

1 **Phase variation in LPS O-antigen biosynthetic gene cluster of the rice**
2 **pathogen *Xanthomonas oryzae* pv. *oryzae***

3 **Authors:**

4 Vishnu Narayanan Madhavan¹, Kanika Bansal², Sanjeet Kumar², Samriti Midha^{2,3}, Prabhu B.
5 Patil², Hitendra Kumar Patel^{1,4}, Ramesh V. Sonti^{1,5, #}

6 **Affiliation:**

7 ¹ CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India

8 ² CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.

9 ³ Present address: Oxford Nanopore Technologies plc, Oxford, UK

10 ⁴ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

11 ⁵ International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India

12 [#] Corresponding Author

13 **Running head:** LPS O-antigen phase variation in *Xanthomonas oryzae*

14 **Author for correspondence:**

15 Ramesh V. Sonti, ICGEB Campus, Aruna Asaf Ali Marg, 110067, New Delhi, India,

16 E-mail: sonti@ccmb.res.in, sonti@icgeb.res.in

17 **Key Words:** *Xanthomonas oryzae* pv. *oryzae*, LPS O-antigen, insertion sequence elements,
18 slipped strand mispairing, phase variation

19 **Abstract**

20 Bacteria respond to environmental cues in different ways. Phase variation is one such
21 adaptation where heritable and reversible changes in DNA aid bacteria to alter the expression
22 of specific genes. The bacterial plant pathogen *Xanthomonas oryzae* pv. *oryzae* (Xoo) causes
23 the serious bacterial blight disease of rice. The mucoid phenotype of Xoo colonies is attributed
24 to the secreted exopolysaccharide (EPS), xanthan gum. Spontaneous non-mucoid variants of
25 Xoo which are deficient in EPS production and virulence were observed to accumulate in long-
26 term stationary phase cultures. This phenomenon was termed stationary phase variation and
27 variant colonies as stationary phase variants (SPV). Several but not all of these SPVs have been
28 earlier described to carry spontaneous insertions of endogenous insertion sequence elements in
29 the *gum* operon which encodes genes involved in EPS biosynthesis. In this study, we show that
30 a number of SPVs harbour variations in the lipopolysaccharide (LPS) outer antigen (O-antigen)
31 biosynthetic gene cluster. The data revealed that the vast majority of variations are due to either
32 insertion of endogenous insertion sequence (IS) elements or slipped strand mispairing (SSM).
33 Also, it was observed that many of these SPVs exhibited reversion to wild type mucoid
34 phenotype via restoration of the wild type genotype. The results indicate that the phenomenon
35 of phase variation is occurring in the LPS O-antigen biosynthetic gene cluster of Xoo.

36 **Introduction**

37 Phase and antigenic variation in bacteria is the alteration between two or more phenotypes in a
38 heritable and reversible manner. Phase variation thus enables bacteria to maintain wild type
39 and one or more phase variant populations and is thought to aid the bacteria in adapting to
40 changes in their environment. Phase and antigenic variation have been extensively studied and
41 established in free-living and animal pathogenic bacteria. A wide array of genes, encoding
42 structural to biosynthetic proteins have been shown to undergo phase or antigenic variation.
43 The mechanisms of phase and antigenic variation include slipped-strand mispairing (SSM),
44 general recombination, conserved site-specific recombination, transposition of insertion
45 sequence (IS) elements and DNA methylation (Woude and Bäumler, 2004).

46 Bacteria produce different kinds of polysaccharides including those linked to the membrane
47 (like capsular polysaccharides) or secreted exopolysaccharides (EPS) as well as
48 lipopolysaccharides (LPS) and lipo-oligosaccharides (LOS) that are structural components of
49 the outer membrane in Gram-negative bacteria. The genes involved in the biosynthesis or
50 modifications of the polysaccharide portion of LPS (known as outer antigen or O-antigen) and
51 LOS have been shown to undergo phase variations via slippage of homo or heteropolymeric
52 tract of nucleotides leading to insertions or deletions, a phenomenon referred to as slipped-
53 strand mispairing (SSM) (Weiser, Love and Moxon, 1989; Appelmelk *et al.*, 1999; Wang *et*
54 *al.*, 1999; Linton *et al.*, 2000; Gilbert *et al.*, 2002). The reversible variation of EPS biosynthetic
55 gene, *epsG* give rise to a non-mucoid, crenated phenotype in *Pseudoaltremonas atlantica* via
56 insertion and precise excision of IS element *IS492* (Bartlett, Wright and Silverman, 1988;
57 Bartlett and Silverman, 1989; Higgins, Carpenter and Karls, 2007). The *icaC* gene of *icaABCD*
58 operon involved in the biosynthesis of EPS known as polysaccharide intercellular adhesin
59 (PIA) in *Staphylococcus aureus* and *Staphylococcus epidermidis* undergoes phase variation via
60 transposition involving the *IS256* IS element (Ziebuhr *et al.*, 1999; Kiem *et al.*, 2004). Further,

61 PIA phase variation through SSM in *icaC* gene has been described for *Staphylococcus aureus*
62 (Brooks and Jefferson, 2014). Insertion of *IS5*-like IS element insertions in the capsular
63 polysaccharide operon has been attributed to the translucent phenotype of *Pseudoaltomonas*
64 *lipolytia* (Zeng *et al.*, 2019).

65 Like other members of the bacterial genus *Xanthomonas*, the rice pathogen *Xanthomonas*
66 *oryzae* pv. *oryzae* (Xoo) has a characteristic mucoid phenotype due to copious secretion of an
67 EPS called xanthan gum or xanthan. Non-mucoid colonies deficient in EPS and virulence were
68 observed to accumulate spontaneously in long-term stationary phase cultures of Xoo. These
69 strains were termed stationary phase variants (SPVs) (Rajeshwari and Sonti, 1997). The non-
70 mucoid phenotype of four of ten such SPVs was complemented by a cosmid clone (pSD1)
71 carrying the EPS biosynthetic gene cluster that is referred as the *gum* operon. All these four
72 SPVs were shown to harbour insertions of endogenous IS elements in the *gumM* gene of the
73 *gum* operon. Three of these strains had insertions of the IS element *ISXo1* and one strain had
74 an insertion of the *ISXo2* IS element. The nature of variations in the remaining SPVs was not
75 characterised (Rajeshwari and Sonti, 2000).

76 In the present study, we have isolated a fresh set of SPVs using the previously established
77 method (Rajeshwari and Sonti, 1997). Most of the SPVs isolated harbour variations in the LPS
78 O-antigen biosynthetic gene cluster that give rise to the non-mucoid phenotype.
79 Characterisation of these SPVs indicated that the variations include endogenous IS element
80 insertions and SSM. Additionally, a number of these SPVs exhibited reversion to wild type like
81 mucoid phenotype. Upon investigation of such ‘reverted’ colonies it was revealed that the
82 sequence of the LPS O-antigen biosynthetic cluster at the site of variation has been restored to
83 that of the wild type. These results suggest that phase variation at the LPS O-antigen
84 biosynthetic gene cluster reversibly affects the production of LPS O-antigen and EPS, as well
85 as the virulence of Xoo.

86 **Results**

87 **The non-mucoid phenotype of SPVs is complemented by a cosmid clone containing the**
88 **LPS O-antigen biosynthetic gene cluster**

89 SPVs were isolated from 14 independently grown long-term stationary phase cultures of wild
90 type Xoo strain BXO43 using the methodology described previously (Rajeshwari and Sonti,
91 1997). The SPVs were identified based on their non-mucoid colony morphology, which is
92 indicative of an EPS deficient phenotype (Figures 1A and 1B). Previous studies have indicated
93 that mutations in either the *gum* operon or the LPS O-antigen biosynthetic gene cluster of Xoo
94 result in EPS deficiency and exhibit a non-mucoid colony phenotype (Dharmapuri *et al.*, 2001).
95 Hence the first question addressed was whether the 14 SPVs harbour variations in either the
96 LPS O-antigen biosynthetic gene cluster or the *gum* operon. To test this, complementation
97 analysis was performed by independently transforming the 14 SPVs with pSD1 and pSD5
98 cosmid clones which contain *gum* operon and LPS O-antigen biosynthetic gene cluster
99 respectively (Dharmapuri and Sonti, 1999; Dharmapuri *et al.*, 2001). The restoration of wild
100 type mucoid phenotype was scored visually. Among the 14 SPVs, the phenotype of 13 SPVs
101 was restored to mucoid phenotype by pSD5 cosmid clone (Figures 1C, 1D, and Table 1).
102 Further, these 13 SPVs lacked the characteristic O-antigen containing band in their LPS profile
103 (Figure 2). Taken together, the results indicate that the non-mucoid phenotype of these 13 SPVs
104 is due to mutations in the LPS O-antigen biosynthetic gene cluster. The phenotype of one SPV
105 strain, SPV15 was complemented by the pSD1 cosmid clone (containing the *gum* operon)
106 indicating that this strain is mutated in the *gum* operon. As expected, the LPS profile of this
107 SPV strain was similar to that of the wild type (Figure 2).

108

109 **Some SPVs harbour insertions of endogenous IS elements in the LPS O-antigen
110 biosynthetic gene cluster**

111 The O-antigen biosynthetic gene cluster was PCR amplified using appropriate primers to
112 generate 13 overlapping PCR amplicons of length ~ 500 bp and overlap of ~ 100 bp between
113 adjacent amplicons. Individual primer pairs were designed to amplify the two transporter
114 channel protein genes (Figure 3A). Analysis of the PCR products from 14 SPVs and the wild
115 type strain using the aforementioned primers indicated that several SPVs carry approximately
116 1 kb insertions in the LPS O-antigen biosynthetic genes (Figure 3B). Analysis of the Whole
117 Genome Shotgun (WGS) sequencing data of the SPVs that harboured insertions revealed that
118 the corresponding genes contain contig breaks. Additionally, SPV15, the only SPV for which
119 the pSD1 cosmid clone (containing the *gum* operon) restored the mucoid phenotype was
120 observed to have a contig break in the *gumB* gene. The PCR products from the SPVs that appear
121 to carry insertions were sequenced and were indeed found to contain insertions of endogenous
122 IS elements. The results revealed that 6 SPVs, *viz.* SPV 1, 11, 12, 16, 22, and 26 harbour IS
123 element insertions in the LPS O-antigen biosynthetic gene cluster and SPV15 harboured an IS
124 element insertion in the *gumB* gene (Figure 3C). Among these seven SPVs, four SPVs have
125 insertions of *ISXo1* and target site duplication (TSD) of 4 base pairs. Eight base pair TSD was
126 observed for insertions of *ISXo2* in two SPVs and insertion of *ISXoo13* in one SPV (Table 2).

127 **Slipped strand mispairing (SSM) at a G-hexamer in the *wxoA* gene of the LPS O-antigen
128 biosynthetic gene cluster**

129 The WGS sequence data were examined to understand the nature of variation in the remaining
130 7 SPVs for which the phenotype did not appear to be due to IS element. The data revealed that
131 five SPVs, *viz.* SPV 2, 4, 31, 32, and 33 have a G-heptamer instead of a G-hexamer in the *wxoA*
132 gene of the LPS O-antigen biosynthetic gene cluster. This result was confirmed by PCR
133 amplification and sequencing of the corresponding region from the *wxoA* gene (Figure 3D).

134 The SSM leads to altered open reading frame of *wxoA* gene and also generate a premature
135 termination codon. The insertion of an extra nucleotide at a run of nucleotide repeats suggests
136 slipped strand mispairing (SSM) at the G-hexamer of the *wxoA* gene.

137 **Genetic changes in SPV3 and SPV5**

138 The SPV3 and SPV5 strains did not have any change in the G-hexamer of *wxoA* gene and we
139 could not identify any specific IS element insertions. An examination of the WGS sequence
140 data revealed that the SPV3 strain contains a premature stop codon in the *wxoA* gene. The
141 SPV5 strain has a contig break in the *wxoA* gene which could not be amplified irrespective of
142 multiple attempts using different polymerases and primer combinations.

143 **SPVs show phenotype and genotype reversion**

144 During phenotyping, several but not all SPV strains were observed to revert to the wild type-
145 phenotype and were classified into three categories. ‘Reverting type’ SPVs produced mucoid
146 colonies or mucoid sectors amongst colonies dilution plated from exponential phase cultures.
147 Reverting type SPVs also generated multiple mucoid sectors or complete mucoid phenotype
148 when grown by spotting exponential phase cultures on plates. The frequency of reversion was
149 observed to be 0.01-5% in exponential phase cultures. ‘Slow-reverting type’ SPVs produced
150 mucoid regions occasionally and only when spotted on to plates and ‘non-reverting type’ SPVs
151 did not generate any reversion phenotype in any assay conditions including serial passaging of
152 exponential phase cultures. (Figures 4A, 4B, and Table 3).

153 To understand the nature of this phenotypic reversion three independent ‘revertants’ (colonies
154 with mucoid phenotype) were isolated from each of the SPVs and genotyped. The revertants
155 obtained from SPVs 11, 12, 16, and 26 appeared to have lost the IS elements as PCR analysis
156 of the target region resulted in PCR amplified products that were approximately 500 bp in size,
157 similar to that of the wild type Xoo strain (Figure 4C). The sequencing of these PCR amplified

158 products revealed that the inserted IS elements have undergone a precise excision event
159 restoring the wild-type genotype.

160 All the five SPVs that were identified to have SSM at G-hexamer of *wxoA* viz. SPV 2, 4, 31,
161 32, and 33 also showed the reversion phenotypes. Sequencing of the target region of the *wxoA*
162 gene revealed that the revertants have a G-hexamer like the wild type strain (Figure 4D). These
163 results conclude that the phenotypic reversion of non-mucoid SPVs to wild type mucoid
164 phenotype is due to the restoration of wild type genotype i.e. the SPVs exhibit true reversion.

165 **Reverting type SPVs successfully generate virulence lesion upon *in-planta* inoculation**

166 Xoo strains with mutations in either the EPS or the LPS O-antigen biosynthetic gene cluster
167 are virulence deficient (Dharmapuri and Sonti, 1999; Dharmapuri *et al.*, 2001). The virulence
168 phenotype of SPVs was assessed by clip inoculation of rice leaves. Lesions were observed in
169 leaves inoculated with the reverting type SPVs while leaves inoculated with either the slow or
170 non-reverting SPVs did not produce significant lesions (Figure 5). The bacteria were isolated
171 from the leaves showing virulence lesions and were observed to have mucoid colonies. This
172 suggests that restoration of wild type genotype and phenotype in reverting type SPVs also
173 restores the capability to cause disease.

174 **Discussion**

175 Phenotype switching with the evidence of reversion to wild type phenotype *in-vitro* or *in-vivo*
176 has been studied extensively in animal pathogenic bacteria and has been referred to as phase
177 variation. The mechanisms which bring about heritable but reversible changes in DNA have
178 been suggested to aid bacteria in adapting to environmental conditions (Woude and Bäumler,
179 2004). Among plant pathogenic bacteria, non-pathogenic, EPS deficient variants isolated in
180 still broth cultures of *Ralstonia solanacearum* were described to undergo phenotype reversion
181 when inoculated on the host plant. IS element insertions and tandem duplications in the *phcA*

182 gene (a transcription regulator) were the mechanisms involved in the characterised variants
183 (Poussier *et al.*, 2003). In the previous study from our lab, one of the SPV strain that had been
184 isolated from the wild type Xoo strain was also observed to undergo phenotypic reversion
185 phenotype upon *in-planta* inoculation (Rajeshwari and Sonti, 1997). Phenotype switching
186 between swarming colonies with EPS deficient phenotype and wild type have been described
187 in *Xanthomonas campestris* pv. *campestris* (Kamoun and Kado, 1990). However, the
188 underlying mechanisms were unexplored.

189 In the present study, we have uncovered the mechanisms of the reversible phase variation
190 occurring in Xoo during prolonged stationary phase growth. Results indicated that, besides the
191 mutations in the *gum* operon, SPVs also harbour mutations in the LPS O-antigen biosynthetic
192 genes cluster leading to EPS deficiency. Among the 14 SPVs characterised in the present study,
193 13 SPVs harbour mutations in the LPS O-antigen biosynthetic gene cluster and one SPV strain
194 carried the mutation in the *gum* operon which are summarised along with reversion phenotypes
195 in Table 4. Reversion phenotypes were observed in 9 of the 14 SPVs including all 5 SPVs that
196 have SSM at the G-hexamer of *wxoA* exhibited. Among SPVs exhibiting SSM, SPVs 2 and 4
197 exhibit slow-reverting phenotype, possibly due to a second site variation. Out of the 7 SPVs
198 harbouring IS element insertions, reversion could be detected in 4 of them. It is possible that
199 the IS elements excise at a lower frequency in the remaining 3 SPVs because of which reversion
200 could not be detected in our assay conditions. Insertion of *ISXo1* element was observed in a
201 number of SPVs that were characterised in the present and our previous studies (R Rajeshwari
202 and Sonti, 2000). One possibility is that this could be due to the small target site of 4 bp. Also,
203 among the 4 SPVs harbouring *ISXo1* insertions, 3 showed reversion phenotypes. The target
204 site of 4 bp might once again be a contributing factor, as it has a partial palindromic nature
205 (CTAG or TTAG, i.e. YTAR). The high-frequency precision excision of IS elements in Xoo
206 leaves us with questions that warrant future investigations. Do the transposases in IS elements

207 have any growth-dependent expression or activity? Are there any additional trans-acting host
208 factors involved in precise excision? Is the LPS O-antigen biosynthetic gene cluster a hotspot
209 for transposition? One could begin addressing these questions by asking how the target sites,
210 growth conditions or the host influence the excision events. To address this, the IS element
211 insertions along with the target site duplications can be cloned into an antibiotic resistance
212 gene, such that IS element excision would result in resistance to the antibiotic.

213 Among the non-reverting type SPVs, WGS analysis revealed that SPV3 which harbours a stop
214 codon in the *wxoA* gene contains more than 900 single nucleotide polymorphisms in its genome
215 when compared to other SPVs and might be a possible mutator strain (Supplementary Table
216 S1, S2). SPV5 in which the variation was located in *wxoA*, (contig break in WGS analysis) was
217 not characterised since the region did not amplify even after multiple attempts. One possibility
218 is that the region might be having a large insertion or have undergone a complex rearrangement
219 following an IS element insertion.

220 Phase variation at the EPS biosynthetic locus has been described in other bacteria. Phase
221 variation at the *icaC* gene involved in the production of polysaccharide intercellular adhesin
222 (PIA) in *Staphylococcus aureus* has reduced biofilm formation, a critical requirement in its
223 pathogenesis. However, the *icaC*-negative phase variant strains have been reported to have a
224 survival advantage relative to wild type or complete *icaABCD* operon deletion, in co-culture
225 experiments through an unknown mechanism (Brooks and Jefferson, 2014). Phase variation at
226 the *epsG* gene of *P. atlantica* leads to a non-mucoid phenotype and reduced biofilm formation
227 and it has been suggested that the EPS deficient phenotype aids in the dispersal of bacteria
228 (Bartlett, Wright and Silverman, 1988; Bartlett and Silverman, 1989). In Xoo, both EPS and
229 LPS are necessary for virulence. In our previous study (Rajeshwari and Sonti, 1997), SPVs
230 were described to have no significant advantage over wild type in co-culture experiments and
231 the same was obtained with the current set of SPVs (data not shown). Further studies are

232 required to understand the reasons for the accumulation of EPS deficient phase variants in the
233 prolonged stationary phase cultures of Xoo.

234 The two mechanisms observed in SPVs are transposition and SSM, which are established
235 mechanisms of phase variation in bacteria. The *icaC* gene of the PIA EPS biosynthetic operon
236 undergoes phase variation by *IS256* IS element transposition and SSM in *Staphylococcus*
237 *aureus* (Kiem *et al.*, 2004; Brooks and Jefferson, 2014). This suggests that bacteria have
238 evolved more than one phase variation mechanism to regulate gene expression in the same
239 locus. The *IS256* element might be involved in genome plasticity and adaptation to stress in
240 *Staphylococcus aureus*. The introduction of *IS256* to a laboratory strain of *Staphylococcus*
241 *aureus* lacking the *IS256* was shown to generate additional phenotype variants (Kleinert *et al.*,
242 2017). The Xoo genomes have been described to accumulate IS elements both in diversity and
243 copy number. IS elements have been attributed to contributing to genome rearrangements in
244 the Xoo strain PXO99^A, leading to genome plasticity and rapid evolution in Xoo strains
245 (Salzberg *et al.*, 2008). This study indicates the possibility that IS elements can also contribute
246 to adaptations at a shorter timeline during the lifecycle of Xoo.

247 At the later stages of lesion development during Xoo infection, the rice leaves become dry and
248 it is expected that this might lead to stresses such as nutrient limitation and desiccation. Thus
249 it would be worthwhile to re-isolate bacteria from lesions of rice leaves inoculated with wild
250 type Xoo strain to study if similar phase variants do occur during the *in-planta* growth of
251 bacteria. Additional studies can also explore other phenotypes and growth conditions that
252 would expand our knowledge about phase variation in plant pathogenic bacteria.

253 **Experimental procedures**

254 **Bacterial strains, plasmids and growth conditions**

255 Supplementary Tables S3 and S4 respectively list the bacterial strains and plasmids used in the
256 study. Xoo strains were grown at 28°C in a 1% peptone-sucrose (PS) medium (Ray, Rajeshwari
257 and Sonti, 2000). *E. coli* strains were grown at 37°C in Luria Bertani (LB) medium. The media
258 was prepared with 1.5% Agar for plates. The antibiotics concentrations used were rifampicin
259 (Rif) 50 µg/ml, kanamycin (Kan) 25 µg/ml, spectinomycin (Spec) 50 µg/ml, cephalexin (Ceph)
260 20 µg/ml, and cycloheximide (Cyclo) 80 µg/ml.

261 **Generation of stationary phase variants (SPVs)**

262 SPVs were generated as previously described (Rajeshwari and Sonti, 1997). Individual mucoid
263 colonies of wild type strain BXO43 were inoculated in 2 ml PS-Rif primary culture overnight.
264 Each of the 2ml cultures were used as inoculum for 20 ml secondary culture in PS media and
265 were grown for 48 hours. This was further maintained on a laboratory bench without shaking
266 and was dilution plated on alternate days. Colonies were streaked out multiple times and
267 screened for non-mucoid phenotype and one such colony exhibiting consistent phenotype in
268 each inoculation was taken forward for characterisation.

269 **Non-mucoid phenotype complementation using genomic DNA library cosmids.**

270 SPV strains were transformed with *gum* operon containing cosmid pSD1 and LPS O-antigen
271 biosynthetic gene cluster containing cosmid pSD5. A minimum of 16 transformed colonies
272 selected on PSA-Kan plates per from each transformation were further streaked out for
273 comparing non-mucoid phenotype complementation. Transforming the SPV strains with
274 genomic library clones was performed by means of conjugation using S17-1 *E. coli* strain.

275

276 **LPS profiling on SDS-PAGE gels.**

277 LPS isolation was performed as previously described (Davis and Goldberg, 2012). Overnight
278 cultures of Xoo strains were pelleted, washed, and resuspended in MilliQ. The cultures was
279 washed and adjusted to $OD_{600} = 1$ in MilliQ water. From this resuspension 2 ml were pelleted
280 and resuspended in 200 μ l of 1X SDS-PAGE loading buffer and boiled for 15 minutes. To each
281 sample, 200 μ l of Tris saturated phenol was added, mixed and incubated at 65°C for 15 minutes
282 and the aqueous layer was separated by adding 200 μ l chloroform and centrifugation (). The
283 hot-phenol extraction was repeated again and 100 μ l of the aqueous layer was mixed with 200
284 μ l of 2X SDS-PAGE loading dye and equal volumes were separated on 10% SDS-PAGE gels.
285 The LPS bands were visualised by silver staining using ProteoSilver kit (Sigma-Aldrich, St.
286 Louis, MO, USA).

287 **PCR screening for variations**

288 The LPS O-antigen biosynthetic gene cluster of BXO1 (GenBank: AF337647) was compared
289 with KACC 10331 sequence (GenBank: AE013598.1) for annotations. Thirteen overlapping
290 primer pairs (listed in Supplementary Table S5) were designed manually for, LPS biosynthetic
291 genes, *smtA* to *wxoD* for a PCR product of 500-600 bp and an overlap of ~100 bp. Individual
292 primer pairs were designed for genes transport proteins *wzt* and *wzm* and the *gum* operon gene
293 *gumB*. The genomic DNA from Xoo strains were isolated and used as the template for PCR for
294 each primer pair designed and PCR products were visualised on 1% agarose gels.

295 **Assessment of reversion phenotypes**

296 Overnight cultures of Xoo strains were pelleted, washed in MiliQ water and adjusted to OD_{600}
297 = 1. These suspensions were dilution plated to obtain single colonies. About 5 μ l the bacterial
298 suspensions for each strain were spotted on PS-Rif plates. The phenotypes were visually scored
299 after 4-5 days of incubation.

300 **Virulence assay**

301 Overnight culture of Xoo strains were pelleted, washed in MiliQ water and adjusted to OD₆₀₀
302 = 1. Leaves of TN1 rice cultivar (40-60 days old) were clip inoculated by dipping surgical
303 scissors in the bacterial suspension (Kauffman *et al.*, 1973). The lesions were measured 15
304 days post inoculation.

305 **Isolation of bacteria from virulence lesions**

306 About 3 cm of the region at the leading edge of the lesion was crushed in 1ml MilliQ water
307 using a bead-beater and dilution plated on PS agar plates containing Rif, Ceph, and Cyclo to
308 obtain single colonies. The mucoid phenotype of the colonies was scored after 5 days.

309 **Whole genome shotgun sequencing and data analysis**

310 Whole genome shotgun (WGS) sequencing was performed for SPVs 1, 2, 3, 4, 5, 15, 22, 26,
311 31, 32, and 33. Fungal/Bacterial DNA MiniPrep kit (Zymo Research, Irvine, CA, USA) was
312 used to extract the genomic DNA. Genomic DNA quality check was done using gel
313 electrophoresis and NanoDrop 1000 instrument (Thermo Fisher Scientific, Waltham, MA,
314 USA). Quantitative estimation of DNA was performed using Qubit 2.0 fluorometer
315 (Invitrogen; Thermo Fisher Scientific). Nextera XT sample preparation kits (Illumina, Inc., San
316 Diego, CA, USA) were used for Illumina paired-end sequencing libraries (2 x 250) with dual
317 indexing adapters. Illumina sequencing libraries were sequenced on Illumina MiSeq platform
318 (Illumina, Inc., San Diego, CA, USA). MiSeq control software was used to perform adapter
319 trimming. Raw reads were assembled *de-novo* using spades v3.15.4. Annotation was done
320 using prokka v1.01 (Seemann, 2014). The NCBI accession numbers for the WGS data are listed
321 in Supplementary Table S6.

322 Genes related to LPS and EPS biosynthetic genes were fetched from Xoo, BXO1 from NCBI
323 (CP033201). The status of these genes in the SPV isolates was checked at the protein level

324 using tBLASTn and nucleotide level using BLASTn (Johnson *et al.*, 2008). Genes not showing
325 100% identity or 100% coverage were further analysed by aligning using MEGA v.11.0.9
326 (Tamura, Stecher and Kumar, 2021) to look for non-synonymous mutations or indels. Further,
327 SNPs were detected using ParSNP v1.2 (Treangen *et al.*, 2014) taking BXO1 as a reference.

328 **Acknowledgements:** V.N.M. acknowledges the University Grants Commission, Government
329 of India for the Ph.D. fellowship. This work was supported by J. C. Bose fellowships to R.V.S.
330 from the Science and Engineering Research Board, Government of India. R.V.S., P.B.P., and
331 H.K.P. acknowledge CSIR, Government of India for various research project grants.

332 **Conflict of interest:** The authors declare that no conflict of interest exists.

333 **Author contributions:** VNM, HKP, and RVS, conceived the project and designed the
334 experiments. VNM performed the experiments. KB, SK, and SM performed WGS and data
335 analysis under the guidance of PBP. VNM, HKP, and RVS analysed the data and finalized the
336 manuscript, which was approved by all the authors. PBP, HKP, and RVS contributed
337 reagents/materials.

338

339 **References**

340 Appelmelk, B. J. *et al.* (1999) 'Phase variation in *Helicobacter priori* lipopolysaccharide due
341 to changes in the lengths of poly(C) tracts in α 3-fucosyltransferase genes', *Infection and*
342 *Immunity*, 67(10), pp. 5361–5366. doi: 10.1128/iai.67.10.5361-5366.1999.

343 Bartlett, D. H. and Silverman, M. (1989) 'Nucleotide sequence of IS492, a novel insertion
344 sequence causing variation in extracellular polysaccharide production in the marine
345 bacterium *Pseudomonas atlantica*', *Journal of bacteriology*, 171(3), pp. 1763–1766. doi:
346 10.1128/JB.171.3.1763-1766.1989.

347 Bartlett, D. H., Wright, M. E. and Silverman, M. (1988) 'Variable expression of extracellular
348 polysaccharide in the marine bacterium *Pseudomonas atlantica* is controlled by genome
349 rearrangement', *Proceedings of the National Academy of Sciences of the United States of*
350 *America*, 85(11), pp. 3923–3927. doi: 10.1073/PNAS.85.11.3923.

351 Brooks, J. L. and Jefferson, K. K. (2014) 'Phase Variation of Poly-N-Acetylglucosamine
352 Expression in *Staphylococcus aureus*', *PLoS Pathogens*, 10(7). doi:
353 10.1371/journal.ppat.1004292.

354 Davis, M. R. and Goldberg, J. B. (2012) 'Purification and Visualization of
355 Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction',
356 (May), pp. 63–65. doi: 10.3791/3916.

357 Dharmapuri, S. *et al.* (2001) 'Novel genomic locus with atypical G+C content that is required
358 for extracellular polysaccharide production and virulence in *Xanthomonas oryzae* pv. *oryzae*',
359 *Molecular Plant-Microbe Interactions*, 14(11), pp. 1335–1339. doi: Doi
360 10.1094/Mpmi.2001.14.11.1335.

361 Dharmapuri, S. and Sonti, R. V (1999) 'A transposon insertion in the gumG homologue of
362 *Xanthomonas oryzae* pv . *oryzae* causes loss of extracellular polysaccharide production and
363 virulence', 179, pp. 53–59.

364 Gilbert, M. *et al.* (2002) 'The genetic bases for the variation in the lipo-oligosaccharide of the
365 mucosal pathogen, *Campylobacter jejuni*. Biosynthesis of sialylated ganglioside mimics in
366 the core oligosaccharide', *Journal of Biological Chemistry*, 277(1), pp. 327–337. doi:
367 10.1074/jbc.M108452200.

368 Higgins, B. P., Carpenter, C. D. and Karls, A. C. (2007) 'Chromosomal context directs high-
369 frequency precise excision of IS492 in *Pseudoalteromonas atlantica*', *Proceedings of the*
370 *National Academy of Sciences of the United States of America*, 104(6), pp. 1901–6. doi:
371 10.1073/pnas.0608633104.

372 Johnson, M. *et al.* (2008) 'NCBI BLAST: a better web interface.', *Nucleic acids research*,
373 36(Web Server issue), pp. 5–9. doi: 10.1093/nar/gkn201.

374 Kamoun, S. and Kado, C. I. (1990) 'Phenotypic switching affecting chemotaxis, xanthan
375 production, and virulence in *Xanthomonas campestris*', *Applied and Environmental*
376 *Microbiology*, 56(12), pp. 3855–3860. doi: 10.1128/aem.56.12.3855-3860.1990.

377 Kauffman, H. E. *et al.* (1973) 'An improved technique for evaluating resistance of rice
378 varieties to *Xanthomonas oryzae*', *Plant Disease Reporter*, 57(6), pp. 537–541. Available at:
379 <https://eurekamag.com/research/000/019/000019488.php>.

380 Kiem, S. *et al.* (2004) 'Phase variation of biofilm formation in *Staphylococcus aureus* by
381 IS256 insertion and its impact on the capacity adhering to polyurethane surface', *Journal of*

382 *Korean Medical Science*, 19(6), pp. 779–782. doi: 10.3346/jkms.2004.19.6.779.

383 Kleinert, F. *et al.* (2017) ‘Influence of IS 256 on genome variability and formation of SCV in
384 *Staphylococcus aureus*’, *Antimicrobial Agents and Chemotherapy*, 61(June), p. AAC.00144-
385 17. doi: 10.1128/AAC.00144-17.

386 Linton, D. *et al.* (2000) ‘Phase variation of a β -1,3 galactosyltransferase involved in
387 generation of the ganglioside GM1-like lipo-oligosaccharide of *Campylobacter jejuni*’,
388 *Molecular Microbiology*, 37(3), pp. 501–514. doi: 10.1046/j.1365-2958.2000.02020.x.

389 Patil, P. B., Bogdanove, A. J. and Sonti, R. V. (2007) ‘The role of horizontal transfer in the
390 evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that
391 infect rice, citrus and crucifers’, *BMC Evolutionary Biology*, 7(1), pp. 1–13. doi:
392 10.1186/1471-2148-7-243.

393 Poussier, S. *et al.* (2003) ‘Host plant-dependent phenotypic reversion of *Ralstonia*
394 *solanacearum* from non-pathogenic to pathogenic forms via alterations in the *phcA* gene’,
395 *Molecular Microbiology*, 49(4), pp. 991–1003. doi: 10.1046/j.1365-2958.2003.03605.x.

396 Rajeshwari, R. and Sonti, R. V. (2000) ‘Stationary-phase variation due to transposition of
397 novel insertion elements in *Xanthomonas oryzae* pv. *oryzae*’, *Journal of Bacteriology*,
398 182(17), pp. 4797–4802. doi: 10.1128/JB.182.17.4797-4802.2000.

399 Rajeshwari, R. and Sonti, R. V. (1997) ‘Characteristics of stationary-phase variation affecting
400 virulence in *Xanthomonas oryzae* pv. *oryzae*’, 867(Hayward 1960), pp. 862–867.

401 Rajeshwari, R. and Sonti, R. V. (2000) ‘Stationary-phase variation due to transposition of
402 novel insertion elements in *Xanthomonas oryzae* pv. *oryzae*’, *Journal of Bacteriology*,
403 182(17), pp. 4797–4802. doi: 10.1128/JB.182.17.4797-4802.2000.

404 Ray, S. K., Rajeshwari, R. and Sonti, R. V. (2000) ‘Mutants of *Xanthomonas oryzae* pv.
405 *oryzae* deficient in general secretory pathway are virulence deficient and unable to secrete
406 xylanase’, *Molecular Plant-Microbe Interactions*, 13(4), pp. 394–401. doi:
407 10.1094/MPMI.2000.13.4.394.

408 Salzberg, S. L. *et al.* (2008) ‘Genome sequence and rapid evolution of the rice pathogen
409 *Xanthomonas oryzae* pv. *oryzae* PXO99A’, *BMC Genomics*, 9(May), pp. 1–16. doi:
410 10.1186/1471-2164-9-204.

411 Seemann, T. (2014) ‘Prokka: Rapid prokaryotic genome annotation’, *Bioinformatics*, 30(14),
412 pp. 2068–2069. doi: 10.1093/bioinformatics/btu153.

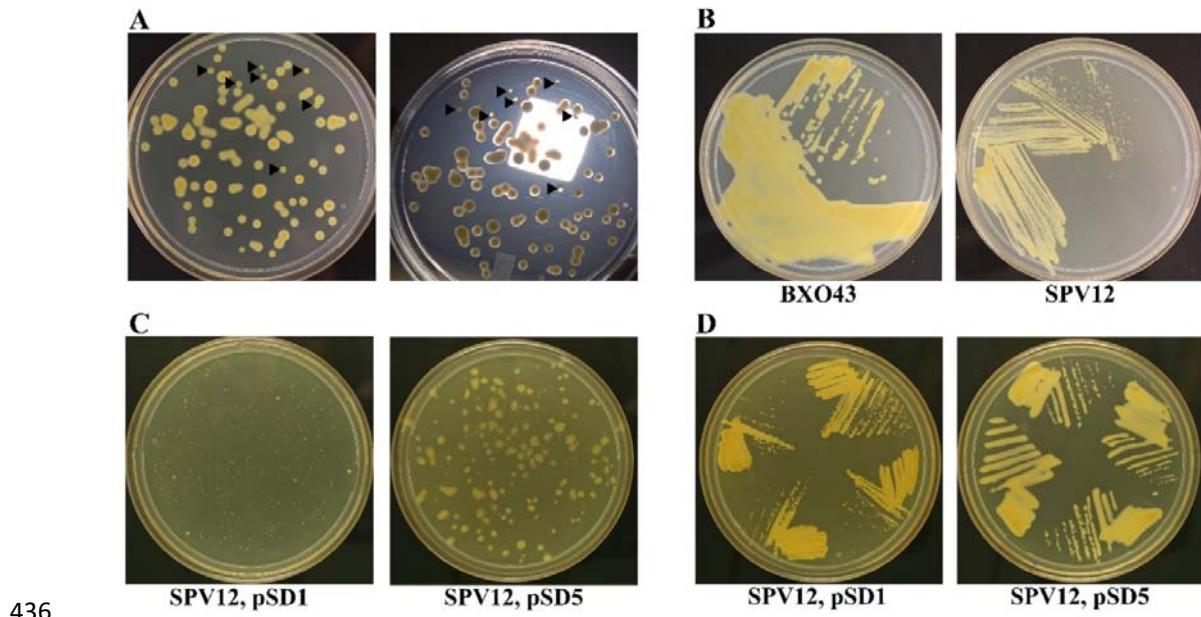
413 Tamura, K., Stecher, G. and Kumar, S. (2021) ‘MEGA11: Molecular Evolutionary Genetics
414 Analysis Version 11’, *Molecular Biology and Evolution*, 38(7), pp. 3022–3027. doi:
415 10.1093/molbev/msab120.

416 Treangen, T. J. *et al.* (2014) ‘The harvest suite for rapid core-genome alignment and
417 visualization of thousands of intraspecific microbial genomes’, *Genome Biology*, 15(11), pp.
418 1–15. doi: 10.1186/s13059-014-0524-x.

419 Wang, G. *et al.* (1999) ‘Molecular genetic basis for the variable expression of Lewis Y
420 antigen in *Helicobacter pylori*: Analysis of the α (1,2) fucosyltransferase gene’, *Molecular
421 Microbiology*, 31(4), pp. 1265–1274. doi: 10.1046/j.1365-2958.1999.01268.x.

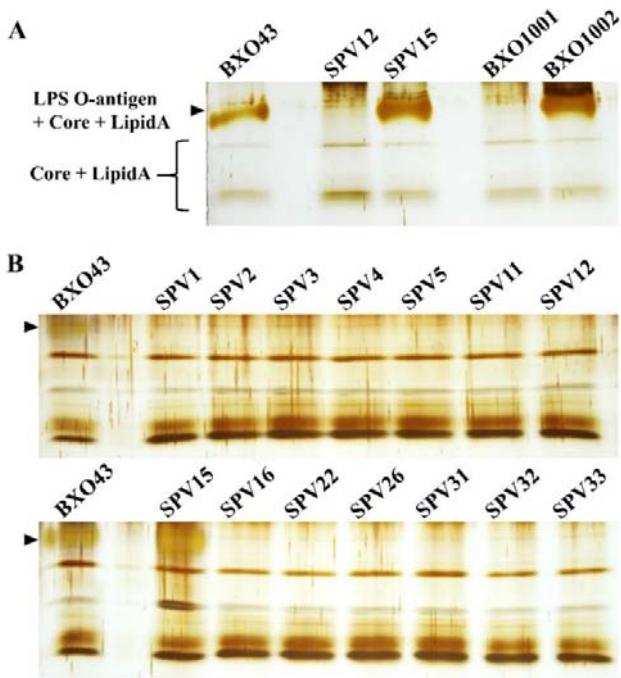
422 Weiser, J. N., Love, J. M. and Moxon, E. R. (1989) ‘The molecular mechanism of phase
423 variation of *H. influenzae* lipopolysaccharide’, *Cell*, 59(4), pp. 657–665. doi: 10.1016/0092-

424 8674(89)90011-1.

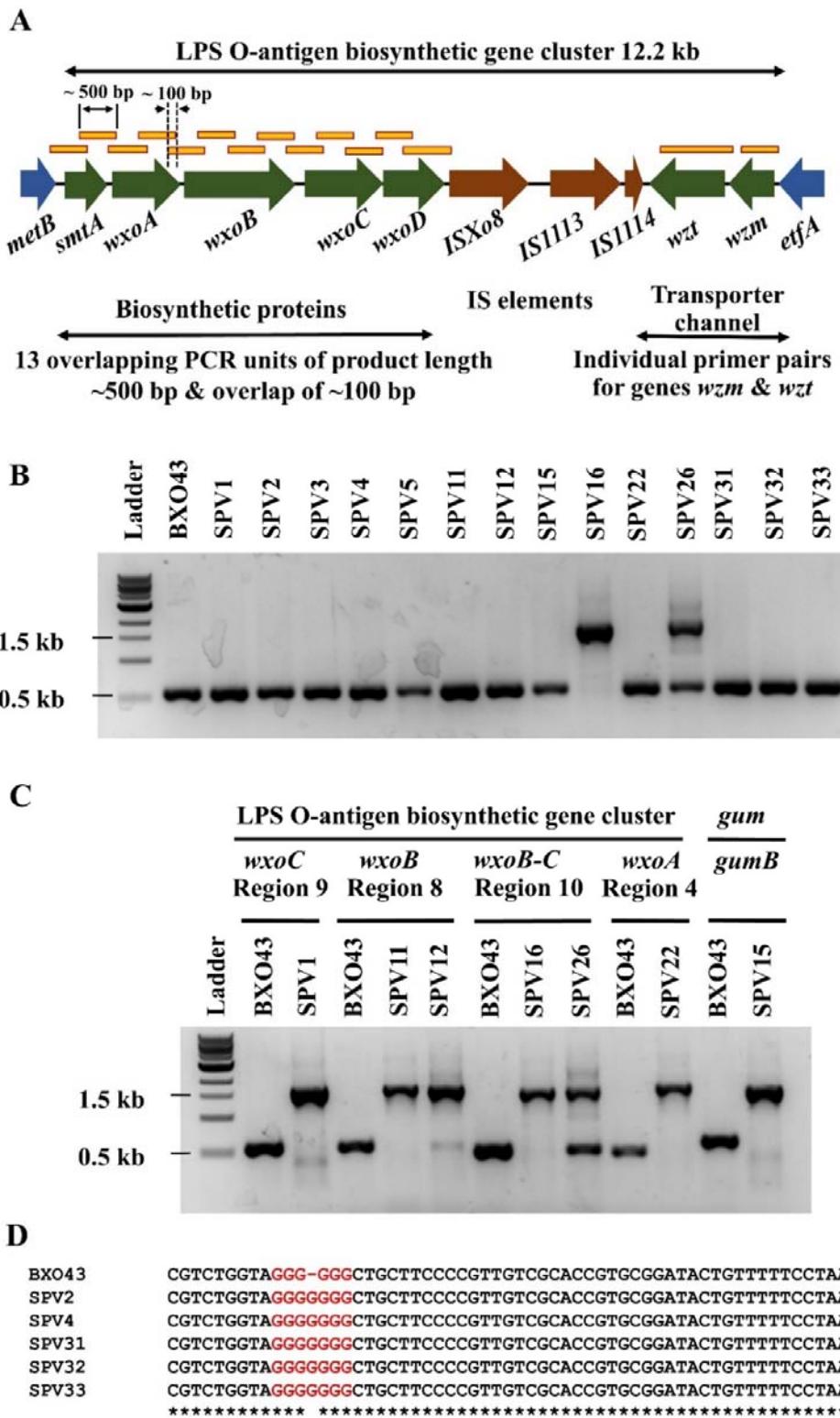

425 Woude, M. W. Van Der and Bäumler, A. J. (2004) 'Phase and Antigenic Variation in
426 Bacteria', *Clinical Microbiology Reviews*, 17(3), pp. 581–611. doi: 10.1128/CMR.17.3.581.

427 Zeng, Z. *et al.* (2019) 'Biofilm formation in Pseudoalteromonas lipolytica is related to IS5-
428 like insertions in the capsular polysaccharide operon', *FEMS Microbiology Ecology*, 95(6),
429 pp. 1–11. doi: 10.1093/femsec/fiz065.

430 Ziebuhr, W. *et al.* (1999) 'A novel mechanism of phase variation of virulence in
431 *Staphylococcus epidermidis*: evidence for control of the polysaccharide intercellular adhesin
432 synthesis by alternating insertion and excision of the insertion sequence element IS256.',
433 *Molecular microbiology*, 32(2), pp. 345–356. doi: 10.1046/j.1365-2958.1999.01353.x.


434

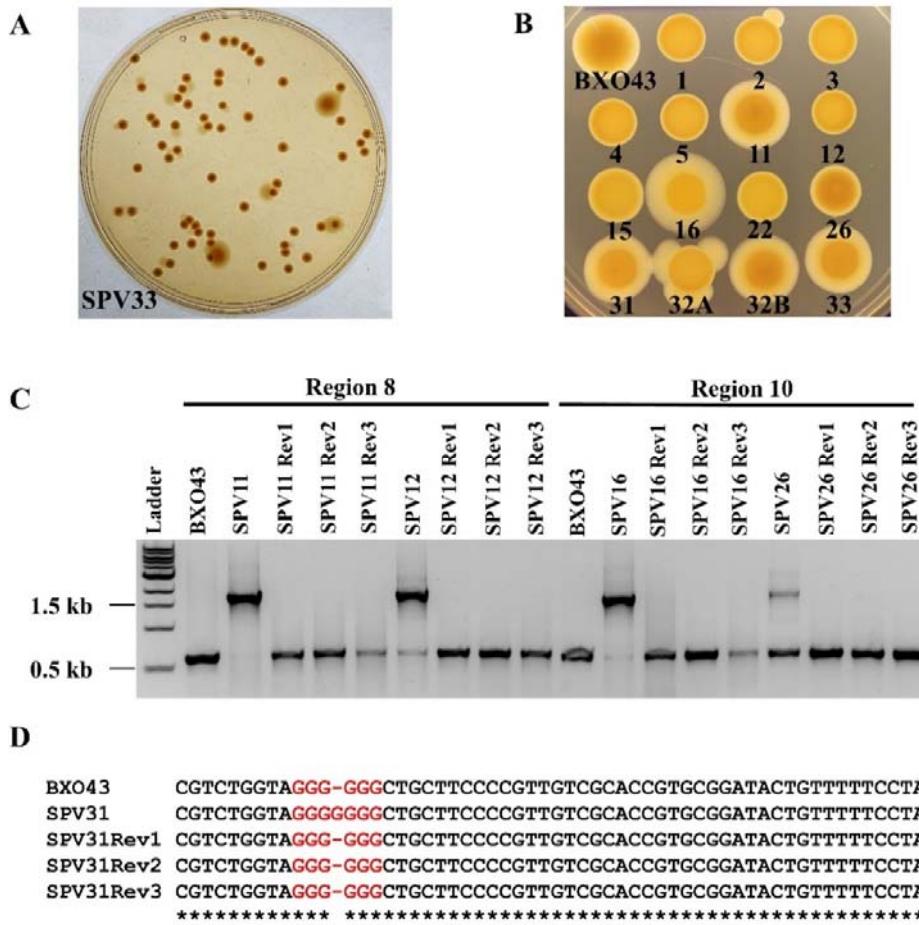
435


436

437 **Figure 1. Non-mucoid phenotype of SPV and phenotype complementation. (A)**
438 Representative image of a dilution plate from day 8 of a prolonged stationary phase culture of
439 wild type Xoo, BXO43. The arrows indicate the small, EPS deficient SPV colonies (left) which
440 appear translucent under direct light (right) compared to opaque, large, mucoid wild type
441 colonies. **(B)** Wild type Xoo BXO43 and SPV12 streaked on plates for comparison of
442 phenotype. **(C, D)** Representative images of SPV12 transformed with either *gum* locus (pSD1)
443 or LPS O-antigen biosynthetic cluster (pSD5) containing cosmids. **(C)** Individual colonies on
444 selection media and **(D)** colonies streaked on plates to observe the phenotype. In this example,
445 non-mucoid phenotype of SPV12 is complemented by pSD5.

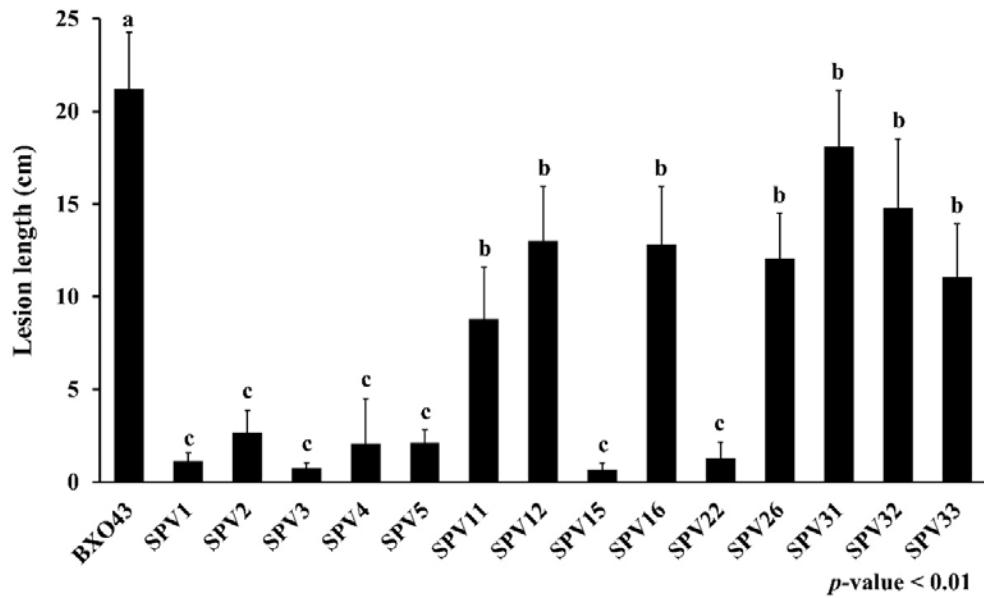
446

447 **Figure 2. LPS profile of SPVs.** (A) Comparison of LPS isolated from wild type Xoo BXO43,
448 SPVs 12 and 15 in which the non-mucoid phenotype can be complemented by pSD5 and pSD1
449 respectively with BXO1001 and BXO1002 which are characterised mutants of LPS O-antigen
450 biosynthetic gene cluster and *gum* locus respectively. (B) Comparison of LPS profile of all 14
451 SPVs and wild type Xoo strain BXO43. The 13 SPVs in which the non-mucoid phenotype can
452 be complemented by LPS O-antigen biosynthetic gene cluster containing cosmid (pSD5), lacks
453 the characteristic band containing O-antigen. The black arrows indicate the characteristic band
454 containing LPS O-antigen. The experiment was repeated three times and similar results were
455 obtained.



456

457 **Figure 3. Characterisation of variations in SPVs.** (A) Schematic of LPS O-antigen
458 biosynthetic cluster (green arrows), the cluster location is conserved in *Xanthomonas* between
459 the flanking genes *metB* and *etfA* (blue arrows), and the IS elements within the cluster (brown


460 arrows) (Patil, Bogdanove and Sonti, 2007). The overlapping regions PCR amplified for
461 screening variations are represented in yellow rectangles. **(B)** Representative agarose gel image
462 of insertion screening. The PCR products for the ‘Region10’ were amplified using genomic
463 DNA isolated from BXO43 and all 14 SPVs as templates. The ~ 1.5 kb bands in SPV 16 and
464 26 are indicative of insertions. **(C)** Agarose gel image of the SPVs which showed insertions.
465 Presence of wild type like ~ 500 bp band in SPV26 is indicative reversion. **(D)** Multiple
466 sequence alignment snippet of the portion containing the G-hexamer of *wxoA* gene. PCR
467 products for the Region 4 to 5 were amplified using genomic DNA isolated from five SPVs
468 and BXO43 were sequenced.

469
470

471

472 **Figure 4. SPVs exhibit true reversion.** (A) Dilution plating of SPV33 showing the reverting-
473 type phenotype. The large dark opaque colonies arise from the reversion event that happened
474 in the culture. Colonies with the white sectors indicate reversion events that happened after
475 plating. (B) Representative image of wild type BXO43 and all 14 SPVs spotted on a PS agar
476 plate. Reverting-type SPVs show multiple sectors, large halo or large mucoid region like wild
477 type (SPV11, 12, 16, 26, 31, 32 and 33). Slow reverting-type SPVs show few sectors, at low
478 frequency. SPV2 in the figure is an example here for slow reverting type (also SPV4 which is
479 not showing sector in this particular set). The experiment was repeated four times and obtained
480 similar results. (C) Agarose gel image for PCR products for the ‘regions’ that harbor IS element
481 insertion with corresponding PCR primers and genomic DNA isolated from wild type BXO43,
482 SPVs, and three independent isolates of reverted colonies from the respective SPV. Presence
483 of the wild type like 500 bp bands in the reverted colonies indicates the restoration of wild type
484 genotype. The wild type like bands in SPV lanes are indicative of revertants in the broth culture.
485 (D) Representative image showing restoration of G-hexamer of *wxoA* in reverted colonies
486 isolated from SPVs which exhibited G-heptamer. Snippet from multiple sequence alignment
487 for the sequence obtained for PCR product of the region 3 containing the G-hexamer (indicated
488 in red colour) of *wxoA*. Genomic DNA was isolated from wild type BXO43, SPV31 and three
489 independent reverted colonies from SPV31. Similar results were obtained for all SPVs that
490 exhibited SSM at *wxoA*, viz. SPV 2, 4, 32 and 33.

491

492 **Figure 5. Bar graph showing the average lesion lengths caused by all 14 SPVs and wild**
493 **type BXO43.** The Xoo strains were clip inoculated on 60-80 days old TN1 rice leaves and
494 lesions were measured 15 days post inoculation. Error bars represent standard deviation
495 calculated from 10 or more leaves. The different letter labelling on the bars (a, b, and c) indicate
496 a significant difference in lesion length from others using the unpaired two-tailed Student's *t*-
497 test (*p*-value < 0.01). The experiment was repeated three times and similar results were
498 obtained.

499

500

501 **Table 1.** Complementation analysis of the non-mucoid phenotype of the 14 SPVs using
502 genomic DNA library clones.

Cosmid	Cluster	SPVs in which mucoid phenotype is restored
pSD1	EPS biosynthetic cluster (<i>gum</i> operon)	15
pSD5	LPS O-antigen biosynthetic cluster	1, 2, 3, 4, 5, 11, 12, 16, 22, 26, 31, 32, 33

503

504

505

506

507 **Table 2.** Characteristics of IS element insertions in SPVs.

SPV	Location of insertion (Gene, bp)	IS element	Orientation of transposase gene with respect to the native locus gene	Target site duplication sequence
22	<i>wxoA</i> , 740bp	<i>ISXoo13</i>	Opposite	AATTTATG
11	<i>wxoB</i> , 1714bp	<i>ISXo1</i>	Opposite	TTAG
12	<i>wxoB</i> , 1714bp	<i>ISXo1</i>	Same	TTAG
1	<i>wxoC</i> , 129bp	<i>ISXo1</i>	Same	TTAG
26	<i>wxoC</i> , 252bp	<i>ISXo1</i>	Opposite	CTAG
16	<i>wxoC</i> , 529bp	<i>ISXo2</i>	Same	TTTCTTTT
15	<i>gumB</i> , 489bp	<i>ISXo2</i>	Opposite	AAGATGAT

508

509

510 **Table 3.** The reversion phenotypes observed in 14 SPVs.

SPV strains	Phenotype
11, 12, 16, 26, 31, 32, 33	Reverting
2, 4	Slow reverting
1, 3, 5, 15, 22	Non-reverting

511

512

513 **Table 4.** Nature and location of variations observed in all 14 SPVs.

SPV	Phenotype	Location of variation	Nature of variation
2	Slow reverting	<i>wxoA</i> , 506bp	SSM, Insertion of G at G hexamer
4	Slow reverting	<i>wxoA</i> , 506bp	SSM, Insertion of G at G hexamer
31	Reverting	<i>wxoA</i> , 506bp	SSM, Insertion of G at G hexamer
32	Reverting	<i>wxoA</i> , 506bp	SSM, Insertion of G at G hexamer
33	Reverting	<i>wxoA</i> , 506bp	SSM, Insertion of G at G hexamer
22	Non-reverting	<i>wxoA</i> , 740bp	<i>ISXoo13</i> insertion
11	Reverting	<i>wxoB</i> , 1714bp	<i>ISXo1</i> insertion
12	Reverting	<i>wxoB</i> , 1714bp	<i>ISXo1</i> insertion
1	Non-reverting	<i>wxoC</i> , 125bp	<i>ISXo1</i> insertion
26	Reverting	<i>wxoC</i> , 252bp	<i>ISXo1</i> insertion
16	Reverting	<i>wxoC</i> , 529bp	<i>ISXo2</i> insertion
15	Non-reverting	<i>gumB</i> , 489bp	<i>ISXo2</i> insertion
5	Non-reverting	<i>wxoA</i> , 701bp	Uncharacterised insertion
3	Non-reverting	<i>wxoA</i> , 647bp	Stop codon at 216aa position (C → T)

514