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Abstract

Understanding the genesis of shared trial-to-trial variability in neural activity within
sensory cortex is critical to uncovering the biological basis of information processing in
the brain. Shared variability is often a reflection of the structure of cortical connectivity
since this variability likely arises, in part, from local circuit inputs. A series of
experiments from segregated networks of (excitatory) pyramidal neurons in mouse
primary visual cortex challenge this view. Specifically, the across-network correlations

were found to be larger than predicted given the known weak cross-network connectivity.

We aim to uncover the circuit mechanisms responsible for these enhanced correlations
through biologically motivated cortical circuit models. Our central finding is that
coupling each excitatory subpopulation with a specific inhibitory subpopulation
provides the most robust network-intrinsic solution in shaping these enhanced
correlations. This result argues for the existence of excitatory-inhibitory functional
assemblies in early sensory areas which mirror not just response properties but also
connectivity between pyramidal cells.

1 Introduction

Determining a structure — function relationship in a cortical circuit is a central goal in
many neuroscience research programs. While the trial averaged responses of a network
to a fixed stimulus or repeated behavior does give some information about the
underlying circuit, the dynamic or trial-to-trial fluctuations of neuronal activity
provides another important glimpse into network structure (Urai et al., 2022). Such
neuronal variability is a salient feature of cortical responses (Faisal et al., 2008), and of
particular interest is how that variability is distributed over a population of neurons
(Cohen and Kohn, 2011). The shared fluctuations of a pair of neurons, termed noise
correlations, are often thought to reflect the circuit structure of the network within
which the neuron pair is embedded (Doiron et al., 2016; Ocker et al., 2017).
Understanding how neural variability is shaped by the connections and local circuit
dynamics can provide rich insight into the structure and function of cortical circuits.
An early hope was that pairwise correlations in neuronal activity could be used to
infer the underlying connectivity in a straightforward fashion (Mishchencko et al., 2011}

122

20

21

22

23

24

25

26

27

28

29


https://doi.org/10.1101/2023.04.25.538323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.25.538323; this version posted April 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Roudi et al.,|2015). Indeed, experiments in the mouse primary visual cortex (V1) 30
demonstrated that the magnitude of the pairwise correlation between two pyramidal 3
cells increases with their probability of connection (Ko et al.| 2011; Cossell et al., [2015). =
Theoretically, this result can be thoroughly explained in a weakly coupled excitatory 33
network, where correlations are dominantly determined by direct, monosynaptic 34

connections. However, recent experiments investigating the functional properties of two 35
distinct subpopulations of pyramidal cells in mouse V1 complicate this narrative (Kim| s
et al., 2018b). These subpopulations project to separate downstream higher visual areas s
and are inter-connected with lower probability than that of randomly sampled 38
pyramidal cells within V1. Despite this weak connectivity, it was found that the 39
correlations between these distinct subpopulations were much higher than predicted by
their sparse inter-connectivity. In fact, the magnitude of the correlated variability across a«
the two subpopulations approached that between any randomly chosen pair of a2
excitatory neurons. In this same vein, another experiment examining callosal projection
neurons in mouse V1 found that these cells also cluster and connect more strongly as a
class (Hagihara et al.| 2021). Yet their correlated variability is similar when comparing 4
within-class and out-of-class, again illustrating that significant, positive correlations can

persist in the absence of direct strong connections. In total, these results are at odds ar
with previous intuition, namely that this anatomical segregation would correspond to a s
functional one as well. a9

Theoretical work has also highlighted how the simplistic structure-dynamics 50

relationship originally put forth can break down. For example, it has been shown that =
inferring connectivity from activity becomes difficult as recurrent connection strengths s

grow and inhibition is required to stabilize the network (Das and Fiete, [2020; Biswas 53
and Fitzgerald, 2022). Most notably, a densely connected network with strong synaptic s
weights that exists in the so-called balanced state, a robust parameter regime where 55
excitatory and inhibitory inputs to a neuron largely cancel out, results in near-zero 56

average correlations (Renart et al.| [2010; Rosenbaum et al.,|2017)). Nonetheless, progress s
has been made in overcoming these difficulties, with studies having developed methods  ss

for linking connectivity motifs to the structure of correlations in arbitrarily large 59
networks (Pernice et al., 2011; Trousdale et al., 2012; |Ocker et al., 2017)). 60

In this work, we seek to apply some of these techniques to characterize the neural 61
circuit properties which could explain the significant positive shared variability across 6
segregated cortical subpopulations observed in Kim et al.| (2018b). With the use of 63
mean field circuit models we show that the solution depends on the dynamical regime of s
the circuit, and relies on the structure of inhibition. In a weakly coupled regime, 6
correlations can be characterized through inheritance from outside sources, or increased s
through shared inhibitory inputs. By contrast, in a strongly coupled regime, shared 67
inhibition would largely act to anticorrelate activity across the populations. Critically, s
we show that this anticorrelation can be mitigated if inhibition is similarly clustered 69
with excitation, forming instead excitatory-inhibitory assemblies. Additionally, this 70

regime of strongly coupled dynamics with clustered inhibition provides the most robust =
solution space to explain the elevated correlations. This prediction further suggests that =
other apparent correlation conundrums could be solved by supplementing excitatory 73
recordings with activity from inhibitory neurons. 7
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2 Results

2.1 Segregated synaptic wiring does not produce segregated
functional responses

Our work is motivated by an apparent inconsistency in a series of experimental studies
exploring the relation between the recurrent circuitry and functional responses of
neuronal populations in sensory neocortex. Ko et al.| (2011) and |Cossell et al. (2015)
used a combination of in vivo population imaging and in vitro electrophysiology to show
that the activity correlations between pairs of pyramidal neurons in mouse primary
visual cortex (V1) increase monotonically with the probability of there existing synaptic
connections between them. Later work from the same group (Kim et al., 2018b)
investigated two excitatory populations in mouse V1: neurons that are either
anterolateral (AL)- or posteromedial (PM)- projecting. Despite neurons being in close
spatial proximity to each other, these neuronal subpopulations exhibit high within
group connectivity (prob. AL <> AL connection ~ 0.21, prob. PM < PM connection

~ 0.18) and low between group connectivity (prob. AL — PM connection ~ 0.04, prob.

PM — AL connection ~ 0.05). To streamline our presentation we will label these two
populations Ey and E» (Fig.[1A). Given the low connection probability between E; and
FE5 and the established relation between connectivity and activity correlations shown in
Ko et al.| (2011) and |Cossell et al.| (2015), one would predict that the degree of

correlations between the activities of F; and Ey would be low (Fig. 7 held out light

green square; from Kim et al.| (2018b) we estimate this value to be approximately -0.05).

However, Kim et al. (2018b) reported substantially higher than predicted mean F; and
Es5 correlations (Fig. , dark green square; Kim et al. (2018b) measured it to be about
0.027, close to the within-group values of about 0.035-0.04). In total, while pyramidal
neurons in mouse V1 projecting to distinct targets show segregated synaptic
connectivity, the degree of functional segregation between these subpopulations is below
what is expected.

The central goal of our study is to put forth a circuit-based model framework that
can robustly and self-consistently account for both of these experimental observations.
It is important to note that Kim et al. (2018b) only considered total correlations (of the
raw neural activity traces) in computing this expected correlation value. However, given
the similarities observed in the signal and noise correlation structure in both this and
previous studies (Ko et al.; 2011; Kim et al.,|2018b; [Hagihara et al., |2021), we focus
here on noise correlations which relate more directly to the underlying structure of
connectivity (Ocker et al.,|2017).

2.2 A circuit model of fluctuations in segregated subpopulations

To study the structure of correlations in anatomically segregated networks and
investigate the possible mechanisms responsible for the unexpectedly enhanced
correlations, we consider a phenomenological dynamic mean field model for the
aggregate activity of each neural population (Renart et al., 2004; Getz et al., [2022;
Kanashiro et al.| [2017). Assuming that the network has a steady state solution (rss),
the linearized dynamics of population A around this equilibrium are given by (see
Section [5|for additional details):

dA?”A
dt

TA

:—ATA+ZWABATB+UA [\/1—C-§A(t)+\@~fs(t)] (1)
B

where Ary =14 — 'ss,4, T4 is a time constant, and W p is the effective strength of
connections from population B to A. For the purely excitatory network A and B range
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Figure 1. Mean field model of segregated E populations. A: Illustration of
experimentally observed connectivity motif; the red (EF7) and orange (F2) populations
connect with lower probability than average. B: Schematic of main experimental
observations: FE; — F5 correlations were higher than would be predicted from their
low connectivity. C: Model schematic. Black traces and arrows denote noise sources.
Red arrows indicate excitatory recurrent connections where the dashed line connotes
weakened connection strength. Feedforward stimulus drive omitted for clarity. D:
Example realization of network activity to a sustained, fixed stimulus. Colors as in
(A). E: E; auto-correlation function and F: Ey — E5 cross-correlation function for the
illustrated rate traces. For panels D, E and F: ¢ = 0.5.

over F; and E5; when inhibitory connections are included in later sections A and B will 120

include those as well. The stochastic processes 4 (t) and £g(t) represent private and 121
shared global fluctuations, respectively, modelling stochastic inputs that are external to 12
the network. €4(¢) and £g(t) are taken to be independent Gaussian processes with 123
(&(t)) =0 and (£(t)E(t')) = d(t —t'). The parameter c € [0, 1] scales the proportion of 12
shared noise relative to private noise (Fig. ), while o4 > 0 represents the total 125
intensity of the external fluctuations given to population A. 126

We make two assumptions: 1) the network has a stable solution rss about which the 17
population dynamics fluctuate (Fig. [1ID), and 2) connections within and inputs to the s

network are symmetric across the two E populations, with Wg, g, = Wg,g, = Wik, 120
Weg, g, = Wgy,g, = aWEgEg, and o, = o, = 0. Note that parameter 0 < a < 1 130
represents the degree to which the inter-population connections are weaker than the 131
within-population connections (Fig. ) Since the system of recurrently coupled 132
stochastic differential equations in Eq. [1|is a multi-dimensional Ornstein-Uhlenbeck 133
(OU) process, we can derive (see Section |5) an analytical formula for its stationary 13
autocovariance function 135
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C(h) = (Ar(t), Ar(t + h)),
which agrees well with numerical simulations (Fig. , F). Further, and of particular

interest in this work, is the long-time covariance matriz defined as

o0

-

C(h)dh.

oo

This may be expressed (see Methods as

C=(I-W)'D[01-W)"'D]",

(2)

where W is a matrix of effective connection strengths and D is a matrix that scales the
fluctuations. We define the correlations between FE; and Es as

COI‘I‘(El s EQ)

CEI Ey

_ CE] E>

- - b
\ OElEl C'EQE2 CE1E1

where C4p is an element of C and the second equality follows by the assumed
symmetry in the system. This framework enables us to formalize the motivating

(3)

question of our study: what are the mechanisms that enable higher than expected
correlations across anatomically segregated populations? For the sake of specificity, we

choose the threshold Corr(E7, F3) > 0.6 as an approximation of the ratio of mean
across-population to within-population noise correlations in Kim et al. (2018b).

2.3 Inheritance model of correlations between weakly coupled
excitatory populations

We begin by exploring how the strength of recurrent excitation (Wgg) and the

proportion of fluctuations that are shared (c) shape correlations between the segregated
FE populations. In this section, to ensure that the network admits a stable activity
solution we require Wgg < 1, else recurrent excitation would lead to runaway activity.

Note that while we allow Wgg to vary, we maintain the concept of segregated

populations by keeping a small and fixed. We find that while increasing Wgg leads to

moderate increases in Corr(E7, Fs), a much more significant increase occurs by

increasing ¢ (Fig. [21A).

To better understand the underlying mechanisms responsible for these higher

correlations within this parameter regime (i.e., to the right of the pink line in Fig. ),
we perform a pathway expansion of the covariance matrix Eq. 2l Since the steady state
emitted by the system in Eq. [1/is stable, the term (I — W)~! can be expanded as a

series. This allows us to write Eq. 2| as (see Methods

oo

n

c=Y | wDD" (W),

n=0

where each term in the inner sum corresponds to an nt"-order path through the

=0

(4)

network. Writing out the first three terms of this sum for the cross-covariance yields

Cep, =0 [c+ (2c+20)WeEp + B(L+ a?)c+ 6a)Wigp] + O(Wig).

Rewriting this equation as

Cp,p, = 0*[c- (1 4+ 2Wgg +3(1 + ®)Wig) + (2aWgg + 6aWag)] + O(Wi )

1)

(2

()
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Figure 2. Highly correlated regime in weakly coupled excitatory network
relies on correlated feedforward inputs. A: Corr(E;, E») as a function of Wgg and
the magnitude of shared input noise ¢. Dashed pink line indicates Corr(E;, Fs) = 0.6,
approximating the value reported in/Kim et al.| (2018b). B: Schematic of example synaptic
paths through the network, along with their contribution to the cross-covariance, relating
to the path expansion Eq. The inherited row refers to correlated paths stemming
from correlations in the feedforward input, while the recurrence row arises from the
recurrent connections across the populations. C: Contributions of paths of given order
to networks (left) and the total correlation (right) for the parameters Wggp = 0.25 and
¢ = 0.65 (star from panel (A)). All panels: o = 0.1.

reveals that each term contributing to this cross-covariance can be thought of as arising
from one of two sources: 1) inherited from the shared correlated input and dependent
on the parameter ¢ (Fig. [2B, top), and 2) purely arising from the recurrent connections
(Fig. , bottom). We note that the ‘propagation’ of the inherited contribution to
higher-order paths does not only rely on the E; <+ E5 connections (proportional to
a™c). This is because the correlated activity is fed directly into each subpopulation at
the O order, from which it can propagate into higher-order paths via self loops
contained within each population. We emphasize that eliminating the 0" order term
(i.e., setting ¢ = 0) eliminates all contributions from the inherited global source.

We now utilize this pathway expansion to compare the contributions from
feedforward and recurrent mechanisms to the net cross-covariance for an example point
lying in the highly correlated regime (Fig. , star; Wgrgr = 0.25 and ¢ = 0.65). We first
note that this series converges quickly and only a few paths significantly contribute to
the total correlation (Fig. ) The convergence of this series depends directly on the
largest eigenvalue of W (Methods , namely

Amax = WEE : (1 + Oé),

which is small for our choice of parameters. Our numerical results also illustrate that the
contribution from the inherited source largely dominates at each order (Fig. ; left),
and contributes ~90% of the total cross-correlation (Fig.[2C; right). These results hold
qualitatively across this parameter regime, and lead us to conclude that it corresponds
to a model in which large shared input fluctuations explain the heightened correlations
between the separate E populations. Taken together, we characterize this solution
which exhibits enhanced E; — Es correlations as a feedforward inheritance model.
However, under the condition where the shared input fluctuations are small, we still
lack a potential mechanism for significant positive correlations. To surmount this
shortcoming, we first need to extend our model to also include inhibitory populations.
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2.4 Weak recurrent excitation with global inhibition 181

Parsimoniously, we begin by modelling inhibition as a single global population, 182
consistent with observations that inhibition simply connects densely and non-specifically — 1s3
within cortex (Hofer et al., 2011; Packer and Yuste, 2011) (Fig. [3/A). To understand the 1
effect of inhibition in this circuit, we explore how the strength of recurrent inhibitory 185
connections (Wgr < 0 and Wrg > 0) shape correlations between the excitatory 186
populations in the case when ¢ = 0. Assuming Wrg remains weak (i.e., Wgg < 1), we 1o
find a large portion of the parameter regime yields negative cross-correlations (Fig. ; 188
purple region). However, there is a region that satisfies our correlation condition, namely  1so
the dark green region that corresponds to strong I — E and weak E — I connections. 10

A Corr(E,E,)
0.5
0
-0.5
1 2
We
C 1st-order 2"-order exc. 2nd-order inh.
it Y ey
aWe, ‘OA W oaW,, “OAA We W, A’o§
D Wy Wy, {09
0.15 >|<
A A
3 oos a
< o] O
o ———
3} 1 2 3 primary correlating
E E.I\N pathway
Lu?— 0.05
~— AA
‘" A—A
(@)
-0.05 O

7 ] 3
path order
Figure 3. Weakly coupled network. A: Network model schematic as in Figure
. Blue lines indicate recurrent inhibitory connections. B: Corr(E4, E3) as a function
of |[Wgr| and Wrg. C: Ilustrations of first and second order paths. D, E: (Left)
Contributions of E (red outlined bars) and I (blue outlined bars) to the net Corr(Ey, Es).
(Right) Schematic of dominant correlating pathway. Colored stars denote locations in
B. Red star: Wgr = —1, Wig = 0.07; blue star: Wgr = —0.05, W = 2. For all panels

a = 0.15.

We again make use of a pathway expansion of Eq. 2| to help decipher this 101
observation, this time accounting for the new inhibitory pathways (Fig. ) Writing 192
out the expansion to second order in W yields 103

Cp,p, = 02 [2aWgp + 6aWE g + 2We Wi + Wi | + O(W?), (6)
exc. paths inh. paths
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where we have noted the terms involving only the excitatory components and terms 104
which involve paths through the inhibitory population. We first observe that 105
contributions to the cross-covariance due to the excitatory subnetwork at each order are 1
the same as the previous network without the inhibitory connections (Eq. [5/for ¢ = 0). 1o
This leads us to decompose the total covariance into an excitatory component and an 19

inhibitory component (neglecting the O(W?) terms in Eq. @ 199
CEIEZ = %‘)icEg + CgllhEg (7)

As Eq. [6] suggests, depending on the strength of the underlying inhibitory connections, 0
C’g’lhE can either be positive (positively correlating the excitatory subpopulations; 201
Fig. , along Wy axis) or negative (anti-correlating the subpopulations; Fig. [3B, 202
purple region). By contrast, C%%, is clearly bounded below by zero. 203

Specifically, Eq. [6| reveals a ‘tug of war’ that can arise early on in the pathway 204
expansion between the E — I — F (i.e., Wg;Wig < 0) and the I — E (i.e., WZ; > 0) 2s
inhibitory pathways. Choosing |Wgr| > Wig & 0, we find that the positive term 206
dominates, and the the inhibitory population acts as a strong correlator of excitatory a0
activity (Fig. ) We term this an inhibitory inheritance model by analogy to the 208
feedforward inheritance model described above. 200

On the other hand, when W;g > |Wg;| & 0, the negative term dominates, leading 210
the inhibitory population to weaken the strength of cross-correlations. In this case, the on

primary correlating source across the excitatory populations are the weak E; <+ Fs 212
connections (Fig. ) But as we noted previously (Fig. , this pathway alone is 213
incapable of yielding high cross-correlations without strongly correlated feedforward 214
input. 215

The regime of weakly coupled neural populations thus permits two solutions for 216

correlating F; and Es to a sufficiently high degree, both of which can be characterized 217
in terms of inheritance models. Namely, enhanced positive correlations can be inherited s
from outside sources or from local recurrent inhibition. Nevertheless, the ambiguity in 21
the former solution and the fine-tuning required to achieve the latter solution push us to 22
uncover a more robust mechanism. 21

2.5 Strong recurrent excitation with global inhibition 22

Up to this point, by virtue of our assumption that the recurrent excitatory coupling is 22
weak the stability of the equilibrium point was independent of the inhibitory currents. 22
Such a network is commonly referred to as a non-inhibition-stabilized network 25
(non-ISN) (Tsodyks et al.,|1997; Ozeki et al.l [2009; Sadeh and Clopath) [2021) (see 226
Appendix for additional details). However, recent experimental evidence suggests that 2
mouse cortex operates in the ISN regime, where strong recurrent excitation is tracked 2
and balanced by strong inhibitory feedback (Adesnik, 2017; Sanzeni et al., 2020). Since 29

the ISN regime is known to exhibit sometimes perplexing dynamics, such as the 230
well-studied paradoxical effect (Tsodyks et al., [1997), it is initially unclear how shifting 2u
into this parameter regime will shape the correlations under investigation. 23

In view of this, we now strengthen the recurrent excitatory connections Wgg such 23
that our model network lies in the ISN regime. Performing a similar analysis as before 2

(i.e., fixing Wggr and Wiy, while varying Wg; and Wig) and assuming that the 235
feedforward inputs are uncorrelated (¢ = 0), we find results that at first glance appear 2
familiar (Fig. ) Namely, a portion of the parameter regime results in negative 237
correlations (purple region), with a narrow parameter regime yielding positive 238

correlations (green region). However, unlike the previous network, these correlations are 2
much larger across this band of parameter values, approaching unity as the system loses 2u0
stability due to the inhibitory feedback becoming too weak to be able to balance out the 2a
strong excitation (gray and red-hatched region). 242
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Figure 4. Global inhibition in ISN regime. A: Corr(E;, E2) as a function
of Wgy,Wrg with ¢ = 0. B: Top: Corr(E1, Es) along the yellow path in A. Gray
region: unstable; green region: positive correlations; purple region: negative correlations.
Bottom: eigenvalues of the circuit along the yellow path in A. C, D: Top: example rate
traces (colors as in Fig. ) Bottom: auto- and cross-correlation functions computed
numerically (black) and theoretically for the dominant timescale (blue dashed). Stars
indicate parameter values shown in B. Here, a = 0.2.

Unlike the non-ISN regime, where the weak recurrent excitatory connections
corresponded with small eigenvalues and quick convergence in our path-expansion, here
the eigenvalues of the system lie much closer to the boundary separating stability from
instability. As result, many more terms are needed before the series in Eq. |4] converges,
complicating its interpretation. Instead, we seek to understand the mechanism driving
these high correlations by exploring their apparent connection to the system’s stability.

We start by considering the slice of the parameter space where |[Wg| = W;g that
captures the system’s transitions from negative correlations to positive correlation to
instability (Fig. , yellow line; Fig. , top). Analysis of the eigenvalues of W reveals
a pair of eigenvalues (A\; and A\3) dependent on the strength of inhibitory connections
and another eigenvalue that remains constant (and close to one) along this parameter
slice (A3 = Wgg(1 — a)) (Fig. [4B, bottom). Interestingly, we find that decay for the
stationary autocovariance function for the inhibitory population (Fig. and
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bottom; see Eq. @ in Section [5)) is well approximated by
1 = max (Re(A1),Re(Az2)) .

From this link, we see that when |Wg;| = Wi is large, then ¢ is small, meaning the
timescale of inhibition is fast. This allows the inhibitory population to rapidly and
effectively cancel the net excitatory inputs (Fig. , top). We observe that in this
parameter regime, Ary remains small, while Arg, ~ —Arg,, leading to strong negative
correlations between E; and Ey. As |Wgr| = Wig decreases, ¢ increases towards one,
which slows down the inhibitory timescale (Fig. , top). This slower cancellation of
the excitatory currents allows for larger deviations away from baseline for all neuronal
populations. However, since the system is still stable, we observe that the populations
co-vary together, leading to correlated excursions in the rates.

In total, the ISN regime yielded a more robust set of parameter values corresponding
to high correlations across the segregated excitatory populations than the non-ISN
regime observed previously. However, even in this improved scenario, the viable
parameter regime is still limited to a relatively thin band, and further, this band lies
precariously close to regions of instability.

2.6 Strong recurrent excitation with clustered inhibition

The fine tuning required to capture large Corr(F1, E2) despite having weak Fy <> Eo
coupling (o << 1) for both the purely excitatory and global inhibitory networks places
doubt on these mechanisms being operative in real neuronal circuits. In this section we
hypothesize that if the sources of inhibition for each excitatory subpopulation are
similarly clustered, then this decoupling of inhibition may permit a larger stable region
of positive correlations in the ISN regime, largely by limiting the effects of the
anticorrelating 1 — I — F5 and Fy — I — FE; pathways.

We implemented inhibition to be co-clustered with the excitatory subpopulations by
separating the inhibitory population in two, with I; and Is corresponding to the
respective excitatory populations F; and Fy (Fig. ) In this case, each E;/I; cluster
constitutes an ISN (¢ = 1,2). The model contains no inter-population connections
except those between F; and FE5, and without any source of shared input correlations
(¢ =0). We have again assumed symmetry in the connection strengths such that the
pairs (E1, ;) and (Es, I5) are identical in their connectivity and dynamics.

If we again fix Wgg, Wi and proceed by exploring the space of Wgr, Wrg
connections, we find that this network structure now yields a robust region in which
correlations are strong and positive (Fig. IB green). This can only be due to the strong
dynamic recruitment of the inter-population connection aWgg. This result emphasizes
three important points. First, that there exists a large space of connection parameters
in which our criteria (large Corr(E7, F3) and a@ << 1) may be met. Given the
heterogeneity of neural circuits and plasticity of connections within cortex this
parametric result is much more satisfying than a fine-tuned solution like that required
in the model with global inhibition (Sections 2.5). Second, this result does not
depend on the presence of external correlated fluctuations. Thirdly, this result is robust
to the presence of external correlated input noise as it would only further amplify the
observed correlations.

A natural question is whether incorporating inter-population E; <+ I; or I; <> I;
connections would affect this result. We therefore considered fixed values of Wgr, Wrg,
and Wi, and introduced scaling parameters (3,7, (, respectively, to adjust the
between-population strengths of each connection (Fig. [5[C). We found that only
Wir > 0 was able to further enhance correlations above the value we found when ¢ =0
(Fig. , left). In contrast, any non-zero values of 3, only reduced correlations (Fig.
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Figure 5. Segregated I subpopulations produce robust positive correlations.

A: Model schematic. Input structure is consistent with Fig. but omitted for clarity.
B: Corr(F1, Es) as a function of Wgr, Wrg with ¢ = 0. C: Corr(F1, E2) as a function
of added connections between Iy, Iy (left); Iy — F5 and Iy — E; (middle); Ey — Iy and
E; — I (right). Added connections W;; are initialized to the same as elsewhere in the
network, and scaled by: (, I < I; 8,1 — E; v, E — I. Dashed turquoise line denotes

¢,B,y=0,Wgr=Wrp=1

, middle and right). This is due to the same mechanism discussed previously in which
strong excitatory recruitment of inhibition induces anti-correlations between the
populations. Further, this same relationship also held when Wgr, Wrg, Wi were
co-varied. Only I — I connections served as a correlating force; all others induced a
reduction in correlations (AFig. . Hence, we conclude that while inhibition can be
promiscuously connected with other inhibitory units, it must be strongly co-clustered
with excitatory subpopulations and sparse in its connectivity with other excitatory
subpopulations to yield the significant positive inter-population excitatory correlations
observed in Kim et al. (2018b).

3 Discussion

In this study we sought to uncover possible neural circuit mechanisms underpinning the
experimental observation that pyramidal neurons projecting to different downstream
targets connect with a much lower probability than random pairs of excitatory neurons,
yet still exhibit correlated variability that is almost as large as the rest of mouse V1
(Kim et al., 2018b). Notably, the magnitude of these correlations is much stronger than
would be predicted given their weak connectivity. We found that a model with global
inhibition resulted in highly constrained regions in which the data could be matched,
encompassing two distinct solutions. In the case of weak network coupling, positive
correlations resulted from two forms of inheritance model: either I — E connections
induced increased correlated activity through I affecting both excitatory populations in
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the same way, or an unobserved external source of strong correlations fed these
fluctuations across both E units. When connectivity strengths grew, placing the circuit
in an inhibition-stabilized (ISN) regime, the network needed to live right at the edge of
stability to observe positive correlations. By contrast, we found that a more generally
robust solution in the ISN regime could be achieved by splitting the inhibitory
population into two separate subpopulations co-clustered with one of the excitatory
subnetworks.

We argue that, on the basis of this robustness, our results thus predict that
inhibition should cluster together with excitation in mouse sensory cortex with a
specificity that mirrors that of the excitatory connectivity. The other inferred models by
contrast depend upon narrow parameter regimes to capture experimental observations.
This fragility would require significant constraints on the properties of neural circuits.
Yet, connections are plastic, connection strengths are heterogeneous, and neuron
properties are affected by neuromodulation (Turrigianol [2008; Marder} 2012). Given
this stochasticity in the circuit structure itself, a fine-tuned solution is unlikely to
capture the data.

Rigorous experimental validation of our model predictions could be obtained
through physiological or connectomics experiments which specifically target the
relationship between excitatory projection neurons and local inhibitory neurons. While
it is well-appreciated that inhibitory interneurons are very diverse in physiology and
connectivity (Tremblay et al., [2016), we did not explicitly model this diversity in our
study. Nevertheless, we anticipate that parvalbumin (PV)- positive cells may display
the identified signatures of our I units, as they appear to play a critical role in
stabilizing excitatory activity (Bos et al.,2020). Recent experimental evidence appears
to support this claim from the perspective of stimulus tuning: while PV cells connect
with most nearby pyramidal neurons, they were found to more strongly connect with
those whose tuning properties they share (Znamenskiy et al., 2018).

Recent theoretical work has argued that F/PV assembly formation requires
plasticity from both £ — PV and PV — E connections (Mackwood et al., [2021). This
bidirectionality could result in local, winner-take-all effects in E <+ I connectivity as
any discrepancies in functional response properties between nearby pyramidal cells will
bias the PV connectivity. This could result in the more specific co-clustering of
inhibition we predict. Motivated by these results, a potential indirect way to
differentiate between the global and clustered inhibition models would be to record
activity of AL- and PM-projecting neurons together with inhibitory interneurons.
Comparison of their respective tuning functions could suggest whether the inhibitory
cell is biased in its connectivity (by extension of Znamenskiy et al. (2018)). Indeed,
Najafi et al. (2020) recently argued for co-clustered excitation-inhibition in the context

of posterior parietal cortex decision circuitry on the basis of neural response properties.

Furthermore, in mouse visual cortex, it has been shown that PM and AL exhibit
distinct functional representations with some overlap (Andermann et al.} 2011),
consistent with the tuning properties of V1 projection neurons (Kim et al., [2018b)). Of
course, it is possible that inhibitory-excitatory interactions may span a continuum
between the global and clustered motifs identified here. This raises the possibility that
heterogeneity in inhibitory connectivity motifs at small spatial scales may explain
heterogeneity in pairwise covariance between AlL- and PM-projecting pyramidal cells.
A central issue in the extension of our results concerns the dynamical regime of
cortex, a topic which has received a significant amount of attention lately (Ahmadian
and Miller} 2021; | Morales et al.,|2021; Huang, 2021). One question concerns whether
intracortical interactions are strong enough to require inhibition as a key stabilizer of
activity, that is, whether sensory cortex is an inhibition-stabilized network (Tsodyks
et al.,|1997; Sadeh and Clopath,|2021). Theoretical work predicts that in this regime
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the ratio of excitatory to inhibitory input drive to a neuron decreases with increasing
stimulus intensity (Rubin et al., | 2015). Recent experimental evidence from recordings of
mouse primary visual cortex supports this claim (Adesnik, |2017). Another study used
optogenetic perturbation of inhibitory neurons across mouse cortex to test for
inhibition-stabilization without sensory stimulation, finding evidence that all considered
cortical regions operate as an ISN (Sanzeni et al.| [2020).

Given this evidence for an ISN regime, a second question regards whether the
network dynamics are poised near a change in stability. In our model, loss of stability

would result in large positive correlations through a slowing down of the dynamics (Fig.

. Analysis of large-scale recordings in mice has suggested that cortex may in fact live
close to an instability (Morales et al.,[2021). This could suggest that either the global or
clustered inhibition model in an ISN regime may explain the data. Together with the
foregoing evidence that PV and E neurons sharing tuning properties connect more
strongly, we argue that this further supports a model of co-clustered inhibition.

Other mechanisms by which correlations can grow near a change in stability have
been identified in previous studies. |Ginzburg and Sompolinsky| (1994) observed that
near a bifurcation - in their case, a saddle node or Hopf - correlations in a weakly
connected network grow from O(1/N) to near O(1) where N is the network size,
together with a slowing down in the dynamics. Darshan et al.| (2018) derived conditions
on what they term the interaction matrix (similar to our W matrix) under which
correlations are amplified without critical slowing down. These network models thus
suggest distinct mechanisms by which our results could be extended to
spatially-distributed spiking network models. Additionally, Litwin-Kumar and Doiron
(2012) studied the effect of clustered connectivity in balanced spiking networks on the
structure of correlations, however this work did not compare across-cluster to
within-cluster correlations. Rosenbaum et al. (2017) did consider a structure similar to
our three-population global inhibition motif, demonstrating that, consistent with our
conclusions, a spatially distributed spiking neural network with distinct subpopulations
would show close to zero correlations on average due to strong positive correlations
within a cluster and large negative correlations between the two clusters. Yet it remains
for future work to determine the precise parametric values to recapitulate our results in
spiking neural network models.

Our work can be seen as a case study of a particular network structure in the context
of the theoretical investigation of dynamics on graphs (that is, a collection of nodes and
edges). In general, graphical analysis has been used in a wide range of neuroscientific
applications, from the determination of fixed points of dynamics (Morrison and Curto,
2019) to network controllability (Kim et al., [2018a)). In relating connectivity motifs
(elements of W and their combinations) to correlation structure in the circuit, our
approach relates to a more general mathematical concept of relating process motifs on
networks to underlying structure motifs of the graph (Schwarze and Porter, 2021).

Ultimately, this work demonstrates how ostensibly straight-forward observations of
connectivity and response properties from cortical cells have the capacity to lend fruitful
insight into the structural and dynamical regimes of cortex, which are critical to further
understanding of information processing in the brain.
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5 Methods

5.1 Firing rate model

As done previously (Kanashiro et al.,[2017; Getz et al.| 2022)), we consider the firing rate
dynamics of neuronal populations A given by the following

T,a;dc%4 =—ra+fa (uA +ZJAB7"B + 64 [VI—caalt)+ ﬁ.xs(t)o ’
B

where 74 is the time constant, p4 is a constant stimulus drive, and J4p is the strength
of connections from population B to A. The stochastic processes x4 (t) and z(t)
represent private and shared global fluctuations, respectively. Each is taken to be the
limiting process from

for 7, — 0, with (&;(¢)) = 0 and (&()&(t')) = d(t — t'). Intuitively, one may think of
z(t) as a “smoothed” white noise process (Kanashiro et al., 2017). The parameter
¢ € [0, 1] scales the proportion of shared noise relative to private noise, while &4
represents the total intensity of the fluctuations.

We assume that the system of equations has an equilibrium point at 74, and that
the noise is weak enough so that the fluctuations about this equilibrium (Ar :=r — ry)
can be approximated by

dATA
dt

= —-Ary +LAZJABATB + La6a [\/1 — c-xA(t) + \/Exé(t)] ,
B

TA

where L4 = f!(rss) is the gain of population A at the equilibrium point. We define the
effective coupling as Wap := LaJap and 04 := L,64, and approximate x4 (t) and
x5(t) as independent, zero-mean Gaussian processes 4 (t) and &,(t) satisfying
(€(t)&(t'))y = 6(t — ¢'). This yields Eq. |1} which in matrix form can be written as

dAr
T T (W —I)Ar(t) + DE(2). (8)
For notational simplicity, throughout we will assume unit time constants 74 = 1, so that
T = 1. For example, in the case of two excitatory populations and one inhibitory

population {Ey, Eo, I'} the matrices are
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We.e, We e, Wgir (I1-¢)-op 0 0 e -og
W= |Wg,g, Wgr Wgi]|, D= 0 (1-c)-op, 0 +fc-og,
Wig, Wig, Wi 0 0 or 0

The network structure is determined through the weight matrix W. Since we are
explicitly interested in segregated excitatory populations, we consider weak the
cross-population connections and set

WE2E1 = OZVVE1 Eq> VVE1 Ey, = aWE2E2
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for a € (0,1). The two excitatory populations, F; and Es, are increasingly disconnected
as a — 0. To obtain analytical expressions and constrain the searchable parameter
space, we assume various symmetries in the network connectivity. Specifically, we

consider the following forms for connectivity matrices for the two (Fig. [1A), three (Fig.

3]A) and four (Fig. ) population models:
Wge aWgg

W =
LWEE Weg } ’

Wege oWgg Wgr
W= |aWgg Wgg Wgr|,
Wi Wie Wi

and

Wee oWgrg Wgr BWer
aWgr Wgrg pWgr Wegr

Wig Wi Wi (Wi |’
Wi Wig (Wi Wi

W =

where §,v,¢ € (0,1).

5.2 Covariance calculation

The autocovariance function for the OU process defined in Eq. §|is given by

C(h) = (Ar(t)Ar(t + h)).

Let M = W — I and define X := C(0) = (Ar(t)Ar(t)) as the stationary covariance

matrix. Then ¥ is obtained as the solution to the Lyapunov equation
~MX +2(-M)T = DD (Gardiner, 2009). It follows that

~ e M. h<0
Ch =15 . Mh o

(9)

Integrating é(h) in each element over long times h yields the following compressed form

for the long-time covariance matriz C

oo ~
C= / C(h) dh
—o0
~M~'D(M'D)".
If Cy = /diag(C), then the correlation matrix is obtained
p=C;'CCy.

5.3 Path expansion

(10)

If the spectral radius s(W) = max{|\;| : \; is an eigenvalue of W} < 1, then M~! has

a convergent series representation

~M = (I-W) =) W
k=0
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known as a Neumann series (Einsiedler et al., 2017). Intuitively, one may think of the

Neumann series as a matrix analogue of the familiar geometric series. Under this

representation, the long-time covariance matrix is

() ()

It is useful to rewrite this expansion as

C= i lzn: W= DD" (WT)i] ,

n=0 Li=0

where the terms in the inner sum can be interpreted as contributions due to n*"-order
paths through the network (Trousdale et al., 2012; Pernice et al., [2011).
If the outer sum converges quickly, the covariance matrix can be approximated as

n

C~ ?:0 lz W"DD" (WT)i] :

=0 Li=0

The rate of convergence of this approximation depends on the magnitude of s(W). In
particular, the closer s(W) is to 0, the faster the terms shrink. Consider the N-th order

terms of this approximation,

N

Yy w¥DD" (WT)",

=0

If || - || is the operator norm, then

N .
Z WN—iDDT (WT)Z
=0

N .
<> [wrpDT (W)’
=0

=

< 3 [fooT- oy

i

I
=)

Diagonalize W and write W = PAP !, where A is a diagonal matrix of eigenvalues of

W. It follows that

HWN—i (WT)l

= | AP (@) AP

— HPANﬁipil(Pil)TAiPTH

<|[PI* P 1Ay

Then

N .
3 [loor - (wy
=0

o N N

< N [P o s(w)

This bound shrinks quickly as N — oo if (W) is small (< 1), as is the case when the

system is in the weakly coupled regime.
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5.3.1 Path expansion for weakly coupled F; < E5

In Fig. we illustrate this quick convergence by showing the first three terms of this
sum, namely

0 - order: DD,
1% - order: WDD' + DD W,
2% _ order: W?DD' + WDD W' +DD' (WT)”.

Using these terms, the cross population covariance can be approximated by Eqn. [5in
the main text.

We note that for a n'P-order path, we multiply on the left and right by C;l to
obtain path contributions to the correlation matrix. In particular, we are interested in
the contributions to pg, g, (that is, the element p; 5 of Eqn. .

5.4 Parameters & Simulations

All relevant code will be made available at the author’s github upon publication.
Simulations were performed using an Euler-Maruyama scheme with time constants
T = 71 = 15 msec, dt = 0.01 msec.

Table 1. Strength of connections from pop. B (columns) to A (rows) for the weakly (strongly) coupled model.

Wiz BE I
E 0.5 (1.15) 0.5 (0.8)
I 0.5 (0.8) 0.5 (0.5)

Table 2. Default parameter values. Changes to any parameter are indicated in the figure caption.

Parameter Default value Description

@ 0.15 Inter-excitatory population strength

oA 1 Total intensity of outside fluctuations

c 0 Scales the proportion of shared noise relative to private noise

6 Supplemental Information

6.1 Network stability
The deterministic version of Eqn. [§] (Fig. [1A)

dAr
dt

is asymptotically stable if the eigenvalues \; of W — I satisfy R[)\;] < 0, meaning that a
perturbation of the excitatory rates is quenched and rates are returned to their
steady-state values (AFig. 1B, top) (Wiggins, 2003). An equivalent condition for
stability is if the eigenvalues \; of W satisfy R{\;} < 1. We say that a network is stable
if it admits a stable equilibrium solution, otherwise we say the network is unstable.

= (W —I)Ar(t)
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Supplemental Figure 1. Dynamical regimes and limitations on a. A: Network
schematic. B: Illustrations of a small change in the input +0 to E; and —¢ to FEs.
Top: stable network regime; bottom: unstable (winner-take-all) regime. C: Wgg — «
space. Yellow region: inhibition-stabilized (ISN); black hatched region: winner-take-all
(unstable). Solid yellow line: Wgg = 1/(1 + «). Solid red line: a = 1 — 1/Wgg.
Parameters as in Fig. 5. a changed to 0.1 for the unstable regime in B.

6.1.1 The inhibition-stabilized network (ISN)

A linear network is an inhibition stabilized network (ISN) (Ozeki et al., 2009) if it
satisfies two conditions:

(1) The network is unstable in the absence of (dynamic) feedback inhibition,
(2) The network is stable with sufficiently strong inhibition.

We consider the conditions under which the global inhibition motif (i.e., two excitatory
populations with one shared inhibitory population) is an ISN. The corresponding weight
matrix is

WEE OJWEE WEI
W= |aWgg Wgr Wegr|,
WiE Wie Wi

which has eigenvalues

(1-a) Wgg,

2

(1 + Oz) -Wgeg + Wi £ \/(1 + a)QW}%E + 8WgWrg — 2(1 + Q)WEEW[[ + WIQI

We note that A\; does not depend on any of the inhibitory connections. As a result, if
A1 = (1 —a) - Wgg > 1 the system is unstable and inhibition is unable to stabilize it, so
we necessarily require (1 — a) - Wgg < 1. On the other hand, A3 3 do depend on the
inhibitory connections. Absent feedback inhibition (i.e., Wg; = 0) these eigenvalues
become

Ay = (1 +a) -Wgg and A3 = Wyy.

In this work the latter is always less than 1. Meanwhile, it is possible to increase
recurrent excitation such that Ay = (1 + «) - Wgg > 1. Unlike the previous condition
derived with A1, we can choose inhibitory parameters Wgy, Wi such that this
eigenvalue decreases below 1, restoring the stability of the system. Thus, this system
lies in the ISN regime when

(1+a)-WEE>1and (l—oz)-WEE<1.
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If the first condition is satisfied, while the second condition is violated, the system
exhibits winner-take-all dynamics, where one excitatory population increases away from
steady state while the second decreases away from it (AFig. , bottom). All three
regions (non-ISN, ISN, and winner-take-all) are shown in AFig. [1C. The same constraint

to lie in the ISN regime can also be derived for the specific inhibition motif.

6.2 Covarying cross-population connections

It is possible that in the segregated E;/I; subpopulation model (Fig. ), covarying

cross-population connections might induce synergetic effects different from those
observed by adding singular bidirectional connections (Fig. ) We tested this

numerically by adding pairwise combinations of F — I, I — E, and I — I (AFig.
—C). Only when ¢ (scaling of I — I') dominated either 8 or v was an increase in
correlations observed; ' — I and I — E always reduced correlations, consistent with

the results presented above.

\

A XN _/ \__ "/ BW
w, W,

Supplemental Figure 2. Covarying cross-population connections in segregated
ISN. A: Top: Corr(Ey, Es) as a function of (; colored lines indicate different values of
(. Black lines indicate when ¢ = 8. Bottom: network schematics indicating connection
weights co-varied in the above plot. Green dashed line indicates value of Corr(E1, Es)
for Wg; = Wig. Parameters as in Fig. (5| B: same as (A) for ¢ and . C: same as (A)

for B and ~.
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