

1 **scEpiTools: a database to comprehensively interrogate**

2 **analytic tools for single-cell epigenomic data**

3 Zijing Gao^{1,#}, Xiaoyang Chen^{1,#}, Zhen Li^{1,#}, Xuejian Cui^{1,#}, Shengquan Chen^{2,*}, Rui
4 Jiang^{1,*}

5 ¹ Ministry of Education Key Laboratory of Bioinformatics, Research Department of
6 Bioinformatics at the Beijing National Research Center for Information Science and
7 Technology, Center for Synthetic and Systems Biology, Department of Automation,
8 Tsinghua University, Beijing 100084, China

9 ² School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071,
10 China

11 [#] These authors are equal contributors.

12 ^{*} Corresponding authors.

13 E-mail: chenshengquan@nankai.edu.cn, ruijiang@tsinghua.edu.cn

14 Abstract

15 Single-cell sequencing technology has enabled the characterization of cellular heterogeneity
16 at an unprecedented resolution. To analyze single-cell RNA-sequencing data, numerous tools
17 have been proposed for various analytic tasks, which have been systematically summarized
18 and concluded in a comprehensive database called scRNA-tools. Although single-cell
19 epigenomic data can effectively reveal the chromatin regulatory landscape that governs
20 transcription, the analysis of single-cell epigenomic data presents assay-specific challenges,
21 and an abundance of tools with varying types and functionalities have thus been developed.
22 Nevertheless, these tools have not been well summarized, hindering retrieval, selection, and
23 utilization of appropriate tools for specific analyses. To address the issues, we here proposed
24 scEpiTools database with a multi-functional platform (<http://health.tsinghua.edu.cn/scepitools>).
25 Specifically, based on the comprehensive collection and detailed annotation of 553 articles,
26 scEpiTools groups articles into 14 major categories and 90 subcategories, provides task-
27 specific recommendation for different emphases, and offers intuitive trend analysis via directed
28 graphs, word clouds, and statistical distributions. For single-cell chromatin accessibility data
29 analysis, we proposed a novel ensemble method named scEpiEnsemble, which, along with
30 multiple methods as built-in kernels, can be used for flexible and efficient online analysis via
31 the scEpiTools platform. We envision that scEpiTools will guide tool usage and development
32 for single-cell epigenomic data and provide valuable resources for understanding regulatory
33 mechanisms and cellular identity.

34 Author summary

35 Compared to single-cell RNA-sequencing data, single-cell epigenomic data can reflect a set
36 of epigenetic modifications at the cellular level. In general, the analysis of these data is typically
37 divided into several steps: 1) retrieving available tools based on the omics of data and tasks;
38 2) selecting appropriate tools manually; and 3) utilizing the chosen tools to analyze data.
39 However, due to the rapid development of tools and the unique complexity of the data, each
40 of the above steps is extremely challenging for researchers. To provide researchers with great

41 convenience, we developed scEpiTools (<http://health.tsinghua.edu.cn/scepitools>), a database
42 with multiple functionalities. For instance, given the omics type and the analytic task,
43 researchers can easily browse all the available tools via the hierarchical categorization of
44 scEpiTools, and get recommendation scores from multiple perspectives. Considering that
45 researchers may encounter difficulties in hardware requirements or environment setup, we
46 also provide online analysis with various commonly used tools, as well as a novel ensemble
47 method named scEpiEnsemble. In summary, scEpiTools represents a valuable resource for
48 the single-cell epigenomics community, facilitating retrieval, selection and utilization of
49 appropriate tools for diverse analyses, and helping to drive future advancements in the field.

50 Introduction

51 Recent advances in single-cell sequencing technologies provide significant implications for
52 understanding cellular heterogeneity, developmental biology, and disease mechanisms. To
53 fully exploit the potential of these data, numerous tools have been proposed for upstream and
54 downstream analyses. In single-cell RNA sequencing (scRNA-seq) community, scRNA-tools
55 [1] was proposed to help researchers to navigate the plethora of tools by category. Since its
56 inception, scRNA-tools has been widely used and its updated version further reveals trends in
57 the field with over 1000 collected tools [2], providing a valuable guidance to researchers in
58 selecting tools for analysis.

59 Unlike scRNA-seq data, single-cell epigenomic data capture the chromatin regulatory
60 landscape that governs transcription. Recent innovations in single-cell epigenomic
61 technologies have enabled the profiling of a wide range of omics data, such as chromatin
62 accessibility, DNA methylation, chromatin interaction, histone modification, and chromosome
63 conformation [3]. The analysis of single-cell epigenomic data has assay-specific challenges
64 such as extreme sparsity and significantly lower sensitivity and higher dimensions, leading to
65 numerous tools with various types and functionalities. Given the constantly evolving landscape
66 of single-cell epigenomic tools and the associated challenges with data complexity and
67 interpretation, it is crucial for researchers to stay up-to-date with these developments to ensure
68 the accuracy and reliability of analyses. Therefore, a comprehensive and intuitive database
69 for interrogating single-cell epigenomic tools is in pressing need. However, establishing a
70 comprehensive database for single-cell epigenomic data analysis poses significant challenges.
71 Firstly, the increasing number of analysis tasks makes scientific categorization of tools
72 complex, necessitating a hierarchical categorization system. Secondly, researchers require
73 task-specific guidance when selecting diverse tools, preferably through an evidence-based
74 recommendation system rather than a simple list of tools. Thirdly, non-methodology papers,
75 such as review studies or those covering sequencing technologies, can provide valuable
76 references and should not be overlooked. Fourthly, the varying configurations and strict

77 environmental requirements of different tools create obstacles to implementation, and the
78 impracticality of local analysis due to the increasing number of profiled cells and complexity of
79 tool usage underscores the need for a more convenient online analysis platform.
80 To address these challenges, we developed scEpiTools, a user-friendly database with
81 systematic collection and careful annotation of 553 articles (constantly being updated),
82 advanced searching with versatile search filters and sort options, hierarchical browsing with
83 various statistical charts, and custom recommendation for algorithm, review, and sequencing
84 technology. We also conducted trend analyses and statistical analyses for the collected
85 articles. To facilitate the analysis of single-cell chromatin accessibility sequencing (scCAS)
86 data, we proposed a novel ensemble method named scEpiEnsemble and provided it along
87 with multiple built-in kernels on an online analysis platform. In addition, we elaborates
88 extensive application scenarios of scEpiTools for tool selection and benchmarking, and
89 analyzing scCAS data online. Furthermore, scEpiTools provides services such as flexible data
90 downloading and docker images of widely-used tools. We posit that scEpiTools will effectively
91 empower researchers with an all-encompassing comprehension of current research in the
92 field of single-cell epigenomics.

93 Design and implementation

94 Data collection

95 We adopted a series of standardized procedures for reliable collection of articles, including
96 methodology articles, reviews, sequencing technologies, and studies. Firstly, a total of 3227
97 articles with the keywords related to single-cell epigenomics were retrieved from the PubMed,
98 arXiv and bioRxiv (as of Mar 2023). Secondly, the candidate articles were filtered based on
99 their relevance to the field of single-cell epigenomics. Then the references of each article are
100 manually reviewed by at least two independent researchers to check for any missing articles.
101 Ultimately, the number of candidate articles was reduced to 553. The full text and relatively
102 source code of each candidate article was then manually reviewed in detail. The general

103 information such as title, journal, digital object unique identifier (DOI), publication date,
104 citations, reference, publication status, abstract and description were extracted firstly (Fig 1).

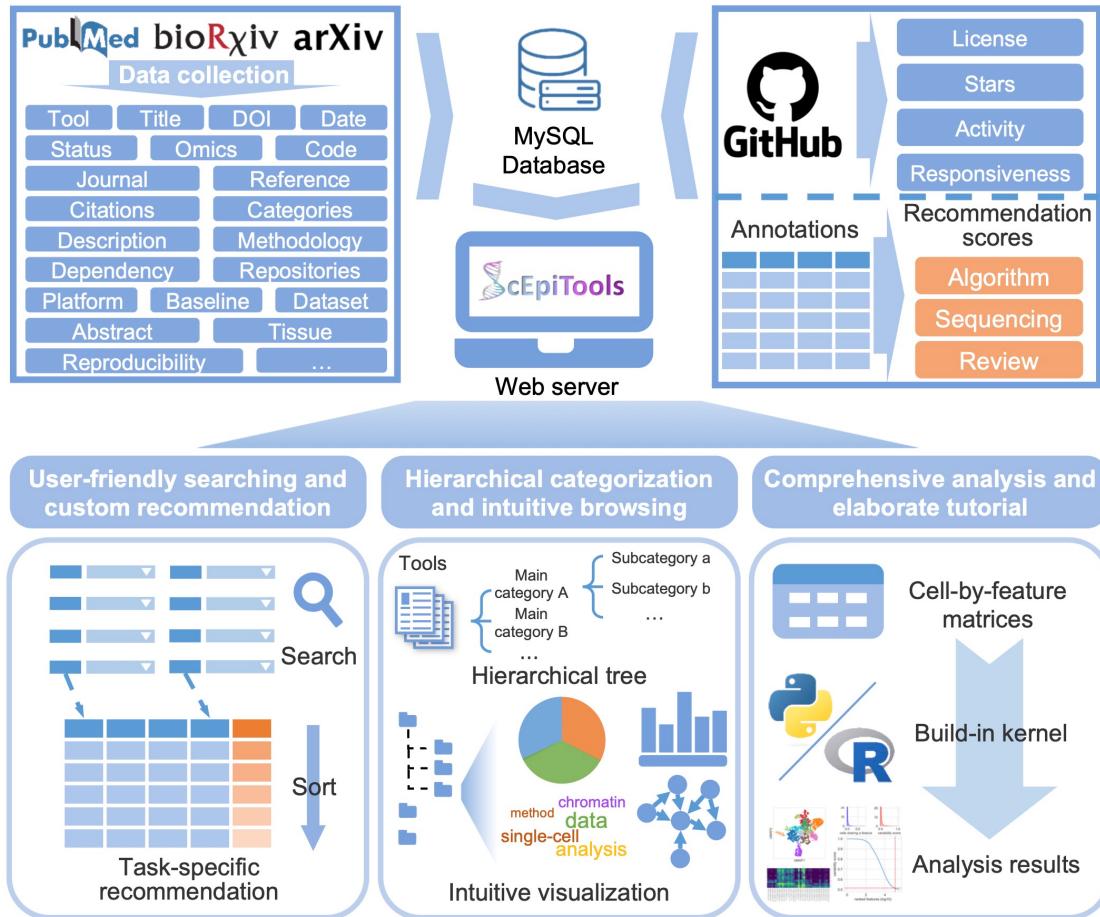


Fig 1. Overview of data collection, processing and annotation, and major features of scEpiTools. scEpiTools is a comprehensive repository comprising 553 epigenomic tools that have been meticulously classified into 14 main categories and 90 subcategories.

105 **Data processing and annotation**

106 After collecting hundreds of articles, our first step was to categorize them into a hierarchical
107 tree based on their tasks and problems. After summarizing, we categorized them into 14 major
108 categories and 90 subcategories (Table S1). Note that a tool may be applied to multiple
109 different tasks and thus some tools were categorized into multiple categories. For example,
110 SCALE [4] is a deep learning algorithm for dimensionality reduction, but it also provides

111 assistance for imputation of scCAS data by filling missing values and removing potential noise.
112 Therefore, we also categorized it into imputation other than dimensionality reduction.

113 To facilitate the recommendation and benchmarking of single-cell epigenomic tools, each tool
114 in scEpiTools was annotated manually with extensive details: (1) the GitHub information
115 including stars, activity, responsiveness, and last maintaining date. (2) the dependencies of
116 the software tools, methodologies, baseline methods, number of dataset and figures of the
117 model and source codes. (3) the three novel recommendation scores for three different tasks,
118 encompassing algorithm, sequencing technology and review. These scores are computed via
119 a weighted sum of eight key factors, derived from five distinct aspects, namely influence,
120 usability, publication date, source code maintenance status, and other metrics. (Text S1 and
121 S2).

122 **Website development and web interface**

123 scEpiTools runs on a Linux-based Apache web server (<https://www.apache.org>) and utilizes
124 the Bootstrap v3.3.7 framework (<https://getbootstrap.com/docs/3.3/>) for its web-frontend
125 display. Advanced tables and charts are implemented using plug-ins for the jQuery and
126 JavaScript libraries, including DataTables v1.10.19 (<https://datatables.net>) and morris.js
127 v0.5.0 (<https://morrisjs.github.io/morris.js/index.html>), respectively. The backend of the server
128 uses PHP v7.4.5 (<http://www.php.net>), and all data is stored in a MySQL v8.0.20
129 (<http://www.mysql.com>) database. The platform is compatible with the majority of mainstream
130 web browsers, including Google Chrome, Firefox, Microsoft Edge, and Apple Safari.

131 scEpiTools comprises seven main pages (Text S3). The Home page highlights the key
132 features and major applications of our database. Users can utilize advanced options to find
133 suitable tools and access diverse recommendation scores at the Search page. The Browse
134 page enables users to navigate tools hierarchically for specific tasks and access a range of
135 statistical measures, including abstract word clouds, directed graphs illustrating relationships
136 between tools, and statistical distributions (Text S4). The word cloud presents the primary

137 focus of each category, while the directed graph provides an intuitive representation of
138 comparative relationships among tools within the current category. The Analysis page
139 provides users with the ability to perform scCAS online analysis effortlessly without requiring
140 programming skills with scEpiEnsemble and three other mainstream kernels. At the Download
141 page, users can access detailed annotation information for articles as well as docker images
142 of mainstream methods. The Help page offers instructions on how to use the website, as well
143 as a list of frequently asked questions with corresponding answers. Additionally, we welcome
144 users to contribute any articles or tool methods that may have been overlooked during our
145 collection process on the About page.

146 Results

147 **Overview of the scEpiTools database**

148 The current version of scEpiTools contains 553 single-cell epigenomic tools published or
149 preprint from 2015 to 2023 and is being continuously updated, including 268 articles for tool
150 development, 62 articles for review, and 223 articles for sequencing technologies and
151 applications. Based on the data available in scEpiTools, it was found that as of 2019, the
152 number of tools specifically designed for single-cell epigenomics research was a mere 149.
153 However, as of March 2023, this number has increased nearly four-fold, suggesting the
154 progress made in single-cell sequencing technology and the accumulation of epigenomic data
155 (Fig 2A). Furthermore, on average, these articles also have a considerable citation count, with
156 over 28% of articles having a citation count exceeding 50, as of the last updated date for
157 articles in the database (Fig 3A). The rapid growth in the number of these single-cell
158 epigenomic tools also reflects the increasing research interest among scientists in single-cell
159 epigenomics in recent years.

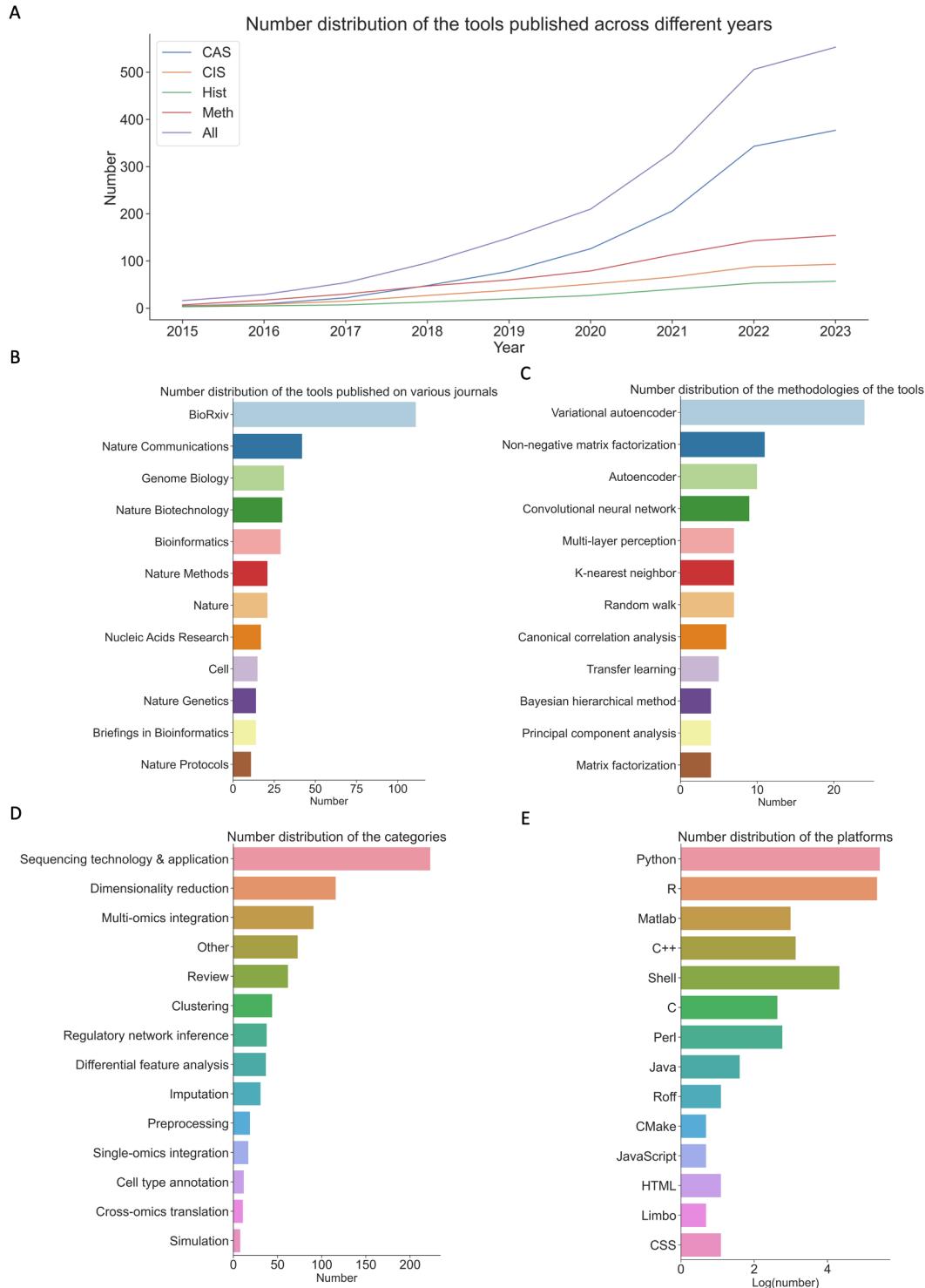


Fig 2. Statistics of single-cell epigenomic tools in scEpiTools.

(A) Accumulated number distribution of single-cell epigenomic tools of different omics between 2015 and 2023. The four omics are chromatin accessibility sequence (CAS), chromatin interaction sequence (CIS), DNA methylation (Meth), and histone modification (Hist), and we also considered

the total number of articles (All) in each year. (B) Number of tools across 14 main categories. (C) Number of methodologies of the tools (top 12). (D) Number of tools using different platforms. (E) Number of tools published various journals (top 12).

160 **Statistics and trends of single-cell epigenomic tools**

161 *Statistics of categories*

162 We have categorized collected tools into 14 main categories based on their types and
163 functionality, including dimensionality reduction, clustering, integration of single-omics data,
164 among others. Throughout the period spanning 2015 to 2023, it has been consistently
165 observed that sequencing technology and application, along with dimensionality reduction
166 tools, have remained the most salient research areas (Fig 2B). This phenomenon can be
167 attributed to the inherently high-dimensional properties of sequencing data such as scATAC-
168 seq. Additionally, it is worth noting that up until 2022, there has been a substantial increase in
169 the number of tools for multi-omics integration, which is indicative of a shift in focus within the
170 field of epigenetics from a single-omics to multi-omics approach, owing to the rapidly
171 development of multi-omics sequencing technologies (Table S2-S3, Fig S1).

172 *Statistics of methodologies*

173 We categorized and organized the methodological foundations of methodological articles. Our
174 analysis revealed that the collective utilization rate of variational autoencoder (VAE) [5] and
175 autoencoder (AE) [6] methods surpassed 12.78%, with VAE being the predominant approach
176 (Fig 2C). Noteworthy examples of VAE methods employed in single-cell epigenomics research
177 include scVAEIT [7], SCALEX [8], and GLUE [9]. VAE is a generative model originally
178 developed for image data, but its powerful feature extraction ability can adapt well to single-
179 cell data such as scCAS and single-cell chromatin interaction sequencing (scCIS) data, which
180 inherently contain high noise and high dimensionality. Hence, this might be a potential
181 explanation for the frequent utilization of VAE in single-cell epigenomics data. Furthermore,
182 non-negative matrix factorization [10] and convolutional neural networks are prevalent

183 methodologies for dimensionality reduction or feature extraction in single-cell epigenomic
184 analysis. The prevalence of these approaches underlines the urgent need for addressing the
185 challenge of high dimensionality in single-cell epigenomics analysis.

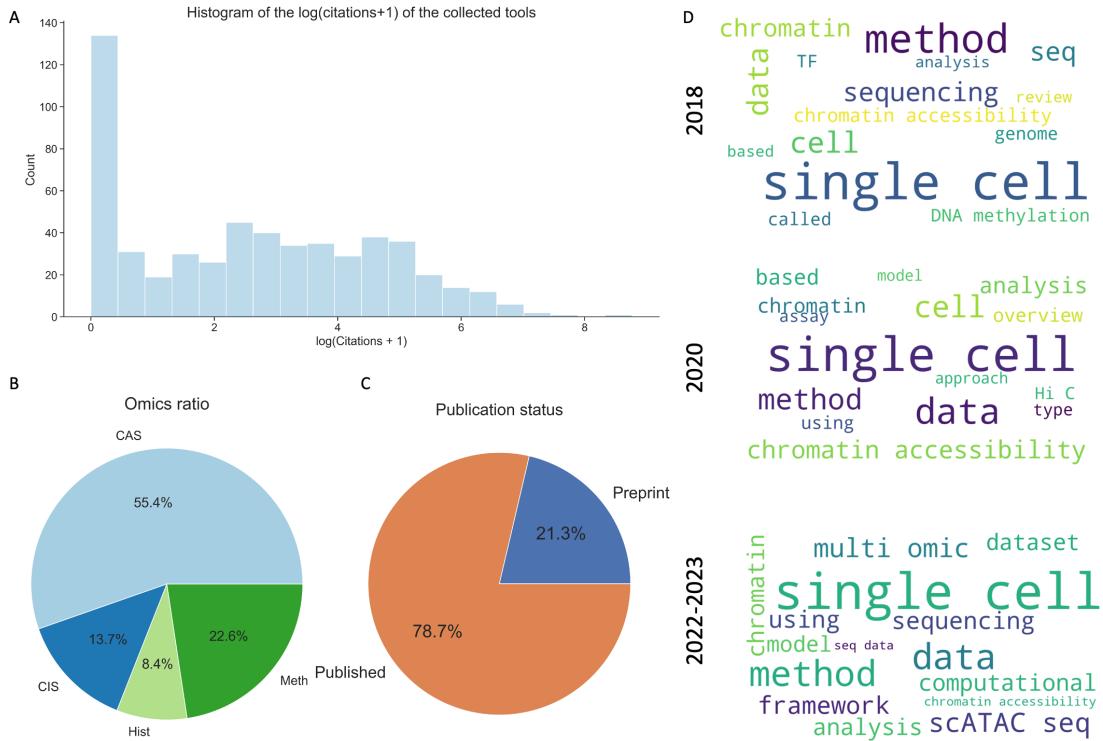


Fig 3. Statistics of single-cell epigenomic tools in scEpiTools.

(A) Citation counts for single-cell epigenomic tools with logarithmic transformation. (B) Proportion of different omics in 553 single-cell epigenetic tools. (C) Publication status of 553 single-cell epigenetic tools. (D) Word cloud of the description of the articles published in 2018, 2020 and 2022-2023.

186 *Statistics of platforms*

187 We found that among the collected tools that provide source codes, those developed using
188 Python and R are the most prevalent (Fig 2D), and most methods provide open-source
189 licenses (Fig 4A). This is partly due to the fact that R is one of the most commonly used
190 programming languages in the field of bioinformatics [11] and Python is one of the most widely
191 used language for machine learning [12]. We also observed that with the increasing popularity

192 of deep learning algorithms, there has been a growing trend towards the use of machine
193 learning algorithms in the collected tools, which has led to a higher proportion of Python in
194 single-cell epigenomic analysis tools. In addition, C++, MATLAB and Shell scripting are also
195 popular among these tools. In single-cell epigenomics research, researchers need to
196 frequently process large amounts of sequencing data, which requires high efficiency,
197 convenience, and visualization capabilities for computation. Therefore, these three
198 programming languages are widely used due to their powerful data processing and analysis
199 abilities. Additionally, we also analyzed the GitHub information of the collected articles, based
200 on the observation of GitHub activity, responsiveness, and stars, the tools generally
201 demonstrate satisfactory usability. (Fig 4B-4D, Text S5).

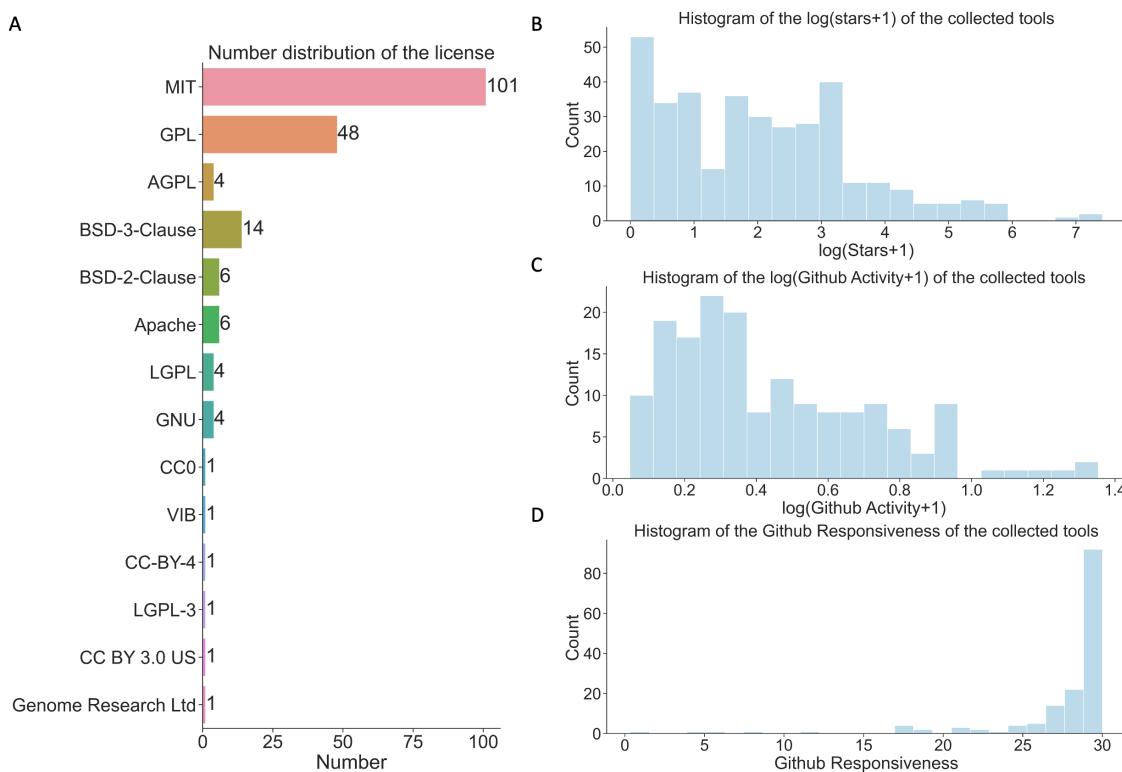


Fig 4. Statistics of single-cell epigenomic tools that open-sourced on GitHub.

- (A) The distribution of licenses for single-cell epigenetic tools with open-source code on GitHub.
- (B) GitHub stars with logarithmic transformation. (C) GitHub activity with logarithmic transformation.
- (D) GitHub responsiveness of the tools.

202 *Trends of single-cell epigenomic tools*

203 It is worth noting that among the four types of epigenomic data, methods related to scCAS has
204 consistently been the most abundant each year. In particular, scEpiTools contains 377 articles
205 for chromatin accessibility sequencing, 93 articles for chromatin interaction sequencing, 57
206 articles for histone modification, and 154 articles for DNA methylation (Fig 3B). This is
207 potentially due to the fact that chromatin accessibility data are closely related to regulatory
208 landscape, cellular development and differentiation, as well as diseases, and also because
209 the ease of obtaining scCAS data compared to other omics data and the availability of
210 numerous sequencing technologies for scCAS data. From 2015 to 2022, there has been a
211 consistent increase in the number of single-cell epigenomic analysis data published each year
212 relative to the previous year. In 2022 alone, 176 tools for analyzing single-cell epigenomic data
213 were published, which represents more than a three-fold increase compared to 54 tools of
214 2017. This trend underscores the growing importance of such tools for researchers who
215 require them to facilitate investigations of single-cell epigenomic data in the face of rapidly
216 accumulating volumes of data. Additionally, we found that preprints accounted for 21.3% of
217 the total publications, which indicates the rapid development of computational methods and
218 sequencing technologies for analyzing single-cell epigenomic data (Fig 2E, Fig 3C). We
219 selected article descriptions published in 2018, 2020, and 2023, and used them to generate
220 word clouds. We observed that the term “sequencing” was frequently used in 2018, whereas
221 in 2022-2023, high-frequency terms included “deep”, “computational”, and “multi-omics” (Fig
222 3D). This suggests that with the recent advancement of multi-omics sequencing technologies
223 [3] and the rapid development of deep neural networks, researchers are increasingly focusing
224 on utilizing computational frameworks for the analysis of multi-omics data.

225 **scEpiTools enables online analysis of scCAS data**

226 scEpiTools provides an intuitive tutorial-style interface, making it accessible to users without
227 coding experience to perform single-cell epigenomic data analysis. Moreover, it assists users

228 in overcoming insufficient local computing resources. The platform offers a complete analysis
229 pipeline, including preprocessing, cell type annotation, and visualization, utilizing built-in
230 kernels of EpiScanpy [13], Signac [14], and SnapATAC [15]. In order to improve the quality of
231 single-cell epigenomic data analysis, we have proposed scEpiEnsemble, an ensemble
232 method that leverages the strengths of EpiScanpy, Signac, and SnapATAC, to obtain
233 comprehensive insights into single-cell epigenomic data analysis. (Text S6, Table S4-S7).

234 Similar to existing pipelines for analyzing single-cell epigenomic data, scEpiEnsemble initiates
235 by performing a set of optional preprocessing steps such as binarization, quality control, term
236 frequency-inverse document frequency (TF-IDF) transformation in Signac [14], and
237 normalization. As an ensemble method, scEpiEnsemble employs principal component
238 analysis (PCA) from EpiScanpy as well as dimensionality reduction methods from Signac and
239 SnapATAC. We provided three approaches to integrate the results of dimensionality reduction,
240 namely direct concatenation, min-max normalization and z-score normalization. Following the
241 dimensionality reduction, which is essential for downstream analysis of single-cell epigenomic
242 data, we proceeded to cluster and visualize the outcomes. Furthermore, we computed four
243 metrics, namely, adjusted rand index (ARI), adjusted mutual information (AMI), normalized
244 mutual information (NMI), and homogeneity (Homo), to quantify the consistency between the
245 clustering labels and the true cell type labels (Text S6).

246 We implemented the complete analysis process on human PBMC [16] dataset an example
247 and visualized the results of clustering using uniform manifold approximation and projection
248 (UMAP). scEpiEnsemble achieved an ARI, AMI, NMI, and Homo of 0.483, 0.641, 0.645, and
249 0.700, respectively, which were at least 3.5%, 1.9%, 1.8%, and 1.3% higher than the baseline
250 methods, demonstrating the effectiveness and superiority of the ensemble strategy (Fig S2).
251 In summary, scEpiEnsemble not only enhances the accuracy of single-cell epigenomic data
252 analysis, but also furnishes an accessible pipeline for users, particularly those without
253 programming expertise.

254 Case applications of scEpiTools

255 scEpiTools has broad applications in areas such as recommendation and tool selection, online
256 analysis, and tool benchmarking. The comprehensive capabilities of scEpiTools enable users
257 to easily navigate and effectively utilize a range of analytical tools and resources, thus
258 improving the efficiency and accuracy of their research. Here, we present two specific
259 application scenarios of scEpiTools, demonstrating how it can assist researchers in selecting
260 tools and analyzing single-cell epigenomic data (Fig S3).

261 We firstly consider a scenario where algorithm researchers are interested in developing
262 computational tools for the dimensionality reduction of scCIS data. Prior investigation and
263 benchmark of existing state-of-the-art methods are necessary. In this case, they can leverage
264 our database to access state-of-the-art algorithms and obtain initial insights into the underlying
265 principles and strengths and weaknesses of these tools. As an example, by selecting
266 “Chromatin interaction” as the “Omics” option and “Dimensionality reduction” as the “Category”
267 option at the Search page, a list of 19 records for their query can be obtained. Then they can
268 further sort the tools by the recommendation scores for algorithm, GitHub activity, etc. If
269 researchers want to implement methods based on the mainstream programming languages
270 in the field of bioinformatics, i.e. Python and R, they can select these two platforms in the
271 “Platform” option. The results indicate that Galaxy HiCExplorer 3 [17], Higashi [18] and
272 scHiCluster [19] are the most recommended methods. When researchers enter the Details
273 page of Galaxy HiCExplorer 3, they can obtain more information related to the method, such
274 as the required dependencies and the link to source codes. In addition, algorithm developers
275 often need to benchmark their tools against other methods. In such cases, they can easily
276 investigate the existing benchmarks by navigating to the Browse page and selecting the
277 category of “dimensionality reduction”. The network diagram demonstrates that scHiCluster
278 takes various methods as baselines, indicating its novelty and potentially outstanding
279 performance for the current task.

280 The second scenario involves analyzing scCAS data online. Suppose a user has profiled a
281 set of scCAS data and wants to perform analysis such as dimensionality reduction and
282 differential feature analysis. They can first select one of the four kernels according to the
283 demand, such as diverse input formats and various chromatin regions, and then obtain a
284 detailed notebook that describes the analysis process and results, as well as downloadable
285 results. Taking EpiScanpy kernel as an example, researchers can prepare the input file as the
286 format of AnnData [20] and select the EpiScanpy as the tool for analysis. Then they can view
287 the individual steps of the tutorial before submitting a task. We have provided a set of default
288 parameters that they can modify, such as the clustering method. After submitting a task, the
289 user can obtain a unique task ID, which can be used to view the status and retrieve the results
290 of the task. When the analysis is completed, scEpiTools will provide a detailed notebook and
291 downloadable AnnData-format file. In addition, if the user provides their email address, an
292 email will be sent automatically when the task is completed.

293 Availability and future directions

294 Availability

295 The scEpiTools database is publicly accessible through the website at
296 <http://health.tsinghua.edu.cn/scepitools>, the source code for scEpiEnsemble is freely available
297 on <https://github.com/ZjGaothu/scEpiEnsemble> and the source code for plotting and analyses
298 is freely available on <https://github.com/ZjGaothu/scEpiTools>.

299 Future directions

300 Since 2015, the field of single-cell epigenomics has witnessed a remarkable surge in the
301 number of studies, encompassing a range of sequencing technologies, software tools, and
302 related review articles, with an accelerating pace. Our database has diligently collected and
303 meticulously annotated these tools, organized them into distinct categories based on their
304 functionalities and applications, and evaluated their recommendation scores, culminating in

305 the development of an online analysis platform. With the continued accumulation of high-
306 quality sequencing data and the rapid progress of deep learning techniques, we anticipate the
307 emergence of more diverse and advanced tools in the future. To enhance the quality of our
308 database, we will undertake periodic updates and reviews of the listed tools, ensuring their
309 completeness and accuracy, incorporate the most demanded and widely used tools into our
310 online analysis platform, and consider integrating a chatbot system into the new version of
311 scEpiTools, leveraging state-of-the-art language models such as GPT [21, 22], thus facilitating
312 user engagement and improving their experience.

313 Supporting information

314 Text S1. Definition of GitHub activity and responsiveness.

315 Text S2. Definition of three recommendation scores.

316 Text S3. Web interfaces of the scEpiTools.

317 Text S4. Word cloud and the network diagram.

318 Text S5. Usability of single-cell epigenomics tools.

319 Text S6. Details of the scEpiEnsemble.

320 Fig S1. Number distribution of single-cell epigenomic tools of different main categories
321 published between 2015 and 2023.

322 Fig S2. Clustering performance comparison of scEpiEnsemble and three other mainstream
323 methods.

324 Fig S3. Case applications of the usage of scEpiTools.

325 Table S1. The detailed description of each main category.

326 Table S2. The number of tools under different main categories.

327 Table S3. The number of tools under different main categories from 2015 to 2023.

328 Table S4. The user-defined parameters for the tutorial of EpiScanpy.

329 Table S5. The user-defined parameters for the tutorial of Signac.

330 Table S6. The user-defined parameters for the tutorial of SnapATAC.

331 Table S7. The user-defined parameters for the tutorial of scEpiEnsemble.

332 Acknowledgments

333 This work was supported by the National Key Research and Development Program of China
334 [2021YFF1200902] and the National Natural Science Foundation of China [62203236 and
335 62273194].

336 Reference

337 1. Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis landscape
338 with the scRNA-tools database. *PLoS computational biology*. 2018;14(6):e1006245.

339 2. Zappia L, Theis FJ. Over 1000 tools reveal trends in the single-cell RNA-seq analysis
340 landscape. *Genome Biol*. 2021;22:1-18.

341 3. Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell
342 and spatial multi-omics. *Nat Rev Genet*. 2023;1-22.

343 4. Xiong L, Xu K, Tian K, Shao Y, Tang L, Gao G, et al. SCALE method for single-cell ATAC-
344 seq analysis via latent feature extraction. *Nat Commun*. 2019;10(1):4576.

345 5. Kingma DP, Welling M. Auto-encoding variational bayes. *arXiv preprint arXiv:13126114*.
346 2013.

347 6. Kramer MA. Nonlinear principal component analysis using autoassociative neural
348 networks. *AIChE J*. 1991;37(2):233-43.

349 7. Du J-H, Cai Z, Roeder K. Robust probabilistic modeling for single-cell multimodal mosaic
350 integration and imputation via scVAEIT. *Proceedings of the National Academy of Sciences*.
351 2022;119(49):e2214414119.

352 8. Xiong L, Tian K, Li Y, Ning W, Gao X, Zhang QC. Online single-cell data integration
353 through projecting heterogeneous datasets into a common cell-embedding space. *Nat*
354 *Commun*. 2022;13(1):6118.

355 9. Cao Z-J, Gao G. Multi-omics single-cell data integration and regulatory inference with
356 graph-linked embedding. *Nat Biotechnol*. 2022;40(10):1458-66.

357 10. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization.
358 *Nature*. 1999;401(6755):788-91.

359 11. Hershberg EA, Stevens G, Diesh C, Xie P, De Jesus Martinez T, Buels R, et al. JBrowseR:
360 an R interface to the JBrowse 2 genome browser. *Bioinformatics*. 2021;37(21):3914-5.

361 12. Raschka S, Patterson J, Nolet C. Machine learning in python: Main developments and
362 technology trends in data science, machine learning, and artificial intelligence. *Information*.
363 2020;11(4):193.

364 13. Danese A, Richter ML, Chaichoompu K, Fischer DS, Theis FJ, Colomé-Tatché M.
365 EpiScanpy: integrated single-cell epigenomic analysis. *Nat Commun*. 2021;12(1):5228.

366 14. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin state analysis
367 with Signac. *Nat Methods*. 2021;18(11):1333-41.

368 15. Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, et al. Comprehensive analysis of single
369 cell ATAC-seq data with SnapATAC. *Nat Commun*. 2021;12(1):1337.

370 16. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al. Integrated
371 single-cell analysis maps the continuous regulatory landscape of human hematopoietic
372 differentiation. *Cell*. 2018;173(6):1535-48. e16.

373 17. Wolff J, Rabbani L, Gilsbach R, Richard G, Manke T, Backofen R, et al. Galaxy
374 HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data
375 analysis, quality control and visualization. *Nucleic Acids Res*. 2020;48(W1):W177-W84.

376 18. Zhang R, Zhou T, Ma J. Multiscale and integrative single-cell Hi-C analysis with Higashi.
377 *Nat Biotechnol*. 2022;40(2):254-61.

378 19. Zhou J, Ma J, Chen Y, Cheng C, Bao B, Peng J, et al. Robust single-cell Hi-C clustering
379 by convolution-and random-walk-based imputation. *Proceedings of the National Academy of
380 Sciences*. 2019;116(28):14011-8.

381 20. Virshup I, Rybakov S, Theis FJ, Angerer P, Wolf FA. anndata: Annotated data. *BioRxiv*.
382 2021:2021.12. 16.473007.

383 21. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are
384 unsupervised multitask learners. *OpenAI blog*. 2019;1(8):9.

385 22. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. Language models
386 are few-shot learners. *Adv Neural Inf Process Syst*. 2020;33:1877-901.