

1 Functional archaic DNA regulates molecular variation and is 2 associated with disease risk across global populations

3 Jianning Kang^{1, #}, Aimee S Ramgolam², Louise Le Vot², Robert S. Young^{1,2,*}

4
5 1. Zhejiang University - University of Edinburgh Institute, Zhejiang University, 310058 Hangzhou,

10 # Current address: Peking Joint Center for Life Sciences, School of Medicine and School of Life
11 Sciences, Tsinghua University, Beijing, P.R. China.

* Corresponding author: robert.young@ed.ac.uk

22 **Abstract**

23

24 The human genome contains many remnants of its evolutionary history, including a large
25 number of evolutionarily volatile loci which have been introduced since our divergence from
26 primates. One particularly intriguing source of novel DNA sequences is introgression events
27 with archaic species which co-existed with modern humans. Both Neanderthals, who were
28 common in Europe, and Denisovans, who have been observed only in Asia, have contributed
29 genetic variants to the modern human genome but the functional consequences of these
30 introgressed variants have yet to be investigated systematically. In this work, we show that
31 Neanderthal and Denisovan DNA is most enriched for genetic variants which regulate gene
32 expression in Europe and East Asia respectively, i.e. the populations in which the introgression
33 event(s) most contributed to contemporary genetic variation. Neanderthal eQTLs, in
34 particular, frequently upregulate gene expression. Archaic eQTLs from these two species
35 regulate target genes with similar molecular functions which are distinct in each
36 contemporary population, with the only common enrichment being for Neanderthal eQTLs
37 to regulate taste receptor genes in both Europe and East Asia. We observed a correlated
38 pattern of enrichment and depletion of medical phenotypes across Neanderthal and
39 Denisovan eQTLs, including a shared enrichment for CNVs associated with developmental
40 delay. Our results demonstrate the role of functional archaic DNA in regulating molecular
41 phenotypes and disease risk across global populations and confirm the relevance of recently
42 acquired DNA to contemporary human genetic variation.

43

44 **Author Summary**

45

46 Modern humans co-existed and interbred with two archaic human species (Neanderthals and
47 Denisovans). The results of these events can still be detected as introgressed, archaic DNA
48 sequences within the modern human genome. Here, we surveyed the contribution of
49 functional archaic DNA across European and Asian populations by assessing their contribution
50 to genetic variants which regulate gene expression in these two populations. We found that
51 both species make a disproportionate functional contribution to the population with which
52 they shared the most overlap (i.e. Neanderthals in Europe and Denisovans in East Asia).
53 Although only Neanderthal DNA drives a higher level of gene expression compared to modern
54 genetic variants, the DNA from both archaic species frequently regulates genes involved in
55 many different biological processes and risk of disease, including a shared contribution to
56 developmental delay. These results confirm the relevance of our recent evolutionary past in
57 generating functional variation across global populations and the importance these recently
58 introduced genetic sequences play in regulating current biological variation, such as disease
59 risk.

60

61 **Introduction**

62

63 Biological diversity across individuals, populations and species is thought to be primarily
64 driven not by variation in their protein-coding gene complement, but in how the expression
65 of these genes is regulated [1]. This view is supported by the observation that the
66 overwhelming majority of genetic variants associated with phenotype through genome-wide
67 association studies (GWAS) are found outside the borders of the protein-coding genes [2] and

68 are enriched within transcriptional regulatory elements such as promoters and enhancers
69 [3,4]. Many of these regulatory loci are evolutionarily volatile [5]. For example, it has been
70 estimated that over 50% of orthologous genes shared between human and mouse have
71 experienced the evolutionary turnover of at least one functional promoter since the
72 divergence of their last common ancestor [6] approximately 75 million years ago [7]. Those
73 promoters which have been gained along the human lineage arise from the insertion of
74 transposable elements, are generally found in a repressive chromatin environment [8] and
75 are enriched for expression QTLs (eQTLs, genetic variants which regulate gene expression)
76 [9], confirming their importance in regulating human biology.

77

78 More recently, the human genome has also received evolutionary additions from archaic
79 hominid species through introgression events during the time these species co-existed.
80 Neanderthals were an archaic species of human who lived in Eurasia and were characterised
81 by a robust build and squat stature compared to their modern-day counterparts [10]. They
82 lived from approximately 130,000 [11] to 40,000 years ago [12], although the exact cause of
83 their demise remains controversial. Multiple introgression events took place between
84 Neanderthal and anatomically modern human (AMH) individuals which has resulted in ~2%
85 of the contemporary Eurasian genome being derived from that of the Neanderthal [13]. It has
86 been suggested that Neanderthals were well adapted to the European environment and that
87 this introgression may have therefore introduced beneficial alleles to recently arrived
88 anatomically modern humans (AMHs) in a process known as 'adaptive introgression'. This
89 Neanderthal DNA has contributed to variation in a variety of traits including skin and hair
90 colour, height and several behavioural traits [14]. Nevertheless, the Neanderthal population
91 was also thought to be relatively small and suffered from inbreeding depression [15] which

92 allowed the persistence of weakly deleterious alleles. This is exemplified by the presence of a
93 Neanderthal-inherited locus on chromosome 3 which was identified as a major genetic risk
94 factor for severe COVID-19 [16].

95

96 A second archaic species, the Denisovans, has been identified more recently. Only limited
97 Denisovan remains have been identified, where they are thought to have lived from Siberia
98 to Southeast Asia [17]. They lived until at least 30,000 years ago [18]. There is thought to have
99 been two pulses of introgression between Denisovan and AMH individuals [19]. It is estimated
100 that up to 6% of DNA in contemporary East Asian populations may have persisted from these
101 introgression events [20].

102

103 The consequences of these introgression events for the modern human genome have been
104 the focus of much investigation. Both Neanderthal and Denisovan DNA is largely found
105 outside protein-coding regions but enriched within transcriptional regulatory sites including
106 enhancers [21,22]. These observations suggest that, similar to sequences that have
107 undergone changes throughout mammalian evolution, this introgressed archaic DNA is likely
108 to have played a prominent role in rewiring our gene regulatory architecture. This has already
109 been confirmed for Neanderthal genetic variants, which down-regulate gene expression
110 across the brain [23]. Individual Neanderthal and Denisovan variants segregating within the
111 Indonesian population have been demonstrated to contribute to local ancestry differences
112 and differential gene expression across the Indonesian population [24].

113

114 While these studies have revealed the potential for introgressed archaic DNA to regulate gene
115 expression, we wanted to investigate the scale of this across the genome and its potential to

116 regulate phenotypes – both molecular and medical – across global populations. We
117 performed a comprehensive study of the functional contribution of archaic DNA by
118 integrating atlases of introgressed archaic alleles and expression quantitative trait loci
119 (eQTLs). We next studied the contribution of these introgressed eQTLs to gene function and
120 subsequent disease risk. Archaic eQTLs show clear signs of population stratification, where
121 Neanderthal DNA is enriched for European eQTLs and Denisovan DNA for East Asian
122 (Japanese) eQTLs. Those eQTLs which have persisted in contemporary human populations
123 frequently have a large effect on gene expression across tissues. Archaic eQTLs regulate a
124 variety of molecular functions. Archaic eQTLs display a range of enrichments and depletions
125 for phenotype-associated genetic variants, although Denisovan eQTLs show a higher level of
126 enrichment relative to Neanderthal eQTLs. The distribution of functional archaic DNA across
127 populations therefore reflects human geographic history, where these variants regulate a
128 wide variety of molecular and medical phenotypes, showing their continued importance to
129 studies of human genetics.

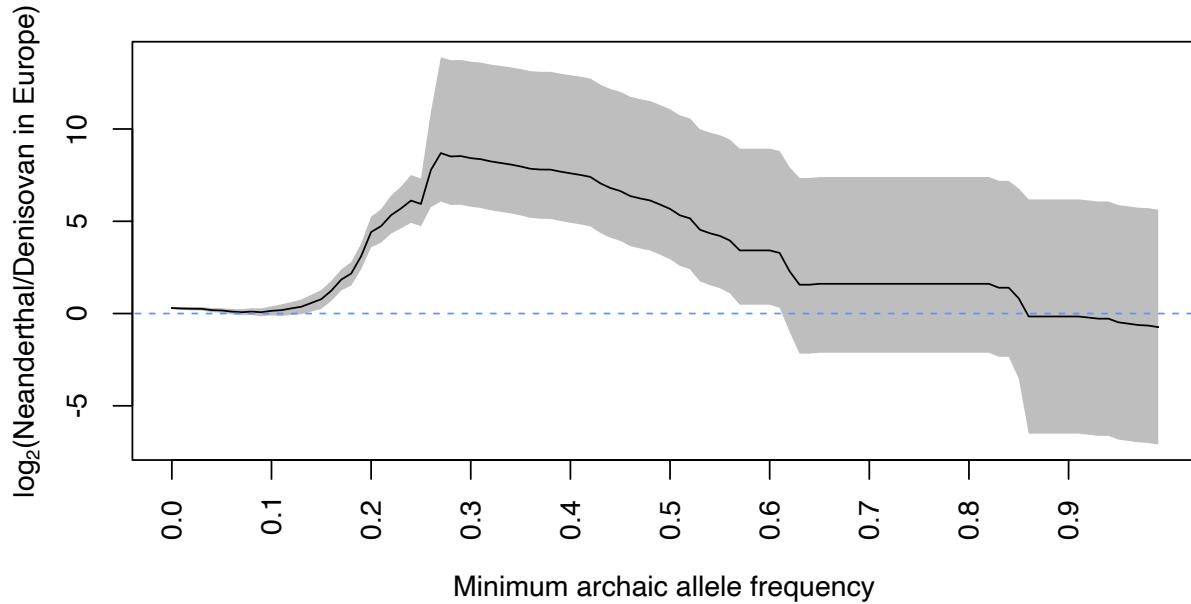
130

131 **Results**

132

133 **Neanderthal alleles are enriched over Denisovan at common 134 variants in modern Europeans**

135


136 We first investigated the distribution of archaic alleles in human populations in both Europe
137 and East Asia. Variants obtained from Neanderthal and Denisovan samples were downloaded
138 from publicly available databases (see Methods). The Denisovan genome has been sequenced

139 to a much greater coverage (31-fold vs 1.3-fold for the Neanderthal Genome [25]) and this
140 resulted in a much greater ability to detect genuine Denisovan variants. As in a recent study
141 [22], we further required that these variants were not observed within the African population
142 to remove variants that had been segregating prior to the emergence of archaic species such
143 as Neanderthals and Denisovans. This resulted in a high-quality set of 13,191 and 442,873
144 Neanderthal and Denisovan variants, respectively, that we considered in subsequent
145 analyses.

146

147 Consistent with their reported geographic distributions, we observed a clear enrichment of
148 Neanderthal alleles relative to Denisovan in 1000 Genomes Project Europeans (Fig 1; odds
149 ratio 1.2, Fisher's exact test $p = 1.4 \times 10^{-7}$). We were able to recover this enrichment of
150 Neanderthal alleles in Europe across a range of allele frequencies. This enrichment only
151 became statistically non-significant above a minimum allele frequency of approximately 0.7
152 which is likely due to a reduced number of alleles and therefore reduced statistical power to
153 detect deviations from neutrality, as shown by the large error bars. We also repeated this
154 analysis but considered only alleles that were present in one of the two populations being
155 considered here (see Methods). These population-specific alleles showed a comparable
156 pattern to those for which we did not perform this filtering (S1 Fig).

157

158

159 **Fig 1. Neanderthal variants segregating within the European population are enriched over**
160 **Denisovan variants.** Odds ratio of the enrichment of Neanderthal over Denisovan variants
161 segregating in the 1,000 genomes European super-population compared to the East Asian
162 super-population calculated at increasing minimum archaic allele frequency. The grey curves
163 indicate the 95% confidence interval of the odds ratio estimates. A log₂(odds ratio) of 0 shown
164 by the horizontal dashed blue line indicates an equal enrichment of Neanderthal alleles in
165 Europe and East Asia.

166

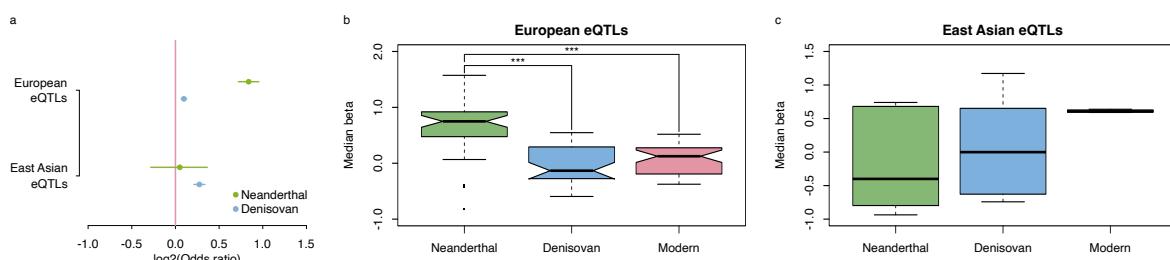
167 It has been reported that Denisovan DNA is not present in the contemporary European
168 population [22] which would appear to contradict these results. However, those alleles
169 annotated here as being Denisovan in origin are segregating at a significantly reduced allele
170 frequency in Europe (median ratio 0.6, Mann-Whitney $p < 2.2 \times 10^{-16}$). We speculate that these
171 alleles are likely a result of migration and admixture between populations, introgressing the
172 Denisovan variants from Asia to Europe across a number of generations, rather than
173 suggesting that this provides evidence that Denisovan individuals were present in Europe. The

174 continued presence of these variants across global populations nevertheless suggests that
175 they play a functional role in regulating variation across individuals and are worthy of further
176 investigation.

177

178 In order to balance maintaining a sufficient sample size with robust filtering of non-archaic
179 derived sequences, we therefore considered all Neanderthal and Denisovan variants to be
180 those which were observed in either Europe or East Asia, but not within the African
181 population, to be genuine archaic variants which we considered in our subsequent analyses.

182


183 **Functional archaic DNA frequently upregulates gene expression 184 across populations**

185

186 Segregating alleles were defined as archaic if they overlapped either a Neanderthal or
187 Denisovan variant, or modern if they did not overlap any sequenced Neanderthal or
188 Denisovan nucleotide (see Methods). These locations were intersected with eQTL datasets
189 from two distinct human populations to assess their functional impact. The GTEx eQTL atlas
190 from the Genotype-Tissue Expression programme (GTEx) was first selected to have a strong
191 contribution from the European population and these eQTLs were subsequently labelled as
192 'European eQTLs'. We selected a Japanese eQTL atlas from immune cells [26] as a comparable
193 set of East Asian eQTLs as it had the greatest coverage of samples that we are aware of within
194 East Asian populations (n=6). The geographic history of each species has a clear effect on their
195 contemporary eQTL contributions. When we considered variants segregating in Europe,
196 Neanderthal DNA is significantly enriched only for European eQTLs while Denisovan DNA

197 shows a greater enrichment for East Asian eQTLs (Fig 2). The same pattern was observed
198 when considering Variants segregating in East Asia showed a similar pattern, where
199 Denisovan variants were enriched for East Asian eQTLs but depleted for European eQTLs (S2
200 Fig, S1 Table) while Neanderthal eQTLs were similarly enriched in both datasets.

201

202
203 **Fig 2. Neanderthal variants frequently up-regulate gene expression in Europe while**
204 **Denisovan variants are enriched for East Asian eQTLs.** (a) Odds ratio of the number of
205 Neanderthal (in green) and Denisovan (in blue) variants which harbour European and East
206 Asian eQTLs relative to modern variants (purple line, x=0) when considering variants
207 segregating within the contemporary European population. Circles indicate the point
208 estimate of each odds ratio and horizontal lines indicate the 95% confidence interval of each
209 estimate. (b and c) Distribution of median effect sizes across tissues (b, in Europe) and
210 immune samples (c, in East Asia) for archaic and modern eQTLs. *** indicates Mann-Whitney
211 test p -values < 0.001 when comparing median beta coefficients across tissues. All
212 comparisons for East Asian eQTLs were nonsignificant ($p > 0.05$).

213

214 Similar patterns of relative Neanderthal enrichments in European eQTLs and Denisovan
215 enrichments in East Asian eQTLs was noted across individual tissues and cell types (S3 and S4
216 Figs). While the East Asian dataset contained only immune cells and therefore was the only
217 contribution to the Denisovan enrichments observed here, we were not able to detect any

218 similar enrichments across any of the immune tissues in the European dataset using variants
219 segregating either in Europe or East Asia (S3 and S4 Figs; S1 Table). None of the results were
220 driven by the greater coverage of Denisovan DNA in the modern human genome, as similar
221 patterns were obtained when down-sampling these variants to the same number as of
222 Neanderthal variants (S5-8 Figs). The geographic history of these two species is therefore
223 more important than tissue-specific factors in understanding this archaic contribution to
224 contemporary human regulatory variation.

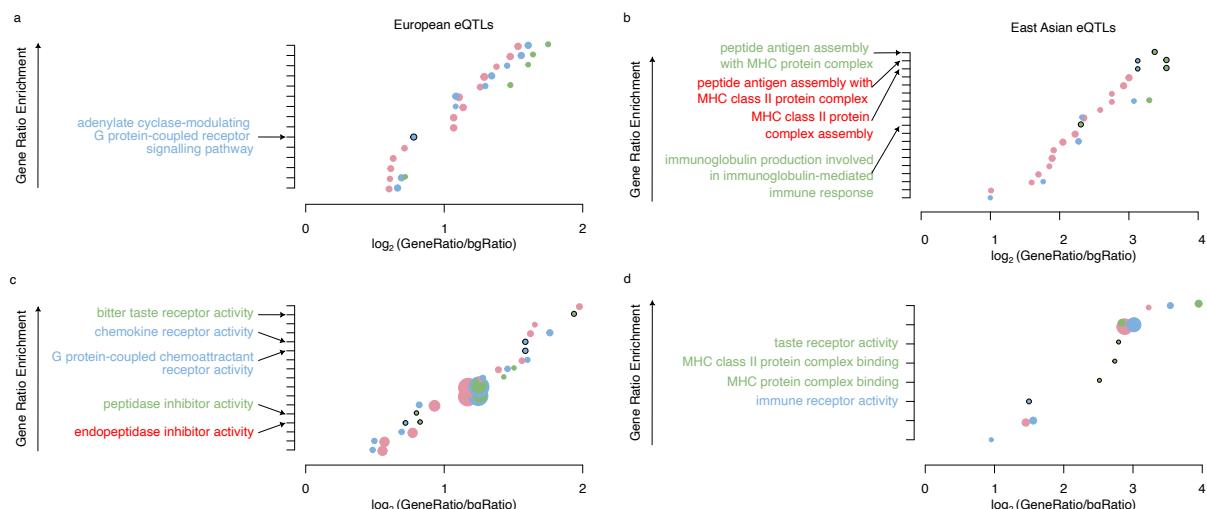
225

226 We next investigated the impact of archaic eQTLs on gene expression. The evolutionary
227 history of each variant was reconstructed such that their reported effect sizes reflect the
228 effect of the archaic or modern allele (see Methods). Across the European tissues, the
229 Neanderthal eQTLs were found to have a greater, and more positive, effect on driving
229 expression of their target genes relative to both modern eQTLs (Fig 2b, Mann-Whitney $p =$
231 9.3×10^{-13}) and Denisovan eQTLs (Mann Whitney $p = 7.0 \times 10^{-11}$). Perhaps due in part to the
232 smaller number of samples surveyed in the East Asian eQTL atlas (44 vs 6), we were not able
233 to detect any significant differences between either set of archaic eQTLs and their modern
234 counterparts in this dataset. The results presented here consider only alleles segregating in
235 the European population but similar results were obtained when considering alleles
236 segregating in East Asia (S4 Fig; S2 Table).

237

238 These results confirm that both archaic genomes have contributed a large number of
239 regulatory variants which were disproportionately acquired or retained in the population
240 which they had most geographic overlap with. Neanderthal variants which have persisted
241 show a large effect size where they tend to increase the expression of their target genes.

242


243 **Archaic alleles regulate genes with a variety of molecular functions**

244 **in both European and East Asian populations**

245

246 We next investigated the characteristics of genes targeted by archaic eQTLs. In order to
247 minimise sampling biases from genes regulated in individual tissues or cell lines, these
248 analyses were performed by combining all eQTLs from either Europe or East Asia into a single
249 dataset. Gene Ontology (GO) enrichment analysis revealed a number of significantly enriched
250 terms within genes targeted by Neanderthal, Denisovan and modern eQTLs in both datasets
251 (Fig 3, S9 Fig). Many terms showed similar enrichments for genes regulated by eQTLs from all
252 three of these categories. The number of immune-related terms reported from the East Asian
253 eQTL dataset likely reflects their sampling of immune cell types in contrast to the European
254 dataset which covers a range of tissues.

255

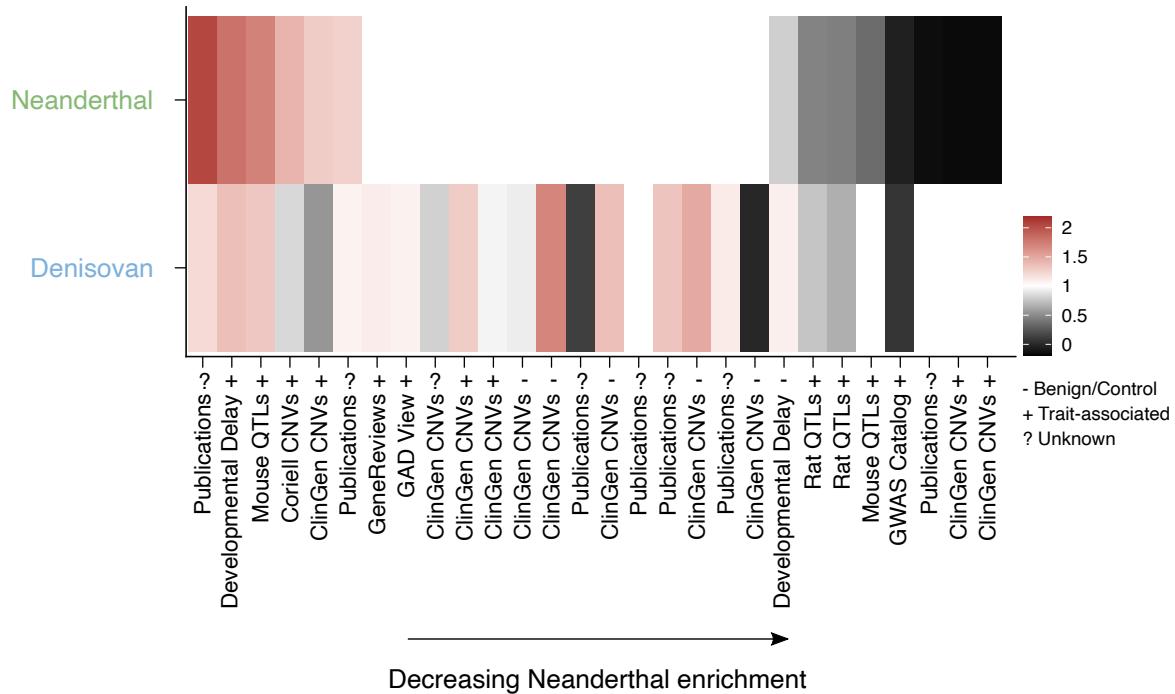
256

257 **Fig 3. Archaic eQTLs regulate a variety of molecular functions.** (a and b) Enrichment of Gene
258 Ontology biological process terms within genes regulated by Neanderthal (green), Denisovan

259 (blue) and modern (pink) eQTLs observed in Europe (a) and East Asia (b). Each circle shows a
260 significant (Benjamini-Hochberg corrected p -value < 0.05) GO term where the size of the circle
261 is proportional to the reported p -value. Solid lines around circles indicate those terms which
262 are nominally enriched within archaic-regulated genes relative to their modern counterparts
263 (Fisher's exact test, $p < 0.05$). Only nominally-enriched terms are displayed on each y-axis,
264 with those labels marked in red indicating terms that are nominally enriched for both
265 Neanderthal and Denisovan eQTLs. (c and d) As above but for molecular function Gene
266 Ontology terms.

267

268 We were unable to detect any terms which were significantly-differentially represented
269 between the Neanderthal and Denisovan eQTLs. We did not attempt down-sampling of the
270 Denisovan eQTLs as elsewhere in the study due to this lack of genome-wide significance.
271 However, a number of the terms identified above (those shown in black-bordered circles)
272 were nominally significantly enriched (Fisher's exact test $p < 0.05$) relative to those genes
273 which are regulated only by modern eQTLs. These enriched terms were largely distinct in the
274 two contemporary populations, e.g. Neanderthal and Denisovan eQTLs in Europe were
275 enriched for regulating endopeptidase inhibitor activity while both species were enriched in
276 the East Asian eQTLs for MHC class II protein complex assembly. Only one term related to
277 taste receptors could be detected as being significantly enriched for Neanderthal eQTLs in
278 both Europe and East Asia (Fig 3c, d).


279

280 **Denisovan eQTLs make a greater contribution than Neanderthal**
281 **eQTLs to disease risk**

282

283 Given the importance of archaic eQTLs in gene regulation, we reasoned that they might play
284 a similar role in regulating genes which were associated with medically important
285 phenotypes. As in our previous work [9], we interrogated the relationship between archaic
286 eQTLs and phenotype-associated genetic variants reported by association and family-based
287 studies. We observed a wide range of enrichments and depletions when comparing the
288 distribution of archaic to modern eQTLs across this diverse dataset of annotated variant
289 collections (Fig 4; S3 Table). The distribution of Neanderthal and Denisovan eQTLs showed a
290 weak correlation (Spearman's rho 0.5, $p = 3.1 \times 10^{-2}$) implying that these two datasets might
291 regulate common biological processes, consistent with their similar GO enrichments (Fig 3).
292 Interestingly, the Denisovan eQTLs showed a consistently greater enrichment in contrast with
293 their relative depletion of eQTLs relative to the Neanderthal contribution (Fig 2). We
294 confirmed that this Denisovan enrichment was not down to a greater power to detect
295 associations within Denisovan eQTLs by down-sampling this to the same number as
296 Neanderthal eQTLs, where we continued to observe a significant correlation in the same
297 direction (S10 Fig, Spearman's rho < 0.7, $p < 3.1 \times 10^{-7}$).

298

299

300 **Fig 4. Enrichment of archaic eQTLs relative to their modern counterparts across phenotype-
301 associated variant collections.** Genetic variant collections (x-axis) were extracted from the
302 'Phenotype and Literature' dataset group from the UCSC Genome Browser and are marked as
303 'benign', 'trait- associated' or 'unknown' using each table description. Odds ratios were
304 calculated using Fisher's exact tests where red denotes eQTL enrichment relative to modern
305 eQTLs and grey depletion. Non-significant ($p > 0.05$) associations have odds ratios rounded to
306 one and are displayed as white.

307

308 We looked in more detail at the individual variant collections analysed here. Archaic eQTLs
309 showed a consistent depletion within the GWAS Catalogue (odds ratio ≤ 0.2 , Fisher's exact
310 test $p \leq 1.3 \times 10^{-7}$; S3 Table) suggesting that the major contribution of these eQTLs is not
311 mediated through their harbouring of genetic loci which contribute directly to disease. In
312 contrast, archaic eQTLs were enriched for a number of copy-number variant (CNV) collections
313 which have been associated with phenotypes, including developmental delay (S3 Table). It

314 may be that these genomic regions which are susceptible to large-scale mutations are also
315 those able to tolerate the continued presence of introgressed regulatory alleles, rather than
316 a direction association between archaic eQTLs and disease.

317

318 Similar results were obtained when we considered only European or East Asian eQTLs (S11-
319 S14 Figs). Although we noted no enrichments of Neanderthal DNA within East Asian eQTLs
320 across these phenotype-associated variant collections, there were no significant deviations in
321 the reported odds ratios across populations for either Neanderthal or Denisovan eQTLs
322 (Mann-Whitney $p > 0.05$). Future large-scale studies of the population stratification of
323 phenotype associations such as these analysed here could potentially be used to yield greater
324 insights into the contribution of functional archaic variants to disease risk across global
325 populations.

326

327 **Discussion**

328

329 The analyses presented here has revealed the ongoing contribution of functional introgressed
330 archaic DNA to the modern human genome. These variants regulate gene expression,
331 molecular phenotypes and medically relevant traits in anatomically modern humans (AMHs)
332 across contemporary European and East Asian populations. The distribution of archaic eQTLs
333 across these populations reflects their geographic history, with Neanderthal eQTLs more
334 frequent in Europe than East Asia and Denisovan eQTLs showing the inverse pattern (Fig. 2).
335 Neanderthal variants make a disproportionate contribution to driving increased gene

336 expression while both species frequently regulate a variety of molecular phenotypes (Fig. 3)
337 and are commonly associated with disease risk (Fig. 4).

338

339 Recent introgression events such as these may continue to play an important role in
340 contemporary population differentiation and the identification of population-specific
341 associations in modern human individuals.

342

343 While our results reflect the geographic history of both archaic species, we note that in both
344 populations the introgressed DNA is more frequently functional (as displayed by the presence
345 of an eQTL) which might reflect selective pressures to retain functional, adaptive DNA in the
346 population where the archaic species had the most geographic overlap. Denisovan DNA has
347 already been demonstrated to contribute to variation in local ancestry across Indonesia [24]
348 and adaptation to high altitude within the Tibetan population [27]. Further population-wide
349 genetic studies of global populations which have been previously underrepresented should
350 reveal further examples where archaic DNA contributes to local population adaptation and
351 stratification.

352

353 Our analyses have demonstrated the importance of archaic DNA in transcriptional regulation
354 across a wide range of molecular phenotypes and tissues (S3-4 Figs). The only consistent
355 association we found across populations was for Neanderthal eQTLs in both Europe and East
356 Asia to regulate taste receptor genes. We also show that archaic eQTLs can overlap
357 phenotype-associated genetic variants (Fig. 4) from various sources, suggesting that they may
358 contribute to different disease risk, consistent with previous studies that considered all
359 introgressed Neanderthal DNA [14,28]. Many of these phenotype-associated variants are

360 CNVs and it remains to be established whether the archaic eQTLs harboured within these may
361 carry the causal, regulatory variant for the phenotype under consideration. These findings
362 should stimulate further research into novel biological roles of functional, introgressed
363 archaic DNA and potential differences in the contribution of Neanderthal compared to
364 Denisovan DNA.

365
366 Neanderthal eQTLs frequently lead to upregulation of gene expression (Fig. 2; S2 and S5-6
367 Figs) which is consistent with other recently acquired regulatory loci in the human genome.
368 These sequences, which have been inserted during primate evolution, gradually lose their
369 ability to drive transcription [8] suggesting that there may be an optimum moderate level of
370 gene expression in the human genome. Whether Neanderthal eQTLs behave similarly or
371 whether their regulatory potential remains more constant over time remains to be fully
372 determined.

373
374 Future studies of human genetic variation, particularly those focused on noncoding regulatory
375 loci, should include evolutionarily novel variants in their analyses. These results confirm the
376 importance of recently acquired sequences that has been added to the human genome within
377 the last 150,000 years and suggests that a lack of evolutionary conservation should not be
378 taken as evidence for lack of biological function. While many protein-genes are deeply
379 conserved across species, those noncoding regions which experience evolutionary changes
380 may be those which more frequently regulate genetic and phenotypic variation [9]. The
381 results presented here further suggest that noncoding loci may experience differential
382 selective pressures to their protein-coding counterparts, which result in a different

383 relationship between evolutionary conservation and phenotype associations across these
384 separate regions.

385

386 Our results further highlight differences in the role of genetic variants which regulate
387 molecular and medical phenotypes. As previously reported [29], the overlap between eQTLs
388 and GWAS signals is relatively limited. The enrichments observed here for archaic variants
389 confirm this, as Neanderthal DNA is enriched for European eQTLs (Fig. 2) while it is the
390 Denisovan eQTLs that more frequently harbour phenotype-associated genetic variants, most
391 of which have been defined in European-biased population studies (Fig. 4). Many GWAS
392 signals are prioritised by their overlap with functional data, e.g. the presence of a matched
393 eQTL location. However, this approach may miss many important genetic variants and the
394 mechanisms by which they mediate their phenotypic consequences. Our results should
395 encourage future GWAS and post-GWAS analyses to explore complementary functional
396 genomics datasets beyond eQTL atlases to increase the proportion of GWAS signals which can
397 be explained and for which mechanistic hypotheses can be generated.

398

399 Overall, our study has revealed the importance of functional archaic DNA in regulating a
400 significant component of contemporary human biology. These results highlight the
401 importance of recent evolutionary events in driving ongoing biologically and medically
402 relevant genetic variation across populations.

403

404 **Materials and Methods**

405

406 **Genetic variation**

407

408 We obtained contemporary human genetic variation from the 1,000 genomes project at
409 <http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/>. Multi-allelic and structural
410 (i.e. non-SNP) variants were removed. European and East Asian variants were defined as
411 those with an allele frequency > 0 in the EUR and EAS super-populations, respectively.
412 European variants with an allele frequency of 0 in the EAS super-population were defined as
413 European-specific while East Asian variants with an allele frequency of 0 in the EUR super-
414 population were defined as East Asian-specific. We used the 'AA=' flag to annotate the
415 ancestral state of all genetic variants. Variants which did not contain an ancestral annotation
416 were still considered when performing genomic intersections but were not included when
417 annotating the evolutionary trajectories for modern and archaic eQTLs.

418

419 Neanderthal variants identified by the Neanderthal Genome Project were downloaded from
420 <ftp://ftp.ebi.ac.uk/pub/databases/ensembl/neandertal/CatalogOfChanges.tgz>. Segregating
421 SNPs stored with the combined_SNP_anno.ns.har.filter.tsv file were converted to bed format
422 and the UCSC liftOver tool used to convert these genomic coordinates to the hg19 assembly
423 for comparison with other datasets. Genuine-neanderthal introgressed variants were
424 identified as those sites which were found at an allele frequency of 0 in the AFR 1,000
425 genomes super-population and where the neanderthal allele differed from the human allele.
426 Only these positions were retained for subsequent analyses.

427

428 We obtained Denisovan variants directly from the Table Browser of the hg19 genome
429 assembly from the UCSC Genome Browser. In order to maintain consistency with the
430 Neanderthal variants, we retained only SNP variants and those which were found at an allele
431 frequency of 0 in the AFR 1,000 genomes super-population. Subsequently, variants where
432 neither allele for the Denisovan genotype (as recorded by the 'GT=' flag) could be identified
433 were removed.

434

435 Modern alleles were defined as variants segregating in the 1,000 genomes project data that
436 did not overlap any Neanderthal SNP (defined as all locations in
437 combined_SNP_anno_ns.har.filter.tsv) or Denisovan variant downloaded from the Table
438 Browser.

439

440 **Functional genetic variation: eQTLs**

441

442 eQTLs from the GTEx consortium were obtained from the patched version 6 release.
443 Significant SNP-gene pairs were downloaded from the GTEx portal
444 (https://storage.googleapis.com/gtex_analysis_v6p/single_tissue_eqtl_data/GTEx_Analysis_v6p_eqtl.tar).

446

447 Japanese white blood cell eQTL datasets [26] were downloaded from
448 <https://humandbs.biosciencedbc.jp/en/hum0099-v1#hum0099.v1.eqtl.v1>. Significant-SNP
449 gene pairs were considered as those for which a q-value ≤ 0.05 was reported from the
450 permutation tests stored within /eQTL_gene_level/permuation/ directory.

451

452 We only considered those eQTLs which had previously been reported by the 1,000 genomes
453 project (regardless of which population they were found in) as genuinely segregating variants
454 within the contemporary human population. Those eQTLs which did not overlap with a
455 variant within the 1,000 genomes project were removed from the analyses.

456

457 **Functional genetic variation: Phenotype-associated variants**

458

459 Phenotype-associated variants were accessed as in our previous work [9] as all tracks
460 contained within the 'Phenotype and Literature' group downloaded from the UCSC Genome
461 Browser. Variants from each individual track were merged into a single-unified set of
462 intervals. All tracks are detailed within S4 Table.

463

464 **Gene Ontology**

465

466 Variants were associated with target genes as annotated by Ensembl through each eQTL
467 annotation. Only protein-coding genes were submitted for gene ontology (GO) enrichment.
468 First, protein-coding Ensembl IDs were converted to their Entrez counterparts using the
469 mapIDs function within the clusterProfiler R package. GO enrichment analyses was then
470 performed on these Entrez IDs using the enrichGO function within the same R package using
471 the Benjamini-Hochberg correction for multiple testing and an adjusted *p*-value cutoff of 0.05.
472 We calculated the gene enrichment ratios as the fraction of genes in the foreground (e.g.
473 genes regulated by a Neanderthal eQTL) which were annotated with a specific GO term

474 relative to the fraction of genes in the background. For all analyses presented here, the
475 background given was the universe of all possible genes in the human genome.

476

477 **Statistical analysis and data visualisation**

478

479 Statistical tests were performed using the R statistical package (version 3.6.1). Mann-Whitney
480 U tests were conducted using the wilcox.test function, Student's t-test using the t.test
481 function and Fisher's exact test using the fisher.exact function. A pseudocount was added to
482 each value when considering the overlap of archaic and modern eQTLs with phenotype-
483 associated variant collections.

484

485 **Acknowledgements**

486

487 We are grateful to Prof Jim Wilson, Usher Institute, University of Edinburgh for helpful
488 comments throughout this work and critically reviewing an earlier draft of the manuscript.

489

490 **Author Contributions**

491

492 Conceived and designed the experiments: RSY JK. Performed the experiments: JK ASR LLV.
493 Analysed the data: RSY JK ASR LLV. Wrote the paper: RSY JK.

494

495 **References**

496

497 1. Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary
498 processes underlying divergence. *Nat Rev Genet.* 2012;13: 59–69.

499 2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential
500 etiologic and functional implications of genome-wide association loci for human diseases
501 and traits. *Proc Natl Acad Sci U S A.* 2009;106: 9362–9367.

502 3. Kindt AS, Navarro P, Semple CA, Haley CS. The genomic signature of trait-associated
503 variants. *BMC Genomics.* 2013;14: 108.

504 4. Kenneth Baillie J, Bretherick A, Haley CS, Clohisey S, Gray A, Neyton LPA, et al. Shared
505 activity patterns arising at genetic susceptibility loci reveal underlying genomic and
506 cellular architecture of human disease. *PLoS Comput Biol.* 2018;14: e1005934.

507 5. Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al. Enhancer evolution
508 across 20 mammalian species. *Cell.* 2015;160: 554–566.

509 6. Young RS, Hayashizaki Y, Andersson R, Sandelin A, Kawaji H, Itoh M, et al. The frequent
510 evolutionary birth and death of functional promoters in mouse and human. *Genome Res.*
511 2015;25: 1546–1557.

512 7. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E,
513 Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse
514 genome. *Nature.* 2002;420: 520–562.

515 8. Li C, Lenhard B, Luscombe NM. Integrated analysis sheds light on evolutionary
516 trajectories of young transcription start sites in the human genome. *Genome Res.*
517 2018;28: 676–688.

518 9. Young RS, Talmane L, Marion de Procé S, Taylor MS. The contribution of evolutionarily
519 volatile promoters to molecular phenotypes and human trait variation. *Genome Biol.*
520 2022;23: 89.

521 10. Gokhman D, Mishol N, de Manuel M, de Juan D, Shuqrun J, Meshorer E, et al.
522 Reconstructing Denisovan anatomy using DNA methylation maps. *Cell.* 2019;179: 180-
523 192.e10.

524 11. Hershkovitz I, May H, Sarig R, Pokhojaev A, Grimaud-Hervé D, Bruner E, et al. A Middle
525 Pleistocene Homo from nesher Ramla, Israel. *Science.* 2021;372: 1424–1428.

526 12. Higham T, Douka K, Wood R, Ramsey CB, Brock F, Basell L, et al. The timing and
527 spatiotemporal patterning of Neanderthal disappearance. *Nature.* 2014;512: 306–309.

528 13. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of
529 the Neandertal genome. *Science.* 2010;328: 710–722.

530 14. Dannemann M, Kelso J. The contribution of neanderthals to phenotypic variation in
531 modern humans. *Am J Hum Genet.* 2017;101: 578–589.

532 15. Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, et al. A high-coverage
533 Neandertal genome from Vindija Cave in Croatia. *Science.* 2017;358: 655–658.

534 16. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from
535 Neanderthals. *Nature.* 2020;587: 610–612.

536 17. Demeter F, Zanolli C, Westaway KE, Joannes-Boyau R, Duringer P, Morley MW, et al. A
537 Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. *Nat*
538 *Commun.* 2022;13: 2557.

539 18. Jacobs GS, Hudjashov G, Saag L, Kusuma P, Darusallam CC, Lawson DJ, et al. Multiple
540 deeply divergent Denisovan ancestries in Papuans. *Cell.* 2019;177: 1010-1021.e32.

541 19. Browning SR, Browning BL, Zhou Y, Tucci S, Akey JM. Analysis of human sequence data
542 reveals two pulses of archaic Denisovan admixture. *Cell.* 2018;173: 53-61.e9.

543 20. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, et al. Genetic history of
544 an archaic hominin group from Denisova Cave in Siberia. *Nature.* 2010;468: 1053–1060.

545 21. Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The genomic
546 landscape of Neanderthal ancestry in present-day humans. *Nature.* 2014;507: 354–357.

547 22. Vespasiani DM, Jacobs GS, Cook LE, Brucato N, Leavesley M, Kinipi C, et al. Denisovan
548 introgression has shaped the immune system of present-day Papuans. *PLoS Genet.*
549 2022;18: e1010470.

550 23. McCoy RC, Wakefield J, Akey JM. Impacts of neanderthal-introgressed sequences on the
551 landscape of human gene expression. *Cell.* 2017;168: 916-927.e12.

552 24. Natri HM, Hudjashov G, Jacobs G, Kusuma P, Saag L, Darusallam CC, et al. Genetic
553 architecture of gene regulation in Indonesian populations identifies QTLs associated with
554 global and local ancestries. *Am J Hum Genet.* 2022;109: 50–65.

555 25. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-coverage
556 genome sequence from an archaic Denisovan individual. *Science.* 2012;338: 222–226.

557 26. Ishigaki K, Kochi Y, Suzuki A, Tsuchida Y, Tsuchiya H, Sumitomo S, et al. Polygenic burdens
558 on cell-specific pathways underlie the risk of rheumatoid arthritis. *Nat Genet.* 2017;49:
559 1120–1125.

560 27. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude
561 adaptation in Tibetans caused by introgression of Denisovan-like DNA. *Nature.* 2014;512:
562 194–197.

563 28. Dannemann M. The population-specific impact of Neandertal introgression on human
564 disease. *Genome Biol Evol.* 2021;13. doi:10.1093/gbe/evaa250

565 29. Mostafavi H, Spence JP, Naqvi S, Pritchard JK. Limited overlap of eQTLs and GWAS hits
566 due to systematic differences in discovery. *bioRxiv.* 2022.
567 doi:10.1101/2022.05.07.491045

568

569 **Supporting Information**

570

571 **S1 Fig. Neanderthal variants specifically segregating within the European population are**
572 **enriched over Denisovan variants.** Odds ratio of the enrichment of Neanderthal over
573 Denisovan variants segregating only in the 1,000 genomes European super-population
574 compared to variants segregating only in the East Asian super-population calculated at
575 increasing minimum archaic allele frequency. The grey curves indicate the 95% confidence
576 interval of the odds ratio estimates. A log2(odds ratio) of 0 shown by the horizontal dashed
577 blue line indicates an equal enrichment of Neanderthal alleles in Europe and East Asia.

578

579 **S2 Fig. Neanderthal variants frequently up-regulate gene expression in Europe while**
580 **Denisovan variants are enriched for East Asian eQTLs.** (a) Odds ratio of the number of
581 Neanderthal (in green) and Denisovan (in blue) variants which harbour European and East
582 Asian eQTLs relative to modern variants (purple line, x=0) when considering variants
583 segregating within the contemporary East Asian population. Circles indicate the point
584 estimate of each odds ratio and horizontal lines indicate the 95% confidence interval of each
585 estimate. (b and c) Distribution of median effect sizes across tissues (b, in Europe) and
586 immune samples (c, in East Asia) for archaic and modern eQTLs. *** indicates Mann-Whitney
587 test p-values < 0.001 when comparing median beta coefficients across tissues. All
588 comparisons for East Asian eQTLs were nonsignificant (p > 0.05)

589

590 **S3 Fig. Neanderthal variants are frequently enriched for European eQTLs segregating in the**
591 **European population relative to Denisovan variants across tissues.** Odds ratio of the number
592 of Neanderthal (in yellow) and Denisovan (in blue) variants which harbour eQTLs relative to
593 modern variants (purple line, x=0), rank ordered by increasing Neanderthal odds ratio
594 separately in European and East Asian populations. Vertical lines indicate the point estimate
595 of each odds ratio and horizontal lines indicate the 95% confidence interval of each estimate.
596 The black boxes indicate the depletions when considering all eQTLs across tissues (Europe)
597 and cell types (East Asia) together.

598

599 **S4 Fig. Neanderthal variants are frequently enriched for European eQTLs segregating in the**
600 **East Asian population relative to Denisovan variants across tissues.** Odds ratio of the
601 number of Neanderthal (in yellow) and Denisovan (in blue) variants which harbour eQTLs

602 relative to modern variants (purple line, x=0), rank ordered by increasing Neanderthal odds
603 ratio separately in European and East Asian populations. Vertical lines indicate the point
604 estimate of each odds ratio and horizontal lines indicate the 95% confidence interval of each
605 estimate. The black boxes indicate the depletions when considering all eQTLs across tissues
606 (Europe) and cell types (East Asia) together.

607

608 **S5 Fig. Neanderthal variants frequently up-regulate gene expression in Europe while**
609 **Denisovan variants are enriched for East Asian eQTLs.** (a) Odds ratio of the number of
610 Neanderthal (in yellow) and Denisovan (in blue) variants which harbour European and East
611 Asian eQTLs relative to modern variants (purple line, x=0) when considering variants
612 segregating within the contemporary European population. Denisovan variants have been
613 down-sampled to the number of Neanderthal variants segregating within the European
614 population. Circles indicate the point estimate of each odds ratio and horizontal lines indicate
615 the 95% confidence interval of each estimate. (b and c) Distribution of median effect sizes
616 across tissues (b, in Europe) and immune samples (c, in East Asia) for archaic and modern
617 eQTLs. *** indicates Mann-Whitney test p-values < 0.001 when comparing median beta
618 coefficients across tissues. All comparisons for East Asian eQTLs were nonsignificant (p >
619 0.05).

620

621 **S6 Fig. Neanderthal variants frequently up-regulate gene expression in Europe while**
622 **Denisovan variants are enriched for East Asian eQTLs.** (a) Odds ratio of the number of
623 Neanderthal (in yellow) and Denisovan (in blue) variants which harbour European and East
624 Asian eQTLs relative to modern variants (purple line, x=0) when considering variants
625 segregating within the contemporary East Asian population. Denisovan variants have been

626 down-sampled to the number of Neanderthal variants segregating within the East Asian
627 population. Circles indicate the point estimate of each odds ratio and horizontal lines indicate
628 the 95% confidence interval of each estimate. (b and c) Distribution of median effect sizes
629 across tissues (b, in Europe) and immune samples (c, in East Asia) for archaic and modern
630 eQTLs. *** indicates Mann-Whitney test p-values < 0.001 when comparing median beta
631 coefficients across tissues. All comparisons for East Asian eQTLs were nonsignificant (p > 0.05)

632

633 **S7 Fig. Neanderthal variants are frequently enriched for European eQTLs segregating in the**
634 **European population relative to Denisovan variants across tissues.** Odds ratio of the number
635 of Neanderthal (in yellow) and Denisovan (in blue) variants which harbour eQTLs relative to
636 modern variants (purple line, x=0), rank ordered by increasing Neanderthal odds ratio
637 separately in European and East Asian populations. Denisovan variants have been down-
638 sampled to the number of Neanderthal variants segregating within the European population.
639 Vertical lines indicate the point estimate of each odds ratio and horizontal lines indicate the
640 95% confidence interval of each estimate. The black boxes indicate the odds ratios observed
641 when considering all eQTLs across tissues (Europe) and cell types (East Asia) together.

642

643 **S8 Fig. Neanderthal variants are frequently enriched for European eQTLs segregating in the**
644 **East Asian population relative to Denisovan variants across tissues.** Odds ratio of the
645 number of Neanderthal (in yellow) and Denisovan (in blue) variants which harbour eQTLs
646 relative to modern variants (purple line, x=0), rank ordered by increasing Neanderthal odds
647 ratio separately in European and East Asian populations. Denisovan variants have been down-
648 sampled to the number of Neanderthal variants segregating within the East Asian population.
649 Vertical lines indicate the point estimate of each odds ratio and horizontal lines indicate the

650 95% confidence interval of each estimate. The black boxes indicate the depletions when
651 considering all eQTLs across tissues (Europe) and cell types (East Asia) together.

652

653 **S9 Fig. Archaic eQTLs regulate a variety of molecular functions.** (a and b) Enrichment of Gene
654 Ontology biological process terms within genes regulated by Neanderthal (green), Denisovan
655 (blue) and modern (pink) eQTLs in Europe (a) and East Asia (b). Each circle shows a significant
656 (Benjamini-Hochberg corrected p-value < 0.05) GO term where the size of the circle is
657 proportional to the reported p-value. Solid lines around circles indicate those terms which are
658 nominally enriched within archaic-regulated genes relative to their modern counterparts
659 (Fisher's exact test, p < 0.05). (c and d) As above but for molecular function Gene Ontology
660 terms.

661

662 **S10 Fig. Enrichment of archaic eQTLs down-sampled to contain the same number of**
663 **Neanderthal and Denisovan eQTLs relative to their modern counterparts across phenotype-**
664 **associated variant collections.** Genetic variant collections (x-axis) were extracted from the
665 'Phenotype and Literature' dataset group from the UCSC Genome Browser and are marked as
666 'benign', 'trait- associated' or 'unknown' using each table description. Odds ratios were
667 calculated using Fisher's exact tests where red denotes eQTL enrichment relative to modern
668 eQTLs and grey depletion. Non- significant (p > 0.05) associations have odds ratios rounded
669 to one and are displayed as white.

670

671 **S11 Fig. Enrichment of archaic European eQTLs relative to their modern counterparts across**
672 **phenotype-associated variant collections.** Genetic variant collections (x-axis) were extracted
673 from the 'Phenotype and Literature' dataset group from the UCSC Genome Browser and are

674 marked as 'benign', 'trait-associated' or 'unknown' using each table description. Odds ratios
675 were calculated using Fisher's exact tests where red denotes eQTL enrichment relative to
676 modern eQTLs and grey depletion. Non-significant ($p > 0.05$) associations have odds ratios
677 rounded to one and are displayed as white.

678

679 **S12 Fig. Enrichment of East Asian archaic eQTLs relative to their modern counterparts across**
680 **phenotype-associated variant collections.** Genetic variant collections (x-axis) were extracted
681 from the 'Phenotype and Literature' dataset group from the UCSC Genome Browser and are
682 marked as 'benign', 'trait-associated' or 'unknown' using each table description. Odds ratios
683 were calculated using Fisher's exact tests where red denotes eQTL enrichment relative to
684 modern eQTLs and grey depletion. Non-significant ($p > 0.05$) associations have odds ratios
685 rounded to one and are displayed as white.

686

687 **S13 Fig. Enrichment of archaic European eQTLs which have been down-sampled to contain**
688 **the same number of Neanderthal and Denisovan eQTLs relative to their modern**
689 **counterparts across phenotype-associated variant collections.** Genetic variant collections (x-
690 axis) were extracted from the 'Phenotype and Literature' dataset group from the UCSC
691 Genome Browser and are marked as 'benign', 'trait-associated' or 'unknown' using each table
692 description. Odds ratios were calculated using Fisher's exact tests where red denotes eQTL
693 enrichment relative to modern eQTLs and grey depletion. Non-significant ($p > 0.05$)
694 associations have odds ratios rounded to one and are displayed as white.

695

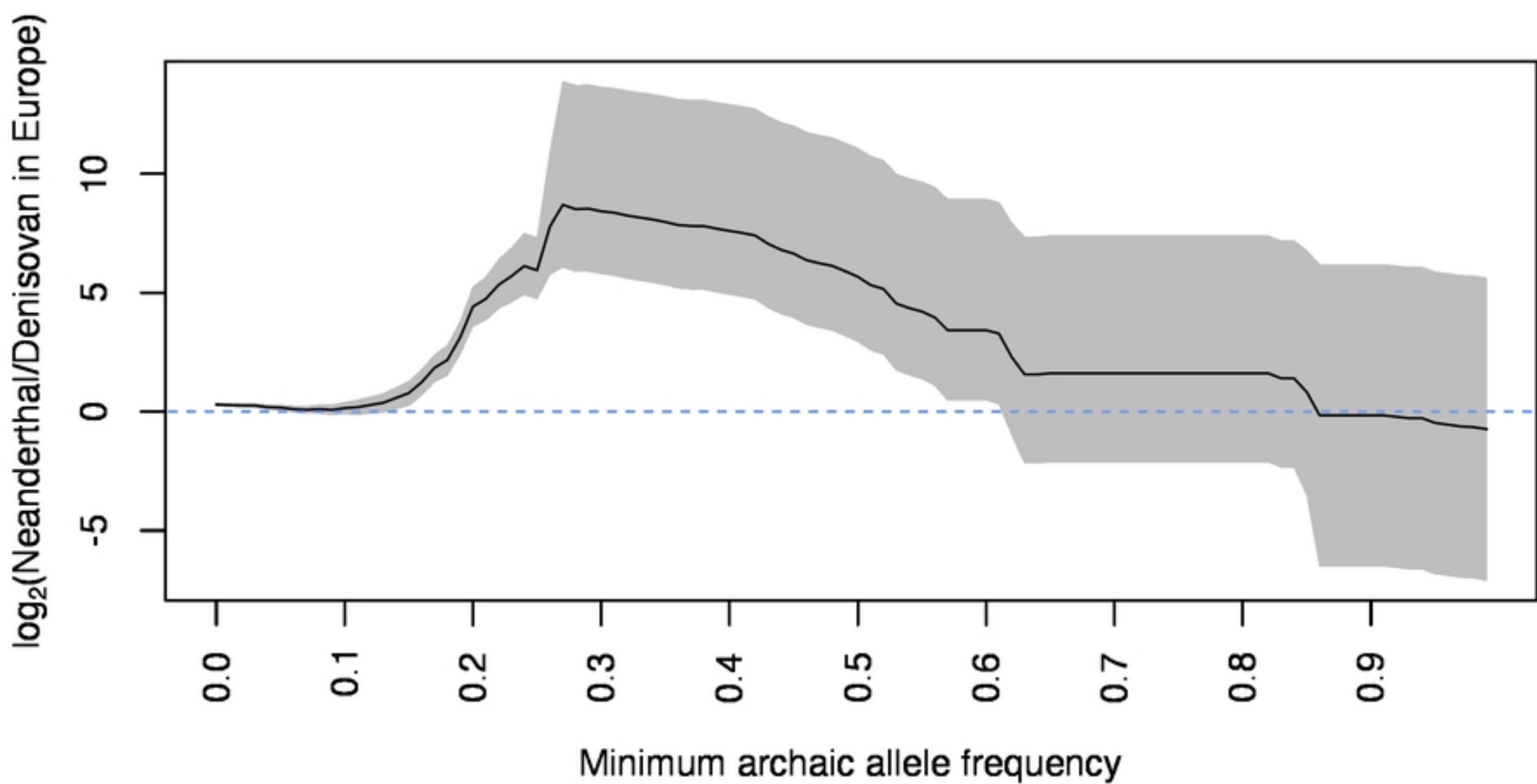
696 **S14 Fig. Enrichment of archaic East Asian eQTLs which have been down-sampled to contain**
697 **the same number of Neanderthal and Denisovan eQTLs relative to their modern**

698 **counterparts across phenotype-associated variant collections.** Genetic variant collections (x-
699 axis) were extracted from the 'Phenotype and Literature' dataset group from the UCSC
700 Genome Browser and are marked as 'benign', 'trait-associated' or 'unknown' using each table
701 description. Odds ratios were calculated using Fisher's exact tests where red denotes eQTL
702 enrichment relative to modern eQTLs and grey depletion. Non-significant ($p > 0.05$)
703 associations have odds ratios rounded to one and are displayed as white.

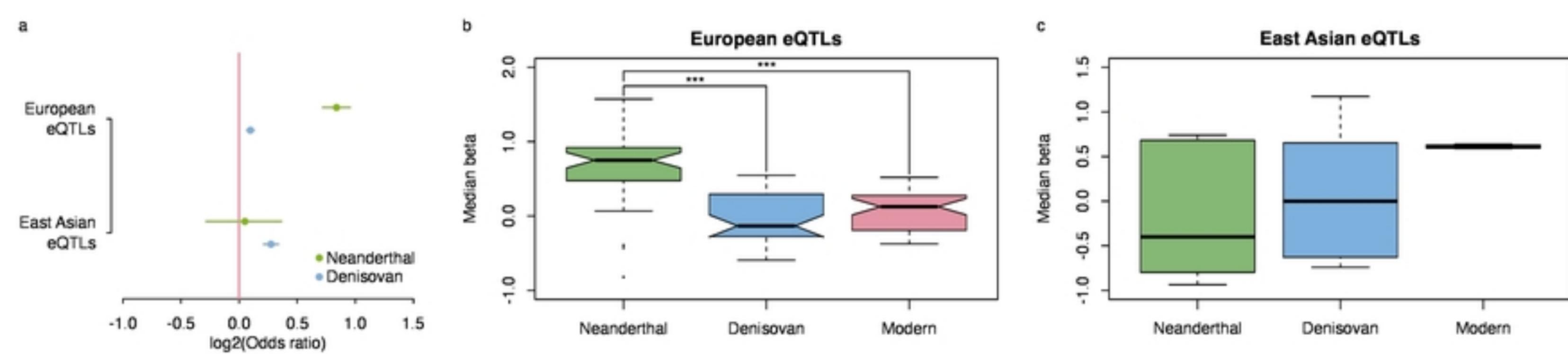
704

705 **S1 Table. No. archaic and ancestral eQTLs across various tissues.**

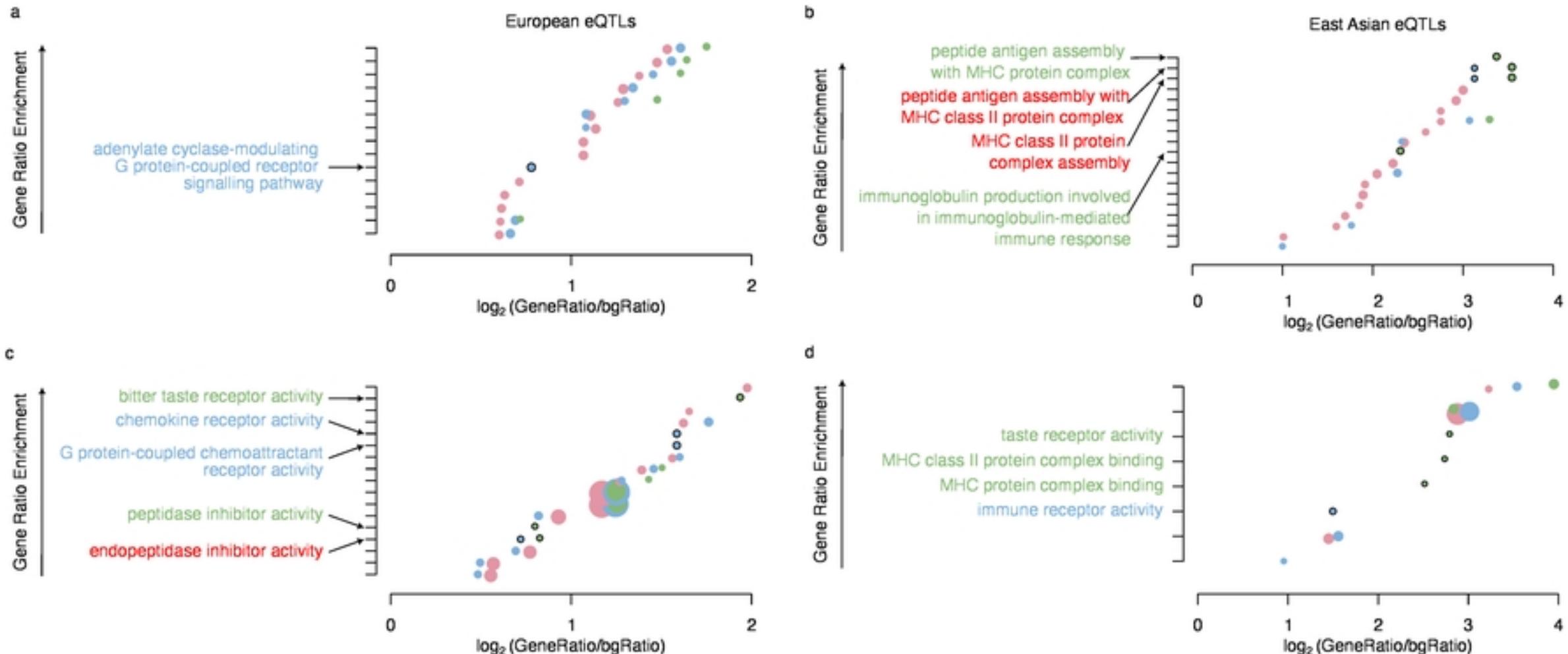
706


707 **S2 Table. Median beta effect size of eQTLs across archaic and ancestral eQTLs for the**
708 **European and East Asian eQTL datasets.**

709


710 **S3 Table. No. ancestral and archaic eQTLs overlapping each genetic variant collection.**

711


712 **S4 Table. Web links for genetic variants reported by the 1,000 genomes project and**
713 **phenotype-associated variant collections collected from the UCSC Genome Browser.**

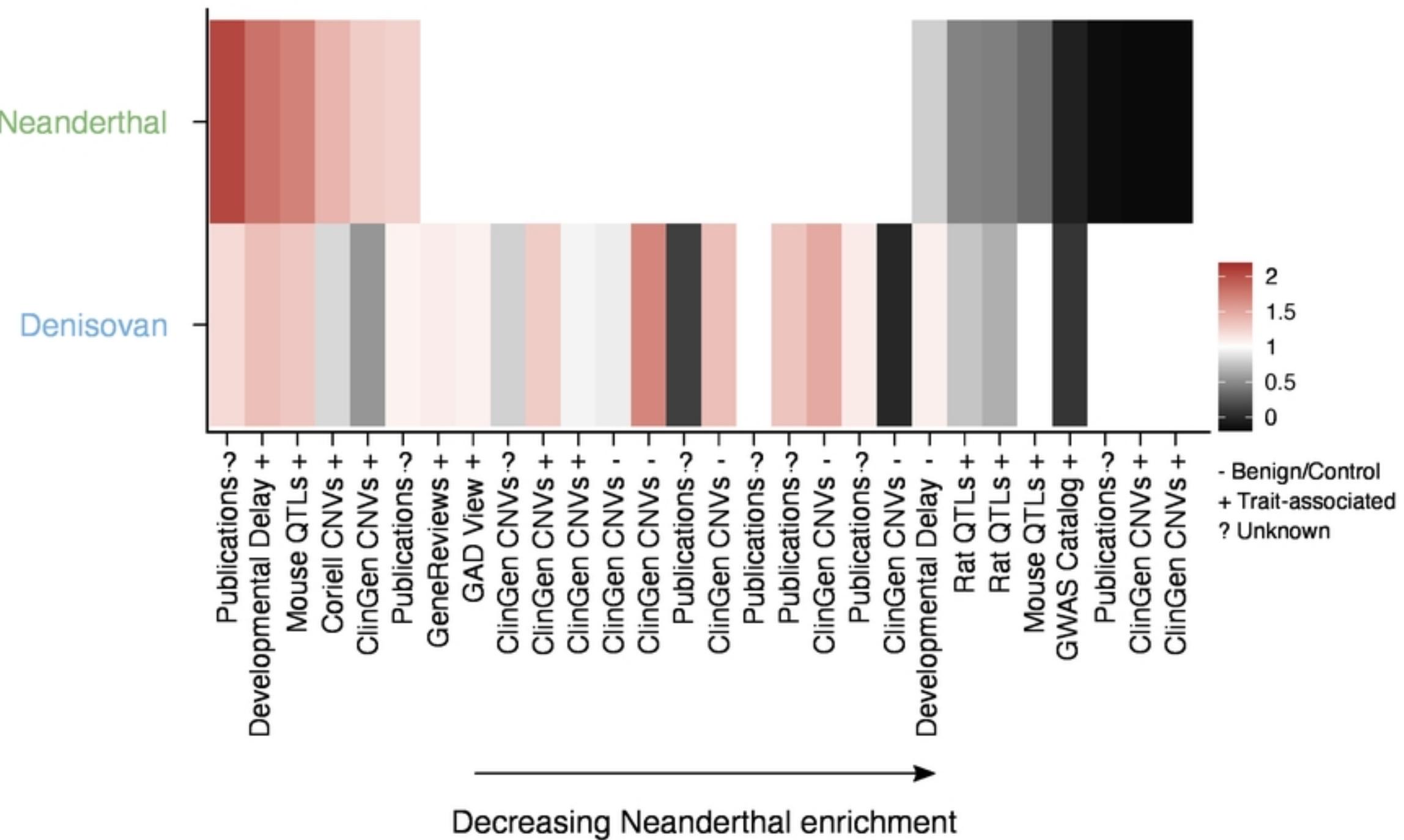

Figure 1: Neanderthal variants segregating within the European population are enriched over Denisovan variants. Odds ratio of the enrichment of Neanderthal over Denisovan variants segregating in the 1,000 genomes European super-population compared to the East Asian super-population calculated at increasing minimum archaic allele frequency. The grey curves indicate the 95% confidence interval of the odds ratio estimates. A $\log_2(\text{odds ratio})$ of 0 shown by the horizontal dashed blue line indicates an equal enrichment of Neanderthal alleles in Europe and East Asia.

Figure 2: Neanderthal variants frequently up-regulate gene expression in Europe while Denisovan variants are enriched for East Asian eQTLs. (a) Odds ratio of the number of Neanderthal (in green) and Denisovan (in blue) variants which harbour European and East Asian eQTLs relative to modern variants (purple line, $x=0$) when considering variants segregating within the contemporary European population. Circles indicate the point estimate of each odds ratio and horizontal lines indicate the 95% confidence interval of each estimate. (b and c) Distribution of median effect sizes across tissues (b, in Europe) and immune samples (c, in East Asia) for archaic and modern eQTLs. *** indicates Mann-Whitney test p -values < 0.001 when comparing median beta coefficients across tissues. All comparisons for East Asian eQTLs were nonsignificant ($p > 0.05$).

Figure 3: Archaic eQTLs regulate a variety of molecular functions. (a and b) Enrichment of Gene Ontology biological process terms within genes regulated by Neanderthal (green), Denisovan (blue) and modern (pink) eQTLs observed in Europe (a) and East Asia (b). Each circle shows a significant (Benjamini-Hochberg corrected p -value < 0.05) GO term where the size of the circle is proportional to the reported p -value. Solid lines around circles indicate those terms which are nominally enriched within archaic-regulated genes relative to their modern counterparts (Fisher's exact test, $p < 0.05$). Only nominally-enriched terms are displayed on each y-axis, with those labels marked in red indicating terms that are nominally enriched for both Neanderthal and Denisovan eQTLs. (c and d) As above but for molecular function Gene Ontology terms.

Figure 4: Enrichment of archaic eQTLs relative to their modern counterparts across phenotype-associated variant collections. Genetic variant collections (x-axis) were extracted from the 'Phenotype and Literature' dataset group from the UCSC Genome Browser and are marked as 'benign', 'trait-associated' or 'unknown' using each table description. Odds ratios were calculated using Fisher's exact tests where red denotes eQTL enrichment relative to modern eQTLs and grey depletion. Non-significant ($p > 0.05$) associations have odds ratios rounded to one and are displayed as white.