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Abstract 

Single-cell transcriptional profiling reveals cell heterogeneity and clinically relevant traits in 

intra-operatively collected patient-derived tissue. However, the established approach to perform 

such analyses on freshly collected tissue constitutes an important limitation since it requires 

prospective collection and immediate processing. Therefore, the ability to perform single-cell RNA 

sequencing from archived tissues would be very beneficial in a clinical setting. Here, we 

benchmark single-cell gene expression profiles from patient-matched fresh, cryopreserved and 

FFPE cancer tissue. We find that fresh tissue and FFPE routine blocks can be employed for the 

robust detection of clinically relevant traits on the single-cell level. Specifically, single-cell maps 

of fresh patient tissues and corresponding FFPE tissue blocks could be integrated into common 

low-dimensional representations, and cell subtype clusters showed highly correlated 

transcriptional strengths of signaling pathways, Hallmark and clinically useful signatures, despite 

some variability in expression of individual genes due to technological differences. FFPE tissue 

blocks revealed higher cell diversity compared to fresh tissue. In contrast, single-cell profiling of 

cryopreserved tissue was prone to artifacts in the clinical setting. Our analysis suggests that 

single-cell RNA sequencing from FFPE tissues is comparable to and can replace analyses from 

fresh tissue. This highlights the potential of single-cell profiling in the analysis of retrospectively 

and prospectively collected archival pathology cohorts and dramatically increases the 

applicability in translational projects. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.25.538273doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.25.538273
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

High-throughput single-cell RNA sequencing (scRNA-seq) has enabled researchers to study the 

various aspects of cellular heterogeneity of tissues, including human clinical samples. In 

particular, scRNA-seq has been used extensively to characterize the complex cell compositions of 

tumor tissue cohorts 1–3, and can reveal features which contribute to patient prognosis 4,5 and 

therapy resistance 6. So far, single-cell RNA profiling required the prospective collection of fresh 

tissue samples during surgery or biopsy. Retrospective analysis of frozen or formalin-fixed and 

paraffin-embedded (FFPE) tissue cohorts would allow faster correlation of scRNA-seq profiles to 

clinical features, as many important clinical characteristics, such as tumor genetics, therapy 

response and patient survival, are only obtainable weeks to years after sample acquisition. In 

addition, this could unlock archival FFPE tissue collections for single-cell profiling. 

Recently, scRNA-seq chemistry has been developed for frozen and formalin-fixed single-nucleus 

suspensions. Early studies have shown that this allows performing single-nucleus RNA 

sequencing (snRNA-seq) of nuclei isolated from frozen and FFPE tissue samples 7–10 at read depths 

that allow a similarly fine-grained analysis compared to fresh cell suspensions. However, to our 

knowledge, no side-by-side comparisons have been performed on fresh, frozen, and FFPE clinical 

tissue samples from the same patients.  To answer the question which features of fresh tissue are 

preserved in archival samples, we profiled three lung adenocarcinomas using fresh, 

cryopreserved and FFPE tissue samples side-by-side. We found that cell-intrinsic and clinically 

relevant features of cancers are robustly preserved in single-cell transcriptomes of FFPE samples. 
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Methods 

Sample acquisition 

Tissue samples were collected from therapy-naïve lung adenocarcinoma patients undergoing 

primary surgery. Informed consent was obtained from all participants before sample acquisition. 

The ethics committee of Charité - Universitätsmedizin Berlin approved the use of tissue samples 

for single-cell gene expression analysis (vote EA4/164/19). Fresh tissue was sampled during 

intraoperative pathology consultation. Tissue samples were immediately snap-frozen in liquid 

nitrogen and stored at -80°C or placed in Tissue Storage Solution (Miltenyi) on ice for max. 30 min 

before subsequent further processing of the fresh tissue. The remaining surgery specimen was 

subjected to routine histological examination, including formalin fixation and paraffin embedding. 

FFPE tissue was sampled from archive tissue blocks after storage under standard archive 

conditions (dry, room temperature) for 4-5 months. 

Processing of fresh tissue samples 

Fresh tissue samples were cut into small pieces of 1 mm diameter and dissociated using the Tumor 

Dissociation Kit, human (Miltenyi) and a gentleMACS Octo Dissociator with heaters (Miltenyi), 

using preinstalled program 37C_h_TDK_1 for 30-45 min. All subsequent steps were performed at 

4 °C or on ice. Dissociated tissue was filtered through 100 µm filters, pelleted by centrifugation at 

300 × g in BSA-coated low-binding tubes, incubated with 1 ml ACK erythrocyte lysis buffer (Gibco) 

for 1 min, washed with DMEM, pelleted, resuspended in PBS and filtered through 20 µm filters. 

Finally, debris was removed using the Debris Removal Solution (Miltenyi) and cells were counted 

using a Neubauer chamber. Single-cell suspensions were further processed using the Chromium 

Single Cell 3′ Reagent Kit v3 and the Chromium Controller (10x Genomics, Pleasanton, California, 

USA) according to the manufacturer’s protocol without any adjustments.  

Processing of cryopreserved tissue samples 

Cryopreserved tissue samples were cracked using a pestle and mortar placed on dry ice and pre-

chilled with liquid nitrogen into small pieces of 1 mm diameter. All subsequent steps were 

performed at 4 °C or on ice. Tissue pieces were homogenized in homogenization buffer (1x Nuclei 

EZ lysis buffer (Sigma), 0.6 U/ml RNAse Inhibitor (Ambion), 0.3 U/ml Superasin (Ambion) using 

a pestle and douncer by approx. 10 strokes with a loose pestle and 5 strokes with a tight pestle. 

Homogenized tissue was filtered through a 30 µm filter, stained with DAPI (0.1 µg/mL) for 5 min 

and sorted using a BD FACSAria Fusion (100 µm nozzle) to remove debris and doublets. Cell 

concentration was determined using a Neubauer chamber before single-nuclei suspensions were 

further processed using the Chromium Single Cell 3′ Reagent Kit v3 and the Chromium Controller 
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iX (10x Genomics, Pleasanton, California, USA) according to the manufacturer’s protocol without 

any adjustments. 

Processing of FFPE tissue samples 

FFPE tissue samples were processed according to a published protocol8 with adjustments 

according to a another published protocol9.  In short, 4-6 tissue cores of 1 mm diameter were 

punched out of FFPE tissue blocks after the tumor area had been marked by a pathologist. Tissue 

cores were cut into small pieces of 1 mm diameter, washed at room temperature in xylene 3 times 

for 10 min, in 100 % ethanol 2 times for 30 sec, in 70 % ethanol for 30 sec, in 50 % ethanol for 30 

sec, in distilled water for 30 sec, and in Buffer V (FFPE tissue dissociation kit, Miltenyi) for 30 sec. 

Tissue was dissociated using the FFPE tissue dissociation kit (Miltenyi) and a gentleMACS Octo 

Dissociator with heaters (Miltenyi), using preinstalled program 37C_FFPE_1. After 20 min of 

dissociation and after complete dissociation, dissociated tissue was pipetted through a 20G needle 

for 10-20 times. Next, samples were filtered through 70 µm filters, placed on ice, washed with 

chilled Buffer V, resuspended in Resuspension Buffer (0.5x PBS, 50mM Tris pH8, 0.02% BSA, 

0.24U/µl RNasin  (Ambion, AM2684) in H2O), and cells were counted using a Neubauer chamber. 

Single-nuclei suspensions were further processed using the Chromium Fixed RNA Profiling 

Reagent Kit and the Chromium Controller Xi (10x Genomics, Pleasanton, California, USA) 

according to the manufacturer’s protocol. After step 2.1.m in the manufacturer’s protocol, cells 

were stained with DAPI (0.1 µg/mL) for 5 min and sorted using a BD FACSAria Fusion (100 µm 

nozzle) to remove debris and doublets. After cell sorting, samples were further processed 

according to the manufacturer’s protocol. 

Library preparation and sequencing 

After isolation, 10,000 cells/nuclei were subjected to barcoding and library preparation. Libraries 

of fresh and cryopreserved samples were prepared using the Chromium Single Cell 3′ Reagent Kit 

v3 (10x Genomics) according to the manufacturer’s protocol. Libraries of FFPE samples were 

prepared using the Chromium Fixed RNA Profiling Reagent Kit (10x Genomics) according to the 

manufacteurer’s protocol. Libraries were sequenced on a NovaSeq (Illumina) at approx. 400 mio. 

reads per library.  

Data analysis 

Sequencing reads were aligned against reference transcriptome GRCh38 and UMIs were 

quantified using Cellranger, version 7.1.0 (10x Genomics). Subsequent analyses were performed 

using R version 4.1.1 and the Seurat package version 4.3.0 11, if not stated otherwise. First, signal 

from ambient RNA was removed using the SoupX package version 1.6.2 12, assuming a 

contamination fraction of up to 0.2. Gene expression data of all samples were merged and filtered 
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for the following quality parameters: 300 to 10,000 genes per cell, 500 to 100,000 UMIs per cell, 

fraction of mitochondrial reads lower than 15 % and fraction of hemoglobin reads lower than 5 

%. Next, gene expression data was log-normalized and dimensionality reduction was performed 

by principal component analysis (PCA). Uniform manifold approximation projection (UMAP) 

based on the top 10 principal components (PCs) was used for data visualization. Gene expression 

data was integrated by sample type (fresh, frozen or FFPE) using reciprocal PCA based on the top 

30 PCs. Clustering was performed using shared nearest neighbor graph calculation. In fresh and 

FFPE data, main cell types and cell subtypes were manually annotated using canonical marker 

genes selected from the literature. Cell type labels were transferred based on the first 30 PCs to 

the frozen data. Clusters containing cell doublets were identified by discrepant marker gene 

expression and removed prior to further analysis. Signaling pathway activity scores were 

calculated using the PROGENy package version 1.17.3 13. Gene signature expression scores were 

calculated using Seurat. The inferCNV package version 1.10.1 

(https://github.com/broadinstitute/inferCNV) was used for copy number analysis in epithelial 

transcriptomes. 

Statistical analysis 

The quantity of main cell types in fresh and FFPE samples were compared using the paired t test. 

The correlation of PROGENy pathway and Hallmark signature scores in different sample types 

(fresh, frozen, FFPE) was analyzed by calculating the Pearson correlation coefficient. Differentially 

expressed genes were identified using the FindAllMarkers function of the Seurat package with the 

following parameters: include only positive markers, proportion of expressing cells inside the 

cluster ≥ 0.2, difference between proportions of expressing cells inside and outside the cluster ≥ 

0.2. 
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Results 

Quality metrics of single-cell transcriptomes from fresh, frozen and archival FFPE samples 

We selected cryopreserved and FFPE tissue samples of three lung adenocarcinoma patients 

(P075, P078, P079) that were previously analyzed by fresh tissue scRNA-seq for snRNA-seq 

analysis (Fig. 1A). Initial analysis of fresh and FFPE tissue-derived libraries showed expected high 

quality parameters (Fig. S1A); however, results gained from cryopreserved tissue showed 

unequal and lower quality scores in two subsequent rounds of library preparation and 

optimization of lab workflows (Fig. S1B). Across the patients, numbers of detected genes per 

sample were highest for fresh tissue, but lower for FFPE or frozen tissue (Fig. 1B), even when 

adjusting for the restricted gene set used in the targeted FFPE sequencing approach. Single-cell 

information of the fresh, frozen and FFPE samples could be integrated into a common UMAP with 

clusters sharing transcriptomes of fresh, frozen and FFPE tissue origin, indicating that cell type 

information was stable across the methods (Fig. 1C, Fig. S1C). When calling main cell types, we 

found that immune cell transcriptomes were enriched, but epithelial and stromal cells 

transcriptomes were rather depleted from fresh tissue single-cell libraries (Fig. 1D), indicating 

potential negative effects of tissue dissociation on cell representation. In line with this 

interpretation, a recently published gene signature for dissociation stress 14 was highest in fresh 

tissue transcriptomes, in particular in epithelial cells (Fig. 1E). 
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Figure 1: Workflow and quality metrics of fresh, frozen and FFPE tissue single-cell analysis. A Workflow of tissue 

specimens used for the study. In short, fresh tissues were procured intra-operatively, dissociated enzymatically, and 

cell suspensions were used for single-cell library preparation. Cryopreserved tissues were stored for 4-5 months at -

80°C, homogenized in the frozen state for nuclei isolation, and nucleus suspensions were used for library preparation. 

For FFPE analysis, 4-5 months old routine FFPE blocks were dissociated enzymatically and mechanically, and nucleus 

suspensions were used for library preparation. B Numbers of genes called per cell in the various libraries. Full colors: 

all genes; lighter colors: genes limited by FFPE probe set. C UMAPs based on the top 10 principal components of all 

single-cell transcriptomes after filtering and data integration, color-coded by fresh, frozen or FFPE tissue origin. D 

Quantification of main cell type, by clustering and calling of cell type-specific marker genes. E Module score of gene 

signatures related to dissociation stress in the various main cell types, by fresh, frozen and FFPE origin. 

 

Cell type abundancies in FFPE versus fresh samples 

As FFPE tissue blocks are most relevant for clinical applications and frozen tissue libraries were 

hampered by low quality parameters, we integrated fresh and FFPE data for in-depth analysis 

(Fig. 2A), and again determined fractions of transcriptomes of epithelial, immune and stromal 

origin (Fig. 2B). Assessment of epithelial marker genes showed similar expression scores across 

fresh and FFPE tissue samples, as EPCAM, KRT5, SCGB3A2, FOXJ1, AGER and SFTPC marked tumor 

epithelial, Basal, Transitional, Ciliated, AT1, and AT2 cells, respectively, across the datasets (Fig. 

2C). However, we also saw that some marker genes were preferentially detected in fresh versus 

FFPE transcriptomes, such as MUC5B and SFTPC in fresh or FFPE-derived tumor epithelial cells, 

respectively. This was likely due to the different absolute numbers of epithelial cell 

transcriptomes across fresh versus FFPE tissues (Fig. 2B), but also due to higher epithelial cell 

type diversity in the FFPE tissue blocks of patients P078 and P079 (Fig. 2D). The latter result 

suggests that normal epithelial cells are most easily lost during fresh tissue dissociation; however, 

we cannot rule out compositional bias in the fresh versus FFPE tissue specimens used. Detection 

of immune cell marker genes and cell types was more even across fresh and FFPE tissue 

specimens (Fig. 2E, F), while many more fibroblasts were detected among the stromal cell types 

in FFPE tissue-derived sequence libraries (Fig. 2G, H). Cell type label transfer to the cryopreserved 

tissue samples showed often skewed representation of cell types (Fig. S2A, B), in particular for 

immune cells such as regulatory or CD8+ T cells that are defined by few key marker genes which 

could not reliably detected in the frozen samples. 
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Figure 2: Cell type diversity in fresh versus FFPE tissue single-cell analysis. A UMAPs based on the top 10 principal 

components of fresh or FFPE single-cell transcriptomes, as indicated, color-coded by main cell type. B Relative 

proportions of epithelial, immune or stromal cells, compared between fresh and FFPE-derived libraries, paired t-test 

per main cell type. C, D Analysis of epithelial transcriptomes. C Epithelial marker gene expression per cell type in fresh 

or FFPE tissue-derived libraries. D UMAP and absolute cell numbers, color-coded by cell type. E, F Analysis of immune 

cell transcriptomes. E Immune marker gene expression per cell type in fresh or FFPE tissue-derived libraries. F UMAP 

and absolute cell numbers, color-coded by cell type. G, H Analysis of stromal cell transcriptomes. G Stromal marker gene 

expression per cell type in fresh or FFPE tissue-derived libraries. H UMAP and absolute cell numbers, color-coded by 

cell type. 
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Cell trait heterogeneity in FFPE versus fresh samples 

We asked whether archival FFPE tissue analysis allows characterization of cell types to a similar 

extent as fresh tissue single-cell analysis. We performed this analysis on gene signature level, 

taking into account sets of pathway target gene signatures 13 and relevant Hallmark gene sets 15. 

Technological differences in sample preparation workflows resulted in differences of normalized 

gene expression scores between the fresh tissue and the FFPE-derived libraries (Fig. S3A, B), 

where, for instance, the MAPK target gene DUSP4 was found higher expressed in fresh tissue 

libraries, whereas KMT5A scored higher in FFPE-derived libraries. Despite these differences on 

individual gene expression levels, we found high correlations between inferred pathway activities 

(Fig. 3B) and tumor-related cell traits (Fig. 3C) from fresh and FFPE samples throughout. In line 

with prior studies, we found high TGFβ activity in fibroblasts, and this cell type also had the 

highest score for mesenchymal traits judged by activity of the EMT and Angiogenesis Hallmark 

signature. As expected, highest activity of the G2/M checkpoint and E2F targets Hallmark 

signatures was found in proliferating T cells and macrophages, which correlated with high MAPK 

activity in proliferating T cells. We detected high activity of TNFα and NFκB signaling in 

monocytes, and high scores of the Interferon Gamma Response Hallmark signature in monocytes 

and tumor-associated monocyte-derived macrophages (Mo-Macs), while tissue-resident alveolar 

macrophages were characterized by high scores of the Oxidative Phosphorylation Hallmark 

signature. In summary, correlations between signature activities derived from fresh or FFPE 

tissue samples were strong on the cell type level with Pearson correlation coefficients mostly 

larger than 0.9 and significances mostly smaller than p = 0.001 across all signatures analyzed, 

showing that biology-related cell type characteristics can be inferred from fresh and archival FFPE 

tissue specimens alike. Scores were lower when comparing correlations of cell type traits between 

fresh versus frozen libraries, in particular for pathways with smaller variation between cell types 

(Fig. S2C). 
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Figure 3: Cell trait quantification in fresh versus FFPE single-cell analysis. A Expression of selected PROGENy 

signature MAPK target genes in fresh tissue and FFPE libraries. Expression was normalized to scale across libraries. 

Data shown for cells assigned as Proliferating T cells (high MAPK activity, see Fig 3b) or Ciliated cells (low MAPK activity, 

see Fig 3b). B Correlations of PROGENy pathway scores between FFPE and fresh tissue gene expression per cell type, 

Pearson correlation coefficient and p-value indicated per pathway. C Correlations of selected biologically-relevant 

Hallmark gene signatures between FFPE and fresh tissue gene expression per cell type, Pearson correlation coefficient 

and p-value indicated per gene signature. 
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Assessment of clinical features from FFPE versus fresh tissue single-cell transcriptomes 

We investigated whether patient-specific differences in tumor and microenvironmental 

characteristics can be determined in fresh and FFPE tissue samples to the same degree. The 

histological grade of tumors (Fig. 4A) perfectly correlated with recently identified gene signatures 

of tumor differentiation 16 (Fig. 4B), regardless of whether the signatures were called from fresh 

or FFPE tissue-derived epithelial cell transcriptomes.  The lowest histological tumor grade in 

patient P079 was further associated with higher activity of CAF-related pathways in fibroblasts17 

(Fig. 4C) and high expression of typical CAF marker genes on the single-cell mRNA level (Fig. 4D). 

With regard to oncogenic pathways, tumor epithelial cells of patient P079 scored highest for 

MAPK and WNT target expression, while P075 had the highest values of p53 pathway activity, in 

both fresh and FFPE tissue samples (Fig. S4A). In contrast, no correlation was observed for EGFR 

pathway activity. We inferred similar copy number profiles in tumor epithelial cells from both 

fresh and FFPE tissue-derived transcriptomes (Fig. S4B).  

Histologically, tumors differed in expression of the immune evasion marker PD-L1 in tumor cells 

(Fig. 4E) which was similarly observed on the RNA level in fresh as well as FFPE tissue-derived 

tumor epithelial cell transcriptomes (Fig. 4F). In both fresh and FFPE transcriptome data, high PD-

L1 expression in patient P079 correlated with high expression of the Interferon Gamma Response 

Hallmark signature in tumor cells and the tumor microenvironment, in particular in Mo-Macs18 

(Fig. 4G). In Mo-Macs, this feature was accompanied by high TNFα, NFκB and JAK/STAT pathway 

activity and high expression scores of the Inflammatory Response Hallmark signature in patient 

P079 (Fig. 4H)19,20. Among T cells, high PD-L1 expression in P079 correlated with low cytotoxicity 

and high naiveness scores in CD4+ T cells, and high scores for exhaustion in CD8+ T cells (Fig. 

4I)21. In summary, these correlations are in agreement with previous analysis of the lung cancer 

microenvironment 16,22, and indicate that cell type characteristics relevant for clinical 

stratification can be retrieved faithfully from the FFPE snRNA-seq approach.  
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Figure 4: Quantification of clinically relevant gene expression patterns in fresh versus FFPE single-cell analysis. 

A Hematoxylin and eosin stained FFPE tumor sections of patients P075, P078, P079. B Correlation between FFPE and 

fresh tissue of Alveolar/club-like and Undifferentiated tumor cell signature expression in tumor epithelial cells. C 

Correlation between FFPE and fresh tissue of PROGENy pathway scores in fibroblasts. D Correlation between FFPE and 

fresh tissue of CAF marker expression in fibroblasts. E Immunohistochemistry on FFPE tumor section for PD-L1 

expression. TPS: Tumor proportion score. F Correlation between FFPE and fresh tissue of PD-L1 gene expression in 

tumor epithelial cells. G Correlation between FFPE and fresh tissue of Interferon Gamma Response Hallmark gene 

signature expression in various cell types, as indicated. Mo-Macs = Monocyte-derived macrophages. H Correlation 

between FFPE and fresh tissue of clinically and biologically relevant signature scores in Mo-Macs, as indicated  I 

Correlation between FFPE and fresh tissue of functional cell state scores in CD4+ and CD8+ T cells, as indicated.  
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Discussion 

Single-cell sequencing of surgical tissues has uncovered clinically relevant information on the 

patient and cohort levels. However, the use of fresh tissues comes with serious limitations in the 

clinic, such as the requirement for a rapid tissue handling pipeline. Recent technological advances 

allow single-nucleus sequencing from frozen and FFPE tissue, which promises broader availability 

of tissue, including routine pathology specimens. Here, we present a systematic comparison of 

fresh, frozen and FFPE single-cell analysis of clinical tissue. We find that FFPE tissue robustly 

preserved clinically relevant information on cell types and patient characteristics comparable to 

fresh tissue. 

Single-cell analysis of fresh solid tissue has been the gold standard to survey cell type composition 

of human tissues in health and disease 23–25. Generally, the procedure relies on cell dissociation, 

most often by proteases, which can result in disproportionate release of cell types and 

preparation-related transcriptome artifacts, although procedures have been developed to 

minimize such effects. Moreover, fresh tissue requires timely processing, which can complicate 

standardization and result in batch effects. Potentially, analysis of transcriptionally inert nuclei 

from frozen or FFPE tissues could result in more even transcriptome representation across cell 

types in the absence of dissociation artifacts. We have here tested available procedures side-by-

side on tissues of the same origin and found that single-cell sequencing of FFPE tissue results in 

transcriptomes representing a higher diversity of cell types compared to analysis of fresh tissue 

cell suspensions, an equally good representation of biological and clinical transcriptome features 

on a signature level, and lower induction of stress-related gene expression. In contrast, frozen 

tissue analysis was less reliable in our hands, probably due to handling of unfixed nuclei 

suspensions that are prone to RNA degradation or RNA diffusion. 

In the clinic, fresh tissue single-cell analysis allowed for prospective collection of samples only. 

Importantly, single nucleus transcriptomics of FFPE tissues allow for retrospective analysis of 

cohorts that are annotated with long-term clinical follow-up data such as therapy response, 

relapse, metastasis, and patient survival. The FFPE blocks under analysis here were stored under 

standard archival conditions at room temperature for 4-5 months. It remains to be determined 

whether older FFPE blocks with longer follow-up periods perform equally well, as RNA quality 

could potentially deteriorate over time even in the fixed and embedded state. Moreover, it needs 

to be investigated to which degree prolonged time until fixation and tissue autolysis in large 

surgery specimens impair snRNA-seq analysis.  

Pathology review is usually performed using FFPE sections, as these yield high-quality histology 

and immunohistochemistry information. Therefore, FFPE blocks can be annotated regionally with 

high confidence, unlike intra-operative fresh tissue samples. Thus, FFPE blocks allow analysis of 
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cell composition of circumscribed areas of interest. We envision that careful selection of tissue 

regions in pathology, in conjunction with multiplexing techniques for cost-effectiveness, will bring 

single-cell analysis aiding therapy prediction or prognosis a step closer to clinical routine for 

cancer patients. 
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Data availability 

Single-cell gene expression data generated in this study and analysis scripts are available on 

Zenodo at https://doi.org/10.5281/zenodo.7852154.  
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