proposed for various analytic tasks, which have been systematically summarized
and concluded in a comprehensive database called scRNA-tools. Although single-cell
epigenomic data can effectively reveal the chromatin regulatory landscape that governs
transcription, the analysis of single-cell epigenomic data presents assay-specific challenges,
and an abundance of tools with varying types and functionalities have thus been developed.
Nevertheless, these tools have not been well summarized, hindering retrieval, selection, and
utilization of appropriate tools for specific analyses. To address the issues, we here proposed
scEpiTools database with a multi-functional platform (http://health.tsinghua.edu.cn/scepitools).
Specifically, based on the comprehensive collection and detailed annotation of 553 articles,
scEpiTools groups articles into 14 major categories and 90 subcategories, provides task-
specific recommendation for different emphases, and offers intuitive trend analysis via directed
graphs, word clouds, and statistical distributions. For single-cell chromatin accessibility data
analysis, we proposed a novel ensemble method named scEpiEnsemble, which, along with
multiple methods as built-in kernels, can be used for flexible and efficient online analysis via
the scEpiTools platform. We envision that scEpiTools will guide tool usage and development
for single-cell epigenomic data and provide valuable resources for understanding regulatory

mechanisms and cellular identity.

Author summary

Compared to single-cell RNA-sequencing data, single-cell epigenomic data can reflect a set
of epigenetic modifications at the cellular level. In general, the analysis of these data is typically
divided into several steps: 1) retrieving available tools based on the omics of data and tasks;
2) selecting appropriate tools manually; and 3) utilizing the chosen tools to analyze data.
However, due to the rapid development of tools and the unique complexity of the data, each

of the above steps is extremely challenging for researchers. To provide researchers with great
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convenience, we developed scEpiTools (http://health.tsinghua.edu.cn/scepitools), a database
with multiple functionalities. For instance, given the omics type and the analytic task,
researchers can easily browse all the available tools via the hierarchical categorization of
scEpiTools, and get recommendation scores from multiple perspectives. Considering that
researchers may encounter difficulties in hardware requirements or environment setup, we
also provide online analysis with various commonly used tools, as well as a novel ensemble
method named scEpiEnsemble. In summary, scEpiTools represents a valuable resource for
the single-cell epigenomics community, facilitating retrieval, selection and utilization of

appropriate tools for diverse analyses, and helping to drive future advancements in the field.
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Introduction

Recent advances in single-cell sequencing technologies provide significant implications for
understanding cellular heterogeneity, developmental biology, and disease mechanisms. To
fully exploit the potential of these data, numerous tools have been proposed for upstream and
downstream analyses. In single-cell RNA sequencing (scRNA-seq) community, sScCRNA-tools
[1] was proposed to help researchers to navigate the plethora of tools by category. Since its
inception, scRNA-tools has been widely used and its updated version further reveals trends in
the field with over 1000 collected tools [2], providing a valuable guidance to researchers in

selecting tools for analysis.

Unlike scRNA-seq data, single-cell epigenomic data capture the chromatin regulatory
landscape that governs transcription. Recent innovations in single-cell epigenomic
technologies have enabled the profiling of a wide range of omics data, such as chromatin
accessibility, DNA methylation, chromatin interaction, histone modification, and chromosome
conformation [3]. The analysis of single-cell epigenomic data has assay-specific challenges
such as extreme sparsity and significantly lower sensitivity and higher dimensions, leading to
numerous tools with various types and functionalities. Given the constantly evolving landscape
of single-cell epigenomic tools and the associated challenges with data complexity and
interpretation, it is crucial for researchers to stay up-to-date with these developments to ensure
the accuracy and reliability of analyses. Therefore, a comprehensive and intuitive database
for interrogating single-cell epigenomic tools is in pressing need. However, establishing a
comprehensive database for single-cell epigenomic data analysis poses significant challenges.
Firstly, the increasing number of analysis tasks makes scientific categorization of tools
complex, necessitating a hierarchical categorization system. Secondly, researchers require
task-specific guidance when selecting diverse tools, preferably through an evidence-based
recommendation system rather than a simple list of tools. Thirdly, non-methodology papers,
such as review studies or those covering sequencing technologies, can provide valuable

references and should not be overlooked. Fourthly, the varying configurations and strict
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77  environmental requirements of different tools create obstacles to implementation, and the
78  impracticality of local analysis due to the increasing number of profiled cells and complexity of

79  tool usage underscores the need for a more convenient online analysis platform.

80 To address these challenges, we developed scEpiTools, a user-friendly database with
81  systematic collection and careful annotation of 553 articles (constantly being updated),
82  advanced searching with versatile search filters and sort options, hierarchical browsing with
83  various statistical charts, and custom recommendation for algorithm, review, and sequencing
84  technology. We also conducted trend analyses and statistical analyses for the collected
85 articles. To facilitate the analysis of single-cell chromatin accessibility sequencing (scCAS)
86  data, we proposed a novel ensemble method named scEpiEnsemble and provided it along
87  with multiple built-in kernels on an online analysis platform. In addition, we elaborates
88  extensive application scenarios of scEpiTools for tool selection and benchmarking, and
89  analyzing scCAS data online. Furthermore, scEpiTools provides services such as flexible data
90 downloading and docker images of widely-used tools. We posit that scEpiTools will effectively
91 empower researchers with an all-encompassing comprehension of current research in the

92 field of single-cell epigenomics.

93 Design and implementation

94 Data collection

95 We adopted a series of standardized procedures for reliable collection of articles, including
96 methodology articles, reviews, sequencing technologies, and studies. Firstly, a total of 3227
97  articles with the keywords related to single-cell epigenomics were retrieved from the PubMed,
98 arXiv and bioRxiv (as of Mar 2023). Secondly, the candidate articles were filtered based on
99 their relevance to the field of single-cell epigenomics. Then the references of each article are
100  manually reviewed by at least two independent researchers to check for any missing articles.
101  Ultimately, the number of candidate articles was reduced to 553. The full text and relatively

102  source code of each candidate article was then manually reviewed in detail. The general
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information such as title, journal, digital object unique identifier (DOI), publication date,

citations, reference, publication status, abstract and description were extracted firstly (Fig 1).
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Fig 1. Overview of data collection, processing and annotation, and major features of scEpiTools.
scEpiTools is a comprehensive repository comprising 553 epigenomic tools that have been

meticulously classified into 14 main categories and 90 subcategories.

Data processing and annotation

After collecting hundreds of articles, our first step was to categorize them into a hierarchical
tree based on their tasks and problems. After summarizing, we categorized them into 14 major
categories and 90 subcategories (Table S1). Note that a tool may be applied to multiple
different tasks and thus some tools were categorized into multiple categories. For example,

SCALE [4] is a deep learning algorithm for dimensionality reduction, but it also provides
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111 assistance forimputation of scCAS data by filling missing values and removing potential noise.

112  Therefore, we also categorized it into imputation other than dimensionality reduction.

113  To facilitate the recommendation and benchmarking of single-cell epigenomic tools, each tool
114  in scEpiTools was annotated manually with extensive details: (1) the GitHub information
115 including stars, activity, responsiveness, and last maintaining date. (2) the dependencies of
116  the software tools, methodologies, baseline methods, number of dataset and figures of the
117  model and source codes. (3) the three novel recommendation scores for three different tasks,
118  encompassing algorithm, sequencing technology and review. These scores are computed via
119  a weighted sum of eight key factors, derived from five distinct aspects, namely influence,
120  usability, publication date, source code maintenance status, and other metrics. (Text S1 and

121 S2).

122  Website development and web interface

123  scEpiTools runs on a Linux-based Apache web server (https://www.apache.org) and utilizes
124  the Bootstrap v3.3.7 framework (https://getbootstrap.com/docs/3.3/) for its web-frontend
125 display. Advanced tables and charts are implemented using plug-ins for the jQuery and
126  JavaScript libraries, including DataTables v1.10.19 (https://datatables.net) and morris.js
127  v0.5.0 (https://morrisjs.github.io/morris.js/index.html), respectively. The backend of the server
128 uses PHP v7.4.5 (http://www.php.net), and all data is stored in a MySQL v8.0.20
129  (http://www.mysql.com) database. The platform is compatible with the majority of mainstream

130  web browsers, including Google Chrome, Firefox, Microsoft Edge, and Apple Safari.

131  scEpiTools comprises seven main pages (Text S3). The Home page highlights the key
132  features and major applications of our database. Users can utilize advanced options to find
133  suitable tools and access diverse recommendation scores at the Search page. The Browse
134  page enables users to navigate tools hierarchically for specific tasks and access a range of
135  statistical measures, including abstract word clouds, directed graphs illustrating relationships

136  between tools, and statistical distributions (Text S4). The word cloud presents the primary
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137  focus of each category, while the directed graph provides an intuitive representation of
138 comparative relationships among tools within the current category. The Analysis page
139  provides users with the ability to perform scCAS online analysis effortlessly without requiring
140  programming skills with scEpiEnsemble and three other mainstream kernels. At the Download
141 page, users can access detailed annotation information for articles as well as docker images
142  of mainstream methods. The Help page offers instructions on how to use the website, as well
143  as alist of frequently asked questions with corresponding answers. Additionally, we welcome
144  users to contribute any articles or tool methods that may have been overlooked during our

145  collection process on the About page.

146 Results

147  Overview of the scEpiTools database

148 The current version of scEpiTools contains 553 single-cell epigenomic tools published or
149  preprint from 2015 to 2023 and is being continuously updated, including 268 articles for tool
150 development, 62 articles for review, and 223 articles for sequencing technologies and
151  applications. Based on the data available in scEpiTools, it was found that as of 2019, the
152  number of tools specifically designed for single-cell epigenomics research was a mere 149.
153  However, as of March 2023, this number has increased nearly four-fold, suggesting the
154  progress made in single-cell sequencing technology and the accumulation of epigenomic data
155  (Fig 2A). Furthermore, on average, these articles also have a considerable citation count, with
156  over 28% of articles having a citation count exceeding 50, as of the last updated date for
157 articles in the database (Fig 3A). The rapid growth in the number of these single-cell
158  epigenomic tools also reflects the increasing research interest among scientists in single-cell

159  epigenomics in recent years.
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Fig 2. Statistics of single-cell epigenomic tools in scEpiTools.

(A) Accumulated number distribution of single-cell epigenomic tools of different omics between
2015 and 2023. The four omics are chromatin accessibility sequence (CAS), chromatin interaction

sequence (CIS), DNA methylation (Meth), and histone modification (Hist), and we also considered
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the total number of articles (All) in each year. (B) Number of tools across 14 main categories. (C)
Number of methodologies of the tools (top 12). (D) Number of tools using different platforms. (E)

Number of tools published various journals (top 12).
160  Statistics and trends of single-cell epigenomic tools
161  Statistics of categories

162 We have categorized collected tools into 14 main categories based on their types and
163  functionality, including dimensionality reduction, clustering, integration of single-omics data,
164 among others. Throughout the period spanning 2015 to 2023, it has been consistently
165  observed that sequencing technology and application, along with dimensionality reduction
166  tools, have remained the most salient research areas (Fig 2B). This phenomenon can be
167  attributed to the inherently high-dimensional properties of sequencing data such as scATAC-
168  seq. Additionally, it is worth noting that up until 2022, there has been a substantial increase in
169  the number of tools for multi-omics integration, which is indicative of a shift in focus within the
170 field of epigenetics from a single-omics to multi-omics approach, owing to the rapidly

171 development of multi-omics sequencing technologies (Table S2-S3, Fig S1).
172  Statistics of methodologies

173  We categorized and organized the methodological foundations of methodological articles. Our
174  analysis revealed that the collective utilization rate of variational autoencoder (VAE) [5] and
175  autoencoder (AE) [6] methods surpassed 12.78%, with VAE being the predominant approach
176  (Fig 2C). Noteworthy examples of VAE methods employed in single-cell epigenomics research
177  include scVAEIT [7], SCALEX [8], and GLUE [9]. VAE is a generative model originally
178  developed for image data, but its powerful feature extraction ability can adapt well to single-
179  cell data such as scCAS and single-cell chromatin interaction sequencing (scCIS) data, which
180 inherently contain high noise and high dimensionality. Hence, this might be a potential
181 explanation for the frequent utilization of VAE in single-cell epigenomics data. Furthermore,

182 non-negative matrix factorization [10] and convolutional neural networks are prevalent

10
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methodologies for dimensionality reduction or feature extraction in single-cell epigenomic
analysis. The prevalence of these approaches underlines the urgent need for addressing the

challenge of high dimensionality in single-cell epigenomics analysis.
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Fig 3. Statistics of single-cell epigenomic tools in scEpiTools.

(A) Citation counts for single-cell epigenomic tools with logarithmic transformation. (B) Proportion
of different omics in 553 single-cell epigenetic tools. (C) Publication status of 553 single-cell
epigenetic tools. (D) Word cloud of the description of the articles published in 2018, 2020 and

2022-2023.
Statistics of platforms

We found that among the collected tools that provide source codes, those developed using
Python and R are the most prevalent (Fig 2D), and most methods provide open-source
licenses (Fig 4A). This is partly due to the fact that R is one of the most commonly used
programming languages in the field of bioinformatics [11] and Python is one of the most widely

used language for machine learning [12]. We also observed that with the increasing popularity

11
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192  of deep learning algorithms, there has been a growing trend towards the use of machine
193 learning algorithms in the collected tools, which has led to a higher proportion of Python in
194  single-cell epigenomic analysis tools. In addition, C++, MATLAB and Shell scripting are also
195 popular among these tools. In single-cell epigenomics research, researchers need to
196 frequently process large amounts of sequencing data, which requires high efficiency,
197  convenience, and visualization capabilities for computation. Therefore, these three
198  programming languages are widely used due to their powerful data processing and analysis
199  abilities. Additionally, we also analyzed the GitHub information of the collected articles, based
200 on the observation of GitHub activity, responsiveness, and stars, the tools generally

201  demonstrate satisfactory usability. (Fig 4B-4D, Text S5).

A B Histogram of the log(stars+1) of the collected tools
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Fig 4. Statistics of single-cell epigenomic tools that open-sourced on GitHub.

(A) The distribution of licenses for single-cell epigenetic tools with open-source code on GitHub.
(B) GitHub stars with logarithmic transformation. (C) GitHub activity with logarithmic transformation.

(D) GitHub responsiveness of the tools.

12
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202  Trends of single-cell epigenomic tools

203 Itis worth noting that among the four types of epigenomic data, methods related to scCAS has
204  consistently been the most abundant each year. In particular, scEpiTools contains 377 articles
205 for chromatin accessibility sequencing, 93 articles for chromatin interaction sequencing, 57
206 articles for histone modification, and 154 articles for DNA methylation (Fig 3B). This is
207  potentially due to the fact that chromatin accessibility data are closely related to regulatory
208 landscape, cellular development and differentiation, as well as diseases, and also because
209 the ease of obtaining scCAS data compared to other omics data and the availability of
210  numerous sequencing technologies for scCAS data. From 2015 to 2022, there has been a
211 consistent increase in the number of single-cell epigenomic analysis data published each year
212  relative to the previous year. In 2022 alone, 176 tools for analyzing single-cell epigenomic data
213  were published, which represents more than a three-fold increase compared to 54 tools of
214  2017. This trend underscores the growing importance of such tools for researchers who
215  require them to facilitate investigations of single-cell epigenomic data in the face of rapidly
216  accumulating volumes of data. Additionally, we found that preprints accounted for 21.3% of
217  the total publications, which indicates the rapid development of computational methods and
218 sequencing technologies for analyzing single-cell epigenomic data (Fig 2E, Fig 3C). We
219  selected article descriptions published in 2018, 2020, and 2023, and used them to generate
220  word clouds. We observed that the term “sequencing” was frequently used in 2018, whereas
221 in 2022-2023, high-frequency terms included “deep”, “computational”, and “multi-omics” (Fig
222  3D). This suggests that with the recent advancement of multi-omics sequencing technologies
223  [3] and the rapid development of deep neural networks, researchers are increasingly focusing

224  on utilizing computational frameworks for the analysis of multi-omics data.

225 scEpiTools enables online analysis of scCAS data

226  scEpiTools provides an intuitive tutorial-style interface, making it accessible to users without

227  coding experience to perform single-cell epigenomic data analysis. Moreover, it assists users

13
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228 in overcoming insufficient local computing resources. The platform offers a complete analysis
229 pipeline, including preprocessing, cell type annotation, and visualization, utilizing built-in
230  kernels of EpiScanpy [13], Signac [14], and SnapATAC [15]. In order to improve the quality of
231 single-cell epigenomic data analysis, we have proposed scEpiEnsemble, an ensemble
232 method that leverages the strengths of EpiScanpy, Signac, and SnapATAC, to obtain

233 comprehensive insights into single-cell epigenomic data analysis. (Text S6, Table S4-S7).

234  Similar to existing pipelines for analyzing single-cell epigenomic data, scEpiEnsemble initiates
235 by performing a set of optional preprocessing steps such as binarization, quality control, term
236  frequency—inverse document frequency (TF-IDF) transformation in Signac [14], and
237 normalization. As an ensemble method, scEpiEnsemble employs principal component
238 analysis (PCA) from EpiScanpy as well as dimensionality reduction methods from Signac and

239  SnapATAC. We provided three approaches to integrate the results of dimensionality reduction,

240 namely direct concatenation, min-max normalization and z-score normalization. Following the
241  dimensionality reduction, which is essential for downstream analysis of single-cell epigenomic
242  data, we proceeded to cluster and visualize the outcomes. Furthermore, we computed four
243  metrics, namely, adjusted rand index (ARI), adjusted mutual information (AMI), normalized
244  mutual information (NMI), and homogeneity (Homo), to quantify the consistency between the

245  clustering labels and the true cell type labels (Text S6).

246  We implemented the complete analysis process on human PBMC [16] dataset an example
247  and visualized the results of clustering using uniform manifold approximation and projection
248 (UMAP). scEpiEnsemble achieved an ARI, AMI, NMI, and Homo of 0.483, 0.641, 0.645, and
249  0.700, respectively, which were at least 3.5%, 1.9%, 1.8%, and 1.3% higher than the baseline
250 methods, demonstrating the effectiveness and superiority of the ensemble strategy (Fig S2).
251 In summary, scEpiEnsemble not only enhances the accuracy of single-cell epigenomic data
252  analysis, but also furnishes an accessible pipeline for users, particularly those without

253  programming expertise.
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254 Case applications of scEpiTools

255  scEpiTools has broad applications in areas such as recommendation and tool selection, online
256  analysis, and tool benchmarking. The comprehensive capabilities of scEpiTools enable users
257 to easily navigate and effectively utilize a range of analytical tools and resources, thus
258 improving the efficiency and accuracy of their research. Here, we present two specific
259  application scenarios of scEpiTools, demonstrating how it can assist researchers in selecting

260 tools and analyzing single-cell epigenomic data (Fig S3).

261  We firstly consider a scenario where algorithm researchers are interested in developing
262  computational tools for the dimensionality reduction of scCIS data. Prior investigation and
263  benchmark of existing state-of-the-art methods are necessary. In this case, they can leverage
264  ourdatabase to access state-of-the-art algorithms and obtain initial insights into the underlying
265 principles and strengths and weaknesses of these tools. As an example, by selecting
266  “Chromatin interaction” as the “Omics” option and “Dimensionality reduction” as the “Category”
267  option at the Search page, a list of 19 records for their query can be obtained. Then they can
268 further sort the tools by the recommendation scores for algorithm, GitHub activity, etc. If
269 researchers want to implement methods based on the mainstream programming languages
270 in the field of bioinformatics, i.e. Python and R, they can select these two platforms in the
271 “Platform” option. The results indicate that Galaxy HiCExplorer 3 [17], Higashi [18] and
272  scHiCluster [19] are the most recommended methods. When researchers enter the Details
273  page of Galaxy HiCExplorer 3, they can obtain more information related to the method, such
274  as the required dependencies and the link to source codes. In addition, algorithm developers
275 often need to benchmark their tools against other methods. In such cases, they can easily
276 investigate the existing benchmarks by navigating to the Browse page and selecting the
277  category of “dimensionality reduction”. The network diagram demonstrates that scHiCluster
278 takes various methods as baselines, indicating its novelty and potentially outstanding

279  performance for the current task.
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280 The second scenario involves analyzing scCAS data online. Suppose a user has profiled a
281  set of scCAS data and wants to perform analysis such as dimensionality reduction and
282  differential feature analysis. They can first select one of the four kernels according to the
283 demand, such as diverse input formats and various chromatin regions, and then obtain a
284  detailed notebook that describes the analysis process and results, as well as downloadable
285 results. Taking EpiScanpy kernel as an example, researchers can prepare the input file as the
286  format of AnnData [20] and select the EpiScanpy as the tool for analysis. Then they can view
287  the individual steps of the tutorial before submitting a task. We have provided a set of default
288  parameters that they can modify, such as the clustering method. After submitting a task, the
289  user can obtain a unique task ID, which can be used to view the status and retrieve the results
290 of the task. When the analysis is completed, scEpiTools will provide a detailed notebook and
291 downloadable AnnData-format file. In addition, if the user provides their email address, an

292  email will be sent automatically when the task is completed.

203 Availability and future directions

294  Availability

295 The scEpiTools database is publicly accessible through the website at
296  http://health.tsinghua.edu.cn/scepitools, the source code for scEpiEnsemble is freely available
297  on https://github.com/ZjGaothu/scEpiEnsemble and the source code for plotting and analyses

298 s freely available on https://github.com/ZjGaothu/scEpiTools.
299 Future directions

300 Since 2015, the field of single-cell epigenomics has witnessed a remarkable surge in the
301 number of studies, encompassing a range of sequencing technologies, software tools, and
302 related review articles, with an accelerating pace. Our database has diligently collected and
303  meticulously annotated these tools, organized them into distinct categories based on their

304 functionalities and applications, and evaluated their recommendation scores, culminating in
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the development of an online analysis platform. With the continued accumulation of high-
quality sequencing data and the rapid progress of deep learning techniques, we anticipate the
emergence of more diverse and advanced tools in the future. To enhance the quality of our
database, we will undertake periodic updates and reviews of the listed tools, ensuring their
completeness and accuracy, incorporate the most demanded and widely used tools into our
online analysis platform, and consider integrating a chatbot system into the new version of
scEpiTools, leveraging state-of-the-art language models such as GPT [21, 22], thus facilitating

user engagement and improving their experience.
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