

1 **Prophage acquisition by *Staphylococcus aureus* contributes to the expansion of Staphylococcal
2 immune evasion**

3

4 Roshan Nepal^{1,2}, Ghais Houtak^{1,2}, George Bouras^{1,2}, Mahnaz Ramezanpour^{1,2}, Sholeh Feizi^{1,2}, Gohar Shaghayegh^{1,2},
5 Keith Shearwin³, Alkis James Psaltis^{1,2}, Peter-John Wormald^{1,2}, Sarah Vreugde^{1,2*}

6

7 ¹The Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.

8 ² The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational
9 Health Research, Central Adelaide Local Health Network, South Australia, Australia.

10 ³School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide,
11 Australia.

12

13

14 *** Correspondence:**

15 sarah.vreugde@adelaide.edu.au

16

17 **Running title:**

18 φSa3int prophage enhances *Staphylococcus aureus* virulence

19

20

21 **Keywords:**

22 Sa3int prophage, β-converting phage, beta-converting phage, β-hemolysin converting
23 bacteriophage, bacteriophage, phage, prophage, lysogen, lysogenization, microbe-host
24 interaction, phage-bacteria interaction, virulence, chronic rhinosinusitis, CRS

25

26

27 **Abstract**

28 *Staphylococcus aureus* colonizes 30% of the human population, but only a few clones cause
29 severe infections. *S. aureus*' virulence varies and partly depends on the presence of prophages,
30 viral DNA embedded in the *S. aureus* core genome, such as hlb-converting prophage (φ Sa3int).
31 Human-adapted *S. aureus* often harbours a φ Sa3int group of prophages preferentially integrated
32 into their β -hemolysin (*hlb*) gene that encodes human immune evasion cluster (IEC) genes.
33 Exotoxins and immune modulatory molecules encoded by this prophage can inhibit human
34 innate immunity increasing *S. aureus* pathogenicity. This study aims to investigate the genomic
35 and phenotypic plasticity of *S. aureus* and changes in its extracellular proteome after the
36 acquisition of φ Sa3int prophage.

37 To achieve this, we used *S. aureus* strains isolated from the sinus cavities of a patient with severe
38 chronic rhinosinusitis (CRS) at two different time points (*S. aureus* SA222 and *S. aureus* SA333)
39 and hybrid sequenced the strains using short-read Illumina and long-read Oxford nanopore
40 technology. *In silico* analysis showed the presence of a φ Sa3int prophage in the later isolate but
41 not in the earlier isolate while most of the core genes remained identical. Using mitomycin C, we
42 induced the φ Sa3int prophage, and transduced it into the Sa3int-prophage-free SA222 isolate to
43 obtain a laboratory generated 'double lysogen'. We confirmed the successful lysogenisation with
44 culture methods (spot assay, blood agar) and also by sequencing. We compared growth kinetics,
45 biofilm biomass and metabolic activity between parent and the lysogen by establishing growth
46 curves, crystal violet and resazurin assays. Exoproteins were identified and quantified using mass
47 spectrophotometry.

48 Integration of φ Sa3int prophage in SA222 down-regulated the beta-hemolysin expression of the
49 lysogen. *In silico* analysis of the *S. aureus* genome confirmed the insertion of a ~43.8 kb φ Sa3int
50 prophage into *hlb* gene. Insertion of prophage DNA did not alter the growth kinetics, biofilm
51 formation, adhesion to primary human nasal epithelial cells and the metabolic activity in a
52 biofilm. However, the acquisition of φ Sa3int prophage significantly changed the expression of
53 various secreted proteins, both bacterial and prophage-encoded. Altogether, thirty-eight
54 exoproteins were significantly differentially regulated in the laboratory created lysogen,

55 compared to its recipient strain SA222. Among these proteins, there was significant upregulation
56 of 21 exoproteins (55.3 %) including staphylokinase (sak), SCIN (scn), and intercellular adhesion
57 protein B (icaB) and downregulation of 17 exoproteins (44.7 %), including β -hemolysin (hbl/sph)
58 and outer membrane porin (phoE). Most of the upregulated proteins were involved in
59 immunomodulation that help *S. aureus* escape human innate immunity and help cause chronic
60 infection. These findings may contribute to the development of novel approaches to render *S.*
61 *aureus* susceptible to the immune response by blocking prophage-associated defence
62 mechanisms.

63

64

65 **Highlights**

- 66 • A φ Sa3int prophage preferentially integrates into the β -haemolysin gene (*hbl*) gene
67 thereby disrupting the beta-hemolysin function.
- 68 • A \sim 43.8 kb φ Sa3int prophage acquisition by *S. aureus* has no impact on its growth
69 kinetics, biofilm formation and adhesion to primary human nasal epithelial cells (HNECs).
- 70 • The presence of a φ Sa3int group prophage likely enhances *Staphylococcus aureus*' human
71 immune evasion capability as the prophage encodes a complete set of immune evasion
72 cluster (IEC) genes.
- 73 • Targeted identification of virulence factors in addition to species and strain identification
74 may lead to better-personalized therapy as not all *S. aureus* carry the same virulence
75 genes.

76

77 **1. INTRODUCTION**

78 Bacteria often harbour dormant phage DNA (prophages) embedded within their chromosome.
79 These prophage sequences can confer auxiliary functions, frequently increasing bacterial fitness.
80 However, prophages can also carry various virulence factors (VF), toxins and antimicrobial
81 resistance genes (ARGs), such that lysogens (bacteria carrying a prophage) are often considered
82 more virulent than the corresponding prophage-free strain (Kondo et al. 2021, Davies et al. 2016).
83 Prophages can be induced spontaneously or in response to various extrinsic factors like UV, sub-
84 lethal antibiotics and chemicals (Henrot and Petit 2022). Although spontaneous prophage
85 induction (SPI) usually occurs at a low level and kills a small fraction of bacterial cells within a
86 population, the released phage particles lysogenize other susceptible strains in the niche, thereby
87 transducing the prophage-encoded virulence factors (PVFs) horizontally. Further, the induction
88 of prophages into phage particles can also activate an anti-viral immune response in mammalian
89 cells that protects bacteria from phagocytosis (Gogokhia et al. 2019, Popescu et al. 2021). It is
90 well established that prophage induction is enhanced under sub-lethal concentrations of various
91 antibiotics and chemicals (Allen et al. 2011, Boling et al. 2020, Goerke, Koller and Wolz 2006).
92 Moreover, some studies have also found that prophage domestication and induction enhance
93 biofilm formation, further increasing bacterial survival and fitness (Nanda, Thormann and
94 Frunzke 2015, Carrolo et al. 2010). As bacteria often acquire virulent traits under inadequate or
95 inappropriate antimicrobial treatment regimens despite the DNA replication cost involved, it is
96 essential to understand prophage diversity, prophage dispersal and their role in virulence
97 dissemination. Most bacterial infections are caused by a small number of successful clones that
98 are virulent and pathogenic compared to the commensal (Beceiro, Tomás and Bou 2013).
99 Therefore, understanding the dynamics of prophage-mediated dissemination of prophage-
100 encoded virulence may provide information about the origin and spread of virulent clones.

101

102 *Staphylococcus aureus* is a genetically and metabolically diverse, highly successful opportunistic
103 bacterial pathogen colonizing the mucosal surfaces of approximately 30 % of humans (Tong et al.
104 2015). *S. aureus* is often isolated from the sinuses of chronic rhinosinusitis (CRS) patients, more

105 often in CRS with nasal polyposis (CRSwNP) (Vickery, Ramakrishnan and Suh 2019). Factors
106 related to virulence in *S. aureus* are often associated with mobile genetic elements (MGEs) like
107 plasmids, insertion sequences and prophages, suggesting that horizontal acquisition of MGEs
108 plays a significant role in the development of the virulence (Howden et al. 2023). A well-known
109 example is β -hemolysin-converting prophages (hereafter φ Sa3int) carrying various immune
110 evasion cluster (IEC) genes (*sak*, *chp*, *scn* and *sea/sep*) that protect bacteria from neutrophil-
111 dependent phagocytosis (van Wamel et al. 2006, Nepal et al. 2022). Earlier, we reported that *S.*
112 *aureus* isolated from CRSwNP patients often harboured φ Sa3int prophages that disrupt the
113 production of β -hemolysin (Nepal et al. 2021). β -hemolysin is a sphingomyelinase hemolysin that
114 significantly contributes to *S. aureus* pathogenesis (Tran et al. 2019), reduces the ciliary activity
115 of nasal epithelial cells and induces sinusitis (Kim et al. 2000). However, the pathogenesis of β -
116 hemolysin toxin in humans is argued due to negative conversion by the φ Sa3int prophage which
117 is present in the majority of *S. aureus* colonising humans (Salgado-Pabon et al. 2014). Widespread
118 distribution φ Sa3int prophages among *S. aureus* isolated from the nasal cavity of humans
119 suggests that the induction and re-integration of the released phages drive the dissemination of
120 virulence genes, particularly IEC, contributing to the genetic diversification and functional
121 adaptations of *S. aureus* (Chaguza et al. 2022). However, the presence of prophage DNA does not
122 imply the functionality of the virulence genes it carries.

123
124 This study aimed to investigate φ Sa3int prophage-mediated phenotypic alteration and virulence
125 expression in *S. aureus* isolated from CRS patients. By transducing an intact φ Sa3int prophage,
126 induced from *S. aureus* (SA333) isolated from a severe CRS patient, into another genetically close
127 φ Sa3int-free clinical strain isolated from the same patient at a different time point (SA222), we
128 demonstrated that φ Sa3int prophages integrate into *hlb* gene and significantly upregulates
129 expression of various exotoxins responsible for human immune evasion. However, the
130 domestication of the prophage did not alter the lysogen's growth kinetics and biofilm properties.
131 Hence, φ Sa3int prophages are crucial factors in the dissemination of IEC genes and virulence in
132 *S. aureus* that may contribute to the chronic colonization in the nasal cavity of CRS patients.

133 **2. MATERIALS AND METHODS**

134 **2.1 Ethics, bacterial strains, cells and growth conditions**

135 Ethics approval for the use of clinical isolates (CIs) and primary human nasal epithelial cells
136 (HNECs) was obtained from the Human Research Ethics Committee of the Central Adelaide Local
137 Health Network (HREC/18/CALHN/69). All the *S. aureus* clinical isolates used in this study were
138 retrieved from glycerol stocks and cultured at 37°C overnight on nutrient agar (NA, Oxoid Ltd,
139 Hampshire, UK). *S. aureus* RN4220 and *S. aureus* ATCC25923 were from the German Collection
140 of Microorganisms and Cell Cultures (DSMZ, GmbH) and American Type Culture Collection (ATCC,
141 Manassas, USA) respectively. An isolated colony was propagated in 15.0 ml tryptic soy broth
142 (TSB, 1X, Oxoid Ltd, Hampshire, UK) overnight in a shaking incubator (180 rpm) at 37°C unless
143 stated otherwise. The HNECs used for the adhesion assay were collected from a non-CRS (control)
144 patient at the time of surgery.

145

146 **2.2 Genomic DNA extraction, sequencing and genome assembly**

147 The genomic DNA (gDNA) of all *S. aureus* CIs were extracted using DNeasy Blood & Tissue Kit (Cat.
148 #69504, Qiagen Pty. Ltd, Australia) according to the manufacturer's guidelines with slight
149 modifications. Briefly, 700 µl of overnight broth culture in TSB was centrifuged (4000 x g) in a 1.5
150 ml Eppendorf tube for 10 minutes. The pellet was suspended in 180 µl of enzymatic lysis buffer
151 (20 mM Tris-Cl, pH8; 2mM sodium EDTA; 1.2% Triton X-100, 200 µg/ml final concentration
152 lysostaphin, filter sterilized) and incubated at 37°C for 30 minutes. Then 25 µl of proteinase K and
153 200 µl of Buffer AL (undiluted, provided with extraction kits) were added and mixed by vortexing
154 followed by incubation at 56°C. After 30 minutes, 200 µl of 99% ethanol (chilled) was added and
155 mixed by vortexing. The mixture was then transferred to DNeasy Mini Spin column (Qiagen Pty.
156 Ltd, Australia, Cat. #69504), and DNA was extracted following the manufacturer's guidelines.

157

158 The extracted gDNA was sequenced using the short-read Illumina platform (Illumina Inc, San
159 Diego, USA) and in-house long-read Oxford Nanopore Technology (ONT) using the MinION Mk1C

160 device (Oxford Nanopore Technologies, Oxford, UK) following the manufacturer's instructions
161 and in-house established protocol (Shaghayegh et al. 2023). Briefly, the short-read sequencing
162 was done on Illumina NextSeq 550 platform using NextSeq 500/550 Mid-Output kit v2.5 (Illumina
163 Inc, San Diego, USA) at a commercial sequencing facility (SA Pathology, Adelaide, SA, Australia).
164 Briefly, gDNA was isolated using the NucleoSpin Microbial DNA kit (Machery-Nagel GmbH, Duren,
165 Germany). Sequencing libraries were prepared using a modified protocol for the Nextera XT DNA
166 library preparation kit (Illumina Inc, San Diego, USA). The gDNA was fragmented and amplified
167 using a low-cycle PCR reaction. After the manual purification and normalisation of the amplicon
168 library, 150 bp reads were obtained. Long-read whole genome sequencing was performed using
169 MinION flowcells (R9.4.1) with the Rapid Barcoding Kit (Oxford Nanopore Technology, UK, #Cat:
170 SQK-RBK 110.96) according to the manufacturer's instructions. In brief, 50 ng of gDNA from each
171 CIs was used for sequencing. Base-calling was conducted with Guppy v6.2.11 (mode = super
172 accuracy) using the 'dna_r9.4.1_450bps_sup.cfg' configuration (Oxford Nanopore Technology,
173 UK).

174

175 Complete chromosomal *S. aureus* assemblies were created using a customised Snakemake
176 pipeline (Mölder et al. 2021) that is available at <https://github.com/gbouras13/hybracter> via the
177 Snaketool (Roach et al. 2022) powered command line tool hybracter following the protocols
178 outlined in Wick, Judd and Holt (2023). The complete pipeline can be found as supplementary
179 text ST1. Chromosome assemblies were annotated with Bakta v1.6.1 (Schwengers et al. 2021a).
180 All CIs were typed to determine sequence type (ST) and clonal complex (CC) according to the
181 PubMLST database using MLST (Seemann mlst, Jolley, Bray and Maiden 2018). We used Snippy
182 v4.6.0 to detect single nucleotide polymorphisms (SNPs) between CIs (Seemann 2015) and
183 Abricate v1.0.1 to screen for anti-microbial resistance and virulence factor genes (Seemann
184 2020).

185

186 **2.3 *In silico* identification of prophage and prophage annotation**

187 Prophage regions in both *S. aureus* CIs (SA222 and SA333, isolated from the same patient at
188 different time points) were first identified using PHASTEST (<https://phastest.ca>) and PhiSpy
189 (<https://github.com/linsalrob/PhiSpy>) with default settings (Arndt et al. 2016, Akhter, Aziz and
190 Edwards 2012, Wishart 2023). The exact genome of the φSa3int prophage was then curated with
191 our in-house program hlbbroken (<https://github.com/gbouras13/hlbroken>), which extracts the
192 sequences between *hlb* gene only. The identified φSa2int and φSa3int prophage sequences were
193 also annotated and visualized with Pharokka v1.2.0 (Bouras et al. 2023).

194

195 **2.4 induction and multi-host range assay of induced prophages**

196 Prophages from both CIs were induced using mitomycin C (MMC), purified and spotted on
197 previously studied *S. aureus* CIs (N=66) using the soft-agar overlay technique as described earlier
198 (Nepal et al. 2023) to study its multiple-host range. Briefly, MMC (final concentration = 1.0 µg/ml)
199 (Sigma-Aldrich, Missouri, USA, #Lot: SLBX4310) was added to exponentially growing cells (OD₆₀₀
200 = 0.3) in TSB and further incubated for 6 hrs at 37°C in a rotating incubator (180 rpm). Optical
201 density at 600 nm (OD₆₀₀) was measured every hour. After 6 hrs, the culture was centrifuged at
202 4000 rpm for 15 minutes at 4°C and the supernatant was filtered through 0.2 µm pore size syringe
203 filter (13 mm, Acordisc®, Pall International, Fribourg, Switzerland, #Cat: 4612) to obtain pure
204 phage lysate. Briefly, host bacteria were overlayed in double-layered TSA and 10.0 µl of purified
205 lysate was spotted on the top agar in triplicates.

206

207 **2.5 Construction and verification of lysogens**

208 Ten microliters of purified phage lysate induced from SA333 were spotted on a soft agar overlaid
209 with recipient bacteria SA222. The plates were dried and incubated overnight at 37°C. The next
210 day, a loopful of bacteria from the lysis spots were streaked on sheep blood agar (SBA,
211 ThermoFisher, Australia, #Cat: R01202) and incubated overnight at 37°C. Colonies without beta-
212 hemolysis (possibly lysogens) were picked and sub-cultured in TSA. The stability of these

213 constructs possibly harboring both φ Sa2int and φ Sa3int prophages was confirmed through
214 multiple sub-cultures in SBA. Two constructs devoid of beta-hemolysin (hereafter SA-L1 and SA-
215 L2) were picked for further analysis. The integrity and re-inducibility of integrated prophage were
216 then confirmed by re-induction from the constructs using MMC as described earlier and spot
217 assayed on SA222, SA333 and RN4220. The integration of φ Sa3int prophage into the *h/b* gene
218 was verified by inspecting the *h/b* gene in assembled genomes using the Integrative Genomics
219 Viewer (IGV) (Robinson et al. 2011).

220

221 **2.6 Growth curve, biofilm biomass and biofilm metabolic activity**

222 Bacterial growth kinetics were determined by measuring the optical density of broth culture at
223 600 nm (OD_{600}). Briefly, 100 μ l of 1.0 McFarland standard unit (MFU in saline, prepared from
224 overnight cultured colonies on NA plates) was added to 15.0 ml of TSB in a 50 ml Falcon tube.
225 The tubes were incubated at 37°C in a shaking incubator (180 rpm). Every hour, 100 μ l of culture
226 was removed and mixed with 900 μ l of sterile TSB in a cuvette. The OD_{600} was then measured
227 using a SmartSpec™ 3000 UV/Vis spectrophotometer (Bio-Rad Laboratories Inc, California, USA).
228 The biofilm variation between the clinical isolates and lysogens was qualitatively assessed by
229 culturing the bacteria on modified Congo red agar (CRA) (37 gm/l brain heart infusion broth
230 supplemented with 50 g/l sucrose, 0.8 g/l Congo red stain and 1.0 % agar) according to Freeman
231 et al. (Freeman, Falkiner and Keane 1989). Colony morphology of SA222, SA333 and SA-L1/SA-L2
232 on CRA was assessed after 48 hours of incubation at 37°C. Further, biofilm biomass and biofilm
233 metabolic activity (cell viability) was performed using crystal violet (CV) assay and alamarBlue®
234 cell viability assay as per manufacturer's guidelines (Life Technologies, Oregon, USA) in biofilms
235 established for 48 hours in 96-well flat-bottomed (Costar, Corning Incorporated, USA. #Ref:
236 3599) and 96-well flat and clear bottom black assay plate (Costar, Corning Incorporated, USA.
237 #Ref: 3603) respectively, as described earlier (Nepal et al. 2023). Briefly, the overnight NA culture
238 of *S. aureus* was adjusted to 1.0 McFarland standard and diluted 1:15 in tryptic soy broth. One-
239 hundred-fifty microliters of each diluted culture were pipetted into the inner wells of the

240 respective 96-well plates. The peripheral wells were filled with sterile water, sealed with
241 aluminium foil and incubated at 37°C in an orbital shaker (80 rpm). After 48 hours of incubation,
242 planktonic cells were carefully aspirated, and the plates were washed twice with phosphate
243 buffered saline (PBS, 1X) followed by the crystal violet or alamarBlue® assay. For CV, plates were
244 air-dried and 180 µl of 0.01% CV solution was added to each inner well and left at room
245 temperature for staining. After 10 minutes, the excess CV was aspirated, washed twice with PBS
246 (1X) and air-dried. Finally, the biomass-bound crystal violet was solubilized in 200 µl of 30% acetic
247 acid. The biomass was measured in terms of absorbance (OD₆₀₀) at 600 nm using CLARIOstar Plus
248 (BMG Labtech, Ortenberg, Germany). Similarly, for biofilm metabolic activity, 200 µl working
249 solution of alamarBlue® (1X) was added to each inner well, covered with aluminium foil and
250 incubated at 37°C in an orbital shaker (80 rpm). Resorufin fluorescence was monitored at the 1-
251 hr interval for 6 hours using the CLARIOstar Plus (BMG Labtech, Ortenberg, Germany) microplate
252 reader (excitation = 530 nm, emission = 590 nm). The metabolic activity (expressed as
253 fluorescence units) at a 2-hour timepoint was considered for further analysis. All experiments
254 were performed in triplicate with six technical replicates.

255

256 **2.7 Adhesion assay of *S. aureus* to primary human nasal epithelial cells**

257 The adhesion of *S. aureus* clinical strains and lysogens to primary human nasal epithelial cells
258 (HNEC) was studied following the protocol by Yang and Ji with slight modifications (Yang and Ji
259 2014). Briefly, primary HNECs were cultured in RPMI 1640 working media (supplemented with
260 10% FBS and 1% antibiotic-antimycotic, hereafter RPMI 1640-WM) to 70% confluence in a tissue
261 culture flask (T-75, Sarstedt, Nümbrecht, Germany) at 37°C, 5% CO₂ incubator and transferred
262 (1.0 ml/well) into a 24-well tissue culture plate (Sarstedt, Nümbrecht Germany). An overnight
263 broth culture of bacteria was made in 5.0 ml of TSB, pelleted and resuspended and the bacterial
264 density was then adjusted to ~0.3 (OD₆₀₀). In a separate tube, 5.0 ml of RPMI 1640+10% FBS
265 (without antibiotics) was aliquoted, and 150 µl of the diluted bacteria (OD₆₀₀ = 0.3) was added to
266 prepare the working bacterial culture. The cell culture media was replaced with RPMI 1640+10%
267 FBS media with and without bacterial suspensions and cells incubated for 2 hours at 37°C, 5%

268 CO₂ incubator. The wells were again washed and then incubated with 400 µl of 0.025% Triton X-
269 100 by pipetting, transferred into corresponding Eppendorf tubes and mixed by vortexing for 30
270 sec. The recovered bacteria were serially diluted in sterile PBS (up to 10⁻⁴), and 20 µl was spotted
271 in TSA for CFU estimation. The plates were dried and incubated at 37°C along with previous plates
272 containing serially diluted working bacterial culture spots. The next day, the colonies in each plate
273 were counted. The relative adhesion was calculated using the following formulae:

274
$$\text{Relative adhesion} = \frac{\text{Adhesion of the lysogen}}{\text{Adhesion of the parent strain}} \times 100\%$$

275

276 **2.8 Proteomics of the secretome**

277 The proteomics of the secretome was analyzed using a data-independent acquisition mass
278 spectrometry (DIA-MS) using Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher
279 Scientific, USA) with Dionex UltiMate™ 3000 UHPLC system (Thermo Fisher Scientific, USA) at
280 The Flinders Omics Facility, Flinders University according to established protocol ([Supplementary](#)
281 [text ST2](#)). Briefly, a few colonies from overnight cultured NA plates were dissolved in sterile saline
282 to obtain 1.0 MFU standard. One hundred microliters of the solution were added to 15.0 ml of
283 TSB in a 50.0 ml Falcon tube and incubated at 37°C in a shaking incubator (180 rpm, 45° angle).
284 After ~7 hours, the tube was briefly vortexed and centrifuged at 4000 x g for 10 min. The
285 secretome was sterilized by passing it through a 0.2 µm syringe filter (25 mm, Acordisc®, Pall
286 International, Fribourg, Switzerland) and concentrated using a Pierce™ Protein Concentrator PES
287 (3K MWCO, #Cat: 88525, Thermo Scientific, USA) by centrifuging the sample down to
288 approximately 2-3 ml. The protein concentration was determined using NanoOrange™ Protein
289 Quantitation Kit (Invitrogen, USA. #Cat: N6666) as per the manufacturer's instruction. The
290 proteins were then processed at the Flinders Omics Facility, Flinders University. The complete
291 set-up and protocols are elaborated in [Supplementary text ST2](#).

292 The DIA spectra were then processed and quantified using Spectronaut v15 (Biognosis AG,
293 Schlieren, Switzerland) with default settings. A *S. aureus* proteome database created from all
294 genes identified in SA333 was used as a reference. Gene annotations were assigned based on

295 SA333 strain using Bakta v1.6.1 (Schwengers et al. 2021b). Differential protein expression
296 analysis was performed in R v4.2.0 (<https://www.R-project.org/>) using the DEP package v1.20.0
297 to calculate differentially expressed proteins (DEP) (Zhang et al. 2018). The threshold for
298 identifying differentially expressed proteins was set at a false discovery rate (FDR) of less than
299 0.05.

300

301 **2.9 Bioinformatics and statistical analysis**

302 Pairwise alignment and multiple-sequence alignment between the genomes were performed
303 using MAFFT, and the phylogenetic tree was inferred using PhyML tree in Geneious Prime
304 2022.2.2 (<http://www.geneious.com>). The average nucleotide identity (ANI) of assembled
305 genomes was calculated using a FastANI web tool available at <https://proksee.ca> (Jain et al.
306 2018). Statistical analysis was performed using Prism v9.4 (GraphPad Software, USA), and graphs
307 were made in R v4.2.0 (<https://www.R-project.org/>). The difference in means of biofilm and
308 metabolic activity was tested using the student t-test. P<0.05 was considered statistically
309 significant unless stated otherwise.

310

311 **2.10 Data availability**

312 The genomic data (reads and assemblies) can be found in the Sequence Read Archive (SRA) under
313 project number PRJNA914892, specifically with sample numbers SAMN32360844 (SA222) and
314 SAMN32360890 (SA333).

315

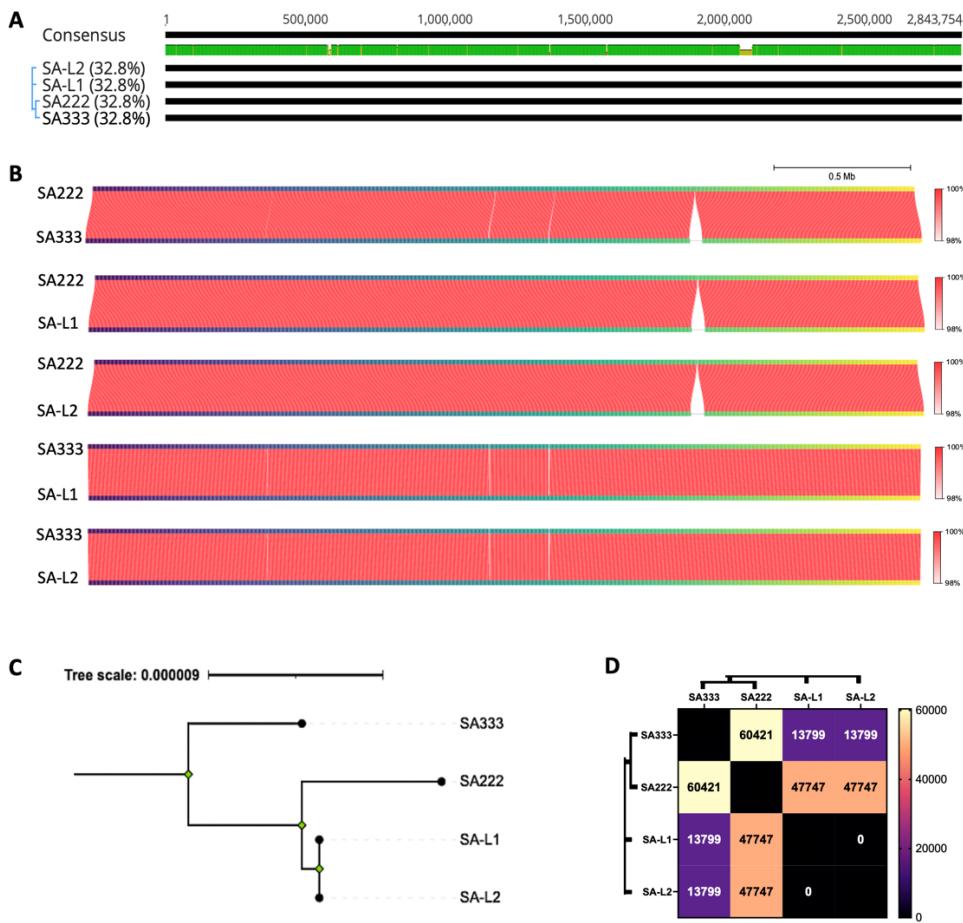
316 **3. RESULTS**

317 **3.1 Genomic features of SA222, SA333, lysogens and the prophages**

318 Sequencing and genomic analysis revealed that there were minimal genetic variations between
319 SA222 and SA333, which were isolated from the same CRS patient 567 days apart. The strains
320 had the same 32.8% GC content, clonal complex (CC22) and sequence type (ST22) (**Figure 1A**;
321 **Table 1**). The average nucleotide identity (ANI) between SA222 and SA333 was 99.99%, and the
322 average aligned length between the two genomes was 2,390,601 bp (**Figure 1B**). The alignment
323 also identified an additional φ Sa3int-group prophage (hereafter φ Sa3int prophage) in SA333.
324 Similarly, the ANI between SA222 (the recipient strain) and lysogenized SA222 which had been
325 genetically modified by lysogenization with φ Sa3int prophage (SA-L1, SA-L2) was \sim 100%, with an
326 average aligned length of 2,746,692 bp and the ANI between donor SA333 and lysogens (SA-L1,
327 SA-L2) was 99.99%, with an average aligned length of 2,385,728 bp (**Figure 1B**). The key
328 difference between the clinical isolates was that while SA222 harbored one intact prophage
329 (φ Sa2int, 52,500 bp), SA333 had two intact prophages (φ Sa2int; 50,792 bp and φ Sa3int; 43,795
330 bp) (**Table 1**). Upon gene annotation, we could see that although the φ Sa2int prophage in SA333
331 lost some DNA compared to SA222, SA333 had gained two transposases (length = 1236 bp and
332 768 bp) (**Figure S1-A-D**). The identified φ Sa2int prophage in SA222 and SA333 was most closely
333 related to *Staphylococcus* phage phi2958PVL (NC_011344, length = 47,342 bp), while the
334 additional prophage in SA333 was most closely related to *Staphylococcus* phage IME1361_01
335 (NC_048657, length = 43,516 bp) (**Table 1**). There was only 60,421 bp of non-identical nucleotide
336 bases between SA222 and SA333, including the 43,795 bp φ Sa3int prophage (**Figure 1D**),
337 confirming that SA222 and SA333 were the same strain, but had gained the flexible prophage
338 (φ Sa3int) at some point in time. Phylogenetic analysis and non-identical nucleotide differences
339 between clinical isolates and the lysogens implied, as expected, that the laboratory-generated
340 double lysogens were closer to SA333 than SA222 (**Figure 1C, 1D**). Surprisingly, the non-identical
341 nucleotide bases between the recipient SA222 and SA-L1/L2 were 47,747 bp, which was 3,952
342 bp larger than the exact prophage identified suggesting some auxiliary cargo DNA and
343 rearrangements in the lysogens during prophage integration (**Figure 1D**).

344 **Table 1 | Details of the *Staphylococcus aureus* clinical isolates used in this study**

Bacterial strain	Collection date	Genome size (bp)	Genotypic and phenotypic characters	No of prophage ^a	Prophage type ^b (size) / Proteins	Closest prophage (NCBI reference)	Virulence genes ^c
SA222	08/01/2014	2,788,579	CC22/ST22, MRSA, high biofilm, hlb (+), non-mucoid	1	φSa2int (52.5 kb) / 68	Staphylococcus phage phi2958PVL (NC_011344)	luk SF-PV
SA333	29/07/2015	2,837,533	CC22/ST22, MRSA, hyper biofilm, hlb (-), mucoid	2	φSa2int (50.8 kb) / 66 φSa3int (43.8 kb) / 69	Staphylococcus phage phi2958PVL (NC_011344) Staphylococcus phage IME1361_01 (NC_048657)	luk SF-PV sak, chp, scn
SA-L1, SA-L2	This study	2,832,387	CC22/ST22, MRSA, high-biofilm, hlb (-), non-mucoid	2	φSa2int (52.5 kb) / 68 φSa3int (43.8 kb) / 69	Staphylococcus phage phi2958PVL (NC_011344) Staphylococcus phage IME1361_01 (NC_048657)	luk SF-PV sak, chp, scn


a = only intact prophages considered for the analysis, however a 10,194 bp incomplete prophage encoding 17 proteins was also present in SA222 and SA333, b and c = based on *Staphylococcus aureus* integrase typing (Goerke et al., 2009), hlb(-) = beta-hemolysin absent, hlb(+) = beta-hemolysin present, MRSA = methicillin-resistant *S. aureus*, luk FS-PV = leukocidin (Panton-Valentine FS), sak = staphylokinase, chp = chemotaxis inhibitory protein, scn = Staphylococcal complement inhibitor, SA-L1 and SA-L2 (SA222+φSa3int) are independent lysogens created by infecting SA222 with prophage induced from SA333.

345

346 **3.1 Prophages induced from clinical isolates and the lysogen displayed a multiple host-
347 range**

348 The prophage genome annotation revealed that φSa2int prophage mostly encoded phage-
349 related genes and hypothetical genes (**Figure 2A**). Similarly, the φSa3int prophage encoded a
350 complete set of IEC genes (sak, chp, scn) and phage-related genes (**Figure 2B**). Neither prophage
351 encoded any antibiotic-resistance genes (ARGs) within their genomes. However, both prophages
352 had a clpP gene encoding Clp protease involved in lysogenic-lytic switching (Thabet, Penadés and
353 Haag 2022), indicating that both prophages should be capable of productive prophage induction
354 (**Figure 2A-B**).

355

Figure 1 | Multiple sequence alignments of clinical isolates and the lysogens.

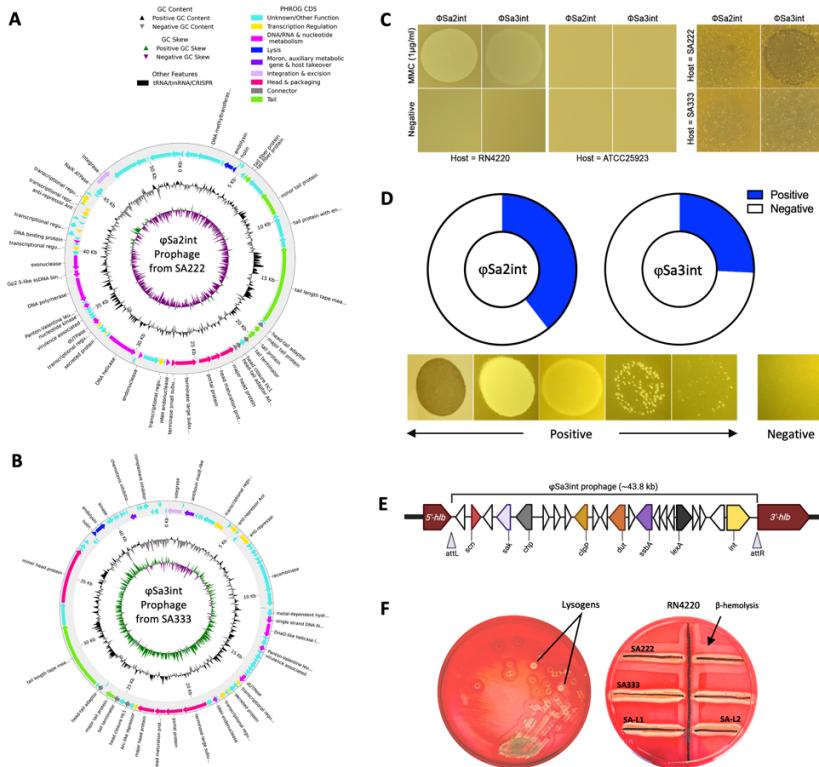
(A) Multiple sequence alignments of SA222, SA333 and laboratory generated double lysogens (two isolates; SA-L1 and SA-L2) show almost identical genome maps except for the prophage insert around 2.1 Mbp. **(B)** The average nucleotide identity (ANI) score between the clinical isolates and the lysogens further confirms that the prophage inserts on SA333 are the only significant genome change that has happened over time. The red colour gradient indicates the ANI percentage. **(C)** A rooted phylogenetic analysis between clinical strains and laboratory generated double lysogens reveals that as expected the double lysogens are genetically closer to the recipient strain SA222. **(D)** Distance matrix indicating the number of bases which are not identical.

356

357

358

359 Productive prophage induction was observed in both clinical strains, as lysis zones (plaques) were
360 observed in the spot assay. A clear lysis zone was observed on indicator strain RN4220, indicating
361 an intact lysogenic-to-lytic switch in the prophages, a productive induction, and a re-infectivity
362 of φ Sa2int and φ Sa2int and/or φ Sa3int prophages induced from SA222 and SA333, respectively
363 (**Figure 2C**). While induced prophage from SA333 (φ Sa2int and/or φ Sa3int) was also able to infect
364 and lyse SA222 (lacks φ Sa3int prophage), induced prophage from SA222 (φ Sa2int) could not
365 infect and lyse SA333 (which already has both φ Sa2int and φ Sa3int prophages), likely because of
366 superinfection exclusion (**Figure 2C**). Similarly, induced prophage from lysogens (SA-L1 and SA-
367 L2) could infect the parent strain SA222, indicating productive induction of transduced φ Sa3int
368 prophage.


369 Further, released phages from both clinical isolates (SA222 and SA333) produced a partial or
370 complete lysis spot on multiple clinical isolates using a spot assay, indicating a broad-host-range
371 of the induced prophages and their ability to transduce the prophage-encoded virulence factors
372 to multiple clinical isolates. Representative negative and positive lysis spots are shown in (**Figure**
373 **D**). Prophages induced from SA222 (φ Sa2int) could infect 39.4 % (26/66) of clinical strains, while
374 productive prophages from SA333 (φ Sa2int and φ Sa3int) could infect 25.8 % (17/66) of clinical
375 strains (**Figure 2D**). Phages released from both clinical isolates did not produce either a partial
376 or a complete lysis spot on ATCC25923 (**Figure 2C**).
377

378 **3.2 Integration of φ Sa3int prophage into *hbl* gene inhibited the production of β -hemolysin**

379 Whole genome sequencing of the lysogens (SA-L1 and SA-L2) confirmed that a ~43.8 kb φ Sa3int
380 prophage DNA induced from SA333 was integrated into the SA222 chromosome within the *hbl*
381 gene (start = 2,041,825 bp, end = 2,088,955 bp) (**Figure S1**), generating a double-lysogen with
382 quadruple conversion (negatively converted *hbl* gene and incorporation of all three IEC genes:
383 *sak*, *scn* and *chp*) (**Figure 2E**). The *hbl* gene was truncated near the 5' end resulting in two
384 incomplete genes; 201 bp (66 aa, molecular weight = 7321.09 amu) and 825 bp (274 aa, molecular
385 weight = 31257.36 amu) (**Figure S2**). As such, the lysogens lacked β -hemolytic activity in sheep

386 blood agar (**Figure 2F**). Genomic analysis also revealed that the φ Sa3int prophage in this study
387 lacked *sea/sep* genes, which are commonly found prophage-encoded virulence factors in Sa3int-
388 group prophages (**Figure 2B**).

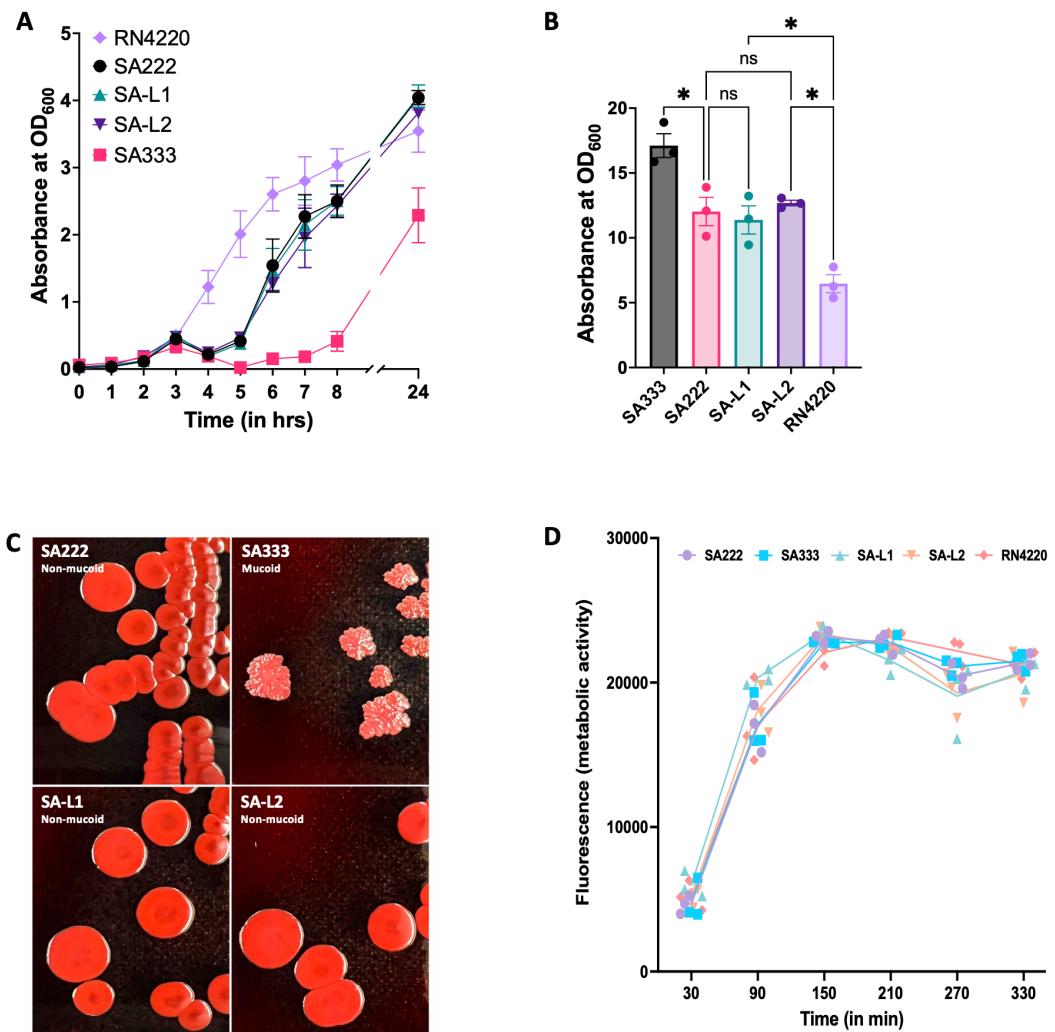

389

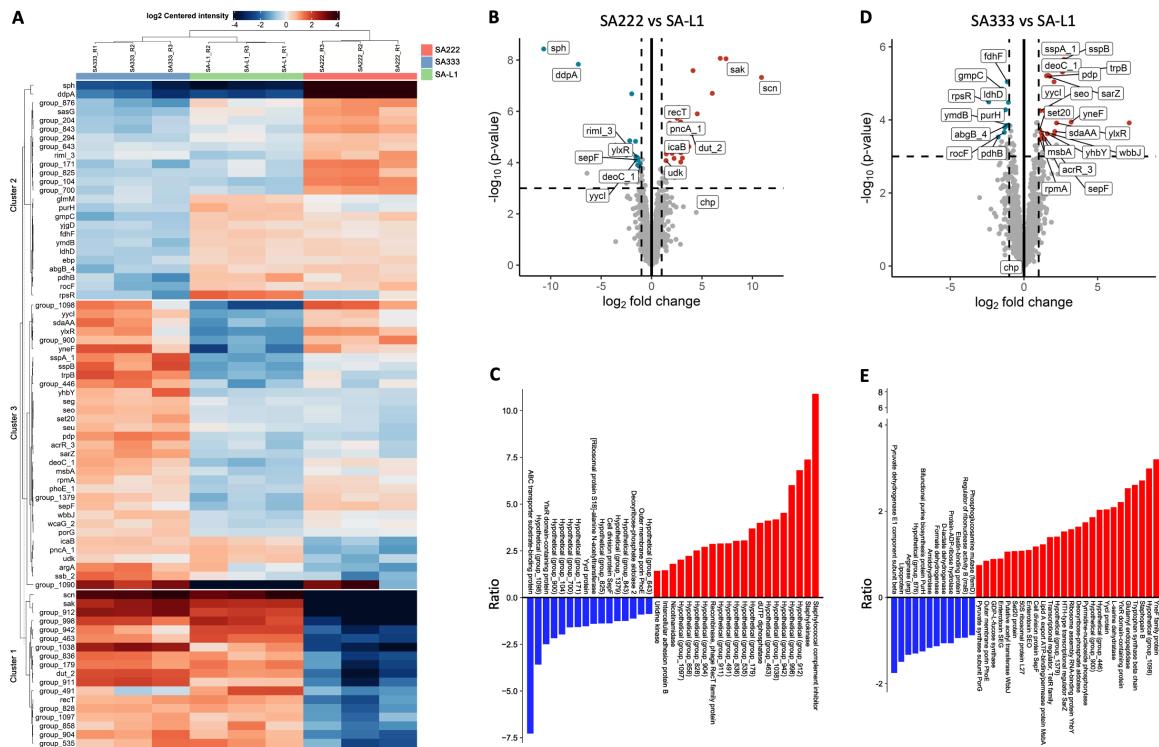
Figure 2 | Annotation of identified prophages in SA222 and SA333 and their inducibility.

(A) The φ Sa2int prophage is present in both clinical strains SA222 and SA333. The 52.5 kb prophage region primarily consists of hypothetical genes of bacterial as well as phage origin whose functions are as yet unknown. **(B)** The φ Sa3int prophage was present in clinical isolate SA333 in addition to φ Sa2int. The ~43.8 kb prophage encoded major human immune evasion genes (*sak*, *scn*, *chp*). These genes are clustered together near the integrase (*xerC*). **(C)** Productive induction of prophage was observed from both clinical isolates (SA222 and SA333) using mitomycin (1.0 μ g/ml). The induced phages showed clear lysis on indicator host RN4220 but did not show lysis on *S. aureus* ATCC25923. Further, the induced phage from SA333 (φ Sa3int) was able to lyse SA222, but the induced phage from SA222 (φ Sa2int) was unable to infect SA333 or SA222, possibly because of superinfection immunity. **(D)** The multiple host-range of induced phages from SA222 (φ Sa2int) and SA333 (φ Sa3int) indicated that the phages can infect and kill multiple clinical isolates. The φ Sa2int prophage from SA222 was able to infect almost 40% (26/66) clinical strains while φ Sa3int induced phage from SA333 could infect almost 26% (17/66) clinical isolates. The lower figure panels indicate the spots that were considered positive and negative. **(E)** Schematic chromosomal location of transduced φ Sa3int prophage and identified genes in SA-L1. The 43.8 kb insert was integrated within the *hlb* gene thereby truncating it. **(F)** Assessment of beta-hemolytic activity on sheep blood agar. The modified lysogens (SA-L1 and SA-L2) lost their β -hemolytic property.

390

Figure 3 | Comparisons of *in vitro* characteristics between SA222, SA333 and laboratory generated double lysogens (SA-L1 and SA-L2).

(A) Bacterial growth curve in tryptic soy broth did not show any significant change in growth kinetics between recipient SA222 and double lysogens (SA-L1 and SA-L2), indicating domestication of an additional ~47.1 kb φ Sa3int prophage did not impact the growth of the recipient strain SA222. **(B)** Biofilm estimation by crystal violet assay also indicated that the domestication of ~47.1 kb φ Sa3int prophage did not impact biofilm formation. **(C)** Overnight culture of *S. aureus* strains in Congo red for qualitative estimation of mucoid phenotype further indicated that the φ Sa3int prophage and the genes it carried had no impact on phenotypic differentiation between mucoid and non-mucoid phenotype. **(D)** Study of biofilm metabolic activity by Alamar Blue assay indicated that there was no significant change in metabolic activity between recipient isolate (SA222) and double lysogens (SA-L1 and SA-L2).


392 **3.3 Domestication of a φSa3int prophage had no impact on bacterial growth, biofilm biomass,
393 metabolic activity and adhesion to primary human nasal epithelial cells**

394 The domestication of the additional ~43.8 kb φSa3int prophage DNA did not alter the growth
395 kinetics of the lysogens compared to the recipient host SA222 (**Figure 3A**). Also, there was no
396 significant change in biofilm biomass between the lysogens and SA222 (**Figure 3B**). The colony
397 morphology of SA222 and SA-L1/SA-L2 on Congo red agar were similar. In contrast, the colony
398 morphology of donor SA333 on Congo red media was wrinkled, suggesting strong mucoid
399 production (**Figure 3C**). Further, the metabolic activity of the biofilm was similar between
400 lysogens and recipient host SA222 (**Figure 3D**). However, the biofilm biomass and metabolic
401 activity of SA333 (donor) were significantly higher than the laboratory-generated double
402 lysogens, despite having a non-aligned nucleotide difference of 13,797 bp only (**Figure 1B, 1D**).
403 Further, there was no significant difference in adhesion properties between the recipient SA222
404 and the double lysogens in primary HNECs. The relative adhesion of the lysogen to the HNEC
405 compared to the recipient host SA222 was 94%, implying a slight reduction in the adhesion of *S.*
406 *aureus* after infection with φSa3int prophage but did not reach statistical significance.

407

408 **3.4 Integration of φSa3int prophage equips *S. aureus* with human immune evasion factors**

409 The proteomics of the secretome collected from SA222, SA333 and one of the laboratory-
410 generated double lysogens (SA-L1) indicated that acquisition of the φSa3int prophage arms *S.*
411 *aureus* bacteria with multiple prophage-associated human immune evasion factors. These
412 include staphylokinase, SCIN, CHIPS and recombinase protein (recT) that is secreted as an
413 exoprotein (**Figure 4A, cluster 1**). Altogether, the lysogen significantly regulated thirty-eight
414 exoproteins that were differentially expressed in the lysogen compared to its recipient strain
415 SA222. Among them, twenty-one (55.3 %) were up-regulated including staphylokinase (sak), SCIN
416 (scn), and intercellular adhesion protein B (icaB). In contrast, seventeen proteins (44.7 %) were
417 down-regulated including β-hemolysin (hlb/sph) and outer membrane porin (phoE) (**Figure 4B-C**). Among these genes, 60.5% (23/38) were of unknown function. Similarly, despite having few

419

420 **Figure 4 | Proteomics of the secretome from SA222, SA333 and SA-L1.**
421 (A) The heatmap showing the differential expression between donor SA333, recipient SA222 and laboratory-generated double lysogen (SA-L1).
422 The proteins in cluster 1 (including *sak*, *scn*, *recT*, *dut*) were significantly upregulated in SA-L1 compared to recipient isolate SA222. The expression
423 of genes in this group was similar between the lysogen and the donor isolate SA333. (B) Volcano plot showing the differential expression of
424 proteins between recipient host SA222 and lysogen (SA-L1). (C) A bar plot showing the relative ratio of significantly up- and down-regulated
425 proteins between SA222 and SA-L1. The virulence factors responsible for human immune evasion (*sak* and SCIN) are significantly upregulated
426 along with the intercellular adhesion protein B (*icaB*). (D) Volcano plot showing the differential expression of proteins between donor host SA333
427 and lysogen (SA-L1). (E) A bar plot showing the relative ratio of significantly up- and down-regulated proteins between SA333 and SA-L1. There
428 was no significant change in virulence factors encoded by prophage φ SA3int, indicating the difference in phenotypes is not associated with
429 prophage-associated genes or functions. $P < 0.05$ was considered significant in all the above analyses.

430

431

432 genetic variations between lysogen and its donor host SA333 (Figure 1B, 1D), forty proteins were
433 significantly differentially regulated (Figure 4A, clusters 2 and 3). Among them, twenty-seven
434 proteins (67.5 %), including enterotoxins SEO and SEG were up-regulated. In contrast, thirteen
435 proteins (32.5 %), including elastin binding protein (ebp) were down-regulated (Figure 4D-E). As
436 predicted, most of these proteins were of bacterial origin, and the hypothetical proteins,
437 predominantly prophage encoded, constituted only 15.0% (6/40) of proteins because both
438 strains (SA333 and SA-L1) carry identical mobile genetic elements (Figure 1B).

439

440

441 4. DISCUSSION

442 The productive induction of prophages from a lysogen leads to the release of phage particles that
443 can either kill the competing strains or lysogenize the susceptible strains (Matos et al. 2013). It is
444 now established that various drugs, antibiotics and even dietary compounds enhance prophage
445 induction and promote the lysogenic conversion (Boling et al. 2020, Sutcliffe et al. 2021, Goerke
446 et al. 2006). The prophages can also be induced spontaneously in response to nutrient availability
447 and/or other environmental conditions, including niche variation. As over 90% of human clinical
448 isolates carry Sa3int-group prophages, predominantly integrated into the *hbl* gene (van Wamel
449 et al. 2006), we aimed to elucidate the contribution of φ Sa3int prophage domestication in *S.*
450 *aureus*, particularly in the secretome of the bacteria. To achieve this, we introduced a φ Sa3int
451 prophage (also called β -hemolysis-converting prophage) induced from a patient-derived double-
452 lysogen (SA333), into a genetically similar single (φ Sa2int)-lysogen (SA222), isolated from the
453 same patient almost 2 years earlier, to create a laboratory-generated double-lysogen. We then
454 studied its phenotypic characteristics as well as proteomics. We chose these clinical isolates for
455 our experiments because, our preliminary study suggested that although there were significant
456 phenotypic variations between SA222 (high-biofilm, *hbl*(+)) and SA333 (hyper-biofilm, *hbl*(-)),
457 the two CIs were genetically similar except for the gain of φ Sa3int prophage by SA333 and a few
458 SNPs (data not shown) and also were collected from the same patient who had severe CRS.

459

460 Lysogenic conversion in *S. aureus* arms bacteria with many survival fitness traits like virulence
461 factors, toxins, and biofilm upregulation and is common in clinical strains (Fernandez et al. 2018,
462 Naorem et al. 2021, Bae et al. 2006). Prophage-mediated enhancement of biofilm has been
463 observed in various bacteria like *Enterococcus faecalis* (Rossmann et al. 2015), *Streptococcus*
464 *pneumoniae* (Carrolo et al. 2010), *Escherichia coli* (Li et al. 2022) and *S. aureus* (Fernandez et al.
465 2018). Further, multiple studies have described prophage-mediated phenotypic alteration, host
466 adaptation and pathogenesis (Liu et al. 2020, Resch et al. 2013, Bobay, Rocha and Touchon 2013).

467 Our findings support the notion that lysogenic conversion in clinical isolates is common (Chaguza
468 et al. 2022), as almost 40% of the CIs tested could be infected with a productive prophage derived
469 from another clinical isolate, meaning they could gain prophage-associated virulence and
470 pathogenicity via phage infection. Further, the variations in the strength of lysis spots in multiple
471 host-range assays indicated that the induced temperate phages had varying degrees of
472 susceptibility among CIs, suggesting variable lysogenic conversion of the host.

473

474 Several studies on *S. aureus* clinical isolates have suspected Hlb as an important non-pore-
475 forming toxin promoting colonization and impacting ciliary clearance of bacteria in an animal
476 model (Katayama et al. 2013, Seop Kim et al. 2000). A similar function of Hlb has thus been
477 speculated in humans. However, most human-associated *S. aureus* lack β-hemolysin because of
478 the integration of the Sa3int-group prophage in the *hlb* gene (van Wamel et al. 2006, Nepal et al.
479 2021). A similar truncation of the *hlb* gene in this study is seen after integrating φSa3int prophage
480 DNA, thereby completely disrupting the production of the Hlb protein in the secretome. This
481 seems counterintuitive as Hlb is a strong sphingomyelinase that promotes sphingomyelin
482 degradation and stimulates biofilm formation in the presence of eDNA (Huseby et al. 2007,
483 Huseby et al. 2010). Thus, we speculate that nasal colonizers might trade-off the Hlb function by
484 gaining the immune evasion factors that are encoded by the φSa3int prophage and are known to
485 protect bacteria from phagocytosis. However, re-expression of Hlb has been noted in *S. aureus*
486 isolated from cystic fibrosis patients upon antibiotic (ciprofloxacin or trimethoprim) treatment
487 and increased frequency of genomic alterations have been associated with prophage
488 mobilization (Goerke et al. 2004). Other studies have shown the conditional excision of φSa3int
489 prophage in a sub-set of the population in *in vivo* conditions and *S. aureus* thriving as a
490 heterogeneous population that aggravates the infection (Guan et al. 2021). As the laboratory
491 generated φSa3int prophage in our study could be re-induced, we support the notion that
492 φSa3int prophage integration and excision are conditional and largely depend on external
493 factors. However, more *in vivo* study is required to confirm the hypothesis and understand the
494 conditional switching of *S. aureus* from Hlb positive to negative or vice versa.

495

496 *S. aureus* biofilm and its adhesion to various surfaces are important features that aid bacteria in
497 colonizing and establishing themselves in various niches. Fernandez et al. suggested the role of
498 *S. aureus* prophages in biofilm development and adhesion (Fernandez et al. 2018). Other
499 researchers have suggested that the eDNA released during spontaneous prophage induction acts
500 as a quorum sensor leading to an enhanced biofilm formation (Carrolo et al. 2010). However, we
501 did not observe significant enhancement of biofilm production or adhesion to HNECs when
502 comparing SA222 and SA222 following introduction of the φ Sa3int prophage, although biofilm-
503 associated intercellular adhesion protein (icaB) was upregulated in the double lysogen. The
504 contradictory findings may be due to the different prophage type used for lysogenization because
505 Fernandez et al. used φ 11 (Sa5int-group) and φ 80 (Sa6int-group) to lysogenize the lab strain
506 RN4220, while we used a Sa3int-group prophage to lysogenize another clinical isolate. Further,
507 the possible explanation for non-significant biofilm change may be because the recipient host
508 SA222 was already a high-biofilm forming isolate, and the contribution of integrated prophage
509 was minimal. Although the result was unexpected, the observation ruled out a major contribution
510 of φ Sa3int prophage including all the hypothetical genes it carries in biofilm development and
511 adhesion of *S. aureus*. Since *S. aureus* SA333 and lysogens were genetically almost identical
512 (99.51 % similar) except for a few SNPs and insertion sequences (data not shown) but had
513 different biofilm, adhesion and mucoid phenotypes, the result has helped us narrow down on
514 other possible bacterial genes responsible for hyper-biofilm characteristics. However, further
515 experiments with knock-out mutants are required to confirm the role of these candidate genes
516 in biofilm development.

517

518 Further, our results suggest that although integration of a Sa3int-group prophage seems
519 expensive in terms of replication energy cost and also disrupts the β -hemolysin expression, the
520 prophage equips the host bacteria with a multitude of accessory virulence factors like *sak*, *scn*,
521 *chp*, *icaB*. The high incidence of human-specific anti-innate immunity factors in *S. aureus* isolated
522 from humans is well known (Rohmer and Wolz 2021). It is also established that φ Sa3int

523 prophages carry and disseminate IEC genes (*sak*, *chp*, *scn*, *sea/entA*), either partial or a complete
524 set (Rohmer and Wolz 2021). *In vitro* secretome profiling of the SA222, SA333 and lysogen (SA-
525 L1) revealed major changes in virulence, particularly human immune evasion modulation of *S.*
526 *aureus* associated with the domestication of the prophages. Our results confirm and extend the
527 existing knowledge that φSa3int-group prophages carry IEC genes in a cluster that are
528 significantly upregulated and secreted as exoproteins. Staphylokinase protein (Sak) encoded by
529 *sak* gene is a potent plasminogen activator that converts plasminogen into plasmin. Sak-
530 mediated plasmin activity increases the local invasiveness of *S. aureus* leading to skin disruption
531 and reduced clearance of bacteria by the host (Peetermans et al. 2014). Chemotaxis inhibitory
532 protein (CHIPS) encoded by *chp* gene counters the first line of host defence, specifically inhibiting
533 the response of human neutrophils and monocytes to complement anaphylatoxin C5a and
534 formylated peptides. It directly binds to the C5a and formylated peptide receptors, preventing
535 phagocytosis of the bacterium (Postma et al. 2004). Similarly, Staphylococcal complement
536 inhibitor protein (SCIN) encoded by *scn* gene also counters the first line of host defence. It
537 efficiently inhibits opsonization, phagocytosis and the killing of *S. aureus* by human neutrophils
538 (de Jong et al. 2018). All of these genes were significantly upregulated in the lysogen secretome
539 along with downregulation of hemolysin, indicating a quadruple conversion of SA222 by φSa3int
540 prophage induced from SA333. These results also hint that the patient isolate SA222 gained a
541 φSa3int prophage to establish itself in the nasal niche, as multiple CIs isolated after this time
542 point from the same patient were also double-lysogens with IEC genes (data not shown).

543

544 All these observations together indicate that despite an increase in the genome size of the
545 double-lysogen by almost 43.8 kb of Sa3int-group prophage DNA, there was no significant change
546 in growth kinetics, biofilm and adhesion properties of *S. aureus*. However, the proteomics
547 analysis of the secretome clearly indicated that lysogenization by Sa3int-group prophage DNA
548 armed the bacterial host with additional flexible virulence features likely to help bacteria evade
549 the human immune system by avoiding phagocytosis. Further, as induced phages could infect
550 other clinical isolates but not their own parental host, we can assume that prophage

551 domestication not only increases the virulence of the lysogenized host but also can landscape
552 the microbiome, which may lead to bacterial dysbiosis and ultimately pathological conditions.
553 Temperate phages (which are formed by productive prophage induction) have been observed in
554 various environments like human gut, chronic wounds, and cystic fibrosis patients aggravating
555 the disease. As recent advances in genomic sequencing have revealed that most *S. aureus* clinical
556 isolates adapted to humans' harbour prophages in their genome, and not all of the clinical
557 isolates carry similar mobile genetic elements, verification of prophage-encoded toxigenic trait is
558 of paramount importance in inflammatory diseases like CRS.

559

560

561 5. CONCLUSION

562 We conclude that lysogenic conversion of *S. aureus* by φ Sa3int prophage alters the bacterium's
563 virulence by upregulating the human immune evasion factors like sak, scn and chp and
564 downregulating beta-hemolysin, a sphingomyelinase. Our research further confirmed that the
565 growth, biofilm and adhesion of *S. aureus* are not associated with Sa3int-group prophage
566 domestication. These findings demonstrate the need to consider mobile genetic elements like
567 prophages while developing a treatment strategy in chronic diseases like CRS, as strains with/or
568 without prophages have different virulence properties and risks of chronic colonization, despite
569 having almost identical core genomes.

570

571

572 **Limitations and future direction**

573 Although we could affirm the origin of human immune evasion cluster genes in *S. aureus* and
574 predict the location of φ Sa3int-group prophage insertion with accuracy, we could not identify the
575 genes responsible for increased biofilm and adhesion in SA333. However, the successful
576 introduction of φ Sa3int prophage into SA222 ruled out the role of prophage and prophage-

577 associated genes in the high biofilm and mucoid phenotype of *S. aureus* SA333, redirecting future
578 research to the limited number of SNPs and insertion sequences that are present on SA333 but
579 not on the lysogens.

580

581 **Funding information**

582 RN was supported by THRF-BHI Postgraduate Research Scholarship and The University of
583 Adelaide Scholarship. GH was supported by The University of Adelaide International Scholarships
584 and a THRF Postgraduate Top-up Scholarship. SV was supported by a senior fellowship from the
585 Passe and Williams Foundation.

586

587 **CRediT author statement**

588 Conceptualization: SV, RN; Methodology, formal analysis and investigation: RN, GH, GB, MR, GS,
589 SF; Data curation: GH, GB; Writing – original draft: RN, GH, GB; Writing – review & editing: GH,
590 GB, SF, MR, GS, KS, AJP, PJW, SV; Visualization: RN, GH, GB; Supervision: SV, PJW, AJP; Funding
591 acquisition: SV, PJW.

592

593 **Conflicts of interest**

594 The authors declare that the research was conducted in the absence of any commercial and/or
595 financial relationships that could be construed as a potential conflict of interest.

596

597 **Acknowledgements**

598 We'd like to extend our sincere thanks to all the members of ENT Surgery Research Group, Basil
599 Hetzel Institute (BHI) for their constructive suggestions during the research. We'd also like to
600 extend our sincere thanks to past/present members of the group who were directly or indirectly
601 involved in the collection of the clinical data.

602

603 **Supplementary data**

604 All the supplementary data, protocol and materials pertaining to this research is available in a

605 public database under the following doi address: <http://10.6084/m9.figshare.22696627>

606

607 **Glossary**

Active lysogen	bacterial strain harboring identifiable prophage sequence and releasing reinfecting phage particles.
Double lysogen	bacterial cell harbouring two complete/intact prophages
Lysogen	bacterial cell containing one or more prophages within its genome
Lysogenic conversion	phenotypic change in a host bacterium caused by the integration of a prophage.
Lysogeny	state of phage integration into the bacterial genome.
Non-lysogen	bacterial strains lacking any identifiable prophage sequence in their genome
Passive lysogen	bacterial strains harboring identifiable prophage sequence but not releasing actively reinfecting phage particles
Productive induction	excision of prophage from the bacterial chromosome followed by release of phage particles either spontaneously or under external stress
Prophage	temperate phage DNA integrated in the bacterial genome.
Single lysogen	bacterial cell harbouring only one complete/intact prophage
Temperate phage	bacterial virus that can integrate into a bacterial genome (or be maintained extra-chromosomally), become stabilized in this way, and, upon receiving a cue, can excise and propagate.
Transduction	process of horizontal gene transfer, wherein a region of a bacterial genome is packaged into phage particles that, upon release and entrance into a new host, is inserted into the genome of the latter.

608

609

610

611

612 **REFERENCES**

613 Akhter, S., R. K. Aziz & R. A. Edwards (2012) PhiSpy: a novel algorithm for finding prophages in
614 bacterial genomes that combines similarity- and composition-based strategies. *Nucleic
615 Acids Res*, 40, e126.

616 Allen, H. K., T. Looft, D. O. Bayles, S. Humphrey, U. Y. Levine, D. Alt & T. B. Stanton (2011)
617 Antibiotics in feed induce prophages in swine fecal microbiomes. *mBio*, 2, e00260-11.

618 Arndt, D., J. R. Grant, A. Marcu, T. Sajed, A. Pon, Y. Liang & D. S. Wishart (2016) PHASTER: a better,
619 faster version of the PHAST phage search tool. *Nucleic Acids Res*, 44, W16-21.

620 Bae, T., T. Baba, K. Hiramatsu & O. Schneewind (2006) Prophages of *Staphylococcus aureus*
621 Newman and their contribution to virulence. *Mol Microbiol*, 62, 1035-47.

622 Beceiro, A., M. Tomás & G. Bou (2013) Antimicrobial Resistance and Virulence: a Successful or
623 Deleterious Association in the Bacterial World? *Clinical Microbiology Reviews*, 26, 185-
624 230.

625 Bobay, L. M., E. P. Rocha & M. Touchon (2013) The adaptation of temperate bacteriophages to
626 their host genomes. *Mol Biol Evol*, 30, 737-51.

627 Boling, L., D. A. Cuevas, J. A. Grasis, H. S. Kang, B. Knowles, K. Levi, H. Maughan, K. McNair, M. I.
628 Rojas, S. E. Sanchez, C. Smurthwaite & F. Rohwer (2020) Dietary prophage inducers and
629 antimicrobials: toward landscaping the human gut microbiome. *Gut Microbes*, 11, 721-
630 734.

631 Bouras, G., R. Nepal, G. Houtak, A. J. Psaltis, P. J. Wormald & S. Vreugde (2023) Pharokka: a fast
632 scalable bacteriophage annotation tool. *Bioinformatics*, 39.

633 Carrolo, M., M. J. Frias, F. R. Pinto, J. Melo-Cristino & M. Ramirez (2010) Prophage spontaneous
634 activation promotes DNA release enhancing biofilm formation in *Streptococcus*
635 *pneumoniae*. *PLoS One*, 5, e15678.

636 Chaguza, C., J. T. Smith, S. A. Bruce, R. Gibson, I. W. Martin & C. P. Andam (2022) Prophage-
637 encoded immune evasion factors are critical for *Staphylococcus aureus* host infection,
638 switching, and adaptation. *Cell Genomics*, 2, 100194.

639 Davies, E. V., C. Winstanley, J. L. Fothergill & C. E. James (2016) The role of temperate
640 bacteriophages in bacterial infection. *FEMS Microbiology Letters*, 363.

641 de Jong, N. W. M., M. Vrieling, B. L. Garcia, G. Koop, M. Brettmann, P. C. Aerts, M. Ruyken, J. A.
642 G. van Strijp, M. Holmes, E. M. Harrison, B. V. Geisbrecht & S. H. M. Rooijakkers (2018)
643 Identification of a staphylococcal complement inhibitor with broad host specificity in
644 equid *Staphylococcus aureus* strains. *J Biol Chem*, 293, 4468-4477.

645 Fernandez, L., S. Gonzalez, N. Quiles-Puchalt, D. Gutierrez, J. R. Penades, P. Garcia & A. Rodriguez
646 (2018) Lysogenization of *Staphylococcus aureus* RN450 by phages varphi11 and
647 varphi80alpha leads to the activation of the SigB regulon. *Sci Rep*, 8, 12662.

648 Freeman, D. J., F. R. Falkiner & C. T. Keane (1989) New method for detecting slime production by
649 coagulase negative staphylococci. *J Clin Pathol*, 42, 872-4.

650 Goerke, C., J. Koller & C. Wolz (2006) Ciprofloxacin and trimethoprim cause phage induction and
651 virulence modulation in *Staphylococcus aureus*. *Antimicrob Agents Chemother*, 50, 171-
652 7.

653 Goerke, C., S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl & C. Wolz (2004)
654 Increased frequency of genomic alterations in *Staphylococcus aureus* during chronic
655 infection is in part due to phage mobilization. *J Infect Dis*, 189, 724-34.

656 Gogokhia, L., K. Buhrke, R. Bell, B. Hoffman, D. G. Brown, C. Hanke-Gogokhia, N. J. Ajami, M. C.
657 Wong, A. Ghazaryan, J. F. Valentine, N. Porter, E. Martens, R. O'Connell, V. Jacob, E. Scherl,
658 C. Crawford, W. Z. Stephens, S. R. Casjens, R. S. Longman & J. L. Round (2019) Expansion
659 of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. *Cell Host
660 Microbe*, 25, 285-299 e8.

661 Guan, Z., Y. Liu, C. Liu, H. Wang, J. Feng & G. Yang (2021) *Staphylococcus aureus* β -Hemolysin Up-
662 Regulates the Expression of IFN- γ by Human CD56bright NK Cells. *Frontiers in Cellular and
663 Infection Microbiology*, 11.

664 Henrot, C. & M. A. Petit (2022) Signals triggering prophage induction in the gut microbiota. *Mol
665 Microbiol*, 118, 494-502.

666 Howden, B. P., S. G. Giulieri, T. Wong Fok Lung, S. L. Baines, L. K. Sharkey, J. Y. H. Lee, A. Hachani,
667 I. R. Monk & T. P. Stinear (2023) *Staphylococcus aureus* host interactions and adaptation.
668 *Nature Reviews Microbiology*.

669 Huseby, M., K. Shi, C. K. Brown, J. Digre, F. Mengistu, K. S. Seo, G. A. Bohach, P. M. Schlievert, D.
670 H. Ohlendorf & C. A. Earhart (2007) Structure and biological activities of beta toxin from
671 *Staphylococcus aureus*. *J Bacteriol*, 189, 8719-26.

672 Huseby, M. J., A. C. Kruse, J. Digre, P. L. Kohler, J. A. Vocke, E. E. Mann, K. W. Bayles, G. A. Bohach,
673 P. M. Schlievert, D. H. Ohlendorf & C. A. Earhart (2010) Beta toxin catalyzes formation of
674 nucleoprotein matrix in staphylococcal biofilms. *Proc Natl Acad Sci U S A*, 107, 14407-12.

675 Jain, C., R. L. Rodriguez, A. M. Phillippe, K. T. Konstantinidis & S. Aluru (2018) High throughput
676 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun*,
677 9, 5114.

678 Jolley, K. A., J. E. Bray & M. C. J. Maiden (2018) Open-access bacterial population genomics:
679 BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res*,
680 3, 124.

681 Katayama, Y., T. Baba, M. Sekine, M. Fukuda & K. Hiramatsu (2013) Beta-hemolysin promotes
682 skin colonization by *Staphylococcus aureus*. *J Bacteriol*, 195, 1194-203.

683 Kim, C. S., S. Y. Jeon, Y. G. Min, C. Rhyoo, J. W. Kim, J. B. Yun, S. W. Park & T. Y. Kwon (2000) Effects
684 of beta-toxin of *Staphylococcus aureus* on ciliary activity of nasal epithelial cells.
685 *Laryngoscope*, 110, 2085-8.

686 Kondo, K., M. Kawano, M. Sugai & M. Castanheira (2021) Distribution of Antimicrobial Resistance
687 and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens.
688 *mSphere*, 6, e00452-21.

689 Li, D., W. Liang, Q. Hu, J. Ren, F. Xue, Q. Liu & F. Tang (2022) The effect of a spontaneous induction
690 prophage, phi458, on biofilm formation and virulence in avian pathogenic *Escherichia coli*.
691 *Frontiers in Microbiology*, 13.

692 Liu, Z., Y. DENG, M. JI, W. SUN & X. FAN (2020) Prophages domesticated by bacteria promote the
693 adaptability of bacterial cells. *BIOCELL*, 44, 157--166.

694 Matos, R. C., N. Lapaque, L. Rigottier-Gois, L. Debarbieux, T. Meylheuc, B. Gonzalez-Zorn, F.
695 Repoila, M. D. F. Lopes & P. Serror (2013) Enterococcus faecalis Prophage Dynamics and
696 Contributions to Pathogenic Traits. *PLoS Genetics*, 9, e1003539.

697 Mölder, F., K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch, V. Sochat, J. Forster, S. Lee,
698 S. O. Twardziok, A. Kanitz, A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnse & J. Köster
699 (2021) Sustainable data analysis with Snakemake. *F1000Research*, 10, 33.

700 Nanda, A. M., K. Thormann & J. Frunzke (2015) Impact of spontaneous prophage induction on
701 the fitness of bacterial populations and host-microbe interactions. *J Bacteriol*, 197, 410-
702 9.

703 Naorem, R. S., G. Goswami, S. Gyorgy & C. Fekete (2021) Comparative analysis of prophages
704 carried by human and animal-associated *Staphylococcus aureus* strains spreading across
705 the European regions. *Sci Rep*, 11, 18994.

706 Nepal, R., G. Houtak, G. Shaghayegh, G. Bouras, K. Shearwin, A. J. Psaltis, P. J. Wormald & S.
707 Vreugde (2021) Prophages encoding human immune evasion cluster genes are enriched
708 in *Staphylococcus aureus* isolated from chronic rhinosinusitis patients with nasal polyps.
709 *Microb Genom*, 7.

710 Nepal, R., G. Houtak, P. J. Wormald, A. J. Psaltis & S. Vreugde (2022) Prophage: a crucial catalyst
711 in infectious disease modulation. *Lancet Microbe*, 3, e162-e163.

712 Peetermans, M., T. Vanassche, L. Liesenborghs, J. Claes, G. Vande Velde, J. Kwiecinski, T. Jin, B.
713 De Geest, M. F. Hoylaerts, R. H. Lijnen & P. Verhamme (2014) Plasminogen activation by
714 staphylokinase enhances local spreading of *S. aureus* in skin infections. *BMC Microbiol*,
715 14, 310.

716 Popescu, M., J. D. Van Belleghem, A. Khosravi & P. L. Bollyky (2021) Bacteriophages and the
717 Immune System. *Annual Review of Virology*, 8, 415-435.

718 Postma, B., M. J. Poppelier, J. C. van Galen, E. R. Prossnitz, J. A. van Strijp, C. J. de Haas & K. P. van
719 Kessel (2004) Chemotaxis inhibitory protein of *Staphylococcus aureus* binds specifically
720 to the C5a and formylated peptide receptor. *J Immunol*, 172, 6994-7001.

721 Resch, G., P. François, D. Morisset, M. Stojanov, E. J. Bonetti, J. Schrenzel, O. Sakwinska & P.
722 Moreillon (2013) Human-to-Bovine Jump of *Staphylococcus aureus* CC8 Is Associated with
723 the Loss of a β -Hemolysin Converting Prophage and the Acquisition of a New
724 Staphylococcal Cassette Chromosome. *PLoS ONE*, 8, e58187.

725 Roach, M. J., N. T. Pierce-Ward, R. Sacheck, V. Mallawaarachchi, B. Papudeshi, S. A. Handley, C.
726 T. Brown, N. S. Watson-Haigh & R. A. Edwards (2022) Ten simple rules and a template for
727 creating workflows-as-applications. *PLOS Computational Biology*, 18, e1010705.

728 Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz & J. P. Mesirov
729 (2011) Integrative genomics viewer. *Nature Biotechnology*, 29, 24-26.

730 Rohmer, C. & C. Wolz (2021) The Role of hlb-Converting Bacteriophages in *Staphylococcus aureus*
731 Host Adaption. *Microb Physiol*, 31, 109-122.

732 Rossmann, F. S., T. Racek, D. Wobser, J. Puchalka, E. M. Rabener, M. Reiger, A. P. A. Hendrickx,
733 A.-K. Diederich, K. Jung, C. Klein & J. Huebner (2015) Phage-mediated Dispersal of Biofilm
734 and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing. *PLOS
735 Pathogens*, 11, e1004653.

736 Salgado-Pabon, W., A. Herrera, B. G. Vu, C. S. Stach, J. A. Merriman, A. R. Spaulding & P. M.
737 Schlievert (2014) *Staphylococcus aureus* beta-toxin production is common in strains with
738 the beta-toxin gene inactivated by bacteriophage. *J Infect Dis*, 210, 784-92.

739 Schwengers, O., L. Jelonek, M. A. Dieckmann, S. Beyvers, J. Blom & A. Goesmann (2021a) Bakta:
740 rapid and standardized annotation of bacterial genomes via alignment-free sequence
741 identification. *Microb Genom*, 7.

742 Schwengers, O., L. Jelonek, M. A. Dieckmann, S. Beyvers, J. Blom & A. Goesmann (2021b) Bakta:
743 rapid and standardized annotation of bacterial genomes via alignment-free sequence
744 identification. *Microbial Genomics*, 7.

745 Seemann. 2020. Abricate. Github: Github.

746 Seemann, T. 2015. Snippy: fast bacterial variant calling from NGS reads
747 ---. mlst. mlst.

748 Seop Kim, C., S.-Y. Jeon, Y.-G. Min, C. Rhyoo, J.-W. Kim, J. Bock Yun, S.-W. Park & T.-Y. Kwon (2000)
749 Effects of ??-Toxin of *Staphylococcus aureus* on Ciliary Activity of Nasal Epithelial Cells.
750 *The Laryngoscope*, 110, 2085-2088.

751 Shaghayegh, G., C. Cooksley, G. S. Bouras, B. S. Panchatcharam, R. Idrizi, M. Jana, S. Ellis, A. J.
752 Psaltis, P.-J. Wormald & S. Vreugde (2023) Chronic rhinosinusitis patients display an
753 aberrant immune cell localization with enhanced *S aureus* biofilm metabolic activity and
754 biomass. *Journal of Allergy and Clinical Immunology*, 151, 723-736.e16.

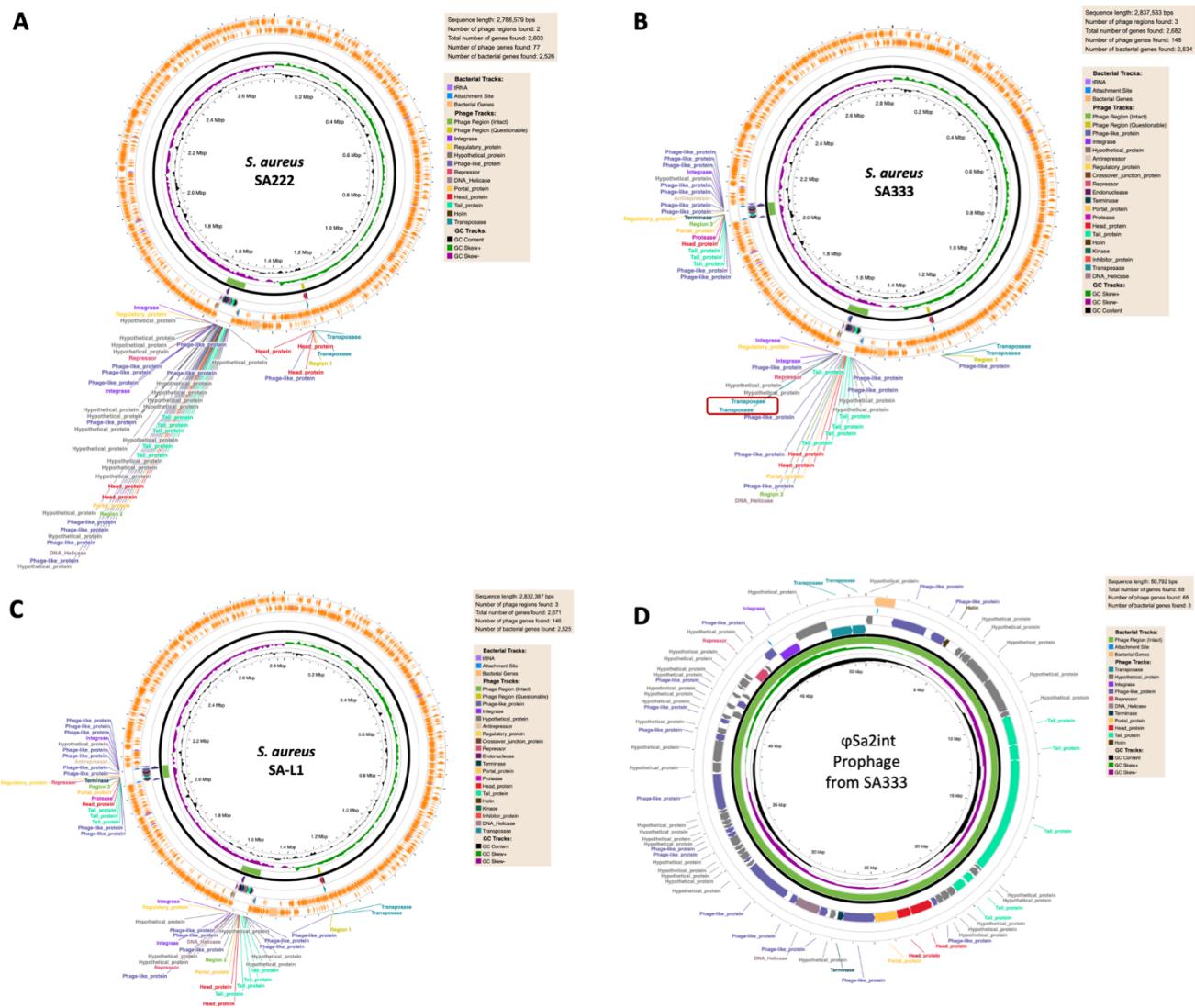
755 Sutcliffe, S. G., M. Shamash, A. P. Hynes & C. F. Maurice (2021) Common Oral Medications Lead
756 to Prophage Induction in Bacterial Isolates from the Human Gut. *Viruses*, 13, 455.

757 Thabet, M. A., J. R. Penadés & A. F. Haag. 2022. The ClpX protease is essential for removing the
758 CI master repressor and completing prophage induction in *< i>Staphylococcus aureus< /i>*.
759 Cold Spring Harbor Laboratory.

760 Tong, S. Y., J. S. Davis, E. Eichenberger, T. L. Holland & V. G. Fowler, Jr. (2015) *Staphylococcus*
761 *aureus* infections: epidemiology, pathophysiology, clinical manifestations, and
762 management. *Clin Microbiol Rev*, 28, 603-61.

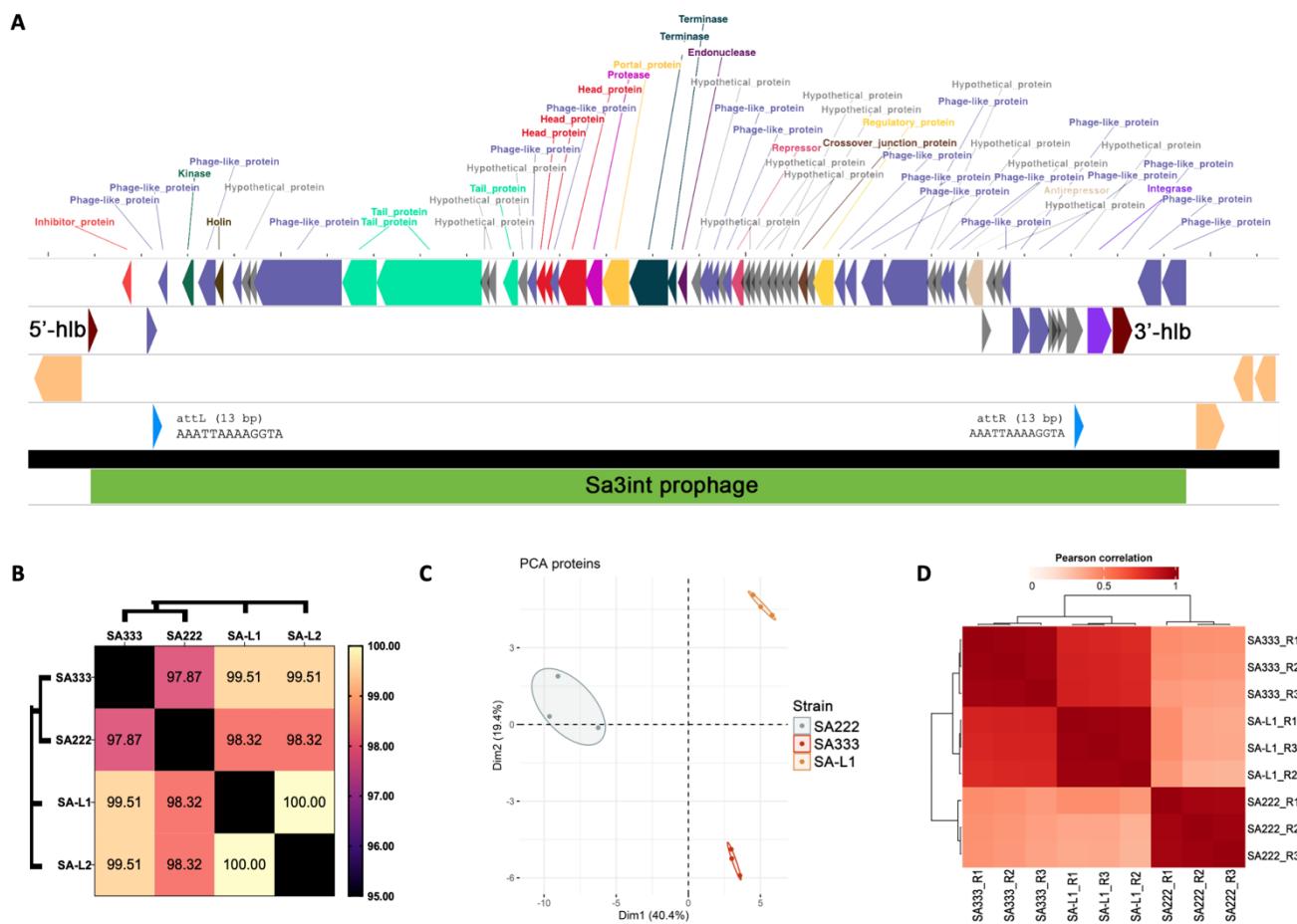
763 Tran, P. M., M. Feiss, K. J. Kinney, W. Salgado-Pabón & V. J. DiRita (2019) φ Sa3mw Prophage as a
764 Molecular Regulatory Switch of *Staphylococcus aureus* β -Toxin Production. *Journal of*
765 *Bacteriology*, 201, e00766-18.

766 van Wamel, W. J., S. H. Rooijakkers, M. Ruyken, K. P. van Kessel & J. A. van Strijp (2006) The innate
767 immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory
768 protein of *Staphylococcus aureus* are located on beta-hemolysin-converting
769 bacteriophages. *J Bacteriol*, 188, 1310-5.

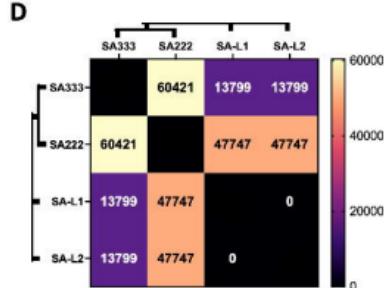
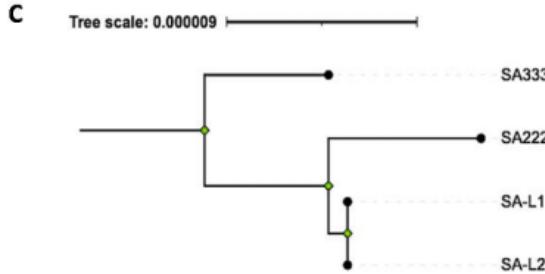
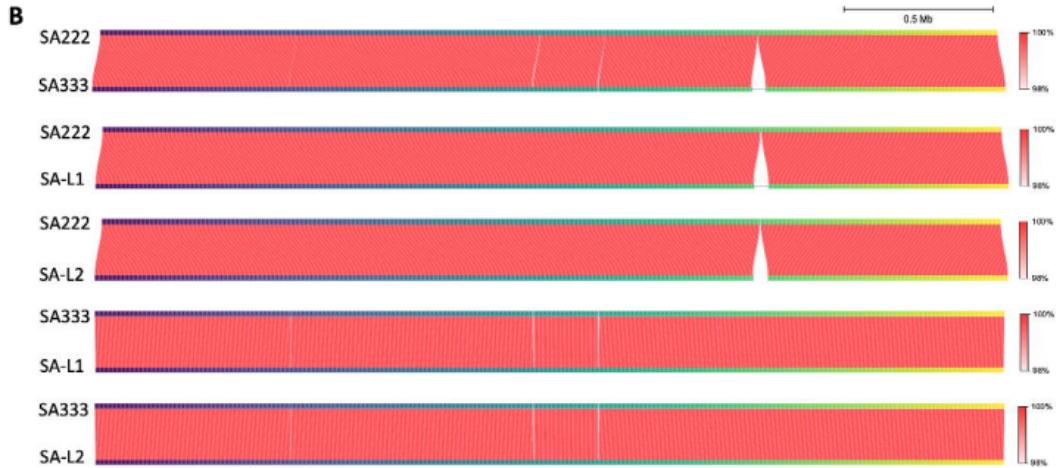
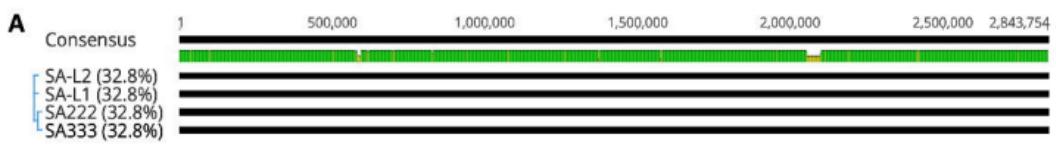

770 Vickery, T. W., V. R. Ramakrishnan & J. D. Suh (2019) The Role of *Staphylococcus aureus* in
771 Patients with Chronic Sinusitis and Nasal Polypsis. *Curr Allergy Asthma Rep*, 19, 21.

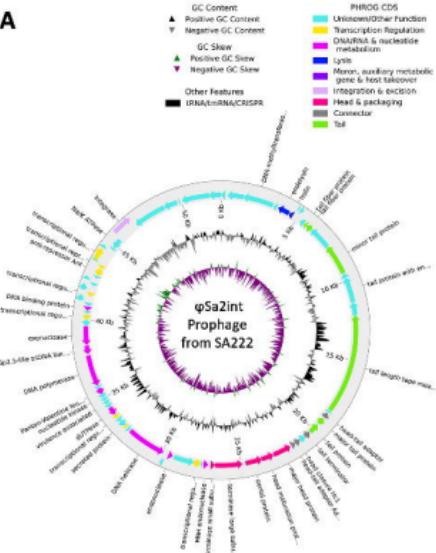
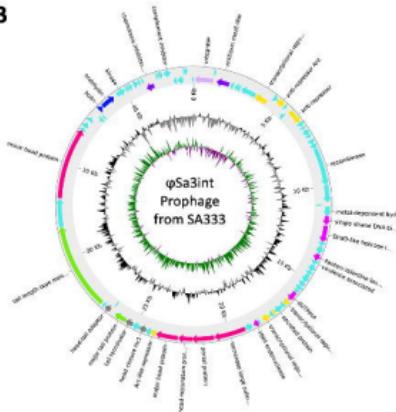
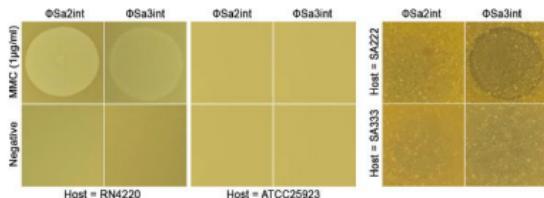
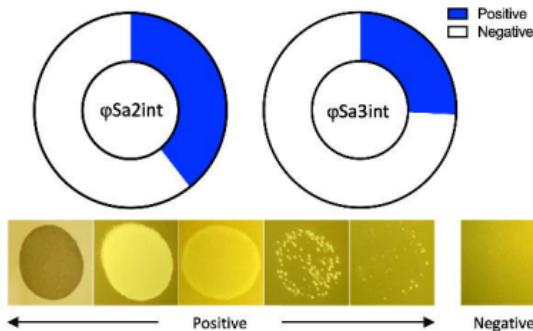
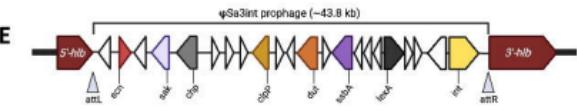
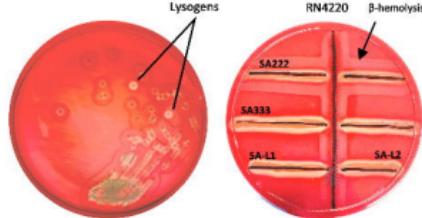
772 Wick, R. R., L. M. Judd & K. E. Holt (2023) Assembling the perfect bacterial genome using Oxford
773 Nanopore and Illumina sequencing. *PLOS Computational Biology*, 19, e1010905.

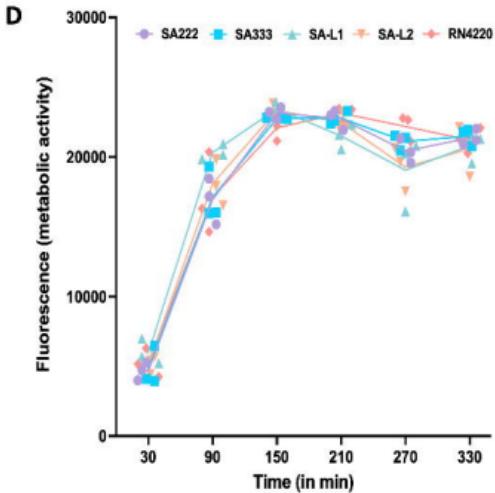
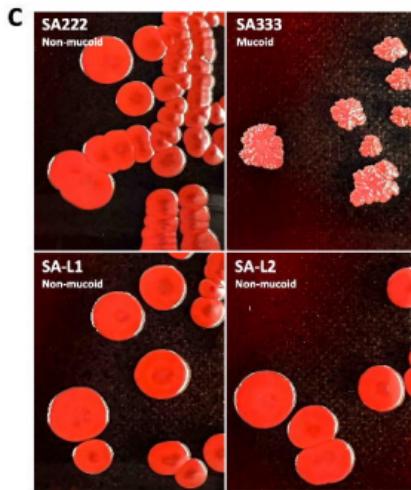
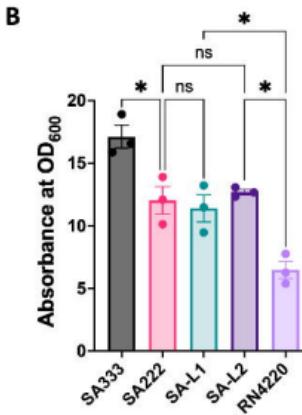
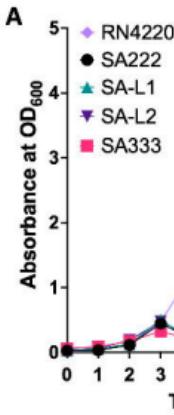
774 Wishart, D. S., Han, S., Saha, S., Oler, E., Peters, H., Grant, J., Stothard, P., Gautam, V. (2023)
775 PHATEST: Faster than PHASTER, Better than PHAST. *Submitted to Nucleic Acids Research*,
776 2023 Web Server Issue.

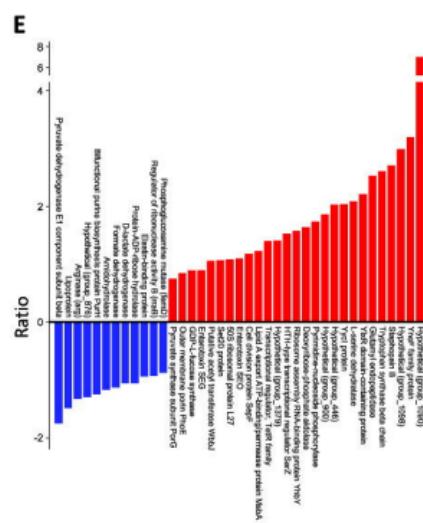
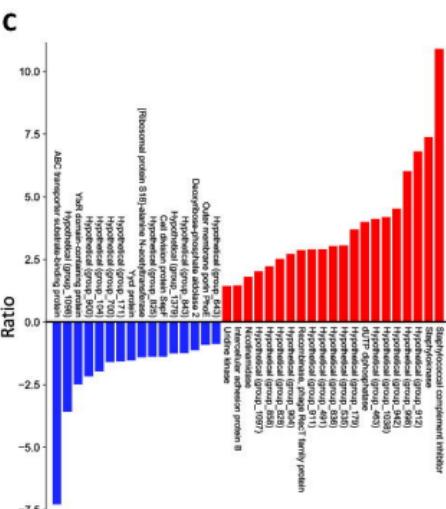
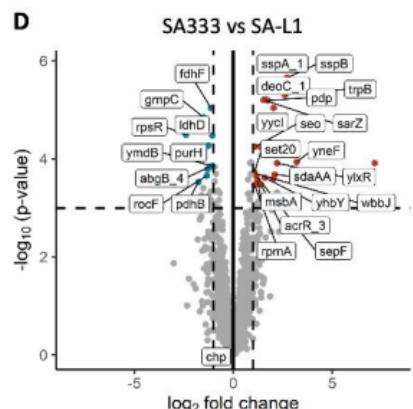
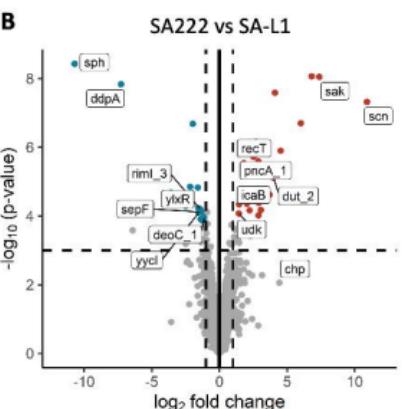
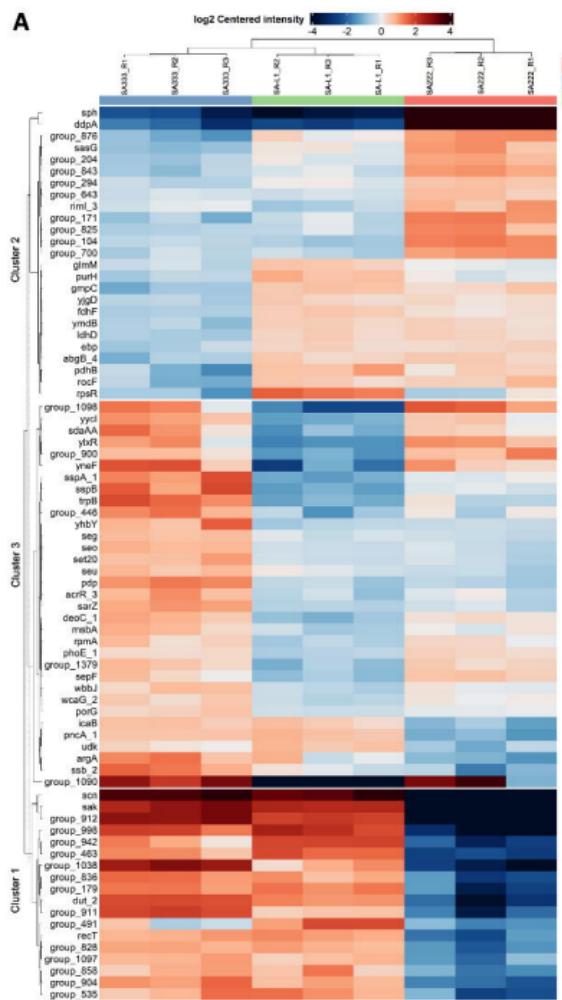

777 Yang, J. & Y. Ji. 2014. Investigation of *Staphylococcus aureus* Adhesion and Invasion of Host Cells.
778 In *Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols*, ed. Y. Ji, 187-194.
779 Totowa, NJ: Humana Press.
780 Zhang, X., A. H. Smits, G. B. Van Tilburg, H. Ovaa, W. Huber & M. Vermeulen (2018) Proteome-
781 wide identification of ubiquitin interactions using UbIA-MS. *Nature Protocols*, 13, 530-
782 550.
783

Supplementary figures and figure legends

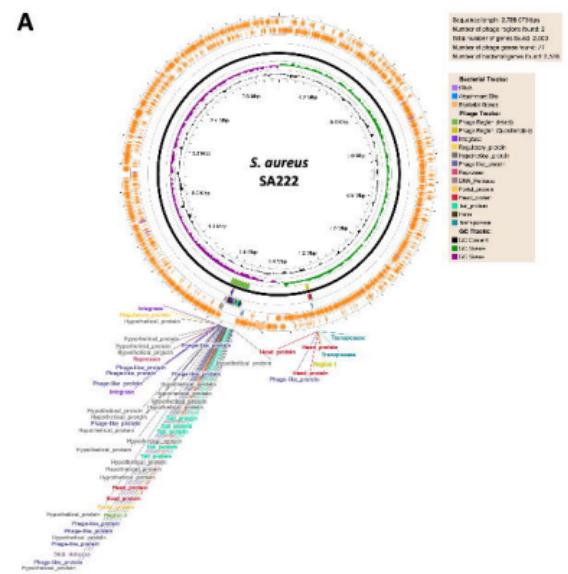




Figure S1 | Identification of prophage region of SA222, SA333 and SA-L1 by PHASTEST.







(A) *S. aureus* SA222 only harbours one intact prophage region (52.5 kb). **(B)** *S. aureus* SA333 harbours two intact prophage regions (50.8 kb and 43.8 kb). It is noted that the first prophage in *S. aureus* SA333 is almost similar to the one from *S. aureus* SA222 but has two transposases integrated into the prophage region (red box). **(C)** Laboratory-generated *S. aureus* SA-L1 harbours two intact prophages, one from *S. aureus* SA222 and one from *S. aureus* SA333. The second prophage was induced from *S. aureus* SA333 and inserted into *S. aureus* SA222. **(D)** The genetic mapping of φSa2int prophage from *S. aureus* SA333. Note the gain of two transposase enzymes compared to the same prophage present in *S. aureus* SA222.

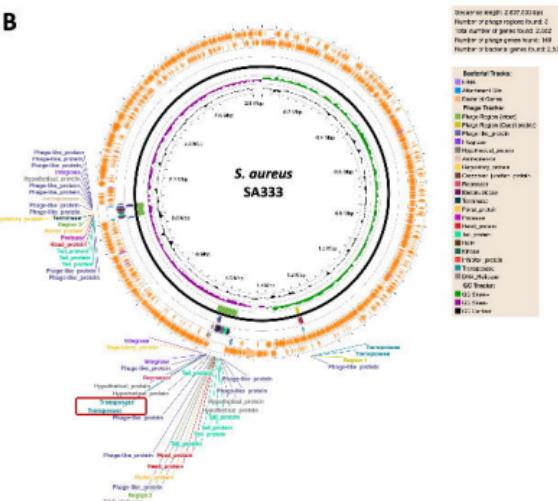





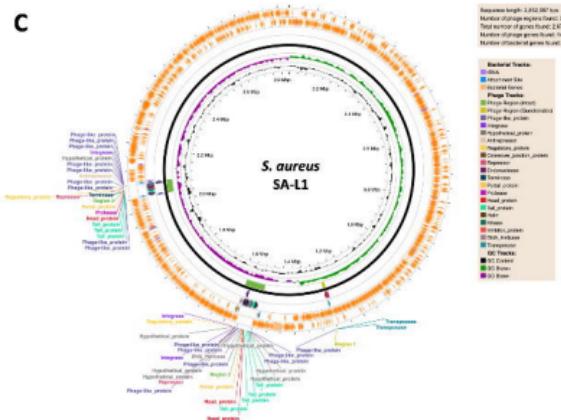





Figure S2 | Chromosomal location φSa3int prophage and correlations between SA222, SA333 and SA-L1.

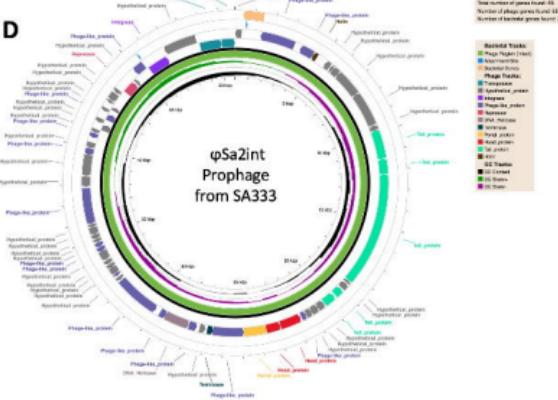
(A) Chromosomal location of the φ Sa3int prophage insert in SA-L1. **(B)** A heatmap representing the genomic similarities between donor (SA333), recipient (SA222) and laboratory-generated double lysogen (SA-L1 and SA-L2). The numbers inside the square represent aligned identical bases/nucleotides between the strains in percentage. **(C)** Principal component analysis (PCA) of proteomics (triplicates) between SA222, SA333 and SA-L1. The analysis shows that the proteomics of triplicates clustered together, indicating consistency of the secretome. **(D)** Pearson's correlation of proteomics (triplicates) between SA222, SA333 and SA-L1 also represents consistency in release factors in the secretome.

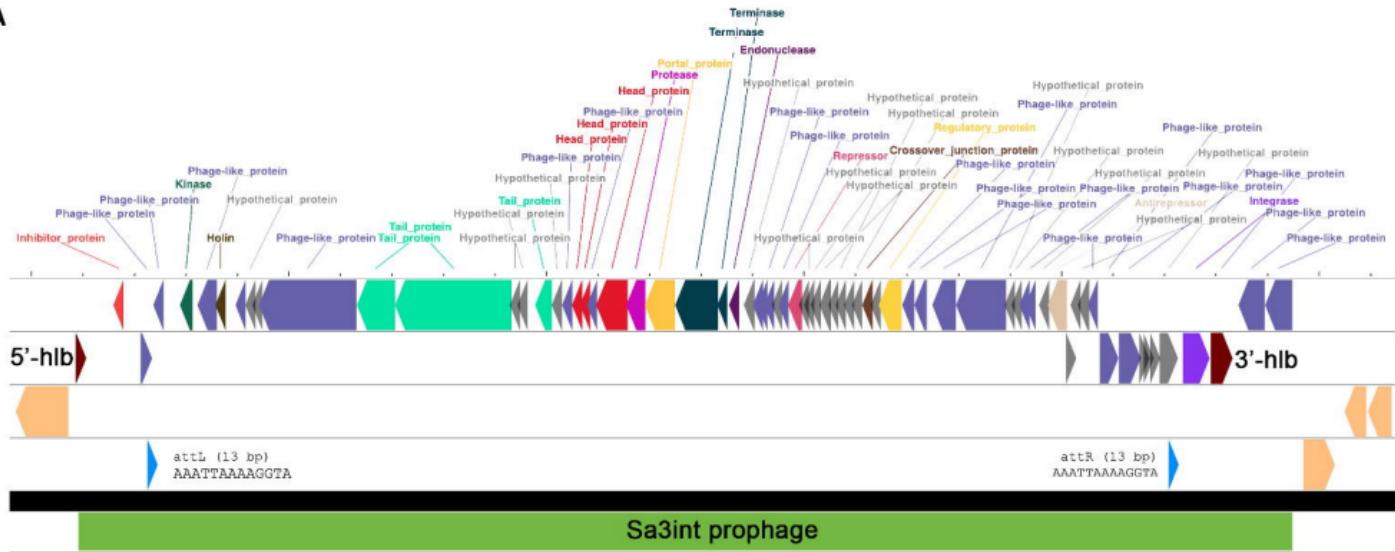


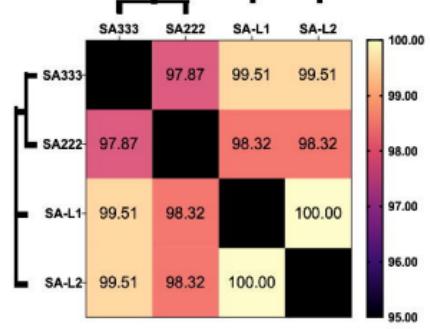
A**B****C****D****E****F**

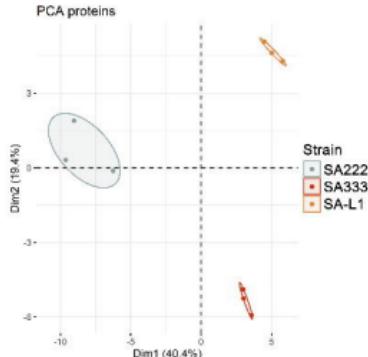


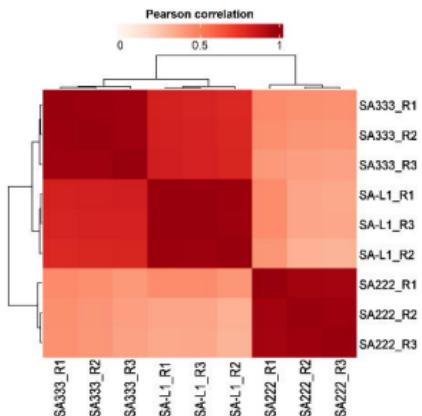

A


B


6


D


A


B

C

D

