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Abstract 

Most gene expression and alternative splicing quantitative trait loci (eQTL/sQTL) studies 
have been biased toward European ancestry individuals. Here, we performed eQTL and 
sQTL analysis using TOPMed whole genome sequencing-derived genotype data and RNA 
sequencing data from stored peripheral blood mononuclear cells in 1,012 African American 
participants from the Jackson Heart Study (JHS). At a false discovery rate (FDR) of 5%, we 
identified 4,798,604 significant eQTL-gene pairs, covering 16,538 unique genes; and 
5,921,368 sQTL-gene-cluster pairs, covering 9,605 unique genes. About 31% of detected 
eQTL and sQTL variants with a minor allele frequency (MAF) > 1% in JHS were rare (MAF 
< 0.1%), and therefore unlikely to be detected, in European ancestry individuals. We also 
generated 17,630 eQTL credible sets and 24,525 sQTL credible sets for genes (gene-
clusters) with lead QTL p < 5e-8. Finally, we created an open database, which is freely 
available online, allowing fast query and bulk download of our QTL results. 

  
Main 
Quantitative trait loci (QTL) analysis of molecular phenotypes, such as gene expression 
levels (eQTLs) or alternative splicing events (sQTLs), can contribute to understanding the 
regulatory impact of individual genetic variants and the regulation of gene expression 
across the genome in a given tissue. Cataloging eQTL and sQTL variants across tissues 
can also help to functionally characterize non-coding genetic variants which constitute the 
majority of variants associated with complex diseases and traits through GWAS 1–3. 
Therefore, eQTL and sQTL analyses have been widely conducted to link genetic variants 
associated with complex traits and diseases to their likely target genes and underlying 
mechanisms 3,4.  

 
Most eQTL/sQTL studies focus on European ancestry (EUR) individuals and few include 
substantial representation of African ancestry (AFR) individuals (based on similarity to 
reference panels such as 1000G). For example, the most commonly used eQTL/sQTL 
resources in blood are from GTEx (n=670, ~12% AFR individuals in v8) 3 and, for eQTL 
only, the eQTLGen meta-analysis including 31,684 participants (none AFR) 5. There have 
been a few recent efforts to include a greater number of AFR participants 1,6–9, but more 
efforts are still needed to match up with the sample size available in QTL studies for EUR 
individuals. Some of these existing studies in AFR individuals either utilize transformed cell 
lines (pre-publication African Functional Genomics Resource (AFGR) resource) rather than 
native tissue, rely on older microarray data 7,8 to measure gene expression (and therefore 
do not include examination of splicing QTLs), or genotyping array and imputation (rather 
than WGS) 7,8  for genotyping, or include only children 9 (and therefore may be less relevant 
for identifying mechanisms for genome-wide association study (GWAS) identified loci for 
complex traits or chronic diseases that mainly occur among adults).  
 
To address this gap, we performed eQTL and sQTL analysis in 1,012 AFR individuals from 
the Jackson Heart Study (JHS) 10 with RNA-seq measured gene expression levels from 



 

stored peripheral blood mononuclear cells (PBMCs) and genome-wide genotyping from 
whole genome sequencing (WGS) generated through the NHLBI Trans-Omics for Precision 
Medicine (TOPMed) program. JHS participants are part of a longitudinal population-based 
cohort study focusing on improved understanding of risk factors for cardiometabolic disease 
among African Americans, including genetic risk factors. All participants have significant 
portions of their genomes with genetic similarity to African (AFR) reference populations, with 
mean and median African global ancestry component 83.4% and 85.4% (Supplemental 
Materials). To our knowledge, this is the largest sequencing-based eQTL/sQTL study to 
date in predominantly AFR populations. More details on cohort and methods are described 
in the Supplemental Materials.  
 
As displayed in Figure S1, RNA-seq data were generated at the University of Washington 
Northwest Genomics Center (NWGC) at an average read depth of 50M utilizing stored PBMC 
obtained from 1,027 related JHS participants recruited from families residing in Jackson, 
Mississippi. We performed sample-level quality control (QC) by removing low RNA quality 
samples, and those with genotype inconsistencies between RNA and DNA based on 
verifyBamID 11 results, leaving 1,012 individuals (n=706 unrelated individuals with kinship < 
0.2 from PC-AiR 12 pairwise kinship coefficient) for downstream analysis. Variant- and gene-
level QC was then performed based on these 1,012 individuals by removing variants with 
minor allele frequency (MAF) < 1% and low expression genes (Supplemental Materials), 
resulting in 15,474,937 variants and 17,383 genes for eQTL analysis. For sQTL analysis, we 
adopted LeafCutter to calculate intron excision ratios to quantify alternative splicing events 13 
and applied a QC strategy similar to GTEx 3 (Supplemental Materials), retaining 97,840 
intron clusters for our sQTL analysis. We performed cis-eQTL and cis-sQTL analysis using 
linear mixed models implemented in APEX 14. The genetic relationship matrix (GRM), included 
as a random effect in the linear mixed model to account for relatedness, was calculated based 
on common variants (MAF > 1%) using GCTA 15,16. In the eQTL analysis, we inverse-
normalized gene expression values and then calculated probabilistic estimations of expression 
residuals (PEER) factors 17. Covariates included as fixed effects in the linear models were age, 
sex, top 10 genotype PCs calculated in JHS samples using PC-AiR 12, and 70 PEER factors. 
The number of PEER factors was chosen based on the point where we no longer observed a 
substantive increase in the number of detected QTLs with the addition of an additional 10 
PEER factors, for eQTL analysis (Figure S4A). For splicing QTL analyses, we adjusted for 25 
splicing PCs, which maximized the significant variant-cluster pairs (Figure S4B). 

 
Our eQTL analysis revealed 4,798,604 variant-gene pairs at an MAF >1% representing 
16,538 unique genes at a genome-wide Benjamini-Hochberg-corrected FDR of 5%. We 
compared our eQTL results with those from 3 other blood or LCL-based published sources 
that include AFR ancestry individuals, GTEx v8 3 (12.3% African American, total n=670), 
GENOA 7 (AA, n=1,032 related), and the AFGR study (n=593) (Figure 1, S2, S3, Table S1). 
Our results revealed a greater number of significant variant-gene pairs at the same MAF 
threshold and 17-50% increase in the number of genes with eQTLs (e-genes) compared to 



 

the other studies. The greater statistical power for QTL detection is likely due to the 
comparable or larger effective sample size and the genome and RNA sequencing versus 
array-based data in JHS. We then compared eQTL-gene association results by examining 
agreement in terms of either estimated effect size (beta) or statistical significance (p-value) 
(Figure 1, S2, S3). For every variant-gene pair shared between JHS and the previously 
published AFR blood eQTL datasets, we observed reasonable agreement with the 
correlation of effect sizes ranging from 0.49-0.82 (Figure 1A, S2A, S3A). By comparing p-
values, we found that our JHS eQTLs were generally more significant compared to the 
other studies (Figure 1B, S2B, S3B). We also compared the agreement with restriction to 
the index variants for each gene, and observed similar consistencies in effect sizes (Figure 
1C, S2C, S3C) and greater statistical significance (Figure 1D, S2D, S3D). 

 
Our sQTL results revealed 5,918,395 variant-gene-cluster pairs at FDR 5%, involving 9,605 
unique genes (Figure 2, Table S2). There are fewer sQTL studies including AFR 
participants than eQTL studies, emphasizing the value of our study in JHS. In terms of 
unique genes with sQTLs, we achieved a 2.2-fold increase compared to GTEx v8. Since no 
gene information (only intron clusters) was provided in the AFGR pre-publication sQTL 
results, we could not compare to AFGR at gene level. We also compared the effect size 
estimates and p-values between our sQTL results and GTEx v8. Figure 2 shows that the 
effect size estimates were in high agreement across all tested scenarios including shared 
variant-cluster pairs, index-variant-cluster pairs, and index-variant-gene pairs (R=0.79-0.89). 
In terms of statistical significance (based on p-values), our sQTLs were in general more 
significant than GTEx v8 sQTLs, again likely due to the increased sample size of JHS 
compared to GTEx.  

 
We next performed fine-mapping using SuSie 18 to identify and provide distinct eQTL and 
sQTL signals and the likely set of variants driving each signal. Fine mapping results can be 
valuable for GWAS integration and colocalization analyses with clinical phenotypes 19,20. 
Out of the 9,678 genes with lead eQTL p-value < 5e-8, we generated credible sets for 9,317 
genes with the remaining genes having an empty credible set, likely due to SuSie non-
convergence. The vast majority (90.7%) of genes have <=50 total variants in their credible 
sets (Figure 3A) and most genes have a small number of distinct credible sets (Figure 3C). 
For example, 8,439 (90.6%) genes have <=3 credible sets while only 68 (0.7%) genes 
have >=8 credible sets. Similarly, most genes (94.5%) have 3 or less distinct signals in 
GTEx conditional analyses. Comparing the total number of distinct signals with GTEx, for 
genes with both a GTEx and a JHS significant signal, our results generated ~16K additional 
credible sets that are not present in GTEx (Figure S5). Conversely among the genes where 
SuSie fine-mapping was performed in JHS, there were about 10K unique GTEx distinct 
signals that were not identified in JHS. Similarly, we performed fine-mapping analyses for 
sQTLs at gene-cluster level for those clusters with lead sQTL p-value < 5e-8, resulting in 
18,785 clusters representing 5,124 unique genes. We successfully generated credible sets 
for 17,896 clusters representing 5,038 unique genes, and the results show similar patterns 



 

as eQTLs in terms of number of distinct credible sets and number of variants within each 
set (Figure 3B and 3D).  

 
Our eQTL and sQTL fine-mapping results can be utilized in analyses to link GWAS variants 
to genes 21. For example, in a multi-ancestry GWAS 22, rs10173412, an intronic variant of 
RBMS1, was a lead variant associated with lymphocyte counts (Figure 4A). rs10173412 is 
also in the primary credible set of RBMS1 eQTLs (Figure 4B), suggesting potential 
regulatory links between variant to gene. Another example is rs113315762 (an intergenic 
variant located between HRK and FBXW8) associated with eosinophil counts (Figure 4C). 
In JHS, this variant is not the lead eQTL (Figure 4D); rather, rs113315762 is in the 
secondary credible set of FBXW8 from our fine-mapping results. We further note that HRK 
has credible sets where this variant rs113315762 is not present, suggesting a potential 
regulatory role of the eosinophil-associated variant on blood cell FBXW8 expression. In both 
of these examples, the two index trait-associated variants, rs10173412 and rs113315762, 
are more frequent in African ancestry populations than European ancestry (EUR v.s. AFR 
MAF 20.8% v.s. 32.4%, and 10.7% v.s. 45.9%, respectively 23). Moreover, the 12q24 region 
harboring FBXW8 was recently identified as an African ancestry-specific risk loci for 
eosinophilic esophagitis in a genome-wide admixture and association analysis in African 
Americans 24. Neither the rs10173412-RBMS1 nor rs113315762-FBXW8 eQTLs are 
reported in GTEx v8 in any tissue, or tagged by any LD proxy. Therefore, these examples 
demonstrate the value of our results for interpreting and prioritizing GWAS variants more 
common in AFR and, as in prior eQTL/GWAS integration analyses 20, shows that additional 
insights can be gained through consideration of non-primary eQTL/sQTL signals.   
 
Although we demonstrate general agreement in effect directions and magnitude of 
associations for variant-gene and index-variant-gene pairs shared between our JHS 
analyses and previously published eQTL/sQTL datasets, some differences still exist. These 
differences may be due to several factors, such as MAF differences between AFR and EUR, 
demographic and environmental differences between populations, or technical differences 
in sample collection, storage, and library preparation, as well as statistical chance, 
especially in the modest sample sizes currently available for eQTL/sQTL analysis. Indeed, 
there are examples of QTL with large MAF differences between EUR and AFR, which would 
cause some AFR ancestry-specific QTLs to be missed in prior euro-centric studies. Overall, 
in our eQTL and sQTL results at FDR < 5%, 31.0% of eQTL variants and 30.7% of sQTL 
variants were rare (MAF < 0.1%) and 37.2% and 36.8% were low frequency (MAF < 0.5%) 
in EUR individuals, while all of these variants have MAF > 1% in JHS (Figure 5). These 
variants represent 4,272 eQTL and 5,830 sQTL credible sets with MAF EUR < 0.1%, and 
represent 5,240 eQTL and 7,124 sQTL credible sets with MAF EUR < 0.5%. Besides 
genetic ancestry difference in study subjects, GTEx utilized whole blood including cell types 
such as erythrocytes, platelets, and neutrophils while our JHS RNA-seq data was based on 
cryopreserved PBMCs which mainly consists of lymphocytes (T cells, B cells, and NK cells) 



 

and monocytes. Thus, differential gene expression by cell types can also potentially 
contribute to discrepant results.  

 
To benefit the scientific community and for easy access to our results, we developed a 
website for the JHS eQTL/sQTL database (Figure S6), where users can search, sort and 
download our eQTL/sQTL summary statistics without restrictions, as noted below under 
data availability. In addition, we provide URLs for each variant and gene linking to external 
sources of variant and gene annotation (e.g., Bravo variant browser, GeneCards, etc.).   
 
In summary, we generated RNA-seq data from PBMC in >1,000 predominantly African 
ancestry individuals from the JHS study. Leveraging both RNA-seq based gene expression 
dataset in AFR individuals and WGS data from TOPMed, our QTL analyses reveal many 
eQTLs and sQTLs missed by previous studies, which either primarily focused on EUR 
individuals or analyzed AFR data with smaller sample sizes. We also performed fine-
mapping for our eQTL and sQTL results and provided credible sets of distinct eQTL and 
sQTL signals to aid in future colocalization analysis. Our web database provides an easily 
accessible, convenient interface platform for researchers to search blood-based QTLs 
among AFR individuals. The large sample size of AFR participants from JHS substantially 
increases eQTL/sQTL identification power and leads to novel putative mechanisms for 
GWAS identified variants, demonstrating the need for larger omic data sample sizes across 
diverse populations, especially as more GWAS are conducted in individuals with significant 
non-European ancestry. Our results have broad potential to prioritize or validate variants 
which are more common among African ancestry individuals.  

 
Data and code availability 
Data generated for this study can be accessed via the JHS-QTL web portal: 
http://jhsqtl.genetics.unc.edu/ 
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Figure legends 

 
Figure 1. eQTL results comparison with GTEx whole blood eQTLs. A and B. 
Comparison of effect size estimates (A) and nominal p-values (B), for all shared variants. C 
and D. Comparison of effect size estimates (C) and nominal p-values (D) restricting to the 
index variants (i.e., the most significant eQTL variant for each gene). The red line denotes 
the diagonal line and the blue line is the regression fitting line. 

 
Figure 2. sQTL results comparison with GTEx whole blood sQTLs. A and B. 
Comparison of effect size estimates (A) and nominal p-values (B), for all shared variants. C 
and D. Comparison of effect size estimates (C) and nominal p-values (D) restricting to the 
cluster-level index variants (i.e., the most significant sQTL variant for each gene-cluster). E 
and F. Comparison of effect size estimates (E) and nominal p-values (F) restricting to the 
gene-level index variants (i.e., the most significant sQTL variant for each gene among all its 
clusters). The red line denotes the diagonal line and the blue line is the regression fitting 
line. 
 
Figure 3. Histograms of SuSie fine-mapping results. A. Number of variants in credible 
sets for eQTL fine-mapping. B. Number of variants in credible sets for sQTL fine-mapping. 



 

C. Number of credible sets for eQTL fine-mapping. D. Number of credible sets for sQTL 
fine-mapping. 
 
Figure 4. Locuszoom plot for overlapping GWAS and eQTL signals for two 
hematological trait GWAS signals. A and C show the GWAS associations; B and D show 
the eQTL associations. A and B. The example of rs10173412-RBMS1. A. Association of 
rs10173412 (2:160474429, hg38) with lymphocyte counts in a multi-ancestry GWAS study 
22; B. association of rs10173412 (2:160474429, hg38) with RBMS1 expression. C and D. 
The example of rs113315762-FBXW8. C. Association between rs113315762 
(12:116899423) and eosinophil counts in the same GWAS study; D. association between 
rs113315762 (12:116899423) and expression of FBXW8. The genome build is hg38. For 
both GWAS and eQTL associations, LD is based on TOP-LD 23 AFR. 

 
Figure 5. Minor allele frequency of significant QTLs comparison between JHS study 
samples and European ancestry individuals based on TOP-LD [35504290]. A and B. 
Comparison for all the QTLs. C and D. Comparison for lead variants within each SuSie 
credible set of QTLs. The x-axis is showing MAF bins and the y-axis is showing the counts 
of variants. 
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