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ABSTRACT

Telomerase enables replicative immortality in most cancers including acute myeloid
leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical
efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML
patient-derived xenograft (PDX) resource, and perform integrated genomics,
transcriptomics, and lipidomics analyses combined with functional genetics to
identify key mediators of imetelstat efficacy. In a randomized Phase Il-like preclinical
trial in PDX, imetelstat effectively diminishes AML burden, and preferentially targets
subgroups containing mutant NRAS and oxidative stress-associated gene expression
signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis
regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation

of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of
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lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis
diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an
optimized therapeutic strategy using oxidative stress-inducing chemotherapy to

sensitize patient samples to imetelstat causing significant disease control in AML.

INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer with a 5-
year overall survival rate of less than 45% for patients younger than 60 years of age,
and less than 10% for older patients, predominantly due to disease relapse after
chemotherapy or targeted treatments X. AML has been extensively classified based on
biological features, and advances in sequencing technologies have led to a
comprehensive genetic classification strategy (European LeukemiaNet, ELN2017) 23,
Despite this improved understanding of the individual disease subtypes, targeted
treatment algorithms have resulted in only modest clinical benefits to date 4. The
development of effective therapies to improve remission rates and prevent relapse

remains a top priority for patients with AML.

Telomerase is an attractive target as it is highly expressed and reactivated in the
majority of AML, and absent in most cell types including normal hematopoietic cells
57, We have previously shown that genetic depletion of telomerase eradicates
leukemia stem cells, particularly upon enforced replication 8. Despite promising
preclinical evidence, the development of effective and specific telomerase inhibitors
has been challenging. Imetelstat is a first-in-class covalently-lipidated 13-mer
thiophosphoramidate oligonucleotide that can competitively inhibit telomerase

activity by binding to the telomerase RNA component TERC °. Imetelstat has shown
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clinical efficacy in essential thrombocythemia °, myelofibrosis 11, and lower risk
myelodysplastic syndromes 2. In myelodysplastic syndromes, clinical benefits are

associated with reductions in telomerase activity and TERT expression 2,

In addition to its canonical role as critical regulator of telomere length maintenance,
telomerase fulfils important non-canonical roles contributing to stress elimination,
regulation of Wnt/beta-catenin, NF-xB and p65 signalling, as well as resistance to
ionizing radiation 3. Hence, the clinical activity of imetelstat may be driven by
mechanisms independent of telomere shortening, and potentially canonical telomerase

activity 4,

Preclinical trials in patient-derived xenografts (PDX) provide genetically diverse,
tractable models to define the efficacy of drugs and to identify biomarkers of response
and resistance in AML . PDX-based trials also allow, within the same cohort, the
evaluation of novel combination therapies with agents that may enhance efficacy, and

also critically compare their additive value to current, established standard treatments.

In this study, we aimed to assess the preclinical efficacy of imetelstat in a large AML
PDX resource that reflects the diversity of genetic abnormalities found in large patient
cohorts. We utilized this AML PDX resource to identify biomarkers of resistance and
response to imetelstat therapy, and to test potentially synergistic combination
therapies. To elucidate the mechanism of action of imetelstat in an unbiased manner,
we performed genome-wide CRISPR/Cas9 editing allowing the identification of gene

knockouts that confer resistance to imetelstat therapy. This study reveals that
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imetelstat is a potent inducer of ferroptosis which effectively diminishes AML burden

and delays relapse following oxidative stress inducing therapy.

RESULTS

Generation of a comprehensive and representative AML PDX resource

In order to generate a representative AML PDX inventory, primary bone marrow or
blood samples from 50 patients were tested for engraftment and development of AML
in NOD/SCID/IL2gR-/-/h1L3,CSF2,KITLG (NSGS) 6. The overall success rate for
primary engraftment in NSGS was 70%, defined by bone marrow, spleen or
peripheral blood donor chimerism of at least 20%, splenomegaly (spleen weight > 70
mg), anemia (HCT < 35%) or thrombocytopenia (PLT < 400x108/ml),
microscopically visible AML infiltration into spleen or liver, and peripheral blood
blast morphology ( ). Successfully engrafted NSGS

recipients developed AML with a median onset of 173 days post-transplant

( ).

From the individual AML patient samples that successfully engrafted in NSGS, 30
were randomly selected and characterized based on clinical parameters including
patient age, gender, ELN2017 risk, WHO disease classification, and molecular
profiles obtained by transcriptional and mutational sequencing ( ). All
ELN2017 prognostic risk (favorable, intermediate, adverse) and age categories were
represented, 17 samples were from female, and 13 samples from male AML patient
donors ( ). Oncogenic mutations were most frequently detected in NPML,
DNMT3A, and FLT3 loci, and overall, this AML PDX resource recapitulated the

genetic abnormalities that are observed in large clinical AML cohorts 3 ( ).
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Imetelstat diminishes AML burden and prolongs survival in a randomized Phase

I1-like preclinical trial in AML PDX

In order to test the pre-clinical efficacy of imetelstat in AML, the characterized 30
individual AML patient samples were each transplanted into 12 NSGS recipients (n =
360 PDX in total). Once AML burden was detected, PDX were randomized and
treated with imetelstat or vehicle control (PBS) until disease onset or a survival
benefit of at least 30 days was reached. Median survival was significantly prolonged
in imetelstat compared to PBS-treated PDX (155 vs. 100 days post-start of treatment,
p <0.0001; ). AML burden measured as peripheral blood donor chimerism
per day was significantly lower in imetelstat compared to vehicle-treated recipients

( ). Moreover, endpoint peripheral blood donor chimerism, bone marrow
cellularity and donor chimerism as well as the absolute number of AML patient-
derived cells were significantly reduced in recipients treated with imetelstat when
compared to vehicle control ( ). Furthermore, imetelstat treatment
significantly reduced splenic AML donor chimerism ( ). We next assessed
AML surface marker expression associated with leukemia initiating activity -1

( ). Imetelstat significantly diminished the CD34+CD38- LSC-enriched
splenic AML cell population ( ). In normal human hematopoiesis using two
independent CD34-enriched cord blood xenografts in NSG recipients, the effects of
imetelstat were predominantly seen in B-lymphocytes with relative preservation of

the myeloid and stem cell population ( ).
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We next aimed to compare imetelstat responses to those obtained with standard
induction chemotherapy (i.e. cytarabine plus anthracycline) in AML PDX from 20
individual AML patient samples in an independent cohort using NOD.Rag1-/-112Rg-/-
/ hIL3,CSF2,KITLG (NRGS) recipients 2. Imetelstat matched the similar benefit
conveyed by standard chemotherapy (139 days) comparative to 104 days in the
vehicle control group, and this was accompanied by significant reductions in
peripheral blood AML burden ( ). However, the
individual AML patient samples could be classified into either preferential imetelstat
or preferential chemotherapy responders ( ). Preferential
responses to imetelstat when compared to standard induction chemotherapy were

associated with baseline mutations in NRAS, JAK2, or GLI1 (

)-

We next assessed the transcriptional consequences of imetelstat therapy in a cohort of
PDX from eight randomly chosen individual AML patient samples in vivo (n = 4
sustained (RBWH-37, -47, -48, -36), n = 3 intermediate (RBWH-46, -56, -42), and n
= 1 poor (RBWH-44) responders to imetelstat). Gene expression signatures annotated
as interferon signaling, cell cycle, transcriptional regulation by TP53, and MAPK
signaling were significantly enriched in AML donor cells from imetelstat-treated
compared to vehicle control-treated PDX ( ). TERT mRNA expression
levels were trend-wise reduced in AML donor cells derived from imetelstat-treated
compared to vehicle-treated PDX spleens ( ). Intriguingly, telomere lengths

were similar between imetelstat-treated compared to vehicle-treated groups (

).
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Identification of key mediators of imetelstat efficacy using genome-wide
CRISPR/Cas9 editing

In order to investigate the mechanism of action of imetelstat in AML in an unbiased
manner, we applied the Brunello sgRNA library 2% 22 as positive selection screen to
identify gene knockouts that confer resistance to imetelstat. We used NB4 cells as
these demonstrated highest sensitivity to imetelstat when compared to thirteen other
human hematopoietic cell lines ( ). IC50 values strongly
depended on cell density, demonstrating the presence of an imetelstat inoculum effect
( ) 23.24, Cas9 expressing NB4 cells transduced with the
Brunello library or untransduced controls were cultured in the presence of imetelstat
concentrations that resulted in significant cell death of the untransduced control
cultures but allowed the enrichment of imetelstat-resistant cells in Brunello-
transduced cultures over a timecourse of 45 days in culture (

). Vehicle or mismatch control treated NB4 cells grew exponentially throughout
the course of treatment ( ). Specific guide RNAs were
selectively enriched in Brunello-transduced imetelstat-resistant compared to vehicle-
treated and input control cultures ( ). Combined RIGER
and STARS gene-ranking algorithms identified seven significant hits: fatty acid
desaturase 2 (FADS2), acyl-CoA synthetase long chain family member 4 (ACSL4),
translocase of inner mitochondrial membrane 17A (TIMM17A), late
endosomal/lysosomal adaptor, MAPK and MTOR activator 1-3 (LAMTOR1,
LAMTOR2, LAMTORS3), and myosin regulatory light chain interacting protein
(MYLIP; ). Ingenuity pathway analysis indicated close functional
relationships between the seven hits in regulating lipid metabolism, iron / metal ion

binding, mitochondrial matrix, and lysosome biogenesis and localization ( ).
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We next aimed to validate the most significant hits identified (i.e. FADS2 and ACSL4)
using single guide RNA-mediated editing in the NRAS-wild type expressing NB4 and
MV411, and the NRAS-mutant KO52 (p.G13R) and TF1 (p.Q61P) AML cell lines.
Editing was confirmed by TIDE analysis % and reduced protein levels

( ).

We performed competition assays to confirm that loss-of-function editing of FADS2
or ACSL4 confers competitive growth advantage under imetelstat pressure in all AML
cell lines analyzed ( ). The observed effects were target-specific as a
competitive outgrowth under imetelstat pressure was not observed when CD33
(predicted to have neutral effects on cell functions 26) knockouts or empty vector
controls were used ( ).

These results demonstrate that loss-of-function editing of FADS2 or ACSL4 confers
competitive growth advantage under imetelstat pressure, identifying ACSL4 and

FADS2 as mediators of imetelstat efficacy in AML.

Imetelstat is a potent inducer of ferroptosis

ACSL4 and FADS2 encode key enzymes regulating polyunsaturated fatty acid
(PUFA)-containing phospholipid synthesis. FADS2 is a key enzyme in a lipid
metabolic pathway that converts the essential fatty acids linoleate (18:2n6) and o.-
linolenate (C18:3n3) into long-chain PUFAs ?7. Targeted lipidomics analysis on 593
lipid species and their desaturation levels 28 2° demonstrated clear effects of imetelstat
treatment and FADS2 editing on the cellular lipidome, with imetelstat-treated empty
vector control AML cells showing greatest difference to vehicle treated empty vector

control and FADS2-edited cells. ( ). Imetelstat increased the
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levels of phospholipids with triglycerides and reduced the levels of phospholipids
containing cholesteryl esters and ceramides when compared to vehicle control in an
FADS2-dependent manner ( ). Using lipidr analysis
package 2°, we found a significant enrichment of phospholipids containing fatty acids
with three unsaturated bonds in imetelstat-treated compared to vehicle control-treated
NB4 cells, and this enrichment of lipid desaturation was diminished by FADS2
editing ( ). These data demonstrate imetelstat -

induced PUFA phospholipid synthesis in an FADS2-dependent manner.

ACSL4 has been previously identified as key regulator of ferroptosis . Ferroptosis is
a form of cell death that is driven by an imbalance between the production of ROS
during lipid peroxidation and the antioxidant system, and may involve autophagic
processes depending on the trigger 3*. A hallmark of ferroptosis is lipid peroxidation,
the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids that
occurs via a free radical chain reaction mechanism 3. Cancer therapies can enhance
ferroptosis sensitivity via lipid remodeling that increases levels of peroxidation-
susceptible PUFA-containing phospholipids .
To test whether imetelstat induces lipid peroxidation, we treated various AML cell
lines with C11-BODIPY, a fluorescent fatty acid probe that changes its emission
spectrum from red to green upon oxidation. In all 4 AML cell lines tested, imetelstat
treatment resulted in a significant increase in MFI of the oxidized fatty acid probe,
demonstrating that imetelstat induces lipid peroxidation in AML cells in vitro (

). We next assessed whether also ROS levels were affected by imetelstat. Using
Cellrox Green to measure ROS production, we found that its MFI was increased by

imetelstat, and this increase was diminished when the lipid ROS scavenger

10
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ferrostatin-1 was added during the incubation step with cellrox green, demonstrating
that imetelstat increases predominantly lipid ROS levels in AML cell lines in vitro

( ). Both lipid peroxidation and lipid ROS production were significantly
diminished in ACSL4 or FADS2 loss-of function edited AML cell lines,
demonstrating that imetelstat-induced lipid peroxidation and lipid ROS production are
dependent on functional FADS2 and ACSL4 in vitro ( ;

). Pharmacological inhibition of ferroptosis using the lipid ROS scavengers
ferrostatin-1 and liproxstatin-1 diminished imetelstat efficacy in all AML cell lines
tested ( ). Moreover, the iron chelator DFOM, the 5-
lipoxygenase inhibitor zileuton, and menadione diminished imetelstat-induced cell
death in a significant proportion of AML cell lines tested (

).
In AML PDX in vivo, imetelstat-induced lipid peroxidation was associated with
increased ACSL4 expression ( ). To investigate whether lipid ROS and lipid
peroxidation are essential for imetelstat’s mechanism of action in AML PDX in vivo,
we treated AML PDX with either vehicle control, imetelstat (15 mg/kg three times
per week), liproxstatin-1 (15 mg/kg twice daily) or the combination of both imetelstat
and liproxstatin-1 for two weeks. Imetelstat-driven lipid peroxidation and ROS
production were prevented by liproxstatin treatment ( ). In vivo liproxstatin
treatment diminished imetelstat efficacy in PDX as measured by peripheral blood

AML burden and spleen weight ( ).

Taken together, these data provide evidence that imetelstat is a potent inducer of

ferroptosis through ACSL4- and FADS2-mediated alterations in PUFA metabolism,

excessive lipid peroxidation and oxidative stress.
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Integration of transcriptomics with functional genetics identifies lipid droplet-
associated G-quadruplex binding proteins as imetelstat target candidates
mediating lipophagy-induced ferroptosis

By integrating transcriptomics and functional genetics, we aimed to investigate the
mechanism by which imetelstat induces ferroptosis. We performed an overlay of the
in vivo AML PDX RNAseq data sets from imetelstat and vehicle treated mice with
the Brunello library CRISPR/Cas9 knockout screen data (cut-off criteria: RNAseq
adjusted p-value < 0.05 AND RIGER p < 0.05), and identified eleven imetelstat target
candidates ( ). Two of them, VIM (vimentin) and LMNA (lamin A/C), that
are part of a common regulatory module ( ), have recently been identified as
telomeric G-quadruplex binding proteins %,

Recent independent work demonstrated the capacity of imetelstat to form G-
quadruplex structures in vitro, and this capacity is attributed to the presence of a triple
G-repeat in its sequence 3. These insights prompted us to obtain an additional
mismatch control harbouring a similar triple G repeat, but containing enough
mismatches to prevent efficient binding to telomerase ( ).
Using an antibody raised against (T4G4)2 intermolecular G-quadruplex DNA
structures 3537, we found that imetelstat or GGG-containing mismatch but not
mismatch 1 significantly interfered with endogenous G-quadruplex structures

( ). In a panel of fourteen human hematopoietic cell lines,
GGG-containing mismatch control and imetelstat demonstrated similar efficacies in
the majority of AML cell lines tested ( ). Moreover, GGG-
containing mismatch was similarly effective as imetelstat in increasing ROS levels

when compared to vehicle control ( ). Ferrostatin- or

12
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DFOM- mediated inhibition of ferroptosis rescued both imetelstat as well as GGG-
mismatch - induced cell death ( ). We next compared the
preclinical efficacy of imetelstat with GGG-mismatch, and mismatch 1 in an
NRAS/KRAS-mutant AML PDX model (RCH-11). In this model, GGG-mismatch was

also effective in reducing AML burden ( ).

In addition to binding telomeric G-quadruplexes, vimentin has long been established
as structural component of lipid droplets regulating their biogenesis and stability.
Lipid droplets can undergo selective autophagy (i.e. lipophagy) that can result in the
induction of ferroptosis 3. We hypothesized that imetelstat-induced PUFA-
phospholipid synthesis, oxidation and ferroptosis can result from lipophagy. Vimentin
was highly expressed at protein level in AML cells in vitro ( ), and loss-of-
function editing of vimentin resulted in a modest competitive growth advantage of
AML cells under imetelstat pressure ( ). We next assessed lipophagy using
C12-BODIPY, a fluorescent fatty acid probe for lipid droplets, in conjunction with
the late endosomal marker LAMP1%. Imaging flow cytometry revealed significantly
increased co-localization of lipid droplets with the late endosomal marker LAMP1,
indicating increased lipophagy ( ). To test whether pharmacological
inhibition of lipophagy can prevent from imetelstat-induced ferroptosis, we cultured
AML cells in the presence of imetelstat combined with chloroguine which inhibits
lysosomal hydrolases by increasing the pH and thus lipophagy. Strikingly, in all AML
cell lines tested, chloroquine diminished imetelstat-induced cell death ( ).
These results provide evidence for a role of lipophagy-induced ferroptosis in

imetelstat’s mechanism of action in AML via impaired lipid droplet homeostasis due

13
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to G-quadruplex mediated interference with the structural components of lipid

droplets.

Mutant NRAS and oxidative stress gene expression signatures associate with
sustained responses to imetelstat

We next aimed to identify biomarkers of imetelstat response and resistance. Improved
survival in imetelstat-treated AML PDX correlated with significantly reduced
engraftment and disease burden, however there were clear differences in the
magnitude and duration of individual responses ( ). To
understand determinants of imetelstat response, we allocated each individual AML
patient sample into either sustained, intermediate, or poor imetelstat response
categories based on the individual effect of imetelstat on AML burden measured in
peripheral blood over time ( ). All ELN2017
prognostic risk categories were represented in each imetelstat response group,
suggesting that the effects observed were not solely explained by favorable disease

( ). In addition, cytogenetics, gender, age, FLT3-1TD
allelic ratio, and TERT mRNA expression levels at baseline appeared similar among

imetelstat response groups ( ).

We next aimed to identify genetic biomarkers of response and resistance to imetelstat
therapy by analyzing the data from individual AML patient samples at baseline that
were generated by genomic sequencing using a comprehensive panel of 585 genes
frequently mutated in hematological malignancies 4° ( ).

Oncogenic mutations in genes annotated in signaling or cell adhesion / metabolism

14
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were trend-wise more frequently observed in sustained compared to poor responders

to imetelstat ( ).

Mutant NRAS was associated with enhanced responses to imetelstat therapy. This was
evidenced by reduced AML burden and borderline-significant improvement in
survival when compared to wild-type NRAS containing AML PDX ( )
Moreover, variant allelic frequencies of the relevant NRAS mutations inversely
correlated with AML burden in imetelstat-treated AML PDX (

). Additionally, gene set enrichment analysis of the RNA sequencing data obtained
from the individual AML patient samples at baseline revealed that sustained
responders had a positive enrichment of gene signatures associated with translation /
viral infection, and negative enrichment for gene signatures associated with cell cycle,
antiviral immunity, transmembrane transport, and heme scavenging in sustained
compared to poor responders to imetelstat ( ).
Hallmark signatures revealed significant enrichment of gene sets annotated as
apoptosis, interferon-alpha response, DNA repair, TP53 pathway, peroxisome, fatty
acid metabolism, and reactive oxygen species pathway ( ).

We next examined whether baseline telomere length could predict imetelstat
response. Telomere length was determined by telomere restriction fragment analyses,
and peak telomere lengths varied between 2.7 and 12 kb amongst individual AML
patient samples ( ). Five out of the 30 AML patient
samples contained multiple subclones with distinct telomere lengths (

). Overall, there was no correlation between baseline telomere length and

imetelstat response ( ).

15
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These data demonstrate that imetelstat is effective in a large proportion of AML PDX.
Furthermore, sustained responses to imetelstat are independent of baseline telomere
length, and are associated with marked improvements in survival, mutant NRAS, and

baseline molecular signatures annotated as oxidative stress.

Initial treatment with standard induction chemotherapy to induce oxidative
stress sensitizes AML patient samples to imetelstat

The finding that responses to imetelstat are associated with baseline molecular
signatures annotated as oxidative stress, and that the mechanism of action of
imetelstat features ROS-mediated ferroptosis led to the hypothesis that oxidative
stress induction can sensitize to imetelstat therapy.

Standard induction chemotherapy composed of cytarabine and an anthracycline is a
potent inducer of ROS 4%, To test whether oxidative stress-inducing therapy can
sensitize AML cells to imetelstat treatment, we pre-treated AML cell lines with
oxidative stress-inducing standard induction chemotherapy (i.e. cytarabine in
combination with doxorubicin) and subsequently switched to imetelstat treatment.
Standard induction chemotherapy significantly increased ROS levels in a dose-
dependent manner that led to augmented cell death in AML cell lines ( ).
In a pilot study using an NRAS-wild type AML PDX model (poor responder to
imetelstat monotherapy; RBWH-44), a single dose of standard induction
chemotherapy followed by a single dose of imetelstat resulted in significantly
increased ROS levels in AML patient-derived cells in PDX in vivo ( ). At
this early timepoint, lipid peroxidation was not significantly different between the

treatment groups ( ). However, after a complete cycle of induction
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chemotherapy followed by prolonged treatment with imetelstat consolidation therapy,

both lipid peroxidation and ROS levels were significantly increased ( ).

Finally, as proof-of-concept in vivo, we sequentially administered oxidative stress-
inducing standard induction chemotherapy prior to imetelstat in a diverse PDX cohort
from 20 distinct AML patient samples ( ). Combination therapy
significantly prolonged survival when compared to imetelstat monotherapy (158 days
vs. 139 days; p = 0.0328), induction chemotherapy alone (158 days vs. 139 days, p =
0.0100), or vehicle control (158 days vs. 104 days, p < 0.0001; ). AML
burden was significantly reduced in the combination therapy group when compared to

either monotherapy or vehicle treated control groups ( ).

These data demonstrate that the rational sequencing of imetelstat and chemotherapy,
using standard induction chemotherapy to induce oxidative stress and sensitize AML
cells to imetelstat-induced lipid peroxidation and ferroptosis, results in significantly

improved disease control of AML ( ).

DISCUSSION

Imetelstat is a first-in class telomerase inhibitor with clinical efficacies in hematologic
myeloid malignancies including essential thrombocythemia, myelofibrosis, and
lower-risk myelodysplastic syndromes 1912, The efficacy of imetelstat in AML and its
mode of action have remained elusive to date. By developing and utilizing a
comprehensive AML PDX resource and human cell lines for genomics,
transcriptomics, and lipidomics approaches combined with functional genetic and

pharmacological validation experiments, we demonstrate that imetelstat is a potent
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inducer of ferroptosis that effectively diminishes AML burden and delays relapse

following chemotherapy.

Ferroptosis is a recently discovered type of non-apoptotic regulatory cell death that
relies on the balance of the production of ROS during lipid peroxidation and the
antioxidant system, and it is generally characterized by three hallmarks: 1) loss of
peroxide repair capacity through GPX4, 2) availability of redox-active iron, and 3)
oxidation of polyunsaturated fatty acid-containing phospholipids 3 42, The
experiments performed in this study have revealed evidence for imetelstat directly
affecting the third hallmark of ferroptosis, the increased synthesis and subsequent
oxidation of PUFA phospholipids. In AML PDX in vivo, imetelstat-induced lipid
peroxidation is associated with significantly increased ACSL4 expression. In human
AML cell lines, imetelstat treatment significantly increased lipid ROS levels that
preceded massive cell death. Treatment with the lipid ROS scavengers ferrostatin-1 or
liproxstatin-1 rescued imetelstat-induced cell death in all AML cell lines tested. In
addition, pharmacological iron chelation using deferoxamine mesylate, 5-
lipoxygenase inhibition using zileuton, or menadione supplementation were able to
prevent imetelstat-induced cell death in a significant proportion of AML cell lines
tested. In contrast to ferrostatin-1 and liproxstatin-1, higher concentrations of
deferoxamine mesylate were detrimental for AML cells, suggesting that iron
availability is crucial for AML cell survival at a level specific for each cell line. Iron
metabolism is altered in AML at the cellular and systemic level, and elevated iron
levels help to maintain the rapid growth rate of AML cells by activating
ribonucleotide reductase that catalyzes DNA synthesis in an iron-dependent manner

43 Interestingly, imetelstat has shown efficacy in patients with pathology featuring
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ringed sideroblasts, a cellular morphological abnormality that is defined by iron-laden
granules in mitochondria surrounding the nucleus, further supporting the role of iron-

dependent cell death 1% 1244,

Our functional genetic experiments using Brunello library CRISPR/Cas9 editing have
provided further evidence that imetelstat restricts leukemic progression via
ferroptosis, revealing a closely related functional network of seven genes. One of the
identified targets, ACSL4, has previously been identified as a key regulator of
ferroptosis sensitivity through the shaping of the cellular lipid composition . We
have functionally validated the most significantly enriched targets, FADS2 and
ACSLA4. The canonical role of FADS2 in fatty acid metabolism is the catalysis of the
desaturation of linoleic and a-linolenic acid to long-chain PUFAs 4546, Lipidomics
analysis has revealed increased levels of phospholipids containing triglycerides, and
also increased levels of phospholipids containing PUFAs with three unsaturated
bonds in imetelstat-treated AML cells in an FADS2-dependent manner. Using a
fluorescent sensor, we have confirmed that imetelstat stimulates lipid peroxidation.
These data demonstrate imetelstat-induced alterations in fatty acid metabolism that
promote the formation of substrates for lipid peroxidation. Interestingly, in some lung
cancer cell lines, FADS2 activation is associated with ferroptosis suppression #7. This
dichotomy may be explained by the fact that in some cancer cells, FADS2 enables the
desaturation of palmitate to sapienate (cis-6-C16:1) as part of an alternative
desaturation pathway, thus potentially reducing the levels of monounsaturated fatty
acids and ultimately PUFA-containing phospholipids as substrates for lipid

peroxidation 48,
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G-quadruplexes are recognized by and regulate the activity of many proteins involved
in telomere maintenance, replication, transcription, translation, mutagenesis, and
DNA recombination 4%-°2, The recognition of G-quadruplexes can be dictated by R-
loops that show a close structural interplay and can modulate responses involving
DNA damage induction, telomere maintenance, and alterations in gene expression
regulation %2, Interestingly, G-quadruplex/R-loop hybrid structures were detected in
vitro in the human NRAS promoter and at human telomeres 5457, R-loop binders and
epigenetic R-loop readers have been recently linked to altered fatty acid metabolism
and ferroptosis -9, Moreover, constitutively activated RAS/MAPK signaling
downstream of mutant NRAS is associated with enhanced sensitivity to ferroptosis 4%
6162 however, the activity of this pathway alone is unlikely the sole determinant of
ferroptosis sensitivity 664 Our integrative analysis of transcriptomics with functional
genetics data has identified imetelstat target candidates that were recently discovered
as G-quadruplex binding proteins (i.e. VIM, LMNA) 3. Moreover, VIM and LMNA
have been characterized as proteins directly interacting with lipid droplets 65 66,
Recent independent work has provided evidence for a role of lipid droplets in
ferroptosis. In hepatocytes, the degradation of intracellular lipid droplets via
autophagy (lipophagy) promotes RSL3-induced ferroptosis by decreasing lipid
storage that subsequently induces lipid peroxidation 3. Our imaging flow cytometry
analysis demonstrates significantly increased co-localization of markers for lipid
droplets and late endosomes, proposing imetelstat-induced lipophagy as trigger for

ferroptosis in AML.

Using a newly established, comprehensive AML patient-derived xenograft resource

that reflects the overall genetic abnormalities found in large clinical cohorts, we
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demonstrated proof-of-concept for the sequential administration of standard induction
chemotherapy followed by imetelstat consolidation to induce oxidative stress and
sensitize AML patient samples to imetelstat treatment. This approach was able to
cause significant delay or prevention of AML relapse. The efficacy of sequential
therapy suggests that imetelstat may be particularly useful in preventing relapse after
chemotherapy, for example, as a maintenance therapy. Recently, maintenance therapy
with oral CC486 has shown a survival benefit in AML, however, there is no survival
plateau and therefore, most patients still relapse and die of their disease 7. A
significant proportion of AML patient samples tested (14 out of 30 samples) were
classified as sustained responders to imetelstat monotherapy, and are characterized by
genetic lesions in genes involved in cell adhesion, metabolism, and signalling, with
the most striking result obtained for NRAS. NRAS is the fourth most commonly
observed gene with driver mutations in adult AML 3. Moreover, AML cell clones
harbouring mutant NRAS arise in some patients relapsing on targeted therapies,
particularly FLT3 inhibition (i.e. crenolanib %8, gilteritinib ), and BCL2 inhibition in
some cases (i.e. venetoclax % 1), The demonstrated sustained responses to imetelstat
in NRAS mutant AML patient samples raise the possibility that imetelstat may be used
as salvage therapy or possibly in combination with FLT3 inhibitors or venetoclax to

prolong remission and prevent relapse.

In conclusion, imetelstat is a potent inducer of ferroptosis that effectively diminishes
AML burden and delays relapse following oxidative stress inducing chemotherapy.
Clinical trials will address the efficacy of imetelstat in AML, and may focus on this
compound as a consolidation strategy for preventing relapse, or potentially together

with targeted therapies to improve outcomes in AML patients.
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METHODS

Xenograft transplantation experiments

Primary AML samples were obtained from patients, after informed consent in
accordance with the Declaration of Helsinki, and approved by the institutional (QIMR
Berghofer) ethics committee protocol P1382 (HREC/14/QRBWY/278). Ficoll density
gradient was then used to recover viable mononuclear cells. Viably frozen primary
AML cells were thawed and CD3-depleted with biotinylated anti-human CD3 (SK7)
and biotin-binder Dynabeads (Invitrogen) and subsequently injected via the lateral tail
vein into 2.8 Gy irradiated (24h before transplant) NSGS or NRGS recipients. For

normal hematopoiesis studies, viable mononuclear cells were isolated from cord
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blood samples by ficoll density gradient, CD3-depleted as above, and subsequently
enriched for CD34+ cells using the human CD34 MicroBead kit (130-046-702 MACS
Miltenyi Biotec) according to the manufacturer’s instructions. 56,000 cells (donor 1)
or 212,500 cells (donor 2) were injected via the lateral tail vein per irradiated NSG
recipient. Please refer to supplementary methods for xenograft transplantation

analysis protocols.

Drug-Treatment Studies

All mouse experiments were approved by the institutional ethics committee protocol
A11605M. NSG, NSGS or NRGS mice were treated with 15 mg/kg imetelstat
(GRN163L), mismatch controls (Mismatch 1 also referred to as MM1 or
GRN140833; Mismatch 2 also referred to as GGG-mismatch, MM2 or GRN142865)
or vehicle control (PBS) via the intraperitoneal route for the period of time specified
in the respective experiment three times per week, at least every 72h. For standard
induction chemotherapy studies, cytarabine (AraC; 1 g/ 10 ml isotonic water; Pfizer)
and doxorubicin (Doxo; 50 mg / 25 ml saline; Pfizer) were freshly diluted with saline
(sodium chloride 0.9% for irrigation; Baxter) to achieve a final concentration of 50
mg/kg body weight AraC or 1.5 mg/kg body weight Doxo in 200 ul total injection
volume per recipient. Both AraC and Doxo were co-delivered intravenously (in the
same syringe) on days 1 to 3, followed by intravenous injection of cytarabine alone on
days 4 and 5, each in strict 24 h intervals. For chemotherapy plus imetelstat
combination studies, the first imetelstat injection was administrated one day after the

standard induction chemotherapy cycle was completed.
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CRISPR/Cas9 screen

The Brunello genome-wide gRNA library contains 76,441 gRNAs targeting 19,114
genes and was obtained from Addgene (Cat# 73178). Lentivirus containing the
Brunello library was generated and used to transduce NB4 cells. Please refer to the

supplementary methods section for detailed descriptions of the procedures.

Lipidomics: Targeted LC/MS analysis

Targeted lipidomics was performed on a 1290 Infinity 11 UHPLC coupled to a 6470
QQQ mass spectrometer via AJS ESI source (Agilent, Santa Clara, USA) in positive
ionization mode, using a scheduled multiple reaction monitoring (MRM) method
adapted from Huynh and co-workers 72. The MRM transition list contained 20 lipid
classes and 593 lipid species (excluding internal standards CUDA and SPLASH
Lipidomix). Skyline-daily "3 and lipidr 2° software were used for data analysis. Please
refer to the supplementary methods section for detailed descriptions of the

procedures.

Data availability
All Skyline and mass spec raw data of targeted lipidomics experiments have been
deposited on Panorama Public (https://panoramaweb.org/ImetelstatLipidomics.url)

[Email: panorama+reviewer35@proteinms.net and Password: tEimcwMc].

RNAseq datasets have been reposited at GEO:

GSE176522 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176524

[Reviewer access token: urexcomgjtwfdur]
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GSE176523 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176523

[Reviewer access token: ijmrmmwohxkbnmt]

FIGURE LEGENDS

Figure 1: Integrative Analysis of AML Patient Samples

(A) Unsupervised hierarchical clustering analysis on the expression of 300 transcripts
with the greatest variance-to-mean ratios among 30 individual AMLSs from our
repository that can successfully generate AML PDX. B) Key clinical characteristics
of patients from whom AML samples were derived including age at diagnosis,
gender, ELN2017 prognostic risk group, and WHO class of disease. C) OncoPrint of
the most frequently detected mutations in AMLs by targeted next generation
sequencing of 585 genes associated with hematologic malignancies (the MSKCC

HemePACT assay) “°.

Figure 2: The efficacy of imetelstat in a randomized Phase |1 - like preclinical
trial in AML PDX

Analysis of AML PDX that received imetelstat therapy intraperitoneally three times
per week at 15 mg/kg body weight, or vehicle control (PBS) continuously until
individual disease onset or a survival benefit of at least 30 days was reached. Thirty
individual AML patient samples were transplanted into each twelve NSGS recipients,
of which six were treated with imetelstat, and six were treated with PBS. PDX
generated from the thirty individual AMLs were pooled into imetelstat-treated or
PBS-treated groups with n = 180 per group. (A) Median AML-free survival was 100
(PBS) and 155 (imetelstat) days from start of treatment; p < 0.0001 according to

Gehan-Breslow-Wilcoxon; n = 180 per group. (B-G) Quantification of peripheral
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blood donor chimerism area under the curve (AUC) per day (B), endpoint peripheral
blood donor chimerism (C), bone marrow cellularity (D), bone marrow chimerism
(E), the number of AML donor-derived cells in PDX bone marrow (F), and splenic
donor chimerism (G). (H-1) Flow cytometric analysis of AML surface marker
expression CD34, CD38 and GPR56. Gating strategy (H). Quantification of CD34+
CD38- viable CD45+ splenic singlets harvested from imetelstat or PBS-treated AML
PDX (). Statistical analysis was based on two-sided Student’s t test; n = 180 PDX per
group. Solid lines represent the mean of each group. (J-K) RNAseq analysis on
imetelstat or vehicle control-treated AML PDX. Gene set enrichment analysis
(GSEA) on RNAseq data from sorted hCD45+ cells harvested from imetelstat or
vehicle control (PBS) - treated AML PDX. N = 8 individual AML patient samples
with n =2 PDX per AML patient sample and treatment group. Cytoscape nodes
represent gene sets with a cut-off: q < 0.1 (J); GSEA focused on hallmark signatures
with the top five enriched signatures highlighted in color (K). (L-N) Analysis of the
effect of imetelstat treatment on telomerase / telomere status. TERT mRNA
expression results obtained from RNAseq analysis described as above (L). Telomere
length in viable CD45+ splenic cells from imetelstat versus PBS-treated AML PDX
measured by gPCR (M) and confirmed by telomeric restriction fragment analysis (N).
Statistical analysis (L-M) was based on paired Student’s t-test comparing imetelstat

with vehicle groups within the respective AML patient samples.

Figure 3: Identification of key mediators of imetelstat efficacy using genome-
wide CRISPR/Cas9 editing
Brunello CRISPR/Cas9 positive enrichment screen in NB4 cells. Cas9-expressing

cells were generated to contain one single guide RNA from this library each cell.
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These cultures and untransduced control cultures were grown in the presence of
vehicle control (PBS), mismatch control (MM1), or imetelstat for 45 days, allowing
the growth of an imetelstat-resistant culture with an 1C98 that corresponded to
approximately 45 cell doublings. (A) Guide RNA enrichment analysis using STARS
AND RIGER gene-ranking algorithms in the three independent imetelstat-treated
biological replicates. Red circles indicate significantly enriched targets (STARS FDR
< 0.15 AND RIGER score > 2.0). (B) Cytoscape visualization of the IPA-derived
interaction network connecting the identified significantly enriched guide RNA
targets. (C-F) Competition assays of imetelstat (red) versus vehicle control (PBS;
black) treated Cas9-expressing NB4 (C), MV411 (D), KO52 (E), and TF1 (F) cultures
transduced with two independent single guide RNAs targeting FADS2 (top panel),
four independent single gRNAs targeting ACSL4 (middle panel), and empty vector
control as well as two independent guide RNA constructs targeting CD33. At least 2
independent experiments from separate cell passages with n = 3 replicates per
condition were pooled. Asterisks (*) denote statistically significant differences (95%
confidence interval) between chimerism AUC from imetelstat vs. PBS-treated cell

cultures.

Figure 4: Imetelstat is a potent inducer of ferroptosis

(A) Lipid desaturation analysis of FADS2-edited (i.e. FADS2 sg1, FADS2 sg2) or
non-edited (i.e. empty vector control) NB4 cells treated with imetelstat (4 uM at a
seeding density of 2.5x10"5 cells per ml culture) or vehicle control for 24h. The
graph depicts the log2 fold-change (FC) of the number of total unsaturated bonds in
lipid species in the respective comparisons outlined in the panel legend. Shading

represents the 95% confidence interval. N = 3 replicates from distinct cell passages.
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Additional lipidomics analyses are provided as supplementary methods information.
(B-C) Flow cytometric analysis of lipid peroxidation using C11-BODIPY (B) and
ROS levels using Cellrox Green (C) in NB4, MV411, KO52 and TF1 cell lines
treated with imetelstat (4 uM at a seeding density 1-5x1075 per ml). Timepoints of
analysis: NB4 — 24h; MV411 — day 4; KO52 — day 8; TF1 — day 5 of culture.
Statistics for (B) according to unpaired Student’s t-test with n = 6 replicates per
condition. The four groups in (C) were analysed using One-way ANOVA with
multiple comparisons. (D) Lipid peroxidation analysis in ACSL4-edited (i.e. ACSL4-
sgl, ACSL4-sg2, ACSL4-sg3, ACSL4-sg4) or FADS2-edited (i.e. FADS2-sg1,
FADS2-sg2) or non-edited (i.e. Cas9, empty vector) NB4 or MV411 cells treated with
imetelstat (4 uM) or vehicle control for 24h. Statistics according to One-way
ANOVA with multiple comparisons. (E) Lipid peroxidation analysis on sorted viable
CDA45+ splenic cells from imetelstat- compared to vehicle (PBS) — treated AML PDX
from the preclinical trial presented in Figure 2. Patient samples were segregated into
two cohorts based on differential ACSL4 expression at mRNA level (derived from
RNAseq data presented in Figure 2). N = 6 individual AML PDX models. Statistics
based on Student’s t-test. (F) In vivo rescue experiment using liproxstatin-1. PDX
were generated from three individual AML patient samples with n = 4-6 per group,
and treated with vehicle control, liproxstatin-1 (15 mg/kg body weight twice daily),
imetelstat (15 mg/kg body weight three times per week), or the combination of
liproxstatin-1 with imetelstat for two weeks. Lipid peroxidation and ROS levels were
determined in CD45+ singlets from PDX spleens, and AML burden was measured by
peripheral blood AML donor chimerism and spleen weight at the end of the treatment
period. Statistics based on One-way ANOVA using multiple comparisons as

indicated. In all panels, p-values or adjusted p-values (i.e. g-values) are displayed.
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Figure 5: Integrative analysis of transcriptomics and functional genetics

(A) Integration of RNAseq and Brunello CRISPR screen data using relaxed cut-off
criteria (DEG: adjusted p-value < 0.05 AND RIGER p-value < 0.05). Thirteen genes
(red dots) passed these cut-off criteria, of which eleven were annotated in IPA (right
panel). A common regulatory module for VIM, LMNA and RGS18 is highlighted
through connecting lines. (B) Confocal microscopy to confirm VIM expression at
protein level in NB4 cells treated with vehicle control or imetelstat for 24h. VIM
protein levels appeared trend-wise increased but were not statistically different by
confirmatory flow cytometry analysis (data not shown). (C) Loss-of-function editing
of VIM in NB4 cells using four independent single gRNAs. Competition assays of
mCherry+ VIM-edited cells grown in the presence of mCherry- unedited control NB4
cells, treated with imetelstat (red) or vehicle (PBS) control (black). (D) Imaging flow
cytometry of lipophagy using the lipid droplet probe C12-BODIPY and late
endosomal marker LAMPL1 in VIM-edited (VIM sg1, VIM sg2, VIM sg3, and VIM
sg4) or non-edited (i.e. native, Cas9, empty vector, CD33 sg2) NB4 cells. Recovery
examples of cells showing strong co-localization of C12-BODIPY and LAMP1
indicative of lipophagy activity (top panel), or cells with weak co-localization
indicating insignificant lipophagic flux. Quantification of the percentages of cells with
strong co-localization defined as bright detail similarity score > 1. Statistics based on
one-way ANOVA with multiple comparisons to vehicle treated control cells.
Adjusted p-values (i.e. g-values) are displayed within the plot. (E) Chloroquine and
imetelstat combination treatments in a panel of AML cell lines. Statistics based on
one-way ANOVA with multiple comparisons. Significant g-values < 0.05 comparing

imetelstat with imetelstat + chloroquine treated cultures are displayed in each graph.
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Figure 6: Mutant NRAS and oxidative stress gene expression signatures associate
with sustained responses to imetelstat

Individual AML patient samples were segregated into sustained, intermediate, and
poor responders to imetelstat based on peripheral blood AML burden with n =14
(sustained), n = 8 (intermediate), n = 8 (poor). (A) Cytoscape visualization of the
frequencies of genes with oncogenic mutations (based on the COSMIC database ) in
sustained (turquoise), intermediate (light blue), and poor (dark blue) responders to
imetelstat. Connecting lines represent co-occurring mutations within the same
individual AML patient sample. (B) AML burden in imetelstat-treated normalized to
vehicle control-treated PDX in relation to NRAS mutational status: NRAS wild-type
(wt; n = 144), mutant NRAS (mut; n = 36) consisting of pQ61R (40.7% variant allele
frequency (VAF); n = 6), pQ61R (29.8% VAF; n = 6), p.Q61H (23.5% VAF; n = 6),
p.G12C (47.5% VAF; n = 6), p.G12D (46.2% VAF; n = 6), and p.G13D (31.9%
VAF; n = 6). Statistics according to two-sided Student’s t test: p = 0.0311 for NRAS-
wt versus NRAS-mut. (C) Survival analysis of PBS and imetelstat-treated AML PDX
divided into groups based on their NRAS mutation status. Median survival was 94
(PBS-treated NRAS-mut), 389 (imetelstat-treated NRAS-mut), 100 (PBS-treated
NRAS-wt), and 153 (imetelstat-treated NRAS-wt) days from start of treatment. p =
0.0256 comparing imetelstat-treated NRAS-mut to imetelstat-treated NRAS-wt PDX
according to Gehan-Breslow-Wilcoxon; n = 6 individual NRAS-mut AML patient
samples, and n = 24 individual NRAS-wt AML patient samples; n =6 PDX per
treatment group per individual patient sample. (D) Cytoscape visualization of gene set
enrichment analysis (GSEA) results on RNAseq data from individual AML patient

samples at baseline comparing sustained with poor responders to imetelstat (node cut-
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off: g < 0.1). Red circles represent gene sets positively enriched in sustained versus
poor responders to imetelstat. Blue circles represent negatively enriched gene sets in
sustained versus poor responders to imetelstat. (E) Hallmark gene set enrichment
analysis of RNAseq data comparing sustained versus poor responders to imetelstat at
baseline. The red dotted line represents the cut-off considered for significant
enrichment at FDR = 0.25. (F) Correlation analysis between baseline telomere length
quantified by telomeric restriction fragment analysis and imetelstat response
measured as AML burden in imetelstat-treated normalized to vehicle control-treated

PDX.

Figure 7: Initial treatment with standard induction chemotherapy to induce
oxidative stress sensitizes AML patient samples to imetelstat

(A) Flow cytometry-based quantification of ROS levels using CellROX green in
HEL, MOLM13, and NB4 cells. Data represent MFI Cellrox Green measured in
chemotherapy (cytarabine plus doxorubicin) or vehicle control conditions after 3 days
of treatment. N = 3 replicates. Statistics based on one-way ANOVA with multiple
comparisons to untreated conditions. Adjusted p-values are displayed above each
comparison. (B) Flow cytometry-based analysis of cell viability of HEL, MOLM13,
and NB4 cells after switch to imetelstat-supplemented medium (4 uM). Heatmaps
represent log2FC of the percentage of viable, sytox- cells in treatment conditions
when compared to vehicle control. N = 3 replicates. (C-D) Lipid peroxidation and
ROS measurements in AML PDX from a poor responder to imetelstat monotherapy
(RBWH-44) treated with chemotherapy induction followed by imetelstat
consolidation therapy compared to double vehicle or chemotherapy / imetelstat

monotherapy control groups. (C) AML PDX received a single dose of
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cytarabine+doxorubicin chemotherapy on day 1 followed by a single dose of
imetelstat on day 2 and were analyzed on day 3. (D) AML PDX received a complete
cytarabine+doxorubicin cycle (5+3 regimen) followed by imetelstat consolidation and
were analysed three months post-start of treatment. N=4-6 PDX per treatment group.
Statistics based on One-way ANOVA with multiple comparisons as indicated. Q-
values < 0.05 are highlighted in bold. (E) Experimental scheme of the sequential
administration of standard chemotherapy followed by imetelstat consolidation therapy
in a randomized phase I1-like preclinical trial in AML patient-derived xenografts. (F)
Kaplan-Meier plot showing AML-free survival for AML PDX treated with imetelstat
following standard induction chemotherapy. The median survival for imetelstat
following chemotherapy-treated PDX was 158 days versus 139 days (chemotherapy
alone; p =0.01), 139 days (imetelstat alone; p = 0.0328), or 104 days vehicle control
(PBS) post-start of treatment with p < 0.0001 according to Gehan-Breslow-Wilcoxon.
N = 120 PDX per group with 6 PDX per treatment group per individual AML patient
sample, with n = 20 individual patient samples. (G) AML burden measured as
peripheral blood donor chimerism (area under the curve per day) in vehicle control
(PBS)-, chemotherapy-, imetelstat-, or chemotherapy followed by imetelstat therapy-
treated AML PDX. Statistics according to one-way ANOVA. P.adj < 0.0001 for
vehicle control vs. chemotherapy + imetelstat combination therapy group. (H) Model
demonstrating the working hypothesis on imetelstat-induced ferroptosis in AML

generated from this study.
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