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ABSTRACT

Background: Childhood maltreatment exposure (CME) increases the risk of adverse long-term
health consequences for the exposed individual. Animal studies suggest that CME may also
influence the health and behaviour in the next generation offspring through CME-driven
epigenetic changes in the paternal germ line. The contribution of paternal early life stress on

the health of the next generation in humans is not fully elucidated.

Methods: In this study, we measured paternal CME using the Trauma and Distress Scale (TADS)
questionnaire and mapped sperm-borne sncRNAs expression by small RNA sequencing (small
RNA-seq) and DNA methylation (DNAme) in spermatozoa by reduced-representation bisulfite
sequencing (RRBS-seq) in males from the FinnBrain Birth Cohort Study. The study design was
a (nested) case-control study, high-TADS (TADS > 39, n = 25 for DNAme and n = 14 for small
RNA-seq) and low-TADS (TADS <10, n =30 for DNAme and n = 16 for small RNA-seq)). Groups
were compared to identify specific epigenetic signatures associated with TADS levels in the

spermatozoa of participants.

Results: Compared to the control group, high CME was associated with altered sperm sncRNA
expression and DNAme profiles. Particularly, we identified several tRNA-derived small RNAs
(tsRNAs) and miRNAs with markedly changed levels in males with high CME. DNA methylation
analysis identified several genomic regions with differentially methylated CpGs between
groups. Notably, we identified two epigenetic marks related to brain development with distinct
profiles between CME and controls, the miRNA hsa-mir-34c-5p and differential methylation of

the region in proximity of FSCN1.

Conclusions: This study provides further evidence that early life stress influences the paternal
germ line epigenome and supports a possible contribution in the development of the central

nervous system of the next generation.


https://doi.org/10.1101/2023.04.27.538231
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.27.538231; this version posted April 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Adverse childhood experiences (ACEs) include harms that affect children indirectly through
their living environments (e.g. parental conflict, substance abuse, or mental illness) or directly
(abuse and neglect). The direct harms are commonly described as childhood maltreatment
exposure (CME). CME is highly prevalent, as shown by a recent systematic review and meta-
analysis that reported a pooled prevalence of ca. 23% in Europe and the U.S. for adults who
reported at least one ACE (Hughes et al., 2021). Worldwide, as many as 12% of adults report a
history of childhood sexual abuse, 23% of childhood physical abuse, and 36% of emotional
abuse (Stoltenborgh, Bakermans-Kranenburg, Alink, & IlJzendoorn, 2015). ACEs have
numerous adverse consequences for later health, via a range of hormonal, metabolic and
immunological pathways (Soares, Rocha, Kelly-Irving, Stringhini, & Fraga, 2021), especially for
mental health outcomes (Sara & Lappin, 2017; Stoltenborgh et al., 2015). In addition to
affecting health later in life (Waehrer, Miller, Marques, Oh, & Harris, 2020), accumulating
evidence indicate that paternal ACEs / CME may also affect the health of the next generation
(Dickson et al., 2018; Moog et al., 2018; Roberts et al., 2018; Scorza et al., 2019; Yehuda &
Lehrner, 2018).

Animal studies of paternal inheritance induced by early life stress have shown that advert
psychological exposures change the epigenetic marks in sperm and the metabolic and
behavioural phenotype of the offspring (J Bohacek et al., 2015; Johannes Bohacek &
Rassoulzadegan, 2019; K. Gapp et al., 2020; Katharina Gapp et al., 2014; Kretschmer & Gapp,
2022). The commonly recognized epigenetic marks are DNA methylation, histone
modifications, and expression of small non-coding RNAs (sncRNA) (Ghai & Kader, 2022;
Maamar, Beck, Nilsson, McCarrey, & Skinner, 2022; Nestler, 2016; Wang, Liu, & Sun, 2017).
When carried in gametes, these epigenetic marks have the potential to change the early
embryonic developmental trajectory and affect offspring phenotype. Numerous studies have
identified a link between paternal exposure to a plethora of physical environmental exposures
like toxins, cigarette smoking, physical activity, and nutritional stress and changes in sperm
epigenome or altered offspring phenotype (Ghai & Kader, 2022; Senaldi & Smith-Raska, 2020).
However, the association between early-life psychological stress and epigenetic changes in

spermatozoa remains unclear.
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To our knowledge, three human studies have established a link between paternal early-life
stress and changes in the sperm epigenome have been published to date. In the first, childhood
Trauma Questionnaire (CTQ) and Conflict Tactics Scales (CTS) were used to quantify CME in 34
males (17 men exposed to high, 5 men to medium, and 12 men to no childhood abuse), an
association was found between DNA methylation and CTQ / composite abuse score (Roberts
et al.,, 2018). In this cohort, twelve DNA regions were differentially methylated between
individuals with different childhood abuse (high vs. low), including genes associated with
neuronal function (MAPT, CLU), fat cell regulation (PRDM16), and immune function (SDK1)
(Roberts et al., 2018). In the second study, CME was quantified using adverse childhood
experiences (ACEs) screen; and comparing a group of individuals with the highest ACE score to
individuals with the lowest score, a negative correlation was found between levels of multiple
miRNAs of the miR-449/34 family and ACE scores (Dickson et al., 2018). In the third study
(preprint at the time of writing), there was a longitudinal approach that uses three different
age groups. They first report that miR-16 and miR-375 levels are higher in the serum of children
exposed to paternal loss and maternal separation (ages 7-12 years), demonstrate similar
results in another sample of 18-25-year-olds, and finally used the CTQ to quantify ACEs and
find that the same miRNA have lower expression in sperm of adult men exposed to higher CME
at ages 21-50 years (Jawaid et al., 2020). Interestingly, they also replicate prior findings by

Dickson et al. on lower levels of miR-34 but not miR-449.

In the current study, we measured CME with Trauma and Distress Scale (TADS) questionnaire
and quantified sperm sncRNA profiles and DNAme from males that were divided into 2 groups,
a control group with low TADS scores (TADS < 10) and a case group with high TADS scores
(TADS > 39) to identify between-group differences in CME-associated features in the sperm
epigenome. Following the primary analyses, we also performed replication analyses to prior
work where possible. This was an exploratory study and there were no a priori hypotheses on
the strength or direction of the possible associations between CME and sperm DNA

methylation and sncRNA profiles.
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MATERIAL AND METHODS

The study was conducted in accordance with the Declaration of Helsinki and was approved by
the Ethics Committee of the Hospital District of Southwest Finland (15.3.2011 §95, ETMK:
31/180/2011). We followed the Strengthening the Reporting of Observational Studies in
Epidemiology (https://www.strobe-statement.org/) reporting guideline (case-control studies

v4).

Participants
Participants were recruited at gestational week (gwk) 12 from maternity clinics in Southwest
Finland from 2011 to 2015 to take part in the FinnBrain Birth Cohort Study

(http://www.finnbrain.fi), which was established to prospectively investigate the effects of

early life stress, including prenatal stress exposure, on child brain development and health. The
cohort entails 3808 families and included full trios (mother, father, child) on approximately half

of the families (L. Karlsson et al., 2018).

The division into case and control groups was based on previously collected data. CME was
assessed by questionnaires filled in by the fathers-to-be following the initial recruitment
approximately at gwk 14 (2011 - 2015). There was no case - control matching during
recruitment although the approach and analyses in the current study are based on case -
control design. The new data were collected during visits that took place between 02 /2019 —
07 / 2021. The recruitment rate for the visits has been 59.6%, which is typical for our cohort

study. Until the time of writing, this has been a cross-sectional study.

Altogether 75 males participated in the current study. The final sample size was determined
by the available resources. We processed sperm samples from 58 individuals with TADS scores
ranging between 0 and 78. 55 samples were analyzed by RRBS-seq to identify DNA methylation
patterns, and 30 were analyzed by small RNA-seq (27 samples overlapping). The flowchart of

participant selection is presented in Figure 1.

The bias assessment is as follows: there was no systematic monitoring for selection bias during

recruitment as the primary recruitment for the cohort entailed a population representative
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sample and was fairly uniform on e.g., for participants’ age range; we strived to quantify the
influence of potential confounding factors by including multivariate statistical tests;
questionnaire-based measurements are prone to measurement error and TADS questionnaire
to recall bias, but these limitations apply to all similar studies; finally we performed the
processing of semen samples with utmost care and where possible assured their quality to

reduce measurement errors.

The demographics and questionnaire data

Data were mostly obtained over the prenatal period and data collection was continued
postnatally. Information about the parents” CME was collected using the Trauma and Distress
Scale (TADS) at gwk 12 (Salokangas et al., 2016). The TADS comprises five core domains:
emotional neglect, emotional abuse, physical neglect, physical abuse, and sexual abuse. In this
study, we calculated the cumulative exposure to early life stress events of the infants’ fathers
and mothers by the age of 18 years (direct sum scores). Of note, the TADS scores have two
possible derived values so that one can use direct sum scores or sums of factor scores
(Salokangas et al., 2016). Here we used the direct TADS sum scores as the primary variable to
perform case-control divisions and statistical testing, but we have used the factor sum scores
in our prior article (H. Karlsson et al., 2020) The direct and factor sum scores were highly

correlated (in our sample Spearman’s rho = 0.954, p < 0.001).

Depressive symptoms were assessed by implementing the Edinburgh Postnatal Depression
Scale (EPDS) (Cox, Holden, & Sagovsky, 1987). This 10-item questionnaire is scaled from 0 to
30 points with a bigger score denoting increased symptom severity. Anxiety symptoms were
quantified with the anxiety subscale of Symptom Checklist 90 (SCL-90) (Holi, Sammallahti, &
Aalberg, 1998). The SCL-90 anxiety subscale consists of 10 items with a total score range of 0
to 40 with larger scores denoting increased symptom severity. Alcohol use was quantified with
a structured questionnaire (Danielsson et al., 2022), and the derived variable we chose was
mean alcohol use per week (1 unit = 12 g of alcohol). Smoking was quantified with a yes / no
binary variable. BMI was obtained from height and weight measurements performed during

the research visits that are described below.

The study visits
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Participants that matched the case-control criteria (control group TADS < 10; and case group
TADS > 39) were invited to a separate study visit. During the visit fathers filled in questionnaires
for smoking and alcohol use habits, depressive symptoms (EPDS), and anxiety symptoms (SCL-
90). They also gave additional biological samples (not reported here). Weight and height were
measured for defining body mass index (BMI), and waist circumference was measured

following standard procedures. Sperm samples were collected before or at the visit.

The sperm sample collection

Participants were allowed two options for delivering the semen samples following 2-7-day
abstinence from ejaculation: either collecting the sample at home and delivering it to the
research site at the start of the visit or giving the sample during the visit. The semen was
collected by masturbation. Obtained samples were incubated at +37°C for 5-30 min for
liquefaction, and spermatozoa were purified by centrifuging through 50% Puresperm
(Nidacon) solution at 400xg for 15 min. The sperm pellet was subsequently washed with mild
somatic cell lysis buffer (0.01% SDS, 0.005% Triton X-100) to eliminate remaining somatic cell
contamination. The purity of the samples was assessed by light microscopic analysis. The total
number of spermatozoa before purification ranged between 40 and 800 million (only one high-
TADS sample had less than 40 million spermatozoa), and after purification, all samples were
pure with only very minor somatic cell contamination (Supplementary Figure 1A). Sperm
purification was conducted promptly within the same day and purified samples were frozen

for storage.

Small RNA sequencing analysis

Total RNA was extracted from 14 high-TADS (TADS > 39) and 16 low-TADS (TADS < 10) samples
(10 million spermatozoa per sample) by TRIzol LS (Invitrogen) containing tris(2-
carboxyethyl)phosphine (TCEP, Sigma-Aldrich) as a reducing agent to enhance sperm nucleus
lysis, and precipitated with isopropanol in the presence of 2 ul of GlycoBlue (15 mg/ml,
Invitrogen). After DNasel treatment (Sigma-Aldrich) without heat inactivation, RNA was re-
extracted with Trizol LS to remove DNasel. The quality of the RNA sample was analyzed by
Bioanalyzer (Agilent RNA 6000 Pico Kit). Bioanalyzer analysis validated the lack of somatic cell
contamination, as demonstrated by the absence of ribosomal RNA peaks and low RIN values

(2-3) (Supplementary Figure 1B). The RNA yield from 10 million spermatozoa was 10-200 ng.
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Libraries for small RNA-seq were prepared using NEB Next® Multiplex Small RNA kit (New

England Biolabs), and the libraries were sequenced by NovaSeq 6000 system (Illumina).

The quality of  the reads was assessed using FastQC (v0.11.9)

(http://www.bioinformatics.babraham.ac.uk/projects/fastgc/). The adapters and bad quality

reads were trimmed off using cutadapt (v3.5) (Martin, 2011). SPORTS1.1 (Shi, Ko, Sanders,
Chen, & Zhou, 2018) was used to align and map the 15-45 nucleotides long reads first to the
human genome (hg38), then subsequently to ribosomal RNAs (rRNAdb), miRNAs (miRBase
v22), YRNA mapping and transfer RNAs (tRNA) (GtRNAdb v2.0) using software default settings.
Sequences mapped to tRNAs were annotated as 5’ end-, 3° end- or 3° CCA end-derived
according to their location on the parental tRNA sequence. All sperm samples showed typical
size distribution of averaged sncRNA reads, including a peak at 21-23 nt for miRNAs, a peak at
31-32 nt for YRNAs, a peak at 31-32 nt for tRNA-derived small RNAs (tsRNAs), and a peak at 31-
33 nt for PIWI-interacting RNAs (piRNAs) (Supplementary Figure 1 C, D). All sequences mapping
to rRNAs, miRNAs, and tRNAs were extracted from SPORTS1.1 as a text output file. For piRNA
analysis, reads were mapped to piRNA clusters (Ha et al., 2014) in the Human genome (UCSC:
Hg38) using HISAT2 (v2.1.0) (Kim, Paggi, Park, Bennett, & Salzberg, 2019), and assigned and
counted using featureCounts (v2.0.0) (Liao, Smyth, & Shi, 2014) against reference gtf files.
Altogether, we identified unfiltered normalized reads mapping to a total of 838 miRNAs, 266
tsRNAs, 6195 piRNA genomic clusters, 8 rRNA genes (12S-rRNA, 16S-rRNA, 18S-rRNA, 28S-
rRNA, 455-rRNA, 5.85-rRNA, 55-rRNA, other-rRNA) and 4 YRNA genes (YRNA1, 3, 4 and 5). Raw
read counts were filtered to a minimum of 10 total counts across all 35 samples and

normalized.

Methodological differences to prior work: In contrast to the earlier study by Dickson et al. that
used miRNA microarrays for initial screening of differentially expressed miRNAs (Dickson et al.,
2018), we chose a genome-wide high throughput approach and used small RNA-seq to identify

differentially expressed miRNAs in men exposed to high CME compared to men with low CME.

RRBS library preparation
Sperm DNA was extracted from ~ 10 million spermatozoa/sample by lysing cells with RLT+

buffer (Qiagen) with 1% Beta-mercaptoethanol for 15 min., and then passing the lysate
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through AllPrep DNA Mini Spin Columns (Qiagen) and proceeding with manufacturer’s
instructions. The quality control was performed by measuring the concentration of DNA
samples on a Qubit fluorometer using Qubit dsDNA High Sensitivity Assay Kit (Thermo Fisher).
The reduced-representation bisulfite sequencing (RRBS-seq) was performed by the Single-Cell
Omics platform atthe Novo Nordisk Foundation Center for Basic Metabolic Research,
University of Copenhagen. RRBS libraries were constructed from 100 ng genomic DNA using
the Ovation® RRBS Methyl-Seq library preparation kit (Tecan) according to the manufacturer’s
instructions. Final libraries were quantified by Qubit (Thermo Fisher) and quality checked on
Bioanalyzer (Agilent). Pooled libraries were subjected to either a 101-bp single-end sequencing
on a NovaSeq 6000 platform (Illumina) or a 76-bp single-end sequencing on a NextSeq 500

platform (lllumina). A total of 5.5 billion reads were generated.

Methodological differences to prior work: The previous study by Roberts et al. (Roberts et al.,
2018) identified differentially methylated sperm DNA using methylation BeadChips, but we
chose a sequencing-based approach and used RRBS. Of note, these methods have been shown

to cover different CpG loci (Carmona et al., 2017).

DNA methylation analysis

FASTQ files were first generated using bcl2fastq (v. 2.20.0), and subsequently processed by a
python script to add the corresponding UMI reads to the FASTQ read headers. As described in
The Analysis Guide for NUuGEN Ovation RRBS Methyl-Seq

(https://github.com/nugentechnologies/NuMetRRBS), the FASTQ files were then trimmed

using Trim Galore! (v. 0.6.4) with default settings and further processed using the
trimRRBSdiversityAdaptCustomers.py script to remove diversity adapter sequences.
Methylation coverage was then extracted using Bismark by aligning reads to the GRCh38
assembly. Here, the deduplicate_bismark step was performed using the --barcode option to
deduplicate reads based on the UMIs. Furthermore, the --ignore 3 parameter was used in the

methylation extraction step to disregard restriction enzyme sites.

The resulting methylation coverage files were then analysed using the BiSeq R package (v.
1.36.0). In brief, all 55 sperm DNA samples were split into 2 groups, low-TADS (TADS < 10, n =
30) and high-TADS (TADS > 40, n = 25). As described in the BiSeq user guide
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(https://bioconductor.org/packages/release/bioc/vignettes/BiSeq/inst/doc/BiSeq.pdf),

clusters of CpGs along the genome were defined according to the following criteria: a minimum
of 20 CpG sites with coverage of >80 % in both TADS-groups and a maximum distance of 100
bp. The methylation level was then smoothed within each CpG cluster, weighted by the
coverage of the individual CpGs. To reduce bias due to unusually high coverage, the coverage

for each CpG was limited to the 90% quantile.

Statistical analyses

In line with prior work, we used between-group comparisons to identify features associated
with CME in the sperm epigenome, comparing those with low to those with high CME. These
discovery analyses were followed by multivariate analyses that included potential confounders
in partial correlation models. Third, we performed replication analyses of Dickson et al. 2018.
The multivariate and replication analyses were performed with JASP 0.16.3 (https://jasp-
stats.org/). Most variables reported in Table 1 had non-normal distributions and as this applied
to the majority of sperm epigenetic variables as well, we thus used non-parametric statistics in

multivariate and replication analyses.

Discovery analyses (case vs. control comparisons)

Differential expression analysis of sncRNAs was performed using DESeq2 (v1.36.0) which is
based on a negative binomial generalized linear model (Love, Huber, & Anders, 2014). RsSRNA
and YRNAs were analyzed using a Wilcoxon-rank exact test. All 30 samples were split into 2
groups, low-TADS (TADS < 10, n = 16) and high-TADS (TADS > 39, n = 14). Low-TADS group was

defined as the control group.

For DNA methylation, 55 sperm DNA samples were split into 2 groups, low-TADS (TADS < 10, n
= 30) and high-TADS (TADS > 39, n = 25). The statistical tests employed by BiSeq, based on a
beta-binomial generalized linear model (GLM), were used to detect CpG clusters and individual
CpG sites that were differentially methylated between the two TADS-groups in a false-
discovery rate (FDR)-controlled manner. Furthermore, the significant CpG sites were used to
construct differentially methylated regions (DMRs), which marks regions of significant hyper-

or hypomethylation within each TADS-group. Finally, CpGs were annotated according to their
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genomic context, i.e. present in a promoter (within 3kb of the TSS), exon, intron, or as a distal

intergenic CpG.

Multiple comparison correction for both scnRNA and DNAme analyses was carried out using

Benjamini and Hochberg for sncRNA and DNAme analyses (Benjamini & Hochberg, 1995).

Multivariate analyses (case vs. control comparisons with covariates)

We performed three different multivariate analyses with partial correlations testing for the
association between low vs high CME: A) controlling for semen sample volume and sperm
concentration; B) controlling for health characteristics including age, BMI, smoking (yes / no),
average alcohol use per day, as well as depressive and anxiety symptoms at the time of the

sperm sample collection; C) controlling for covariates in A + B.

Replication analyses of prior work (miRNA)

We also performed replication analyses of Dickson et al. 2018 for the sncRNA data by exploring
the associations between miRNA that their work implicated important and ACE exposure. For
this, we looked at between-group differences (low vs. high ACE exposure; and Spearman
correlations between CME (TADS scores) and miRNA expression levels for hsa-miR-34c-5p and
hsa-miR-449a. We chose to use the TADS factor scores here as the variable had a “more
normal” distribution (correlation to TADS sum score Spearman rho = 0.954). We extended
these analyses also to partial correlation models where we controlled for age and BMI at

measurement, and smoking (yes / no).

RESULTS

We analyzed the association of the CME as quantified by TADS scores with the two indices of
sperm epigenome: the abundance of sncRNAs and levels of DNA methylation. The study

enrolment is presented as a flowchart (Figure 1), demographics are reported in Table 1.

Childhood maltreatment exposure is associated with modified sperm sncRNA profile
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The analysis of small RNA-seq data from 14 high-TADS and 16 low-TADS sperm samples showed
that the abundance of five analysed classes of sncRNAs (miRNAs, tsRNAs, rsRNAs, YRNAs and
PiRNA clusters) was generally similar between high-TADS and low-TADS groups (Figure 2A). The
vast majority of sncRNA reads originated from rsRNAs and YRNAs (Figure 2A). The reads
derived from YRNA and rRNA genes were similarly distributed in high- and low-TADS sperm
samples, with some differences in the relative number of reads derived from 12S-rsRNA, 16S-
rsRNA, 5.8-rsRNA, RNY1 and RNY4 between high- and low-TADS samples (Supplementary
Figure 1E).

The differential expression analysis of individual miRNAs, tsRNAs, and piRNA clusters revealed
significant differences in high-TADS vs. low-TADS sperm (Figure 2). A total of 29 miRNAs, 15
tsRNAs, and 3 piRNA clusters were downregulated in high-TADS sperm compared to low-TADS
sperm (log2FC < -1.0 and Paq; < 0.05), while 18 miRNAs, 6 tsRNAs, and 1 piRNA cluster were
upregulated (log2FC > 1.0 and P.qj; < 0.05) (Figure 2 B-D). The expression levels of three tsRNAs
and four miRNAs showing the most significant changes (log2FC > 2, and P.q; < 0.01) and the
number of normalized counts among all samples was above the threshold “baseMean > 10”.
Interestingly, hsa-miR-34c-5p, which was earlier shown to be downregulated in sperm samples
of individuals with high ACE scores (Dickson et al., 2018; Jawaid et al., 2020), was also

downregulated in our discovery analysis.

Childhood maltreatment exposure is moderately associated with modified sperm CpG
methylation

To investigate the possible association between early life stress experience and sperm DNA
methylation, we performed RRBS-seq to analyze the methylation levels of CpG-rich regions.
We found only very modest differences between high- and low-TADS sperm samples. A total
of 45 differentially methylated CpGs were unveiled with FDR-corrected p < 0.15. The most
significant differences (FDR p < 0.15, abs (meth.diff) > 0.1) were observed for eight CpGs within
chromosome 7 (Figure 3). The identified CpGs were all in the same cluster located in the
intergenic region, and the closest gene to this differentially methylated region (DMR) is the
actin-bundling protein Fascin 1 (FSCN1), which has been shown to control the migration of

neuroblasts (Sonego et al., 2013). While this DMR is distant from the FSCN1 gene and not
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located within a mapped enhancer region, it may affect embryonic neurogenesis after

fertilization.

CME associations are generally robust potential confounders in multivariate analyses

We identified the following potentially relevant covariates and confounders, based on prior
literature, that were also measured in the current study: sperm sample volume, sperm
concentration, age, BMI, smoking, alcohol use, depressive symptoms, and anxiety symptomes.
The multivariate statistical analyses showed that the associations that were implicated in the
discovery analyses were very robust to include covariates. Most of the associations remained

statistically significant even after controlling for all potential confounders.

Expression of hsa-miR-34c-5p is robustly associated with CME

Some associations between TADS scores and miRNA expression levels were previously
identified (Dickson et al. 2018). To investigate the robustness of our discoveries, we
investigated to which extent our sncRNA expression results overlapped with the Dickson et al.
study. Interestingly, we also found a negative association between ACE score and hsa-miR-34c-
5p with a similar effect size but found that hsa-miR-449a levels were not different between
groups (Figure 4; replicating Figure 2 plots of Dickson et al.). However, we replicated the tight
association between the relative expression of the two miRNAs (Figure 4). We then performed
partial correlation analyses for the depicted associations and controlled for age and BMI at
measurement, and smoking (yes / no). The associations were as follows: hsa-miR-34c-5p vs.
TADS score (r =-0.528, p =0.001); hsa-miR-449a vs. TADS score (r =-0.185, p = 0.339). Of note,
the association of hsa-miR-34c-5p vs. TADS score was slightly weaker when controlling for all
covariates (r = -0.420, p = 0.073). Second, we also performed corresponding between-group
comparisons. We replicated the lower expression levels in ACE exposed group for hsa-miR-34c-
5p (W = 140, p = 0.017, rank biserial correlation [rbc] = 0.538) and that there were no
differences in expression levels of hsa-miR-152-3p and hsa-miR-375-3p. Our analyses thus

show that sperm expression of hsa-miR-34c-5p is robustly negatively associated with CME.

DISCUSSION
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Here, we report that CME is associated with multiple epigenetic marks in sperm. We identified
differential expression of numerous sncRNAs and a DMR located in the proximity of the FSCN1
gene in males with high CME. We found an interesting overlap with previous reports for
miRNAs, particularly miR-34c-5p, although, most of our results were distinct from prior reports.
This may not be surprising given that the methods for quantifying the epigenome and early life
stress exposures, i.e., the exposure and outcomes varied between the studies. Our study
provides novel insight into the relationship between early life psychological stress and altered
sperm epigenome, with possible implications for development in the next generation

offspring.

Questionnaires of early life stressors

Early life adversity and stress are usually assessed retrospectively, and such measures are
inherently prone to recall bias and they are unable to capture exposures for the youngest ages,
e.g. under the age of three years. It is clear, however, that these questionnaires capture useful
information about the cumulative stressors that have been present during childhood. Attesting
to this ACEs have been associated with multiple adverse health outcomes (Bellis et al., 2019;

Hughes et al., 2017, 2021; Sara & Lappin, 2017).

We measured early life stress with TADS questionnaire that captures five dimensions of neglect
and abuse CME that are also part of the most widely adopted CTQ. The other frequently
adopted option is to use questionnaires that quantify ACEs. For instance, the ACE Study
Questionnaire includes yes / no answers to 10 questions involving participants’ experiences at
home until the age of 18. Five of the questions probe CME: physical abuse, verbal abuse, sexual
abuse, physical neglect, and emotional neglect which are also the main features of CTQ and
TADS questionnaires. The other five questions probe adversity of family members (that has
likely a negative influence on the exposed individual): a caretaker with alcoholism or alcohol
abuse, experiencing domestic violence, caretaker incarceration, a family member diagnosed
with a mental illness, and the loss of a caretaker through divorce, death, or abandonment
(Dickson et al. 2018). In summary, there are many options for quantifying ACEs and CME
(Thabrew, Sylva, & Romans, 2011), and while most of them probe the five main types of
childhood maltreatment, there is very little knowledge on similarities and differences between

the questionnaires (Thabrew et al., 2011).
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Epigenetic measures

The stability of the sperm epigenome is not well known. Indeed, human studies frequently use
cross-sectional data, which creates obvious limitations for quantifying measurement error (this
limitation applies to the current study as well). Roberts et al. (Roberts et al., 2018) report an
intra-class correlation coefficient (ICC) between replicate sperm samples taken ca. 3 months
apart for the DNAme profiles that were associated with abuse exposure so that ICC values were
higher than 0.7 for 90% of implicated sites. Dickson et al. did not collect replicate samples
(Dickson et al. 2018). The field would benefit from larger-scale studies that describe the
“normative” sncRNA and DNAme profiles in the sperm and describe, which components are
stable and which ones are more dynamic across months and longer-term e.g., over several
years. Commonly used measures of sperm cell epigenetics, small RNAs and DNA methylation
(DNAme) patterns, are modifiable through lifestyle factors, health, and environmental
exposures (Ghai & Kader, 2022). Correspondingly, if ACEs cause epigenetic programming in
germ line cells that are relevant to intergenerational inheritance, most of them should be
relatively stable following the exposure and they would not increase or decrease in time, which
is in contrast to many other studied exposures such as cigarette smoking, exercise, acute

stress, diet, and obesity.

Possible links from sperm epigenome to offspring brain development

Although epigenetic mechanisms following fertilization related to DNAme and sncRNAs are
likely essential in typical development and may be closely intertwined (Ghai & Kader, 2022;
Kretschmer & Gapp, 2022), the most intriguing and robust evidence supports sncRNAs in
conveying epigenetic inheritance (Kretschmer & Gapp, 2022; Ostermeier, Miller, Huntriss,
Diamond, & Krawetz, 2004; Sendler et al., 2013). Rodent studies have shown
transgenerational inheritance of paternal ACEs via changes in miRNA profiles (Johannes
Bohacek & Rassoulzadegan, 2019; K. Gapp et al., 2020; Katharina Gapp et al., 2014; Luo, Tan,
Li, & Ding, 2022; Rodgers, Morgan, Leu, & Bale, 2015). Similar effects have been reproduced
without paternal exposure by injecting the implicated miRNA into zygotes (Dickson et al.,

2018) (Katharina Gapp et al., 2014; Rodgers et al., 2015).

Prior work implicated that ACEs were negatively associated with the abundance of miRNAs

449/34 in sperm (Dickson et al., 2018; Jawaid et al., 2020). Importantly, these miRNAs are


https://doi.org/10.1101/2023.04.27.538231
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.27.538231; this version posted April 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

unexpressed in oocytes but transmitted to them upon fertilization (Dickson et al., 2018; Yuan
et al., 2015), and are key regulators of brain development (Grad et al., 2022; Jauhari, Singh,
Singh, Parmar, & Yadav, 2018; Mollinari et al., 2015; Wu et al., 2014), including fetal human
brain development (Rao et al., 2016; Veng et al., 2017), and possibly also later in development
(Morgunova & Flores, 2021). Our analyses provided partial replication for prior work by
implicating a negative association between ACEs and miR-34 (Figure 4). As a novel and
interesting finding, we identified 21 tsRNAs which had differential abundance in high- vs low-
CME participants. In addition to miRNAs, tsRNAs have also been linked to epigenetic
inheritance and could be a biomarker for CME in line with miRNAs (Park, Ahn, Shin, Kim, &

Chang, 2020).

Prior studies and the current study identified sperm epigenetic features that could potentially
have effects on offspring brain development, which ties in with our recent neuroimaging
studies that link paternal CME with offspring neonate brain structure (H. Karlsson et al., 2020;
Tuulari, Kataja, Karlsson, & Karlsson, 2022; Tuulari et al., 2023). Several studies, including from
our group, have identified that lifestyle factors remodel DNA methylation near genes
controlling the development of the brain in human sperm (Donkin et al., 2016; Ingerslev et al.,
2018), supporting that genomic regions involved in brain development are hotspots of
epigenetic variation in response to environmental stress. While intergenerational effects
carried by the sperm epigenome in humans have not been definitively demonstrated, an
altered gametic epigenome after CME may influence the development of the central nervous

system and modulate the behaviour of the next generation offspring.

Sperm epigenome as a biomarker of childhood ACEs / CME

Epigenetics is a nascent field with typically small sample sizes that are related to high costs and
the need for special infrastructure. This is not too different from the early stages of fields such
as genetics and neuroimaging. Within this context, collecting very large data sets is not always
feasible. Future studies would benefit from including replicate sperm samples to at least part
of the participants to quantify the stable / repeatable elements in both early life stress
exposure and control groups. This could potentially be used to identify the most relevant
measures of interest for later analyses and greatly decrease the need for multiple comparisons

correction. Early life stressors are challenging to quantify reliably, and it may well be that the
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effects of the exposures are different for different ages, for instance before and after puberty.
Prospective cohorts that have detailed information over childhood and measures of early life
stressors, including ACEs and CME, could share light on the matter by including sperm data

collection e.g., during early adulthood.

Roberts et al. were able to estimate a parsimonious epigenetic marker for childhood abuse
using an elastic net model (penalized regression), which identified three DNAme probes that
predicted high vs. no childhood abuse in 71% of participants (Roberts et al., 2018). Such
findings are very promising and may lead to parsimonious predictive models in the future.
Future mechanistic studies should advance our understanding of how DNAme are affected by
the underlying genome, and how sncRNAs and DNAme interact in causal pathways following
fertilization. Dickson et al. combined data from human and animal models and were able to
show that the effects of their CSI stress paradigm implicate similar sncRNA profiles in mice and
that these effects are transmitted to embryos and can thus have inter/transgenerational
effects (Dickson et al., 2018). Studies that focus on RNA are much better able to measure such
epigenetic signatures since DNA methylation undergoes erasure and reestablishment following
fertilization, which makes studying the immediate post-fertilization effects challenging (Ghai &

Kader, 2022).

Practical implications

Intergenerational transmission of well-being, health and disease is an important research topic
with many implications for health care and societies. It has been postulated that a key
component of ACEs, CME is the single most important preventable risk factor for future mental
health (Bellis et al., 2019; Hughes et al., 2017, 2021; Sara & Lappin, 2017). CME has also been
shown to have effects on health outcomes even when genetic confounding is taken into
account (Baldwin et al., 2023). Total annual costs attributable to ACEs were estimated to be
USS581 billion in Europe and $748 billion in North America (Bellis et al., 2019; Hughes et al.,
2021). Over 75% of these costs arose in individuals with two or more ACEs. Elucidating the
mechanisms of intergenerational epigenetic inheritance in humans should be of high priority.
Finding interventions to intergenerational effects that pass from one generation to the other

could potentially spare future generations from the exposures of their ancestors.
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Strengths and limitations

We used the largest sample size to date for identifying epigenetic marks relates to CME, but
the sample size is still modest and larger sample sizes are needed in the future. Measurement
error and test-retest reliability of sperm epigenome were not quantified, which could be done
with repeated measurements of sperm epigenome. CME measures were obtained
retrospectively and are prone to recall bias, but CME measures are widely used and provide
the only tangible way of assessing childhood experiences. All participants were Scandinavian /
Caucasian, which makes the source population homogenous but necessitates the inclusion of

more ethnically diverse populations in the future.

Conclusions

In the current study, multiple sncRNAs were implicated to have associations with CME.
Importantly, for the majority of the sncRNAs, the associations were robust to statistically
controlling for semen, sperm, and health-related factors. This is promising for future studies
since these findings imply that earlier exposures, even from as far as childhood, can leave an

epigenetic mark in sperm cells that is not sensitive to later lifestyle or health.

Taken together, there are clear implications that childhood maltreatment exposure is
associated with sperm DNAme and sncRNA profiles. Our results had very little overlap with
prior reports, limited to miR-34, which is at least partly due to the variable methodology used
for defining the exposure and the epigenetic analyses. Still, this study adds to the evidence that
early life stress has influences on adult sperm epigenome. It remains crucial to assess, whether

this has ramifications for offspring outcomes in humans.
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30 subjects with sperm 55 subjects with sperm DNA
scnRNA data methylation data

Figure 1. Flowchart of the participant selection for the current study.
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Figure 2: Differential levels of sperm sncRNAs in high-TADS vs low-TADS sperm samples. (A)
sncRNA expression between high- and low-TADS samples from unfiltered data for low read
counts. One dot represents the median of normalized counts of all samples belonging to either
high- or low-TADS group. (B) MA plot displays the relationship between the log2 fold change
in high-TADS vs low-TADS samples and log2 mean expression for all miRNAs, tsRNAs and piRNA
clusters. (C) Volcano plots shows differential expression of miRNAs in high- vs low-TADS
samples. (D) Volcano plots shows differential expression of tsRNAs in high- vs low-TADS
samples. Blue dots in (C) and (D) visualize sncRNAs with a log2 fold change <- 1.0 (Padj < 0.05).
Red dots visualize the sncRNAs with a log2 fold change > 1.0 (Padj < 0.05). Only sncRNAs having

baseMean (average of the normalized count values, dividing by size) > 100 are annotated.
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Figure 3. Differential DNA methylation on chromosome 7 in high-TADS vs low-TADS sperm
samples. (A) Violin plots shows differentially methylated CpGs in high- and low-TADS samples.
Only CpGs with FDR threshold <= 0.15 and abs(meth.diff) > 0.1 are shown. (B) Heatmap shows
four CpGs from cluster 7 519 from locations 7:5611253, 7:5611254, 7:5611321, and
7:5611329. (C) Heatmap shows four CpGs from cluster 7 519 from locations 7:5611439,
7:5611440, 7:5611494, and 7:5611508. Each row in (B) and (C) represents one sample, with

blue cells corresponding to low-TADS and red cells to high-TADS samples.
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Figure 4. The associations between TADS scores and miRNA expression levels that were
identified in prior work (Dickson et al. 2018) [replicating plots in their Figure 2]. We replicated
the negative association between ACE score and hsa-miR-34c-5p, but did not replicate the

findings on hsa-miR-449a.
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Table 1. Descriptive statistics of demographics
Whole sample N = 55 Low CME N =26 High CME N =29 High/Low CME group differen
Mann Whitney U test

Continous variables Mean SD Mean SD Mean SD p Rank-Biserial
Correlation
Age (years) 38.764 5.910 36.828 4.699 40.583  6.593 0.054 -0.310
Body mass index (kg/m2) 26.197 4.057 25.869 3.912 26.790 4.357 0.589 -0.089
Waist circumference (cm) 92.095 11.184  92.369 11.824 91917 11.003 0.754 0.052
EPDS score 3.505 3.317 2.303 2.436 4.750 3.391 0.005 -0.451
SCL-90 score 3.455 3.452 2276  2.814 4917 3.741 0.002 -0.493
Average daily alcohol consumption 0.483 0.531 0.631 0.645  0.315 0.295 0.046 0.319
TADS factor sum 13.321 14350 1.034 1.017  28.167 6.631 <.001 -1.000
TADS direct sum score 24.528 22.655 4.690 2480 48500 7.553 <.001 -1.000
Semen sample volume (ml) 3.182 1.490 3.410 1.435  3.000 1.573 0.227 0.195
Sperm concentration 10exp6 / ml 113.724 84.667  109.800 78.234 107.304 85.355 0.837 0.034
Purified sperm concentration 10exp6 / ml 167.213 153.247 177.193 163.072 152.346 147.700 0.642 0.076
Categorical variables (frequencies) N N N
Educational level low 16 4 12 0.273 1.201 *
mid 17 11 6
high 22 11 11
Relationship status single 2 1 1 0.744 0.107 *
married 35 15 20
cohabitation 15 7 8
separated 3 3
0.321 0.134
Smoking Yes 19 10 9
No 36 16 20

* Kruskall Wallis test statistic
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