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Abstract 14 

Single-cell sequencing technology has enabled the characterization of cellular heterogeneity 15 

at an unprecedented resolution. To analyze single-cell RNA-sequencing data, numerous tools 16 

have been proposed for various analytic tasks, which have been systematically summarized 17 

and concluded in a comprehensive database called scRNA-tools. Although single-cell 18 

epigenomic data can effectively reveal the chromatin regulatory landscape that governs 19 

transcription, the analysis of single-cell epigenomic data presents assay-specific challenges, 20 

and an abundance of tools with varying types and functionalities have thus been developed. 21 

Nevertheless, these tools have not been well summarized, hindering retrieval, selection, and 22 

utilization of appropriate tools for specific analyses. To address the issues, we here proposed 23 

scEpiTools database with a multi-functional platform (http://health.tsinghua.edu.cn/scepitools). 24 

Specifically, based on the comprehensive collection and detailed annotation of 553 articles, 25 

scEpiTools groups articles into 14 major categories and 90 subcategories, provides task-26 

specific recommendation for different emphases, and offers intuitive trend analysis via directed 27 

graphs, word clouds, and statistical distributions. For single-cell chromatin accessibility data 28 

analysis, we proposed a novel ensemble method named scEpiEnsemble, which, along with 29 

multiple methods as built-in kernels, can be used for flexible and efficient online analysis via 30 

the scEpiTools platform. We envision that scEpiTools will guide tool usage and development 31 

for single-cell epigenomic data and provide valuable resources for understanding regulatory 32 

mechanisms and cellular identity. 33 

Author summary 34 

Compared to single-cell RNA-sequencing data, single-cell epigenomic data can reflect a set 35 

of epigenetic modifications at the cellular level. In general, the analysis of these data is typically 36 

divided into several steps: 1) retrieving available tools based on the omics of data and tasks; 37 

2) selecting appropriate tools manually; and 3) utilizing the chosen tools to analyze data. 38 

However, due to the rapid development of tools and the unique complexity of the data, each 39 

of the above steps is extremely challenging for researchers. To provide researchers with great 40 
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convenience, we developed scEpiTools (http://health.tsinghua.edu.cn/scepitools), a database 41 

with multiple functionalities. For instance, given the omics type and the analytic task, 42 

researchers can easily browse all the available tools via the hierarchical categorization of 43 

scEpiTools, and get recommendation scores from multiple perspectives. Considering that 44 

researchers may encounter difficulties in hardware requirements or environment setup, we 45 

also provide online analysis with various commonly used tools, as well as a novel ensemble 46 

method named scEpiEnsemble. In summary, scEpiTools represents a valuable resource for 47 

the single-cell epigenomics community, facilitating retrieval, selection and utilization of 48 

appropriate tools for diverse analyses, and helping to drive future advancements in the field. 49 
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Introduction 50 

Recent advances in single-cell sequencing technologies provide significant implications for 51 

understanding cellular heterogeneity, developmental biology, and disease mechanisms. To 52 

fully exploit the potential of these data, numerous tools have been proposed for upstream and 53 

downstream analyses. In single-cell RNA sequencing (scRNA-seq) community, scRNA-tools 54 

[1] was proposed to help researchers to navigate the plethora of tools by category. Since its 55 

inception, scRNA-tools has been widely used and its updated version further reveals trends in 56 

the field with over 1000 collected tools [2], providing a valuable guidance to researchers in 57 

selecting tools for analysis. 58 

Unlike scRNA-seq data, single-cell epigenomic data capture the chromatin regulatory 59 

landscape that governs transcription. Recent innovations in single-cell epigenomic 60 

technologies have enabled the profiling of a wide range of omics data, such as chromatin 61 

accessibility, DNA methylation, chromatin interaction, histone modification, and chromosome 62 

conformation [3]. The analysis of single-cell epigenomic data has assay-specific challenges 63 

such as extreme sparsity and significantly lower sensitivity and higher dimensions, leading to 64 

numerous tools with various types and functionalities. Given the constantly evolving landscape 65 

of single-cell epigenomic tools and the associated challenges with data complexity and 66 

interpretation, it is crucial for researchers to stay up-to-date with these developments to ensure 67 

the accuracy and reliability of analyses. Therefore, a comprehensive and intuitive database 68 

for interrogating single-cell epigenomic tools is in pressing need. However, establishing a 69 

comprehensive database for single-cell epigenomic data analysis poses significant challenges. 70 

Firstly, the increasing number of analysis tasks makes scientific categorization of tools 71 

complex, necessitating a hierarchical categorization system. Secondly, researchers require 72 

task-specific guidance when selecting diverse tools, preferably through an evidence-based 73 

recommendation system rather than a simple list of tools. Thirdly, non-methodology papers, 74 

such as review studies or those covering sequencing technologies, can provide valuable 75 

references and should not be overlooked. Fourthly, the varying configurations and strict 76 
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environmental requirements of different tools create obstacles to implementation, and the 77 

impracticality of local analysis due to the increasing number of profiled cells and complexity of 78 

tool usage underscores the need for a more convenient online analysis platform. 79 

To address these challenges, we developed scEpiTools, a user-friendly database with 80 

systematic collection and careful annotation of 553 articles (constantly being updated), 81 

advanced searching with versatile search filters and sort options, hierarchical browsing with 82 

various statistical charts, and custom recommendation for algorithm, review, and sequencing 83 

technology. We also conducted trend analyses and statistical analyses for the collected 84 

articles. To facilitate the analysis of single-cell chromatin accessibility sequencing (scCAS) 85 

data, we proposed a novel ensemble method named scEpiEnsemble and provided it along 86 

with multiple built-in kernels on an online analysis platform. In addition, we elaborates 87 

extensive application scenarios of scEpiTools for tool selection and benchmarking, and 88 

analyzing scCAS data online. Furthermore, scEpiTools provides services such as flexible data 89 

downloading and docker images of widely-used tools. We posit that scEpiTools will effectively 90 

empower researchers with an all-encompassing comprehension of current research in the 91 

field of single-cell epigenomics. 92 

Design and implementation 93 

Data collection 94 

We adopted a series of standardized procedures for reliable collection of articles, including 95 

methodology articles, reviews, sequencing technologies, and studies. Firstly, a total of 3227 96 

articles with the keywords related to single-cell epigenomics were retrieved from the PubMed, 97 

arXiv and bioRxiv (as of Mar 2023). Secondly, the candidate articles were filtered based on 98 

their relevance to the field of single-cell epigenomics. Then the references of each article are 99 

manually reviewed by at least two independent researchers to check for any missing articles. 100 

Ultimately, the number of candidate articles was reduced to 553. The full text and relatively 101 

source code of each candidate article was then manually reviewed in detail. The general 102 
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information such as title, journal, digital object unique identifier (DOI), publication date, 103 

citations, reference, publication status, abstract and description were extracted firstly (Fig 1). 104 

 

Fig 1. Overview of data collection, processing and annotation, and major features of scEpiTools. 

scEpiTools is a comprehensive repository comprising 553 epigenomic tools that have been 

meticulously classified into 14 main categories and 90 subcategories. 

Data processing and annotation 105 

After collecting hundreds of articles, our first step was to categorize them into a hierarchical 106 

tree based on their tasks and problems. After summarizing, we categorized them into 14 major 107 

categories and 90 subcategories (Table S1). Note that a tool may be applied to multiple 108 

different tasks and thus some tools were categorized into multiple categories. For example, 109 

SCALE [4] is a deep learning algorithm for dimensionality reduction, but it also provides 110 
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assistance for imputation of scCAS data by filling missing values and removing potential noise. 111 

Therefore, we also categorized it into imputation other than dimensionality reduction. 112 

To facilitate the recommendation and benchmarking of single-cell epigenomic tools, each tool 113 

in scEpiTools was annotated manually with extensive details: (1) the GitHub information 114 

including stars, activity, responsiveness, and last maintaining date. (2) the dependencies of 115 

the software tools, methodologies, baseline methods, number of dataset and figures of the 116 

model and source codes. (3) the three novel recommendation scores for three different tasks, 117 

encompassing algorithm, sequencing technology and review. These scores are computed via 118 

a weighted sum of eight key factors, derived from five distinct aspects, namely influence, 119 

usability, publication date, source code maintenance status, and other metrics. (Text S1 and 120 

S2). 121 

Website development and web interface 122 

scEpiTools runs on a Linux-based Apache web server (https://www.apache.org) and utilizes 123 

the Bootstrap v3.3.7 framework (https://getbootstrap.com/docs/3.3/) for its web-frontend 124 

display. Advanced tables and charts are implemented using plug-ins for the jQuery and 125 

JavaScript libraries, including DataTables v1.10.19 (https://datatables.net) and morris.js 126 

v0.5.0 (https://morrisjs.github.io/morris.js/index.html), respectively. The backend of the server 127 

uses PHP v7.4.5 (http://www.php.net), and all data is stored in a MySQL v8.0.20 128 

(http://www.mysql.com) database. The platform is compatible with the majority of mainstream 129 

web browsers, including Google Chrome, Firefox, Microsoft Edge, and Apple Safari. 130 

scEpiTools comprises seven main pages (Text S3). The Home page highlights the key 131 

features and major applications of our database. Users can utilize advanced options to find 132 

suitable tools and access diverse recommendation scores at the Search page. The Browse 133 

page enables users to navigate tools hierarchically for specific tasks and access a range of 134 

statistical measures, including abstract word clouds, directed graphs illustrating relationships 135 

between tools, and statistical distributions (Text S4). The word cloud presents the primary 136 
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focus of each category, while the directed graph provides an intuitive representation of 137 

comparative relationships among tools within the current category. The Analysis page 138 

provides users with the ability to perform scCAS online analysis effortlessly without requiring 139 

programming skills with scEpiEnsemble and three other mainstream kernels. At the Download 140 

page, users can access detailed annotation information for articles as well as docker images 141 

of mainstream methods. The Help page offers instructions on how to use the website, as well 142 

as a list of frequently asked questions with corresponding answers. Additionally, we welcome 143 

users to contribute any articles or tool methods that may have been overlooked during our 144 

collection process on the About page. 145 

Results 146 

Overview of the scEpiTools database 147 

The current version of scEpiTools contains 553 single-cell epigenomic tools published or 148 

preprint from 2015 to 2023 and is being continuously updated, including 268 articles for tool 149 

development, 62 articles for review, and 223 articles for sequencing technologies and 150 

applications. Based on the data available in scEpiTools, it was found that as of 2019, the 151 

number of tools specifically designed for single-cell epigenomics research was a mere 149. 152 

However, as of March 2023, this number has increased nearly four-fold, suggesting the 153 

progress made in single-cell sequencing technology and the accumulation of epigenomic data 154 

(Fig 2A). Furthermore, on average, these articles also have a considerable citation count, with 155 

over 28% of articles having a citation count exceeding 50, as of the last updated date for 156 

articles in the database (Fig 3A). The rapid growth in the number of these single-cell 157 

epigenomic tools also reflects the increasing research interest among scientists in single-cell 158 

epigenomics in recent years. 159 
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Fig 2. Statistics of single-cell epigenomic tools in scEpiTools.  

(A) Accumulated number distribution of single-cell epigenomic tools of different omics between 

2015 and 2023. The four omics are chromatin accessibility sequence (CAS), chromatin interaction 

sequence (CIS), DNA methylation (Meth), and histone modification (Hist), and we also considered 
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the total number of articles (All) in each year. (B) Number of tools across 14 main categories. (C) 

Number of methodologies of the tools (top 12). (D) Number of tools using different platforms. (E) 

Number of tools published various journals (top 12). 

Statistics and trends of single-cell epigenomic tools 160 

Statistics of categories 161 

We have categorized collected tools into 14 main categories based on their types and 162 

functionality, including dimensionality reduction, clustering, integration of single-omics data, 163 

among others. Throughout the period spanning 2015 to 2023, it has been consistently 164 

observed that sequencing technology and application, along with dimensionality reduction 165 

tools, have remained the most salient research areas (Fig 2B). This phenomenon can be 166 

attributed to the inherently high-dimensional properties of sequencing data such as scATAC-167 

seq. Additionally, it is worth noting that up until 2022, there has been a substantial increase in 168 

the number of tools for multi-omics integration, which is indicative of a shift in focus within the 169 

field of epigenetics from a single-omics to multi-omics approach, owing to the rapidly 170 

development of multi-omics sequencing technologies (Table S2-S3, Fig S1). 171 

Statistics of methodologies 172 

We categorized and organized the methodological foundations of methodological articles. Our 173 

analysis revealed that the collective utilization rate of variational autoencoder (VAE) [5] and 174 

autoencoder (AE) [6] methods surpassed 12.78%, with VAE being the predominant approach 175 

(Fig 2C). Noteworthy examples of VAE methods employed in single-cell epigenomics research 176 

include scVAEIT [7], SCALEX [8], and GLUE [9]. VAE is a generative model originally 177 

developed for image data, but its powerful feature extraction ability can adapt well to single-178 

cell data such as scCAS and single-cell chromatin interaction sequencing (scCIS) data, which 179 

inherently contain high noise and high dimensionality. Hence, this might be a potential 180 

explanation for the frequent utilization of VAE in single-cell epigenomics data. Furthermore, 181 

non-negative matrix factorization [10] and convolutional neural networks are prevalent 182 
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methodologies for dimensionality reduction or feature extraction in single-cell epigenomic 183 

analysis. The prevalence of these approaches underlines the urgent need for addressing the 184 

challenge of high dimensionality in single-cell epigenomics analysis. 185 

 

Fig 3. Statistics of single-cell epigenomic tools in scEpiTools.  

(A) Citation counts for single-cell epigenomic tools with logarithmic transformation. (B) Proportion 

of different omics in 553 single-cell epigenetic tools. (C) Publication status of 553 single-cell 

epigenetic tools. (D) Word cloud of the description of the articles published in 2018, 2020 and 

2022-2023. 

Statistics of platforms 186 

We found that among the collected tools that provide source codes, those developed using 187 

Python and R are the most prevalent (Fig 2D), and most methods provide open-source 188 

licenses (Fig 4A). This is partly due to the fact that R is one of the most commonly used 189 

programming languages in the field of bioinformatics [11] and Python is one of the most widely 190 

used language for machine learning [12]. We also observed that with the increasing popularity 191 
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of deep learning algorithms, there has been a growing trend towards the use of machine 192 

learning algorithms in the collected tools, which has led to a higher proportion of Python in 193 

single-cell epigenomic analysis tools. In addition, C++, MATLAB and Shell scripting are also 194 

popular among these tools. In single-cell epigenomics research, researchers need to 195 

frequently process large amounts of sequencing data, which requires high efficiency, 196 

convenience, and visualization capabilities for computation. Therefore, these three 197 

programming languages are widely used due to their powerful data processing and analysis 198 

abilities. Additionally, we also analyzed the GitHub information of the collected articles, based 199 

on the observation of GitHub activity, responsiveness, and stars, the tools generally 200 

demonstrate satisfactory usability. (Fig 4B-4D, Text S5). 201 

 

Fig 4. Statistics of single-cell epigenomic tools that open-sourced on GitHub.  

(A) The distribution of licenses for single-cell epigenetic tools with open-source code on GitHub. 

(B) GitHub stars with logarithmic transformation. (C) GitHub activity with logarithmic transformation. 

(D) GitHub responsiveness of the tools. 
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Trends of single-cell epigenomic tools 202 

It is worth noting that among the four types of epigenomic data, methods related to scCAS has 203 

consistently been the most abundant each year. In particular, scEpiTools contains 377 articles 204 

for chromatin accessibility sequencing, 93 articles for chromatin interaction sequencing, 57 205 

articles for histone modification, and 154 articles for DNA methylation (Fig 3B). This is 206 

potentially due to the fact that chromatin accessibility data are closely related to regulatory 207 

landscape, cellular development and differentiation, as well as diseases, and also because 208 

the ease of obtaining scCAS data compared to other omics data and the availability of 209 

numerous sequencing technologies for scCAS data. From 2015 to 2022, there has been a 210 

consistent increase in the number of single-cell epigenomic analysis data published each year 211 

relative to the previous year. In 2022 alone, 176 tools for analyzing single-cell epigenomic data 212 

were published, which represents more than a three-fold increase compared to 54 tools of 213 

2017. This trend underscores the growing importance of such tools for researchers who 214 

require them to facilitate investigations of single-cell epigenomic data in the face of rapidly 215 

accumulating volumes of data. Additionally, we found that preprints accounted for 21.3% of 216 

the total publications, which indicates the rapid development of computational methods and 217 

sequencing technologies for analyzing single-cell epigenomic data (Fig 2E, Fig 3C). We 218 

selected article descriptions published in 2018, 2020, and 2023, and used them to generate 219 

word clouds. We observed that the term “sequencing” was frequently used in 2018, whereas 220 

in 2022-2023, high-frequency terms included “deep”, “computational”, and “multi-omics” (Fig 221 

3D). This suggests that with the recent advancement of multi-omics sequencing technologies 222 

[3] and the rapid development of deep neural networks, researchers are increasingly focusing 223 

on utilizing computational frameworks for the analysis of multi-omics data. 224 

scEpiTools enables online analysis of scCAS data 225 

scEpiTools provides an intuitive tutorial-style interface, making it accessible to users without 226 

coding experience to perform single-cell epigenomic data analysis. Moreover, it assists users 227 
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in overcoming insufficient local computing resources. The platform offers a complete analysis 228 

pipeline, including preprocessing, cell type annotation, and visualization, utilizing built-in 229 

kernels of EpiScanpy [13], Signac [14], and SnapATAC [15]. In order to improve the quality of 230 

single-cell epigenomic data analysis, we have proposed scEpiEnsemble, an ensemble 231 

method that leverages the strengths of EpiScanpy, Signac, and SnapATAC, to obtain 232 

comprehensive insights into single-cell epigenomic data analysis. (Text S6, Table S4-S7). 233 

Similar to existing pipelines for analyzing single-cell epigenomic data, scEpiEnsemble initiates 234 

by performing a set of optional preprocessing steps such as binarization, quality control, term 235 

frequency–inverse document frequency (TF-IDF) transformation in Signac [14], and 236 

normalization. As an ensemble method, scEpiEnsemble employs principal component 237 

analysis (PCA) from EpiScanpy as well as dimensionality reduction methods from Signac and 238 

SnapATAC. We provided three approaches to integrate the results of dimensionality reduction， 239 

namely direct concatenation, min-max normalization and z-score normalization. Following the 240 

dimensionality reduction, which is essential for downstream analysis of single-cell epigenomic 241 

data, we proceeded to cluster and visualize the outcomes. Furthermore, we computed four 242 

metrics, namely, adjusted rand index (ARI), adjusted mutual information (AMI), normalized 243 

mutual information (NMI), and homogeneity (Homo), to quantify the consistency between the 244 

clustering labels and the true cell type labels (Text S6). 245 

We implemented the complete analysis process on human PBMC [16] dataset an example 246 

and visualized the results of clustering using uniform manifold approximation and projection 247 

(UMAP). scEpiEnsemble achieved an ARI, AMI, NMI, and Homo of 0.483, 0.641, 0.645, and 248 

0.700, respectively, which were at least 3.5%, 1.9%, 1.8%, and 1.3% higher than the baseline 249 

methods, demonstrating the effectiveness and superiority of the ensemble strategy (Fig S2). 250 

In summary, scEpiEnsemble not only enhances the accuracy of single-cell epigenomic data 251 

analysis, but also furnishes an accessible pipeline for users, particularly those without 252 

programming expertise. 253 
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Case applications of scEpiTools 254 

scEpiTools has broad applications in areas such as recommendation and tool selection, online 255 

analysis, and tool benchmarking. The comprehensive capabilities of scEpiTools enable users 256 

to easily navigate and effectively utilize a range of analytical tools and resources, thus 257 

improving the efficiency and accuracy of their research. Here, we present two specific 258 

application scenarios of scEpiTools, demonstrating how it can assist researchers in selecting 259 

tools and analyzing single-cell epigenomic data (Fig S3).  260 

We firstly consider a scenario where algorithm researchers are interested in developing 261 

computational tools for the dimensionality reduction of scCIS data. Prior investigation and 262 

benchmark of existing state-of-the-art methods are necessary. In this case, they can leverage 263 

our database to access state-of-the-art algorithms and obtain initial insights into the underlying 264 

principles and strengths and weaknesses of these tools. As an example, by selecting 265 

“Chromatin interaction” as the “Omics” option and “Dimensionality reduction” as the “Category” 266 

option at the Search page, a list of 19 records for their query can be obtained. Then they can 267 

further sort the tools by the recommendation scores for algorithm, GitHub activity, etc. If 268 

researchers want to implement methods based on the mainstream programming languages 269 

in the field of bioinformatics, i.e. Python and R, they can select these two platforms in the 270 

“Platform” option. The results indicate that Galaxy HiCExplorer 3 [17], Higashi [18] and 271 

scHiCluster [19] are the most recommended methods. When researchers enter the Details 272 

page of Galaxy HiCExplorer 3, they can obtain more information related to the method, such 273 

as the required dependencies and the link to source codes. In addition, algorithm developers 274 

often need to benchmark their tools against other methods. In such cases, they can easily 275 

investigate the existing benchmarks by navigating to the Browse page and selecting the 276 

category of “dimensionality reduction”. The network diagram demonstrates that scHiCluster 277 

takes various methods as baselines, indicating its novelty and potentially outstanding 278 

performance for the current task. 279 
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The second scenario involves analyzing scCAS data online. Suppose a user has profiled a 280 

set of scCAS data and wants to perform analysis such as dimensionality reduction and 281 

differential feature analysis. They can first select one of the four kernels according to the 282 

demand, such as diverse input formats and various chromatin regions, and then obtain a 283 

detailed notebook that describes the analysis process and results, as well as downloadable 284 

results. Taking EpiScanpy kernel as an example, researchers can prepare the input file as the 285 

format of AnnData [20] and select the EpiScanpy as the tool for analysis. Then they can view 286 

the individual steps of the tutorial before submitting a task. We have provided a set of default 287 

parameters that they can modify, such as the clustering method. After submitting a task, the 288 

user can obtain a unique task ID, which can be used to view the status and retrieve the results 289 

of the task. When the analysis is completed, scEpiTools will provide a detailed notebook and 290 

downloadable AnnData-format file. In addition, if the user provides their email address, an 291 

email will be sent automatically when the task is completed. 292 

Availability and future directions 293 

Availability  294 

The scEpiTools database is publicly accessible through the website at 295 

http://health.tsinghua.edu.cn/scepitools, the source code for scEpiEnsemble is freely available 296 

on https://github.com/ZjGaothu/scEpiEnsemble and the source code for plotting and analyses 297 

is freely available on https://github.com/ZjGaothu/scEpiTools. 298 

Future directions 299 

Since 2015, the field of single-cell epigenomics has witnessed a remarkable surge in the 300 

number of studies, encompassing a range of sequencing technologies, software tools, and 301 

related review articles, with an accelerating pace. Our database has diligently collected and 302 

meticulously annotated these tools, organized them into distinct categories based on their 303 

functionalities and applications, and evaluated their recommendation scores, culminating in 304 
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the development of an online analysis platform. With the continued accumulation of high-305 

quality sequencing data and the rapid progress of deep learning techniques, we anticipate the 306 

emergence of more diverse and advanced tools in the future. To enhance the quality of our 307 

database, we will undertake periodic updates and reviews of the listed tools, ensuring their 308 

completeness and accuracy, incorporate the most demanded and widely used tools into our 309 

online analysis platform, and consider integrating a chatbot system into the new version of 310 

scEpiTools, leveraging state-of-the-art language models such as GPT [21, 22], thus facilitating 311 

user engagement and improving their experience. 312 
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