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Abstract

Neural networks have emerged as immensely powerful tools in predicting functional genomic
regions, notably evidenced by recent successes in deciphering gene regulatory logic. However,
a systematic evaluation of how model architectures and training strategies impact genomics
model performance is lacking. To address this gap, we held a DREAM Challenge where
competitors trained models on a dataset of millions of random promoter DNA sequences and
corresponding expression levels, experimentally determined in yeast, to best capture the
relationship between regulatory DNA and gene expression. For a robust evaluation of the models,
we designed a comprehensive suite of benchmarks encompassing various sequence types. While
some benchmarks produced similar results across the top-performing models, others differed
substantially. All top-performing models used neural networks, but diverged in architectures and
novel training strategies, tailored to genomics sequence data. To dissect how architectural and
training choices impact performance, we developed the Prix Fixe framework to divide any given
model into logically equivalent building blocks. We tested all possible combinations for the top
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three models and observed performance improvements for each. The DREAM Challenge models
not only achieved state-of-the-art results on our comprehensive yeast dataset but also
consistently surpassed existing benchmarks on Drosophila and human genomic datasets.
Overall, we demonstrate that high-quality gold-standard genomics datasets can drive significant
progress in model development.

Introduction

In eukaryotes, transcription factors (TFs) play a crucial role in regulating gene expression and are
critical components of the cis-regulatory mechanism (1-6). TFs compete with nucleosomes and
each other for DNA binding and can enhance each other's binding through biochemical
cooperativity and mutual competition with nucleosomes (7-10). While the field has made
substantial progress in characterizing regulatory mechanisms (11-19), a quantitative
understanding of cis-regulation remains a major challenge. Cis-regulatory complexity grows with
the square of the number of TFs involved due to the number of potential pairwise interactions
between TFs (6). For example, since the yeast Saccharomyces cerevisiae has about 8.5x fewer
TFs than humans (~200 vs. ~1,700) (1,20), its cis-regulatory code is theoretically about ~72x less
complex, making it an ideal system to test our understanding of eukaryotic cis-regulation.

Neural Networks (NNs) have shown immense potential in modeling and predicting gene
regulation. While different network architectures, such as convolutional neural networks (CNNSs)
(11,12,14,19,21), recurrent neural networks (RNNs) (22), and transformers (15,17,18,23), have
been used to create genomics models, there is limited research on how NN architectures and
training strategies affect their performance for genomics applications. Standard datasets provide
a common benchmark to evaluate and compare algorithms, leading to improved performance and
continued progress in the field (24). For instance, the computer vision and natural language
processing (NLP) fields have seen an ongoing improvement of NNs facilitated by gold-standard
datasets, such as the ImageNet data (24), MS COCO (25), etc. In contrast, because genomics
models are often created ad hoc for analyzing a specific dataset, it often remains unclear whether
a model’s improved performance results from improved model architecture or better training data.
In many cases, the models created are not directly comparable to previous models due to
substantial differences in the underlying data used to train and test them.

To address the lack of standardized evaluation and continual improvement of genomics models,
we organized the Random Promoter DREAM Challenge (26). Here, we asked the participants to
design sequence-to-expression models and train them on expression measurements of
promoters with random DNA sequences. The models would receive regulatory DNA sequence as
input and use it to predict the corresponding gene expression value. We designed a separate set
of sequences to test the limits of the models and provide insight into model performance. The top-
performing solutions in the challenge exceeded performance of all previous state-of-the-art
models for similar data. Our evaluation across various benchmarks revealed that, for some
sequence types, model performances are approaching the previously-estimated inter-replicate
experimental reproducibility for this datatype (13), while considerable improvement remains
necessary for others. The top-performing models included features inspired by the nature of the
experiment and the state-of-the-art models from computer vision and NLP, while incorporating
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novel training strategies that are better suited to genomics sequence data. To determine how
individual design choices affect performance, we created a Prix Fixe framework that enables
modular testing of individual model components, revealing further performance gains. Finally, we
benchmarked the top-performing DREAM models on Drosophila and human datasets, including
predicting expression and open chromatin from DNA sequence, where they consistently
surpassed existing state-of-the-art performances. Recognizing the potential of these models to
further the field, we are making all DREAM Challenge models available in an accessible format.

Results

The Random Promoter DREAM challenge and dataset

To generate the competition training data, we conducted a high-throughput experiment to
measure the regulatory effect of millions of random DNA sequences (Methods). Prior research
has shown that random DNA can display activity levels akin to genomic regulatory DNA, due to
the incidental occurrence of numerous TF binding sites (13,23,27). Here, we cloned 80 bp random
DNA sequences into a promoter-like context upstream of a yellow fluorescent protein (YFP),
transformed the resulting library into yeast, grew the yeast in chardonnay grape must, and
measured expression by fluorescent activated cell sorting (FACS) and sequencing, as previously
described (13,28,29) (Methods). This resulted in a training dataset of 6,739,258 random promoter
sequences and their corresponding mean expression values.

We provided these data to the competitors, who could use them to train their model, with two key
restrictions. First, competitors were not allowed to use external datasets in any form to ensure
that all models are trained on the same dataset. Second, ensemble predictions were also
disallowed as they would almost certainly provide a boost in performance but without providing
any insight into the best model types and training strategies.

We evaluated the models on a set of “test” sequences designed to probe the predictive ability of
the models in different ways. The measured expression levels driven by these sequences were
quantified in the same way as the training data but in a separate experiment with more cells sorted
per sequence (~100), yielding more accurate estimated expression levels compared to the
training data measurements, and providing higher confidence in the challenge evaluation. The
test set consisted of 71,103 sequences from several promoter sequence types. We included both
random sequences and sequences from the yeast genome to get an estimate of performance
difference between the random sequences in the training domain and naturally evolved
sequences. We also included sequences designed to capture known limitations of previous
models trained on similar data, namely sequences at the high and low expression extremes and
sequences designed to maximize the disagreement between the predictions of a previously
developed CNN and a physics-informed neural network (“biochemical model”) (13,23). We
previously found that predicting changes in expression between closely related sequences (i.e.,
nearly identical DNA sequences) is substantially more challenging, and so we included subsets
where models had to predict changes that result from single nucleotide variants (SNVs),
perturbations of specific TF binding sites, and tiling of TF binding sites across background
sequences (13,23). Each test subset was given a different weight when scoring the submissions,
proportional to the number of sequences in the set and how important we considered it to be
(Table 2). For instance, predicting the effects of SNVs on gene expression is a critical challenge
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for the field due to its relevance to complex trait genetics (30). Accordingly, a substantial number
of SNV sequence pairs were included in the test set, and SNVs were given the highest weight.
Within each sequence subset, we determined model performance using Pearson r? and
Spearman p, which captured the linear correlation and monotonic relationship between the
predicted and measured expression levels (or expression differences), respectively. The
weighted sum of each performance metric across test subsets yielded our two final performance
measurements, which we call Pearson Score and Spearman Score.

Our DREAM Challenge ran for 12 weeks in the summer of 2022 and included two evaluation
stages: the public leaderboard phase and the private evaluation phase (Fig. 1A). The leaderboard
opened six weeks into the competition and allowed teams to submit up to 20 predictions on the
test data per week. At this stage, we used 13% of the test data for leaderboard evaluation and
displayed only the overall Pearson r2, Spearman p, Pearson Score, and Spearman Score to the
participants, while keeping the performance on the promoter subsets and the specific sequences
used for the evaluation hidden. The participating teams achieved increasing performance each
week (Supplementary Fig. 1), showcasing the effectiveness of such challenges in motivating the
development of better machine learning models. Over 110 teams across the globe competed in
this stage. At the end of the challenge, 28 teams submitted their models for final evaluation. We
used the rest of the test data (~87%) for the final evaluation (Fig. 1B,C; Supplementary Fig. 2).
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Figure 1: Overview of the challenge. (A) Competitors received a training dataset of random
promoters and corresponding expression values (left). They continually refined their models and
competed for dominance in a public leaderboard (middle). At the end of the challenge, they
submitted a final model for evaluation (right) using a test dataset consisting of eight sequence
types: (i) high expression, (ii) low expression, (iii) native, (iv) random, (v) challenging, (vi) SNVs,
(vii) motif perturbation, and (viii) motif tiling. (B, C) Bootstrapping provides a robust comparison
of the model predictions. Distribution of ranks in n=10,000 samples from the test dataset (y-axes)
for the top-performing teams (x-axes), for (B) Pearson Score and (C) Spearman Score. (D,E)
Performance of the top-performing teams in each test data subset. Model performance (colour
and numerical values) of each team (y-axes) in each test subset (x-axes), for (D) Pearson r? and
(E) Spearman p. Heatmap colour palettes are min-max normalized column-wise. (F,G)
Performance disparities observed between the best and worst models (x-axes) in different test
subsets (y-axes) for (F) Pearson r? and (G) Spearman p. The calculation of the percentage
difference is relative to the best model performance for each test subset.

Innovative model designs surpass the state-of-the-art

We retrained the transformer model architecture of Vaishnav et al. (12), the previous best-
performing model for this type of data, on the challenge data and used as a reference in the
leaderboard (“reference model”). The overall performance of top submissions, all NNs, was
substantially better than the reference model. Despite recent prominence of attention-based
architectures (23), only one of the top five submissions in the challenge used transformers,
placing 3. The best-performing submissions were dominated by fully convolutional NNs, with 15,
4t and 5" places taken by them. The best-performing solution was based on the EfficientNetV2
architecture (31,32), and the 4t and 5™ solutions were based on the ResNet architecture (33).
Moreover, all teams used convolutional layers as the starting point in their model design. A
recurrent neural network (RNN) with bidirectional long-short-term memory (Bi-LSTM) layers
(34,35) placed 2. While the teams broadly converged on many similar training strategies (e.g.,
using Adam (36) or AdamW (37) optimizers), they also had substantial differences (Table 1).

The competing teams introduced several innovative approaches to solve the expression
prediction problem. Autosome.org, the best-performing team, transformed the task into a soft-
classification problem by training their network to predict a vector of expression bin probabilities,
which was then averaged to yield an estimated expression level, effectively recreating how the
data were generated in the experiment. They also used a distinct data encoding method by adding
channels to the traditional 4-channel one-hot encoding (OHE) of the DNA sequence used by most
teams. The two additional channels indicated (i) whether the sequence provided as input was
likely measured in only one cell (which results in an integer expression value), and (ii) whether
the input sequence is being provided in the reverse complement orientation. Furthermore,
Autosome.org's model, with only two million parameters, challenged the current trend of designing
deep NNs with increasingly numerous parameters, demonstrating that efficient design
considerably reduces the necessary number of parameters. Autosome.org and BHI were distinct
in training their final model on the entirety of the provided training data (i.e., no sequences withheld
for validation) for a prespecified number of epochs (determined previously using cross-validation
using validation subsets). Unlock_DNA, the 3 team, took a novel approach by randomly masking
5% of the input DNA sequence and having the model predict both the masked nucleotides and
gene expression. This approach used the masked nucleotide predictions as a regularizer, adding
a reconstruction loss to the model loss function, which stabilized the training of their large NN.
BUGF, the 9" team, used a somewhat similar strategy where they randomly mutated 15% of the
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sequence and calculated an additional binary cross-entropy loss predicting whether any bp in the
sequence had been mutated. The 5™ team, NAD, employed GloVe (38) to generate embedding
vectors for each base position and used these vectors as inputs for their NN, whereas the other
teams utilized traditional one-hot encoded DNA sequences. Two teams, SYSU-SAIL-2022 (11t)
and Davuluri lab (16™), attempted to train DNA language models (39) on the challenge data, by
pretraining a BERT language model (40) on the challenge data and subsequently using the BERT
embeddings to train an expression predictor.

Table 1: Breakdown of the top-performing models into key components
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*NC: If the sequence was present in more than one cell, 0 for all bases, otherwise 1; RC: If the sequence is reverse-
complemented, 1 for all bases, otherwise 0; N: If a base is unknown, 1 for that base, otherwise 0; P: If a base has been
padded to maintain fixed input length, 1 for that base, otherwise 0; M: If a base is masked 1 for that base otherwise 0.

#These teams employed the metrics in a cross-validation setting to determine the optimal number of epochs for their
models and ultimately saved the model weights after running for the n epochs, without relying on validation metric
scores. In contrast, other teams utilized validation metric scores to select the best-performing model.

Test sequence subsets reveal model disparities

Analysis of model performance on the different test subsets revealed distinct and shared
challenges for the different models. The top two models were ranked 1st and 2™ (sometimes with
ties) for each test subset regardless of score metric, showcasing that their superior performance
cannot be attributed to any single test subset (Fig. 1D,E). Further, the rankings within each test
subset sometimes differed between Pearson Score and Spearman Score, reinforcing that these
two measures capture performance in distinct ways (Fig. 1D,E).

While the ranking of models was similar for both random and native sequences, the differences
in model performance were greater for native yeast sequences than random sequences.
Specifically, performance differed between models by as much as 17.6% for native sequences,
but only 5% for random sequences (Pearson 2, Fig. 1F; Similarly 9.6% (native) vs. 2.7% (random)
for Spearman p; Fig. 1G). This suggests that top models have learned more of the regulatory
grammar that evolution has produced. Further, the substantial discrepancy between performance
on native and random sequences suggests that there is yet more regulatory logic to learn
(although the native DNA have lower sequence coverage, presumably due to their higher repeat
content, likely reducing quality data; Supplementary Fig. 3).

Models were also highly variable in their ability to accurately predict variation within the extremes
of gene expression. The cell sorter has a reduced signal-to-noise ratio at the lowest expression
levels, and the sorting bin placement can truncate the tails of the expression distribution (6,12).
Overall, model performance was most variable across teams in these subsets, suggesting that
the challenge models were able to overcome these issues to varying degrees. For example, the
median difference in Pearson r2 between highest and lowest performance was ~48% for high
and low test subsets and 16% for the others (Fig. 1F,G).

The models also varied in their ability to predict expression differences between closely related
sequences (Fig. 1D,E; “SNVs”, Supplementary Fig. 4; Supplementary Fig. 5), with more
substantial differences in model performance for subtler changes. Specifically, the % difference
between best and worst in Pearson r?> and Spearman p were respectively, 6.5% and 4% for Motif
Perturbation, 17.7% and 7% for Motif Tiling, and 14.6% and 9.6% for SNVs, suggesting that the
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top-performing models better captured the subtleties of cis-regulation. This is consistent with our
understanding of the subtlety of the impact: perturbing TFBSs (“Motif Peturbations” where we
mutate sequences strongly matching the cognate motif for an important TF or vary the number of
binding sites) is a comparatively large perturbation and could be predicted with simple models
that capture the binding of these TFs and can count TFBS instances. However, when TFBSs are
tiled across a background sequence, the same TFBS is present in every sequence, and the model
must have learned how its position affects its activity, as well as capturing all the secondary
TFBSs that are created or destroyed as the motif is tiled (13). Finally, SNVs are even harder to
predict because nearly everything about the sequence is identical but for a single nucleotide that
may affect the binding of multiple TFs in potentially subtle ways.

Prix Fixe framework reveals optimal model configurations

The top three solutions from the DREAM Challenge were distinguished both by their substantial
improvement in performance compared to other models and their distinct approaches to data
handling, preprocessing, loss calculations, and diverse neural network layers—encompassing
convolutional, recurrent, and self-attention mechanisms. To identify the factors underlying their
performances, we developed a Prix Fixe framework that breaks down each solution into distinct
modules and, by selecting one of each module type, tests arbitrary combinations of the modules
from each solution (Fig. 2A). We re-implemented the top three solutions within this framework
and found that 45 out of 81 possible combinations were compatible. We removed specific test-
time processing steps unique to each solution that were not comparable across solutions. Finally,
we retrained all compatible combinations using the same training and validation data, addressing
the issue that some original solutions had used the entire dataset for training. Our approach
facilitated a systematic and fair comparison of the individual contributions of different components
to overall performance.

Our analysis revealed both the source of Autosome.org’s exceptional performance as well as the
interplay of different model components and their potential for further optimization. 'The BHI and
UnlockDNA NNs saw significant improvement in performance when retrained using
Autosome.org’s soft-classification paradigm (Fig. 2B,C; Supplementary Fig. 6; Supplementary
Fig. 7). Moreover, each team’s model architecture could be optimized further, resulting in models
that achieved better performance (Fig. 2C) using the same core blocks but with similar or fewer
parameters (Fig. 2D). However, except for Autosome.org’s DataProcessor and Trainer module,
no other module component dominated the others and their performance appeared to depend on
what other modules they were combined with (Supplementary Fig. 8). For each of
Autosome.org, BHI, and UnlockDNA’s core blocks, we named the optimal Prix Fixe model as
DREAM-CNN, DREAM-RNN, and DREAM-Attn, respectively.
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Figure 2: Dissecting the optimal model configurations through a Prix Fixe framework. (A)
The framework deconstructs each team's solution into modules, enabling modules from different
solutions to be combined. (B) Performance in Pearson Score from the Prix Fixe runs for all
combinations of modules from the top three DREAM Challenge solutions. Each cell represents
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the performance obtained from a unique combination of Core Layers Block (major rows, left),
DataProcessor and Trainer (major columns, top), First Layers Block (minor rows, right), and
Final Layers Block (minor columns, bottom) modules. Grey cells denote combinations that were
either incompatible or did not converge during training. (C) Performance (Pearson Score; y-axis)
of the three DataProcessor and Trainer modules (x-axis and colours) for each Prix Fixe model
including the respective module (individual points). Original model combinations are indicated
by white points, while all other combinations are in black. (D) Number of parameters (x-axis) for
the top three DREAM Challenge models-Autosome.org, BHI, and UnlockDNA-along with their
best-performing counterparts (based on Core Layers Block): DREAM-CNN, DREAM-RNN, and
DREAM-Attn in the Prix Fixe runs (y-axis). (E) As in D, but showing each model’s Pearson
Score (x-axis).

Optimized models outperform state-of-the-art for other species and data types

To determine whether the model architectures and training strategies we optimized on yeast data
would generalize to other species, we next applied them to Drosophila melanogaster and human
datasets on a diverse set of tasks. First, we tested their ability to predict gene regulatory activity
measured in D. melagnogaster (in the context of a developmental and a housekeeping promoter)
in a STARR-seq MPRA. This fundamentally represents the same sequence-to-expression
problem the models were designed to solve, despite the different organism (Drosophila vs. yeast),
experimental measurement approach (RNA-seq vs. cell sorting), longer sequence (249 bp vs.
150 bp), smaller datasets (~500k thousand vs. 6.7 million), and the transition from a single-task
to a multi-task framework (two promoter types). We compared the DREAM-optimized models to
DeepSTARR (48), a state-of-the-art CNN model based on the Basset (21) architecture and
specially developed for predicting the data we are using in this benchmark (UMI-STARR-seq (49)
in D. melanogaster S2 cells (48,50)). For a robust comparison, we trained the models using cross
validation and always evaluated on the same held-out test data (Methods). Our models
consistently outperformed DeepSTARR across both developmental and housekeeping
transcriptional programs (Fig. 3A), with the DREAM-RNN model surpassing the performance of
DREAM-CNN and DREAM-Attn.

To further validate the generalizability of our models, we next trained the DREAM-optimized
models on lentivirus-based massively parallel reporter assays (lentiMPRAs) that tested cis
regulatory elements (CREs) across three human cell types: hepatocytes (HepG2), lymphoblasts
(K562), and induced pluripotent stem cells (iPSCs; WTC11) (51). Here, our models had to capture
more complex regulatory activity from vastly smaller datasets (~56-226 thousand vs. 6.7 million).
We compared the models against MPRANnn (51), a CNN model optimized for these specific
datasets (Methods). All the models were trained using cross validation and evaluated on held-
out test data in the same way MPRANN was originally trained (51). The DREAM-optimized models
substantially outperformed MPRANN, with the performance difference widening with more training
data (Fig. 3B). The only exception was DREAM-Attn, which did not outperform MPRAnNN on the
smallest dataset (WTC11; 56k sequences). Again, DREAM-RNN demonstrated the best
performance among our models, especially for larger datasets.
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Figure 3: DREAM Challenge models beat existing benchmarks on Drosophila and human
datasets. (A) D. melanogaster STARR-seq (48) prediction. Pearson correlation for predicted vs.
actual enhancer activity for held out data (y-axis) for two different transcriptional programs (x-axis)
for each model (colours). (B) Human MPRA (51) prediction. Pearson correlation for predicted vs.
actual expression for held out data (y-axis) for MPRA datasets from three distinct human cell
types (x-axis) for each model (colours). (C, D) Human accessibility (bulk K562 ATAC-seq) (52,53)
prediction. For each model (x-axis and colours), model performance (y-axes) in shown in terms
of both (C) Pearson correlation for predicted vs. actual read counts per element and (D) 1- median
Jensen-Shannon distance for predicted vs. actual chromatin accessibility profiles across each
element. In A-D, points represent folds of cross validation, performance is evaluated on held-out
test data, and p-values representing t-tests (paired, two-sided) comparing the previous state-of-
the-art model to the optimized models are shown atop model performance distributions. (E)
Comparison of number of parameters (x-axis) for different models used in chromatin accessibility
prediction task.

To evaluate the models on a distinct prediction task that still relates to CRE function, we evaluated
our optimized models on the task of predicting open chromatin. Specifically, we compared our
optimized models to ChromBPNet (53-55), a BPNet-based (16) model that predicts ATAC-seq
signals across open chromatin regions. Here, the input DNA sequences were ~14 times longer
than the yeast promoters on which the DREAM models were optimized (2,114 vs 150 bp), and
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the models were now tasked with simultaneously predicting the overall accessibility (read counts)
and accessibility profile (read distribution) for a central 1,000 bp section, rather than predicting a
single expression value. While DREAM-Attn could not be trained because the memory
requirement for the attention block became too large with such a long input sequence, we trained
and evaluated the other DREAM-optimized models and ChromBPNet on K562 bulk ATAC-seq
data (52) (Methods). DREAM-RNN outperformed ChromBPNet substantially in both read counts
prediction and chromatin accessibility predictions (Fig. 3C,D), highlighting the adaptability of our
models even on significantly different cis-regulatory data types. DREAM-CNN, on the other hand,
performed on par with ChromBPNet (53) in read count predictions (Fig. 3C) but was less effective
in predicting chromatin accessibility profiles (Fig. 3D).

Notably, the architectures and training paradigms of the DREAM-optimized models were changed
minimally for these evaluations, and the only modifications made were required for the prediction
head (e.g. because the model outputs differed) or to adapt to the smaller number of training
sequences compared to the DREAM dataset (reducing the batch size and/or maximum learning
rate; Methods). Importantly, DREAM-RNN outperformed the other Prix Fixe optimized models in
all of these secondary benchmarks (Fig. 3A-D), highlighting its excellent generalizability.

Discussion

The random promoter DREAM Challenge 2022 presented a unique opportunity for participants to
propose novel model architectures and training strategies for modeling regulatory sequences.
The participants trained sequence-to-expression models on millions of random regulatory DNA
sequences and their corresponding expression measurements. A separate set of designed
sequences were used to evaluate these models and test their limits. Remarkably, 19 models from
the DREAM Challenge outperformed the previous state-of-the-art (23) (Supplementary Fig. 4),
with the majority employing unique architectures and training strategies. To systematically
analyze how model design choices impact their performance, we developed the Prix Fixe
framework, where models were abstracted to modular parts, enabling us to combine modules
from different submissions to identify the key contributors to model performance. We applied the
Prix Fixe framework to the top three models from the challenge that varied significantly in their
NN architectures (CNN, RNN, self-attention) and training strategies, and were able to construct
improved models in each case.

The training strategies for NNs had as significant an impact on model performance as the network
architectures themselves (Fig. 2C; Supplementary Fig. 8). In the Prix Fixe runs, training the
network to predict expression as distributions using soft-classification rather than as precise
values helped models capture more of cis-regulation. These findings argue for a balanced focus
not only on network architectures but also on the optimization of training procedures and
redefinition of prediction tasks.

Notably, the top-performing models from the DREAM Challenge demonstrated that simpler neural
network architectures with fewer parameters, if optimized well, can effectively capture most of cis-
regulation, challenging the current trend towards increasingly complex NNs. For instance, three
of the top five submissions did not use transformers, including the best-performing team (which
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also had the fewest parameters of the top 10). Also, by employing our Prix Fixe framework, we
successfully designed models that not only consisted of similar or fewer parameters but also
achieved superior performance compared to their counterparts (Fig. 2D,E). Further, these
DREAM-optimized models consistently outperformed previous state-of-the-art models on other
cis-regulatory tasks, despite having comparable (and often fewer) parameters (Fig. 1D, Fig. 3E,
Supplementary Fig. 9). These results indicate that in genomics applications, building better
models does not necessarily require increased complexity, but rather depends on efficient and
effective optimization.

In the DREAM challenge, we observed varied results across test subsets that illustrate the
complexity in evaluating cis-regulatory models effectively. For instance, performance on random
sequences, which are in the same domain as the training data (also random sequences), was
relatively uniform (Fig. 1D,E). Conversely, shifting the domain to native sequences highlights the
disparities between models, as the relative frequencies of various regulatory mechanisms likely
differ, a consequence of their evolutionary origin (Fig. 1D,E). This indicates that a model that
excels in modeling overall cis-regulation may still perform poorly for sequences involving certain
regulatory mechanisms that are difficult to learn from the training data, leading to incorrect
predictions of biochemical mechanisms and variant effects for sequences that use these
mechanisms. This emphasizes the importance of multifaceted evaluation of genomics models
(56), and designing specific datasets that test the limits of these models.

To continually improve genomics models, there is a need for standardized, robust benchmarking
datasets. The DREAM Challenge dataset addresses this need and the impact such standardized
datasets can have is demonstrated by the DREAM-optimized models’ generalizability across
different Drosophila and human datasets and tasks without additional model tuning. Our dataset
accompanied by the Prix Fixe framework stand as valuable resources for the continued
exploration and development of innovative neural network architectures and training
methodologies specifically crafted for DNA sequences. Further, the modular nature and proven
generalizability of the DREAM-optimized models will enable other researchers to easily apply
them to other genomics problems.

Data availability
Data is available at NCBI's GEO: GSE254493.

Code availability

Open source code for our models is available at https://github.com/de-Boer-Lab/random-
promoter-dream-challenge-2022

Methods

Designing the test sequences

High- and low-expression sequences were designed as described in Vaishnav et al. (23). Native
test subset sequences were designed by sectioning native yeast promoters into 80 bp fragments
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(13). Random sequences were sampled from a previous experiment where the tested DNA was
synthesized randomly (as in the training data) and quantified (13). Challenging sequences were
designed by maximizing the difference between the expressions predicted by a convolutional
neural network model (23) and a biochemical model (a type of physics-informed neural network)
(13); these sequences represented the pareto front of the differences in expression between
models when optimizing populations of 100 sequences at a time for 100 generations using a
genetic algorithm with a per-base mutation rate of 0.02 and recombination rate of 0.5 using DEAP
(57) and a custom script (github.com/de-Boer-Lab/CRM2.0/blob/master/GASeqDesign.py). Most
of the SNVs represent sequence trajectories from Vaishnav et al. (23), but also include random
mutations added to random, designed, and native promoter sequences. Motif Perturbation
included Reb1 and Hsf1 perturbations. Sequences with perturbed Reb1 binding sites were
created by inserting Reb1 consensus binding sites (strong or medium affinity; sense and reverse
complement orientations), and then adding between 1 and 3 SNVs to each possible location of
each motif occurrence and inserting canonical and mutated motif occurrence into 10 randomly
generated sequences at position 20/80. Sequences with Hsf1 motif occurrence were designed by
tiling random background sequences with between 1 and 10 Hsf1 monomeric consensus sites
(ATGGAACA), added sequentially from both the right and left of the random starting sequences,
or added individually within each of the possible 8 positions, or similarly tiling/inserting between
1-5 trimeric Hsf1 consensus sites (TTCTAGAANNTTCT). The Motif Tiling test subset sequences
were designed by embedding a single consensus for each motif (poly-A: AAAAA, Skn7:
GTCTGGCCC, Mga1: TTCT, Ume6: AGCCGCC, Mot3: GCAGGCACG, and Azf1: TAAAAGAAA)
at every possible position (with the motif contained completely within the 80-bp variable region)
and orientation for three background sequences as described in de Boer et al. (13).

Table 2: Summary of the test subsets

Subset no. of Weight in Description
sequences | evaluation metric

All sequences 71103 1 All sequences in the test data.

High 968 0.3 Sequences designed to have high
expression.

Low 997 0.3 Sequences designed to have low
expression.

Native 997 0.3 Sequences that are present in the

yeast genome.

Random 6349 0.3 Random DNA sequences.

Challenging 1953 0.5 Sequences designed to maximize the
differences between a convolutional
model and a biochemical model
trained on the same data.

SNVs 44340 pairs | 1.25 Two sequences that differ by only a
single base.
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Motif Perturbation | 3287 pairs | 0.3 Two sequences that differ due to
(Reb1+Hsf1) perturbations to specific known TF
binding site.
Motif tiling 2624 pairs | 0.4 Two sequences that differ due to tiling
known TF binding sites across
random sequences.

Quantifying promoter expression

High complexity random DNA libraries that comprised the training data were created as described
previously (13), with the following modifications. The random promoter library in E. coli
theoretically contained about 74 million random promoters and was transformed into S288c (delta
URAZ3) yeast yielding 200 million transformants, which were selected in SD-Ura media. 1 L of
chardonnay grape must (filtered) was inoculated with the pool to an initiate OD600 of 0.05 and
grown at room temperature without continual shaking, with the culture diluted as needed with
fresh chardonnay grape must to maintain OD below 0.4, for a total growth time of 48 hours and
having undergone >5 generations. Prior to each OD, the culture was gently agitated to
decarbonate it, waiting for the resulting foam to die down before agitating again, and continuing
until no more bubbles were released. Yeast were then sorted and sequencing libraries prepared
as described previously (13), with sequencing libraries pooled and sequenced on an lllumina
NextSeq.

Data processing for both N80 (training) and designed (test) libraries were done as described
before (13), except that the expression levels of the designed library sequences were estimated
using MAUDE (58), using the read abundance in each sorting bin as input, and estimating the
initial abundance of each sequence as the average relative abundance of that sequence across
all bins.

Competition rules

1. Only the provided training data could be used to train models. Models had to train from scratch
without any pre-training on external datasets to avoid overfitting to sequences present in the test
data (e.g., some sequences in the test data are derived from extant yeast promoters).

2. Reproducibility was a prerequisite for all submissions. The participants had to provide the code
and instructions to reproduce their models. We retrained the top-performing solutions to validate
their performance.

3. Augmenting the provided training data was allowed. Pseudo-labeling the provided test data
was not allowed. Using the test data for any purpose during training was not allowed.

4. Ensembles were not allowed.

For detailed information on the competition and its guidelines, please visit the DREAM Challenge
webpage (https://www.synapse.org/#!Synapse:syn28469146/wiki/617075).
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Performance evaluation metric

We calculated the Pearson r? and Spearman p between predictions and measurements for each
sequence subset. Pearson r captures the linear correlation between predictions and measured
expression levels while being robust to the scaling differences that occur between training and
test sequences; the training and the test data are not on the same scale but are linearly related
by, y = mx + b, where m and b are constants that are affected by sorting bin placement during
the experiment. We also used Spearman p, which captures the monotonic relation between
predictions and measured expression levels while being robust to outliers. The weighted sum of
each performance metric across promoter types yielded our two final performance
measurements, which we call Pearson Score and Spearman Score.

subsets

w; * PearsonR?; | Y40t w;

Pearson Score = y3ubsets

Spearman Score = Y$UPSetS v, « Spearman; / ¥3UPSES w;
Here, w; is the weight used for the i-th test subset (Table 2). PearsonR?; and Spearman; are,
respectively, the square of Pearson coefficient and the Spearman coefficient for sequences in i-
th subset.

Bootstrapping analysis of model performance

In order to determine the relative performance of the models, we performed a bootstrapping
analysis. Here, we sampled 10% of the test data 10,000 times and, for each sample, calculated
the performance of each model and the rankings of the models for both Pearson and Spearman
Scores. We averaged the ranks from both metrics to decide their final ranks. Teams
Autosome.org and BHI robustly outperformed the others, coming in 1stand 2" place, respectively,
with Autosome.org coming second to BHI in only 0.1% and 2.25% of the time for Pearson Score
and Spearman Score, respectively. In none of the bootstraps did another team outperform
Autosome.org or BHI. Interestingly, Pearson Score and Spearman Score do not agree after the
top two teams, indicating that they capture performance in distinct ways. For instance,
Unlock_DNA, the 3-place team, substantially outperformed 4t-place Camformers by Pearson
Score, but performed slightly worse than Camformers by Spearman Score. We consider 5"-place
to be a tie between NAD and wztr as their mean ranks (5.81105 and 5.8152, respectively) were
very close.

Description of the approaches used by the participants

In this section, we present an overview of the approaches employed by the participants in the
challenge. For the top-performing teams, we provide a detailed description of their methodologies,
while for the remaining teams, we offer a concise overview without repeating any details that have
already been discussed for other teams. The performance of each approach is illustrated in
Supplementary Fig. 4 for easier comparison.

Autosome.org: The team reformulated the initial regression task as a soft-classification problem
by replacing the initial target expression value with a vector of 18 probabilities corresponding to
individual bins, assuming that they can be deduced from the normal distribution with mean and
variance equal to (expression + 0.5) and 0.5, respectively. To obtain a predicted expression value
for a sequence during the validation step, the predicted probabilities were multiplied by their bin
numbers. They used one-hot encoding for the promoter sequences, where they added a separate
binary channel explicitly marking the objects with integer (and thus likely imprecise) expression
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measurements. They also augmented the dataset with the reverse complementary sequences
and added a separate binary channel to denote the supplied strand explicitly (forward or reverse
complementary). The team also highlighted the impact of the training regime on the final
performance, specifically, the advantage of using the OneCycleLR scheduler coupled with the
AdamW optimizer. The proposed model was based on a fully-convolutional network inspired by
EfficientNetV2 (32). The following architectural choices were used in the final model: (i) grouped
convolution (59) instead of the depthwise convolution of the original EfficientNetV2, (ii) the
standard residual blocks were substituted with residual channel-wise concatenations, (iii) a
bilinear layer was inserted in the middle of the EfficientNetV2 SE-block. A detailed study on this
architecture is presented in (60).

BHI: Their approach adopts a “sandwich” architecture consisting of a one-dimensional
convolutional layer, a bidirectional long-short-term memory (Bi-LSTM) layer, and another
convolutional layer. Each convolutional layer used different kernel sizes. Besides the model
architecture, the team found that training details specialized for DNA sequence-based deep
learning models were highly important for the overall performance. Among them, the most crucial
was to use a ‘post-hoc conjoined’ setting (41), which imposes a reverse-complement equivariance
to the model. Test-time augmentation was also effective. Predictions were made for an original
sequence, its four shifted variants (generated by -2bp, -1bp, +1bp, and +2bp shifting), and their
reverse-complement sequences, then those 10 predictions were averaged to make a final
prediction. While training sequences over 110bp were trimmed to the right, sequences shorter
than 110bp were randomly padded with the original vector sequences on both sides. This
informative padding gave a nonnegligible performance boost. Finally, to be as unbiased as
possible for the distribution of the test set, predictions were quantile-transformed using the
distribution of expression levels in training data as post-processing.

Unlock_DNA: The team used an end-to-end Macaron-like Transformer encoder architecture with
two half-step feed-forward (FFN) layers at the beginning and end of each encoder block. A
separable 1D convolution layer was inserted after the first FFN layer and in front of the multi-head
attention layer. The sliding k-mers from one-hot encoded sequences were mapped onto a
continuous embedding, combined with the learned positional embedding and strand embedding
(forward strand vs. reverse complement strand) as the sequence input. Along with the sequence
input, several positions (32 in the final model) of "pseudo” expression values were added as the
input, where all input expression values were zeros. The model predicted one expression value
for each "pseudo" expression position and used the mean of the prediction of all positions as the
final predicted expression value. A detailed study on this solution is presented on (61).

Camformers: This team used a CNN with residual connections. The model included six
convolutional layers with three residual connections allowing the model to bypass every other
layer. After the penultimate convolutional layer, a max pooling operation was added to reduce the
model size and improve generalization. The output of the final convolutional layer was flattened
and fed into a block of two dense layers, followed by a final dense layer outputting the predicted
expression level. All layers except the last used a rectified linear unit activation.

NAD: The approach has two stages: (i) generating the embedding vectors for each base position
using GloVe (38) and (ii) using the embedding vectors as input of neural networks to predict the
gene expression level. The proposed model combines a convolutional neural network for feature
extraction and a transformer for prediction.

WZTR: The team used a fully CNN-based architecture. The model begins with two convolutional
layers, and six convolution blocks follow these layers. Each convolution block is constructed of 3
convolutional layers and an average pooling at the end. Each convolutional layer consists of a
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hybrid convolution (62), batch normalization, ReLU activation, and residual connection. Each
hybrid convolution takes in a list of dilation values [1,2,4,6], with 4 convolutions processing the
input in parallel. Finally, there are three fully connected layers and an output layer. A linear
combination of 256 features extracted from all the previous operations on the sequence is used
to generate the predicted expression.

High Schoolers Are All You Need (High Schoolers): This team used a mix of CNN and
transformer architectures, where the CNN was based on Residualbind's (63) design, with a
convolutional layer (with exponential activations) followed by a residual block comprised of a
series of dilated convolutional layers with increasing dilation rates. It was followed by attention
pooling, a transformer layer with relative positional encodings, and a standard MLP block.

BioNML: The underlying neural network was configured to have a relatively larger set of
convolutional kernels and extra dictionaries of short k-mers for spotting potential enriched DNA
sequence patterns. Strand-specific streams of these patterns were normalized and consolidated
with Swish activation’s (64) fully learnable thresholding. The encoded patterns were fed into a ViT
(44) like block but with transformer decoder type of connections and SwiGLU (65) activations for
modeling any sequential interdependence. A set of suppressed signals of the encoded sequence-
based patterns as queries for the transformer decoder blocks to respond to.

BUGF: A transformer model was used to predict the expression bin classes, as opposed to
treating the problem as a regression problem. Random mutations were added to the sequence
as an data augmentation strategy and the model was trained to predict where the mutations had
been made to the input sequence. An auxiliary loss was calculated based on this prediction, which
helped reduce overfitting.

mt: The approach uses GRU and CNNs to regress the strength of the targeted promoters using
information encoded in the forward and reverse DNA strands.

SYSU-SAIL-2022: The team first trained a 3-layer BERT (40) using the top 20% of sequences in
terms of expression. Then, the BERT embedding was used to train an expression predictor.

Wen Group: A deep neural network that adopted concepts of U-Net (66), Transformer, and
Squeeze & Excitation blocks (67) was trained from end to end without any data augmentation.

Yuanfang Guan: A neural network that consisted of LSTM layers followed by attention layers
was used to predict expression.

Metformin-121: A neural network based on bidirectional GRU was used to predict gene
expression.

NGT4: A neural network based on XceptionNet (68) was used to predict gene expression. During
training, the expression values were transformed evenly in the range of i — 0.5 < x < i+ 0.5 (here,
i is the integer expression) maintaining the ranking of sequences that was produced by a trained
model.

Davuluri lab: The team utilized a transformer-based representation model named DNABERT
(39) for predicting gene expression.

*DNABERT was pretrained on human genome, which violated the competition rules. However,
we consider this to be an important benchmark that shows the limitation of DNA language models.

Wan&Barton_BBK: The team designed a model based on Temporal Convolutional Networks
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(69) to predict expression.

Peppa: The team designed a model based on the Enformer (15) that took 110 bp as input
(compared to 200 kbp in the original) and included only 2M parameters (compared to ~200M
parameters of the original).

The Dream Team: A neural network was used that incorporated convolutional, multihead
attention, and LSTM layers. During training, the integer expression values were transformed by
replacing them with Normal(i,0.3) distribution, where i represents the expression.

Noisy-Chardonnay: A model composed of convolutional layers followed by BiLSTM layers was
trained without any data augmentation to predict expression levels.

KircherLab: The team trained a simple convolutional neural network with a GC correction step
on the training data to help the model focus its decisions on motifs within the sequence rather
than the general nucleotide composition.

MadLab: The model is composed of three building blocks, namely a convolutional network, a
transformer and a recurrent network.

Auth: A simple hybrid architecture combining a convolutional layer and a BiLSTM layer followed
by two fully connected layers was used to predict expression.

UTKbioinformatics: A neural network based on BERT was used to predict expression.
DrAshokAndFriends: An attention based ConvLSTM (70) model was used for prediction.

QUT_seqg2exp: A sequence embedding model, dna2vec (71), was applied on the promoter
sequences (in a running manner on short k-mers), which are then subsequently used as features
for a transformer-based deep neural network model.

Zeta: A transformer model was used for predicting expression.

Prix Fixe Framework

The Prix Fixe framework, implemented in Pytorch, facilitates the design and training of NNs by
modularizing the entire process, from data-preprocessing to prediction, enforcing specific formats
for module inputs and outputs to allow integration of components from different approaches. The
different modules in the Prix fixe framework are as follows:

DataProcessor and Trainer: This DataProcessor class is dedicated to transforming raw DNA
sequence data into a usable format for subsequent NN training. The DataProcessor can produce
an iterable object, delivering a dictionary containing, a feature matrix 'x' (input to the NN) and a
target vector 'y' (expected output). Additional keys can be included to support extended
functionalities. Moreover, the DataProcessor can provide essential parameters to initiate NN
blocks, such as determining the number of channels in the first layer.

The Trainer class manages the training of the NN. It processes batches of data from the
DataProcessor and feeds them into the NN. It computes auxiliary losses, if necessary, alongside
the main losses from the NN, facilitating complex loss calculation during training.

Prix Fixe Net: This module embodies the entirety of the NN architecture:
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(i) First Layers Block: These are the primordial layers of the network. They may include initial
convolutional layers or facilitate specific encoding mechanisms like k-mer encoding for the input.

(i) Core Layers Block: This represents the central architecture components, housing elements
like residual connections, LSTM mechanisms, and self-attention. The modular construction of this
block also allows for versatile combinations, such as stacking a residual CNN block with a self-
attention block.

(iii) Final Layers Block: This phase narrows the latent space to produce the final prediction, using
layers like pooling, flattening, and dense layers. It computes the prediction and outputs it
alongside the loss.

For all three blocks, the standard input format is (batch, channels, seqlLen). The first two blocks
yield an output in a consistent format (batch, channels, seqLen), whereas the last block delivers
the predicted expression values. Each block can propagate their own loss. The whole framework
is implemented in PyTorch.

To ensure fair comparison across solutions in the Prix Fixe framework, we removed specific test-
time processing steps that were unique to each solution. We divided the DREAM Challenge
dataset into two segments, allocating 90% sequences for training and 10% for validation. Using
these data, we retrained all combinations that were compatible within the framework. Out of the
81 potential combinations, we identified 45 as compatible, and 41 of these successfully converged
during training. Due to GPU memory constraints, we adjusted the batch sizes for certain
combinations.

DREAM-optimized models from Prix Fixe runs

DataProcessor and Trainer: Promoter sequences were extended at the 5' end using constant
segments from the plasmids to standardize to a length of 150 bp. These sequences underwent
one-hot encoding into four-dimensional vectors. 'Singleton' promoters, observed only once across
all bins, were categorized with integer expression estimates. Considering the potential variability
in these singleton expression estimates, a binary 'is_singleton' channel was incorporated, marked
as 1 for singletons and 0 otherwise. To account for the diverse behavior of regulatory elements
based on their strand orientation relative to transcription start sites, each sequence in the training
set was provided in both its original and reverse complementary forms, identified using the
'is_reverse' channel (0 for original, 1 for reverse complementary). Consequently, the input
dimensions were set at (batch, 6, 150).

The model's training utilized the AdamW optimizer, set with a weight decay of 0.01. The
maximum learning rate of 0.005 was chosen for most blocks, while a conservative rate of 0.001
was applied to attention blocks due to the inherent sensitivity of self-attention mechanisms to
higher rates. This learning rate was scheduled by the One Cycle Learning Rate Policy
(OneCycleLR) (72), which featured two phases and employs the cosine annealing strategy.
Training data was segmented into batches of size 1024, with the entire training procedure
spanning 80 epochs. Model performance and selection were based on the highest Pearson r
value observed in the validation dataset.
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During prediction, the data processing mirrored the DataProcessor apart from setting
'is_singleton' to 0. Predictions for both the original and reverse complementary sequences were
then averaged.

Prix Fixe Net:
(i) DREAM-CNN:

First Layers Block: One-hot encoded input is processed through a 1D-CNN. Drawing inspiration
from DeepFam (73), convolutional layers with kernel sizes of 9 and 15 are used, which mirror
common motif lengths as identified by ProSampler (74). Each layer has a channel size of 256,
uses RelLU activation, and incorporates a dropout rate of 0.2. The outputs of the two layers are
concatenated along the channel dimension.

Core Layers Block: This segment contains six convolution blocks whose structure is influenced
by the EfficientNet architecture. It contains modifications like replacing depthwise convolution with
grouped convolution, using Squeeze and Excitation (SE) blocks (67), and adopting channel-wise
concatenation for residual connections. The channel configuration starts with 256 channels for
the initial block, followed by 128, 128, 64, 64, 64, and 64 channels (60).

Final Layers Block: The final block consists of a single point-wise convolutional layer followed by
channel-wise Global Average Pooling and SoftMax activation.

(ii) DREAM-RNN:
First Layers Block: same as DREAM-CNN.

Core Layers Block: The core utilizes a Bi-LSTM, designed to capture motif dependencies. The
LSTM's hidden states have dimensions of 320 each, resulting in 640 dimensions after
concatenation. A subsequent CNN block, similar to the First Layer block, is incorporated.

Final Layers Block: same as DREAM-CNN.
(iii) DREAM-Attn:

First Layers Block: It is a standard convolution with kernel size 7, followed by BatchNorm (75) and
SiLU activation (76).

Core Layers Block: This block uses the Proformer (61), a Macaron-like Transformer encoder
architecture, which employs a two half-step feed forward network (FFN) layers at the start and
end of the encoder block. Additionally, a separable 1D convolution layer is integrated after the
initial FFN layer and prior to the multi-head attention layer.

Final Layers Block: same as DREAM-CNN and DREAM-RNN.

Human MPRA models

Within each of the three large-scale MPRA libraries, every sequence and its corresponding
reverse complement are grouped together and these pairs were then distributed into ten distinct
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cross-validation folds to ensure both the forward and reverse sequences resided within the same
fold. DREAM-CNN, DREAM-RNN, DREAM-Attn, and MPRANn were trained using nine out of
these ten folds, reserving one fold to evaluate the model's performance. For every held-out test
fold, nine models were trained, with one fold being dedicated for validation purposes while the
remaining eight acted as training folds. Subsequent predictions from these nine models were
aggregated, with the average being used as the final prediction for the held-out test data.

The training specifics of MPRANn were followed as described in (51). For DREAM-CNN, DREAM-
RNN, and DREAM-Attn, components that could not accommodate Agarwal et al. data were
discarded. For instance, the ‘is_singleton’ channel is not relevant for MPRA data, loss calculation
was done using mean squared error in place of KL divergence due to the infeasibility of
transitioning the problem to soft classification. MPRANN used a much smaller batch size than our
DREAM-optimized Trainer (32 vs 1024), and so we reduced it to be the same as MPRAnn. No
other alterations were made to either the model's structure or the training paradigm.

Drosophila UMI-STARRSeq models

The training specifics (model architecture and trainer) of DeepSTARR were followed as described
(48). For DREAM-CNN, DREAM-RNN, and DREAM-Attn we used the exact setting as our runs
in human MPRA datasets.

Only the five largest Drosophila chromosomes (Chr2L, Chr2R, Chr3L, Chr3R, ChrX) were used
as test data. For every held-out test chromosome, the rest of the sequences were distributed into
ten distinct train-validation folds, and DREAM-CNN, DREAM-RNN, DREAM-Attn, and
DeepSTARR models (ten of each) were trained. Subsequent predictions from these ten models
were aggregated, with the average being used as the final prediction for the held-out test
chromosome.

Human Chromatin accessibility models

We used five separate train-validation-test splits as proposed in (53) for ATAC-seq experiments
on the human cell line K562 (52). For each of these partitions, we first trained five different bias
models, one per fold, which are designed to capture enzyme-driven biases present in ATAC-seq
profiles. Subsequently, ChromBPNet, DREAM-CNN, and DREAM-RNN models were trained for
each fold, using the same bias models. For DREAM-CNN and DREAM-RNN, the prediction head
from ChromBPNet (1-d convolution, cropping layer, average pooling layer, and a dense layer)
was used in the Final Layers Block to make accessibility profile and read counts prediction. We
modified the DREAM-optimized Trainer in this case to use the same batch size as ChromBPNet
(from 1024 to 64), and a reduced maximum learning rate (from 5 x 10 to 5 x 10-%). No other
alterations were made to either the model's structure or the training paradigm.

For this task, we reimplemented DREAM-CNN and DREAM-RNN architectures in Tensorflow to
ensure all models have same bias models. This methodological choice came at the cost of having
to leave some components (input encoding, AdamW optimizer, etc.) out of the DREAM-optimized
DataProcessor and Trainer. However, it ensured uniformity across models, leading to an
unbiased comparison across the different architectures.
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Supplementary Figure 1: Progression of the top-performing teams’ performance in the
DREAM Challenge public leaderboard. (A,B) Performance (y-axes) in (A) Pearson Score and
(B) Spearman Score achieved by the participating teams (colours) each week (x-axes),
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showcasing the effectiveness of such challenges in motivating the development of better machine
learning models.
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Supplementary Figure 2: Bootstrapping provides a robust comparison of the model
predictions. (A,B,C) Frequency (y-axes) of ranks (x-axes) in (A) Pearson Score, (B) Spearman
Score and combined frequency (sum of Pearson Score rank and Spearman Score rank) of ranks
for n=10,000 samples from the test dataset for the top-performing teams.
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Supplementary Figure 3: Library coverage differs between sequence subsets and is lowest
for native sequences. Cumulative proportion (y-axis) of the number of reads per sequence (x-
axis) for different sequence types (colours).
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Supplementary Figure 4: Performance of the teams in each test data subset. (A,B) Model
performance (colour and numerical values) of each team (y-axes) in each test subset (x-axes),
for (A) Pearson r? and (B) Spearman p. Heatmap colour palettes are min-max normalized column-
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Supplementary Figure 7: Performance (x-axes) of the top three DREAM Challenge models
(y-axes) Autosome.org, BHI, and UnlockDNA-along with their best-performing
counterparts (based on Core Layers Block) for different test subsets.
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Supplementary Figure 8: No clear winners in other module blocks. Performance of the
different modules in Pearson Score (y-axis) for the different (A) First Layer, (B) Core Layers, and
(C) Final Layers modules (x-axes and colours).
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Supplementary Figure 9: DREAM Optimized models have similar or fewer parameters than
MPRANN. Comparison of number of parameters (x-axis) for different models (y-axis) used in
human MPRA prediction task (517).
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