

1 **TITLE**

2 Turicibacterales protect mice from severe *Citrobacter rodentium* infection.

3

4 **AUTHORS**

5 Kristen L. Hoek,¹ Kathleen G. McClanahan,¹ Yvonne L. Latour,^{1,2} Nicolas Shealy,¹ M.
6 Blanca Piazuelo,^{2,3} Bruce A. Vallance,⁴ Mariana X. Byndloss,^{1,3,5,6} Keith T. Wilson,^{1,2,3,7}
7 and Danyvid Olivares-Villagómez.^{1,3,5,8,9}

8

9 **AFFILIATIONS**

10 ¹Department of Pathology, Microbiology, and Immunology, Vanderbilt University
11 Medical Center, Nashville, TN, USA; ²Division of Gastroenterology, Hepatology, and
12 Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,
13 USA; ³Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical
14 Center, Nashville, TN, USA; ⁴Department of Pediatrics, BC Children's Hospital,
15 University of British Columbia, Vancouver, BC, Canada; ⁵Vanderbilt Institute of
16 Infection, Immunology, and Inflammation, Vanderbilt University Medical Center,
17 Nashville, TN, USA; ⁶Vanderbilt Microbiome Innovation Center, Vanderbilt University
18 Medical Center, Nashville, TN, USA; ⁷Veterans Affairs Tennessee Valley Healthcare
19 System, Nashville, TN, USA; ⁸email: danyvid.olivares-villagómez@vumc.org. ⁹ORCID
20 0000-0002-1158-8976.

21

22 **RUNNING TITLE**

23 Turicibacterales protect from severe infection

24

25 **ABSTRACT**

26 One of the major contributors to child mortality in the world is diarrheal diseases, with an
27 estimated 800,000 deaths per year. Many pathogens are causative agents of these
28 illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms
29 of *Escherichia coli*. These bacteria are characterized by their ability to cause attaching
30 and effacing lesions in the gut mucosa. Although much has been learned about the
31 pathogenicity of these organisms and the immune response against them, the role of
32 the intestinal microbiota during these infections is not well characterized. Infection of
33 mice with *E. coli* requires pre-treatment with antibiotics in most mouse models, which
34 hinders the study of the microbiota in an undisturbed environment. Using *Citrobacter*
35 *rodentium* as a murine model for attaching and effacing bacteria, we show that C57BL/6
36 mice deficient in granzyme B expression are highly susceptible to severe disease
37 caused by *C. rodentium* infection. Although a previous publication from our group shows
38 that granzyme B-deficient CD4⁺ T cells are partially responsible for this phenotype, in
39 this report we present data demonstrating that the microbiota, in particular members of
40 the order Turicibacterales, have an important role in conferring resistance. Mice
41 deficient in *Turicibacter sanguinis* have increased susceptibility to severe disease.
42 However, when these mice are co-housed with resistant mice, or colonized with *T.*
43 *sanguinis*, susceptibility to severe infection is reduced. These results clearly suggest a
44 critical role for this commensal in the protection against entero-pathogens.

45

46 **INTRODUCTION**

47 One of the major contributors to child mortality is diarrheagenic diseases caused by
48 infectious pathogens, which cause approximately 800,000 deaths per year in children
49 under the age of five (1, 2), with prevalent morbidity in adults (3). One such pathogen is
50 *Escherichia coli*, in particular enteropathogenic (EPEC) or enterohemorrhagic (EHEC)
51 forms. These bacteria utilize attaching and effacing (A/E) lesions to colonize the
52 intestines of the host, leading to impaired ion and water transport across the intestinal
53 epithelium (3, 4). Despite the clinical importance of these bacteria, their study in animal
54 models is hindered by the requirement to treat the hosts with antibiotics prior to
55 colonization (5), which disrupts the intestinal microbiota and its potential interactions
56 with both the pathogen and intestinal immune cells.

57 *Citrobacter rodentium* is the only known naturally occurring A/E pathogen of
58 mice, and it has become the principal mouse model for the study of A/E
59 enteropathogenic diseases, providing invaluable knowledge about host-pathogen
60 interaction mechanisms applicable to human EPEC and EHEC pathogens (6). Infection
61 with *C. rodentium* usually results in transient colonization and inflammation of the distal
62 colon, with little to no mortality in most mouse strains, such as C57BL/6, NIH Swiss, and
63 BALB/c. A few strains, such as C3H/Hej, display high mortality, indicating that the
64 genetic make-up of the host is critical for conferring protection against severe *C.*
65 *rodentium* infection (4).

66 Many factors are involved in the host response against *C. rodentium* infection,
67 including activation of the NOD2 sensor (7), production of IL-22 (8), IL-6 (9), and IL-23
68 (ref in (10)), innate immune response by ILC3 (key components of the initial response
69 towards this pathogen, primarily by secreting IL-22 and promoting neutrophil recruitment

70 (11)), and specific CD4⁺ T cell responses which become the main producers of IL-22
71 and IL17A (10). The microbiota is a critical component against *C. rodentium* infection.
72 For example, it is well established that the intestinal mucus barrier is critical for
73 protection against *C. rodentium* infection (12), and thus, microbial groups that promote
74 the formation of this barrier are of great importance. Commensal organisms can also
75 outcompete *C. rodentium* growth by utilizing key metabolites, such as monosaccharides
76 (10). Although a few commensals have shown to be of critical importance against *C.*
77 *rodentium*, there is still a significant gap identifying other beneficial microorganisms that
78 may confer resistance against this pathogen.

79 *Turicibacter sanguinis* is the best studied species of the order Turicibacterales.
80 This commensal anaerobe is prevalent in the intestinal microbiota of humans, mice,
81 cows, pigs, and chickens (13-17). In mice intestines, *T. sanguinis* is fairly conspicuous,
82 reaching relative frequencies above 20% (18), while in human fecal microbiota,
83 *Turicibacter* frequencies are ~0.5% (19). *Turicibacter* prevalence in mice and humans
84 suggests an important role of this commensal in host physiology. Indeed, recent studies
85 have indicated that the human *T. sanguinis* isolate MOL361 modifies the host lipidome,
86 altering serum cholesterol and triglycerides in mice (20). Here, we present evidence that
87 susceptibility to severe *C. rodentium* infection is associated with absence of
88 Turicibacterales in the intestinal microbiota, and that protection from disease can be
89 transferred by colonization with *Turicibacter sanguinis*.

90

91 **RESULTS**

92 While studying the role of granzyme B, a potent serine protease primarily involved in
93 cell-mediated cytotoxicity (21), we observed that infection of granzyme B-deficient
94 (*Gzmb*^{-/-}) mice with *Citrobacter rodentium* resulted in prominent weight loss, increased
95 signs of disease (such as loose stool, diarrhea, rectal bleeding), scruffiness, and death
96 (22), whereas control C57BL/6 wildtype (WT) mice showed little to no signs of disease
97 with almost 100% survival. As we have previously reported, part of the phenotype
98 observed in infected *Gzmb*^{-/-} mice is due to increased CD4⁺ T cell intrinsic pathogenicity
99 (22). Most of the experiments in our previous report were performed with isolated
100 mouse lines, i.e., *Gzmb*^{-/-} and WT mice were bred and kept independent from each
101 other's line. Because of the nature of the isolated mouse lines, it is possible that the
102 severe disease phenotype observed was due in part to genetic drift or differences in the
103 intestinal microbiota. To investigate this possibility, we crossed *Gzmb*^{-/-} with WT mice to
104 generate *Gzmb*^{+/-} mice. F1 *Gzmb*^{+/-} mice were crossed among themselves to generate
105 *Gzmb*^{+/+}, *Gzmb*^{+/-}, and *Gzmb*^{-/-} littermates. Susceptibility to severe *C. rodentium*
106 infection was lost in littermate *Gzmb*^{-/-} mice, displaying similar weight and decreased
107 disease signs to *Gzmb*^{+/-} or WT mice throughout the course of the experiment (**Figure**
108 **1A, B**). Colon injury was also reduced in littermate *Gzmb*^{-/-} mice in comparison to *Gzmb*^{-/-}
109 mice from the isolated line (**Figure 1C**). Despite these differences, *C. rodentium*
110 colonization was similar among these two groups (**Figure 1D** and data presented in our
111 previous publication (22)). Thus, there are two *Gzmb*^{-/-} mouse lines based on their
112 outcome to severe *C. rodentium* infection: susceptible (S, from the isolated line) and
113 resistant (R, from littermates). Because weight loss closely corresponds to increased
114 susceptibility, it will subsequently be used as the primary readout parameter.

115 The differences in disease susceptibility in the two *Gzmb*^{-/-} mouse lines could be
116 attributed to genetic drift or the intestinal microbiota. To discern between these two
117 possibilities, (S)*Gzmb*^{-/-} mice were co-housed starting at weaning age with a single
118 (R)*Gzmb*^{-/-} or (S)*Gzmb*^{-/-} mouse from a different litter. Mice are coprophagic, thus, co-
119 housed animals are exposed to other mice's fecal material, allowing for microbiota
120 exchange. Susceptible mice cohoused with (R)*Gzmb*^{-/-} mice maintained their starting
121 weight similar to WT mice (**Figure 2A**). In all experiments performed, susceptibility to
122 severe disease was never transmitted to resistant mice, indicating that resistance is a
123 dominant trait. Thus, the intestinal microbiota and not genetic drift, is the most likely
124 factor responsible for the differences in disease susceptibility between the two *Gzmb*^{-/-}
125 mouse lines.

126 Susceptible *Gzmb*^{-/-} mice in **Figure 2A** were cohoused with at least one resistant
127 mouse in the cage starting at weaning age, raising the possibility that *Gzmb*^{-/-} mice
128 require the constant presence of a resistance-inducing microbiota to remain free of
129 severe disease induced by *C. rodentium*. To test this possibility, we weaned and
130 separated littermate (R)*Gzmb*^{-/-} and *Gzmb*^{+/-} mice based on sex and genotype. Mice
131 were infected 7 to 8 weeks after birth. As shown in **Figure 2B**, *C. rodentium*-infected
132 (R)*Gzmb*^{-/-} mice remained resistant to severe disease even when separated from
133 *Gzmb*^{+/-} mice. To further investigate stability of the resistant phenotype, (R)*Gzmb*^{-/-} mice
134 were bred among themselves, and their offspring were infected with *C. rodentium*.
135 **Figure 2C** shows that F3 (R)*Gzmb*^{-/-} mice did not lose weight during the course of *C.*
136 *rodentium* infection. Therefore, resistance to severe disease is maintained throughout
137 the life span of the (R)*Gzmb*^{-/-} mice and can be transmitted to their offspring.

138 Because susceptibility to severe disease caused by *C. rodentium* infection was
139 not transmissible by co-housing, we investigated whether this trait can be acquired by
140 microbiota transplantation. For this purpose, WT, *Gzmb*^{+/−}, and (S)*Gzmb*^{−/−} mice were
141 treated with a broad spectrum antibiotic cocktail, followed by oral gavage with fecal
142 matter derived from (S)*Gzmb*^{−/−} or (R)*Gzmb*^{−/−} mice. Mice were infected with *C.*
143 *rodentium* 3 weeks post-fecal transplant. WT and *Gzmb*^{+/−} mice became susceptible to
144 severe infection when transplanted with microbiota from (S)*Gzmb*^{−/−} mice (**Figures 3A-**
145 **3D**). The resistance trait was maintained when transplanted with microbiota from
146 (R)*Gzmb*^{−/−} mice, indicating that antibiotic treatment does not alter susceptibility to *C.*
147 *rodentium* infection. Despite the differences in disease outcome, all mice displayed
148 similar levels of *C. rodentium* colonization (**Figure 3E**). Overall, our results demonstrate
149 that the intestinal microbiota is responsible for either resistance or susceptibility to
150 severe disease caused by *C. rodentium*.

151 Analysis of the intestinal microbiota of (S)*Gzmb*^{−/−} and (R)*Gzmb*^{−/−} mice show
152 similarities in the abundance of the most predominant bacterial orders (**Figure 4A**). The
153 only apparent order with increased abundance in resistant mice, but almost absence in
154 susceptible animals, was Turicibacterales (**Figure 4A and 4B**). This was confirmed by
155 ANCOM (analysis of composition of microbes) (**Figure 4C**).

156 *Turicibacter sanguinis* is an anaerobic commensal, and one of the better studied
157 species of Turicibacterales. However, the role of *T. sanguinis* as commensal is not
158 known. Several isolates have been identified in human (such as, MOL361) and mice
159 (H121, 1E2, TA25) (23, 24) *T. sanguinis* expresses a unique neurotransmitter sodium
160 symporter-related protein with some homology to the mammalian serotonin transporter

161 (20), which facilitates its identification by real-time PCR. To determine whether *T.*
162 *sanguinis* is present in (R)*Gzmb*^{-/-} mice and absent in (S)*Gzmb*^{-/-} animals, we amplified
163 the serotonin transporter gene from stool samples with isolate-specific primers, as
164 previously reported (25). Mouse isolates H121 and 1E2 were detected in (R)*Gzmb*^{-/-}
165 mice but not in susceptible animals (**Figure 5A**), while the human isolate MOL361 was
166 absent in all mouse lines tested.

167 Overall, these results indicate that one of the main differences in the intestinal
168 microbial communities between (R)*Gzmb*^{-/-} and (S)*Gzmb*^{-/-} mice is the presence of *T.*
169 *sanguinis* in the former and its absence in the latter. Moreover, these results suggest
170 that this commensal may be responsible for conferring protection from severe disease
171 caused by *C. rodentium*.

172 We have shown that resistance is transmitted by co-housing without the need of
173 treating mice with antibiotics (**Figure 2A**), indicating that the bacterial communities
174 conferring resistance can colonize without disrupting the native microbiota. To
175 determine whether *T. sanguinis* can colonize intestines with established microbiota,
176 non-antibiotic-treated (S)*Gzmb*^{-/-} mice were orally gavaged with fecal content from WT
177 mice. *T. sanguinis* colonization was monitored in the stools at different time points after
178 inoculation. *T. sanguinis* 1E2 was detected in most stool samples after 21 days post
179 colonization (**Figure 5B**). Colonization of (S)*Gzmb*^{-/-} mice was evident at 7 days when
180 mice were gavaged with *in vitro* grown cultures of *T. sanguinis* TA25, which can also be
181 identified by the 1E2 primers (**Figure 5C**). These results demonstrate *T. sanguinis*
182 colonizes undisrupted intestinal microbiota, and that gavage of *in vitro* grown *T.*
183 *sanguinis* is a more efficient method of colonization by this commensal.

184 We next investigated whether colonization with *T. sanguinis* prevents severe
185 disease in (S)Gzmb^{-/-} mice subsequently infected with *C. rodentium*. For this purpose,
186 we colonized non-antibiotic-treated (S)Gzmb^{-/-} mice with cultured *T. sanguinis* TA25,
187 and three weeks later, mice were infected with *C. rodentium*. Although (S)Gzmb^{-/-} mice
188 colonized with *T. sanguinis* lost slightly more weight compared to WT mice, they were
189 better protected than (S)Gzmb^{-/-} mice (**Figure 6A and 6B**). Despite less weight loss and
190 decreased signs of disease, colon pathology and *C. rodentium* colonization of (S)Gzmb^{-/-}
191 mice treated with *T. sanguinis* were similar to non-colonized (S)Gzmb^{-/-} mice (**Figure**
192 **6C and 6D**). *C. rodentium* localization within the intestinal epithelium was more
193 prominent along the length of the crypts in (S)Gzmb^{-/-} mice, but not if they were
194 colonized with *T. sanguinis* prior to infection (**Figure 7**). Whether this latter observation
195 is responsible for the increased weight loss and disease severity in (S)Gzmb^{-/-} mice is
196 currently unknown.

197 Overall, the results presented in this section indicate that *T. sanguinis*
198 colonization provides a protective effect from severe *C. rodentium* infection.

199

200 **DISCUSSION**

201 Interventions for infectious diseases mostly concentrate on pathogen eradication. In the
202 case of bacterial infections, antibiotics represent the first therapeutical tool to eliminate
203 dangerous microorganisms. However, the use of antibiotics, though powerful, comes
204 with many significant side effects including disruption of commensal communities. It has
205 been known for a long time that alterations in the intestinal microbiota predisposes the
206 host to colonization with pathogenic organisms (26). Therefore, a potential therapeutic

207 intervention, especially for severe bacterial infections, is fecal microbiota
208 transplantation. This technique aims at introducing potential beneficial communities that
209 may hinder colonization of pathogenic microorganisms, or the expansion of pathobionts
210 (27). Although mostly safe (28), one of the major risks involving fecal microbiota
211 transplantation is the introduction of pathogens, which have caused severe disease and
212 in some cases, death of the recipient individuals (29).

213 A better therapeutic approach might entail the introduction of specific commensal
214 species with the capacity to restrain or control severe bacterial infections. Therefore,
215 identification of commensals with these qualities represents a critical step towards the
216 discovery of novel interventions. In this report, we present data indicating that
217 *Turicibacter* represents a potential commensal involved in protection from severe
218 intestinal infection. We show that *Gzmb*^{-/-} mice lacking *T. sanguinis* lose significant
219 weight, develop diarrhea, display scruffiness, present increased colon pathology, and in
220 some instances, some of these mice succumb to infection. This phenotype does not
221 represent an artifact of the granzyme B-deficient mouse line, because susceptibility can
222 be transferred to WT C57BL/6 mice by transplanting total fecal microbiota from mice
223 lacking *T. sanguinis*. Thus, even genetically resistant mice can become susceptible to
224 severe *C. rodentium* infection by altering their intestinal microbiota.

225 It is remarkable that *T. sanguinis* colonization can be achieved without treating
226 the recipient mice with antibiotics. This indicates that niches for *T. sanguinis* are
227 available in undisturbed intestinal microbiota, amplifying its potential as a therapeutic
228 tool for severe intestinal infections.

229 In studies of young children with diarrhea or acute gastroenteritis, increased
230 relative abundance of *Turicibacter* in stools was associated with healthy controls (30,
231 31). Although these reports do not establish causation between the presence of
232 *Turicibacter* and children with no diarrhea, they suggest a potential association between
233 *Turicibacter* and decreased susceptibility to diarrheal diseases. Therefore, our results
234 indicating protection to severe *C. rodentium* infection in the presence of *T. sanguinis*
235 establish a causation with important implications for diarrheal diseases in humans.

236 In our previous publication we reported that CD4⁺ T cells in granzyme B-deficient
237 mice differentiate into highly pathogenic IL-17-producing cells, which promote higher
238 disease severity in the T cell adoptive transfer model of colitis and during *C. rodentium*
239 infection (22). Here we show that while *T. sanguinis*-colonized (S)Gzmb^{-/-} mice are
240 resistant to severe *C. rodentium* infection, they still present mild levels of disease and
241 colon pathology similar to that of non-colonized (S)Gzmb^{-/-} mice (**Figure 6A and 6C**).
242 These results suggest that in granzyme B-deficient mice, both improperly differentiated
243 CD4⁺ T cells and lack of *T. sanguinis* promote development of severe disease during *C.*
244 *rodentium* infection. However, it cannot be ruled out that other commensals or their
245 metabolites confer full protection from severe disease. We believe this may be the case
246 because littermate Gzmb^{-/-} mice have reduced colon pathology similar to WT mice
247 (**Figure 1C**), which contrasts with the increased colon pathology observed in infected *T.*
248 *sanguinis*-colonized Gzmb^{-/-} mice (**Figure 6C**).

249 How *T. sanguinis* promotes protection from severe *C. rodentium* infection is not
250 known. Here we show that although mice colonized with *T. sanguinis* present similar
251 total *C. rodentium* colonization levels and colon pathology to non-colonized mice,

252 severe disease is prevented. These results suggest that *T. sanguinis* does not control
253 *C. rodentium* colonization, but instead may decrease its pathogenicity or skew the
254 host's mucosal immune system towards a non-detrimental response. We are currently
255 investigating these possibilities.

256 Why do granzyme B-deficient mice lack *T. sanguinis*? Granzyme B is mostly
257 known for its role in cell-mediated cytotoxicity (21), but it has been postulated that this
258 enzyme also possesses extracellular roles (32). Indeed, unpublished data from our
259 group shows that granzyme B can be detected in the lumen of the intestines. Thus, it is
260 possible that lack of granzyme B renders an intestinal environment where *Turicibacter*
261 may not easily thrive. However, our multigenerational studies in which *Gzmb*^{-/-} mice
262 remain resistant to severe *C. rodentium* infection argue against the above possibility.
263 The most likely scenario is that the original line of *Gzmb*^{-/-} mice lost *T. sanguinis* at
264 some point. Because this line was maintained isolated, it never acquired this
265 commensal. Studying the microbiota requires well-controlled experiments, including
266 using littermates in the case of investigating host mutations. However, as this report
267 shows, littermate controls may hide potential and interesting microbiota discrepancies.

268 In summary, we present evidence indicating that the presence of *T.*
269 *sanguinis* in the intestinal microbiota results in increased protection from susceptibility to
270 severe *C. rodentium* infection. Future work will focus on the mechanism(s) by which this
271 commensal confers protection, and thus, will open new potential therapeutic options for
272 the treatment of intestinal infections.

273

274 **MATERIALS AND METHODS**

275 *Mice.*

276 C57BL/6 mice were originally purchased from The Jackson Laboratory (000664) and
277 have been maintained and acclimated in our colony for several years. Granzyme B-
278 deficient (*Gzmb*^{-/-}) mice were kindly provided by Dr. Xuefang Cao. These mice were
279 kept as isolated lines, unless otherwise specified. Littermate mice were generated by
280 crossing *Gzmb*^{-/-} with WT mice to generate *Gzmb*^{+/-} mice, which were bred among
281 themselves to generate *Gzmb*^{+/+}, *Gzmb*^{+/-}, and *Gzmb*^{-/-} littermates. For convenience, we
282 bred littermate *Gzmb*^{+/-} and *Gzmb*^{-/-} mice, to generate mice used in some experiments.
283 Littermates derived from female *Gzmb*^{-/-} and male *Gzmb*^{+/-} mice were weaned and
284 caged based on sex but not genotype, unless otherwise indicated. Littermate mice
285 remained together until the end points. For some experiments, littermate mice were
286 separated at weaning age based on sex and genotype and remained separated until the
287 end of experimentation. Some littermate *Gzmb*^{-/-} mice were bred among themselves to
288 obtain F3. All mice were between 5 to 10 weeks of age at the time of experimentation,
289 with *C. rodentium* infections occurring at 7-9 weeks of age. Male and female mice were
290 used for all experiments. Mice were maintained in accordance with the Institutional
291 Animal Care and Use Committee at Vanderbilt University Medical Center.

292

293 *Co-housing*

294 At the time of weaning (3 to 4 weeks after birth), mice were separated by sex and a
295 partner mouse of the same sex and age was added to the cage, remaining co-housed
296 until the end of the experiment.

297

298 Citrobacter rodentium *infection*

299 Seven to nine-week old mice were infected with *C. rodentium* (strain DBS100, ATCC
300 51459) or GFP-*C. rodentium* (12), as previously described (33). Results were similar
301 and reproducible with either strain. As an example, experiments for Figure 1 were
302 performed with the ATCC line, while those in Figure 6 were performed with the GFP-*C.*
303 *rodentium* strain. Briefly, mice were infected with $5-10 \times 10^8$ CFU exponentially grown
304 bacteria by oral gavage. Starting weight was determined prior to gavage. Infection was
305 carried out by Y.L.L. or K.L.H. Mice were weighed daily for 14 days. At the same time,
306 mice were monitored for the following signs of disease: irritated rectum, loose stool,
307 rectal bleeding, diarrhea, hunched posture, scruffiness, and moribund. Each sign was
308 scored as one point and added. Weighing and monitoring after infection was done
309 blindly by D.O.-V. At the end of the experiment, distal colons were isolated to determine
310 bacterial colonization in MacConkey media (represented as CFU/g of tissue) and
311 pathology performed blindly by Dr. Piazuelo as previously described (34). Colon tissue
312 from GFP-*C. rodentium* infected mice was fixed with 4% paraformaldehyde, paraffine
313 embedded, and stained for DAPI. Samples were visualized using a Cytation C10
314 Confocal Imaging Reader and Gen 5+ software (Agilent BioTek).

315

316 *Turicibacter sanguinis colonization*

317 *T. sanguinis* isolate TA25 was kindly provided by Dr. Kenya Honda and Jonathan
318 Lynch. *T. sanguinis* was grown in suspension under anaerobic conditions in Schaedlers
319 broth. Mice were gavaged three times at d0, d3, and d7 with $1-10 \times 10^6$ CFU. TA25 can
320 be identified by the primers against 1E2 isolate.

321

322 *Real time PCR for detection of Turicibacter sanguinis*

323 DNA was isolated from fecal pellets using the DNeasy Power Soil Kit (Qiagen) following

324 the manufacturer's instructions. Detection of the serotonin transporter (20), for isolates

325 MOL361, 1E2, and H121 was performed as previously indicated (25). MOL361, forward

326 GGGTTTGCAGATGCGGG, reverse AATTATCAACCACCGCTGTAATAAT; 1E2,

327 forward GGGTTTGCTGATGCCGC, reverse

328 CCCAAATTATCAACTACTGCTGTAATAAT; H121, forward

329 GGTTTAGCTGATGCTGGAATTAG, reverse

330 TCCAAATTATCAACAAATGCTGTAATAAT

331

332 *Microbiota depletion and fecal transplant*

333 Mice were treated with a cocktail of antibiotics as previously described (35, 36), with

334 some modifications. Briefly, 5-week old mice were orally gavaged on day 0 and 1 with

335 200 μ l/mouse of the following antibiotic cocktail: ampicillin (2mg/ml), neomycin (2mg/ml),

336 metronidazole (2mg/ml), vancomycin (1mg/ml) dissolved in sterile water. From day 0 to

337 day 6, mice were provided a similar cocktail with half the concentration for each

338 antibiotic in the drinking water. Tabletop sugar (50mg/ml) was added to the cocktail to

339 improve antibiotic intake. Water containing fresh antibiotic cocktail was replenished at

340 day 2 and 4 and was replaced with regular water at day 6. At day 8 and 10,

341 200 μ l/mouse of fecal matter solution was gavaged as follows: At least 2 fecal pellets

342 from donor mice were homogenized in 1ml of sterile PBS. Fecal solution was cleared by

343 centrifugation at 8000g for 3 minutes. Supernatant was filtered through a 70 μ m mesh.

344 At day 28, mice were infected with *C. rodentium* as indicated above.

345

346 *16SrRNA gene sequencing*

347 At least 2 fecal pellets were collected per mouse and were stored at -80°C. DNA was

348 isolated using the DNeasy Power Soil Kit (Qiagen, Germantown, MD, USA) following

349 the manufacturer's instructions. Extracted DNA concentration was measured using

350 Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA). The V3 and V4 hypervariable

351 regions of the 16S rRNA gene were sequenced using 2 x 300 paired-end sequencing

352 on the Illumina MiSeq sequencing platform (Illumina) at Integrated Microbiome

353 Resource, Dalhousie University, Halifax, NS, Canada. The QIIME2 pipeline (version

354 3.6.11) was used to process and filter demultiplexed sequence reads. OTUs were

355 clustered using Deblur (2020.8.0) prior to alignment using QIIME2. OTU taxonomy was

356 determined using a naive Bayesian classifier trained toward the GreenGenes 99%

357 reference database (13_8). The OTU table was rarified to an even depth of references

358 per sample prior to generation of taxonomy barplots using the ggplot2 and plotly

359 packages in R (4.2.2). Analysis of Composition of Microbes (ANCOM) was performed

360 using QIIME2. Analysis of Turicibacter relative abundance was calculated using

361 Student's t test in Graphpad Prism.

362

363 **ACKNOWLEDGEMENTS**

364 This work was supported by NIH grants R01DK111671 (D.O.-V.) and R01DK128200

365 (K.T.W.); Vanderbilt Training in Cellular, Biochemical, and Molecular Sciences Training

366 Program, T32GM008554-25 (K.G.M); National Science Foundation Graduate Research
367 Fellowship under Grant No. 1937963 (K.G.M.); and the Digestive Disease Research
368 Center at Vanderbilt University Medical Center, NIH grant P30DK058404 (M.B.P.,
369 K.T.W., and D.O.-V.). We acknowledge the Translational Pathology Shared Resource
370 supported by NCI/NIH cancer center support grant 5P30CA68485-19 and the Mouse
371 Metabolic Phenotyping Center Grant 2U24DK059637-16. We also acknowledge VA
372 Merit Review grant I01CX002171 (K.T. W.) and Senior Research Award 703003 from the
373 Crohn's & Colitis Foundation (K.T. W.).

374

375 **FIGURE LEGENDS**

376 **Figure 1.** *Gzmb*^{-/-} littermate mice are resistant to severe *C. rodentium* infection.
377 Littermate (LM) mice were infected with 5-10 x 10⁸ CFU, and monitored daily for weight
378 (A), and signs of disease, such as diarrhea, scruffiness, and rectal irritation/bleeding
379 (B). At day 14-15, colon injury (C) and *C. rodentium* colonization (D) were determined.
380 n= 4-11. Data represent at least 3 independent experiments. For (A), ****P<0.001,
381 Student's t test for each time point after day 8. For (B) **<0.01, Student's t test. For (C),
382 *P<0.05, One-Way ANOVA. Bar indicates 250μm.

383

384 **Figure 2.** Resistance to *C. rodentium* is acquired by co-housing and maintained through
385 time. (A) (S)*Gzmb*^{-/-} mice were co-housed with a single (S)*Gzmb*^{-/-} mouse from a
386 different litter, or a single (R)*Gzmb*^{-/-} mouse starting at weaning age. Three to four
387 weeks later, mice were infected with 5-10 x 10⁸ CFU of *C. rodentium* and were
388 monitored for weight change. (B) Littermate (R)*Gzmb*^{-/-} and *Gzmb*^{+/+} mice were

389 separated at weaning age and infected as in (A). (C) (R)Gzmb^{-/-} mice were bred among
390 themselves. F3 mice were infected as in (A). n= 4-10. Data represent at least 3
391 independent experiments. For (A), ****P<0.001, Student's t test for each time point after
392 day 8. n.s.= not significant.

393

394 **Figure 3.** Resistance and susceptibility to severe *C. rodentium* infection are acquired by
395 microbiota (Mb) transplant. The indicated mice were treated with a broad-spectrum
396 antibiotic cocktail followed by fecal oral gavage from the indicated mice. Three weeks
397 after microbiota transplant, mice were infected with 5-10 x 10⁸ CFU of *C. rodentium*.
398 Mice were weighed (A and C) and monitored for disease signs (C and D). At the end
399 point, *C. rodentium* colonization was determined. n= 5-12. Data is combined from at
400 least 3 independent experiments. **P<0.01, Student's t test for day 14; ****P<0.001,
401 Student's t test for day 14.

402

403 **Figure 4.** Turicibacterales are better represented in resistant mice. (A) 16S RNA gene
404 sequence analysis from stool of the indicated naïve mice was analyzed for order
405 abundance. (B) Relative abundance of the order Turicibacterales of the same samples
406 as in (A). (C) ANCOM analysis. n= 5 -8. ****P<0.001, Student's t test.

407

408 **Figure 5.** *T. sanguinis* is present in resistant Gzmb^{-/-} mice and is transferable. (A)
409 Relative abundance of the *T. sanguinis* isolates in the feces of the indicated mice. Non-
410 antibiotic treated (S)Gzmb^{-/-} mice were gavaged with stool content from resistant mice

411 (B) or with cultured *T. sanguinis* TA25 (identified by the 1E2 primers) (C). Each symbol
412 represents an individual mouse. n=4-6. *P<0.05; **p<0.01, Student's t test.

413

414 **Figure 6.** *T. sanguinis* confers partial protection from severe *C. rodentium* infection.

415 Mice were colonized with 1-10 x 10⁶ CFU of *T. sanguinis* isolate TA25 3 times (d0, d3,
416 and d7). Approximately 14 days later, mice were infected with 5-10 x 10⁸ CFU of *C.*
417 *rodentium* and monitored for weight (A) and signs of disease (B). At the end point, colon
418 pathology (C) and *C. rodentium* colonization (D) were determined. *Ts* = *T. sanguinis*; *Cr*
419 = *C. rodentium*. Bar = 250mm. n=5-14. In bar graphs, each symbol represents and
420 individual mouse. *P<0.05; **P<0.01; ***P<0.005; ****P<0.001; Student's t test.

421

422 **Figure 7.** *C. rodentium* colonization in the indicated mice. Colon tissue from GFP-*C.*
423 *rodentium* infected mice was fixed with 4% paraformaldehyde, paraffine embedded, and
424 stained for DAPI. Samples were visualized using a Cyvation C10 Confocal Imaging
425 Reader and Gen 5+ software (Agilent BioTek). These samples are representative mice
426 from Figure 6. Bar = 250mm.

427

428

429

430

431

432

433

434

435

436

437

438

439

440 1. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S,
441 Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL,
442 Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S,
443 Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S,
444 Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I,
445 Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen
446 K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of
447 diarrhoeal disease in infants and young children in developing countries (the
448 Global Enteric Multicenter Study, GEMS): a prospective, case-control study.
449 Lancet 382:209-22.

450 2. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H,
451 Cibulskis R, Li M, Mathers C, Black RE, Child Health Epidemiology Reference
452 Group of WHO, Unicef. 2012. Global, regional, and national causes of child
453 mortality: an updated systematic analysis for 2010 with time trends since 2000.
454 Lancet 379:2151-61.

455 3. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013.
456 Recent advances in understanding enteric pathogenic Escherichia coli. Clin
457 Microbiol Rev 26:822-80.

458 4. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. 2005. *Citrobacter*
459 *rodentium* of mice and man. Cell Microbiol 7:1697-706.

460 5. Ledwaba SE, Costa DVS, Bolick DT, Giallourou N, Medeiros P, Swann JR,
461 Traore AN, Potgieter N, Nataro JP, Guerrant RL. 2020. Enteropathogenic
462 *Escherichia coli* Infection Induces Diarrhea, Intestinal Damage, Metabolic
463 Alterations, and Increased Intestinal Permeability in a Murine Model. Front Cell
464 Infect Microbiol 10:595266.

465 6. Silberger DJ, Zindl CL, Weaver CT. 2017. *Citrobacter rodentium*: a model
466 enteropathogen for understanding the interplay of innate and adaptive
467 components of type 3 immunity. Mucosal Immunol 10:1108-1117.

468 7. Kim YG, Kamada N, Shaw MH, Warner N, Chen GY, Franchi L, Nunez G. 2011.
469 The Nod2 sensor promotes intestinal pathogen eradication via the chemokine
470 CCL2-dependent recruitment of inflammatory monocytes. Immunity 34:769-80.

471 8. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR,
472 Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W. 2008. Interleukin-22
473 mediates early host defense against attaching and effacing bacterial pathogens.
474 Nat Med 14:282-9.

475 9. Dann SM, Spehlmann ME, Hammond DC, Iimura M, Hase K, Choi LJ, Hanson E,
476 Eckmann L. 2008. IL-6-dependent mucosal protection prevents establishment of
477 a microbial niche for attaching/effacing lesion-forming enteric bacterial
478 pathogens. J Immunol 180:6816-26.

479 10. Mullineaux-Sanders C, Sanchez-Garrido J, Hopkins EGD, Shenoy AR, Barry R,
480 Frankel G. 2019. *Citrobacter rodentium*-host-microbiota interactions: immunity,
481 bioenergetics and metabolism. Nat Rev Microbiol 17:701-715.

482 11. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M,
483 Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di

484 Santo JP. 2008. Microbial flora drives interleukin 22 production in intestinal
485 NKp46+ cells that provide innate mucosal immune defense. *Immunity* 29:958-70.
486 12. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz
487 N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA. 2010. Muc2 protects
488 against lethal infectious colitis by disassociating pathogenic and commensal
489 bacteria from the colonic mucosa. *PLoS Pathog* 6:e1000902.
490 13. Feng Y, Wang Y, Zhu B, Gao GF, Guo Y, Hu Y. 2021. Metagenome-assembled
491 genomes and gene catalog from the chicken gut microbiome aid in deciphering
492 antibiotic resistomes. *Commun Biol* 4:1305.
493 14. Huang S, Ji S, Yan H, Hao Y, Zhang J, Wang Y, Cao Z, Li S. 2020. The day-to-
494 day stability of the ruminal and fecal microbiota in lactating dairy cows.
495 *Microbiologyopen* 9:e990.
496 15. Kim CY, Lee M, Yang S, Kim K, Yong D, Kim HR, Lee I. 2021. Human reference
497 gut microbiome catalog including newly assembled genomes from under-
498 represented Asian metagenomes. *Genome Med* 13:134.
499 16. Maki JJ, Looft T. 2022. *Turicibacter bilis* sp. nov., a novel bacterium isolated from
500 the chicken eggshell and swine ileum. *Int J Syst Evol Microbiol* 72.
501 17. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov
502 RF, Mazmanian SK, Hsiao EY. 2015. Indigenous bacteria from the gut microbiota
503 regulate host serotonin biosynthesis. *Cell* 161:264-76.
504 18. Mo J, Gao L, Zhang N, Xie J, Li D, Shan T, Fan L. 2021. Structural and
505 quantitative alterations of gut microbiota in experimental small bowel obstruction.
506 *PLoS One* 16:e0255651.
507 19. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding
508 D, Lawley TD. 2016. Culturing of 'unculturable' human microbiota reveals novel
509 taxa and extensive sporulation. *Nature* 533:543-546.
510 20. Fung TC, Vuong HE, Luna CDG, Pronovost GN, Aleksandrova AA, Riley NG,
511 Vavilina A, McGinn J, Rendon T, Forrest LR, Hsiao EY. 2019. Intestinal serotonin
512 and fluoxetine exposure modulate bacterial colonization in the gut. *Nat Microbiol*
513 4:2064-2073.
514 21. Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. 2010. Functional
515 dissection of the granzyme family: cell death and inflammation. *Immunol Rev*
516 235:73-92.
517 22. Hoek KL, Greer MJ, McClanahan KG, Nazmi A, Piazuelo MB, Singh K, Wilson
518 KT, Olivares-Villagomez D. 2021. Granzyme B prevents aberrant IL-17
519 production and intestinal pathogenicity in CD4(+) T cells. *Mucosal Immunol*
520 doi:10.1038/s41385-021-00427-1.
521 23. Auchtung TA, Holder ME, Gesell JR, Ajami NJ, Duarte RT, Itoh K, Caspi RR,
522 Petrosino JF, Horai R, Zarate-Blades CR. 2016. Complete Genome Sequence of
523 *Turicibacter* sp. Strain H121, Isolated from the Feces of a Contaminated Germ-
524 Free Mouse. *Genome Announc* 4.
525 24. Bosshard PP, Zbinden R, Altwegg M. 2002. *Turicibacter sanguinis* gen. nov., sp.
526 nov., a novel anaerobic, Gram-positive bacterium. *Int J Syst Evol Microbiol*
527 52:1263-1266.
528 25. Lynch JBG, E.L.; Choy, K.; Faull, K.F.; Jewell, T.; Arellano, A.; Liang, J.; Yu,
529 K.B.; Paramo, J.; and Hsiao, E.Y. 2022. *Turicibacter* modifies host bile acids and

530 lipids in a strain-specific manner. *BioRxiv*
531 doi:<https://doi.org/10.1101/2022.06.27.497673>.

532 26. Bohnhoff M, Drake BL, Miller CP. 1954. Effect of streptomycin on susceptibility of
533 intestinal tract to experimental *Salmonella* infection. *Proc Soc Exp Biol Med*
534 86:132-7.

535 27. Merrick B, Allen L, Masirah MZN, Forbes B, Shawcross DL, Goldenberg SD.
536 2020. Regulation, risk and safety of Faecal Microbiota Transplant. *Infect Prev*
537 Pract

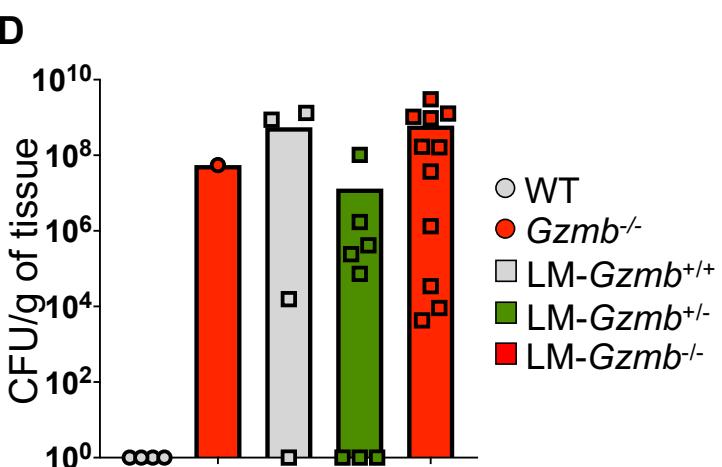
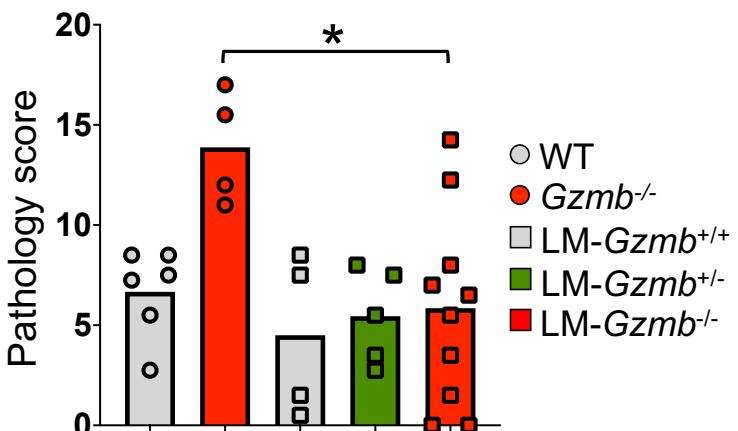
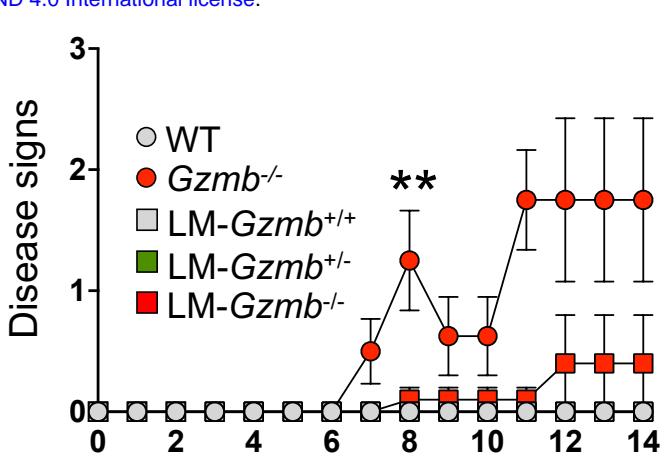
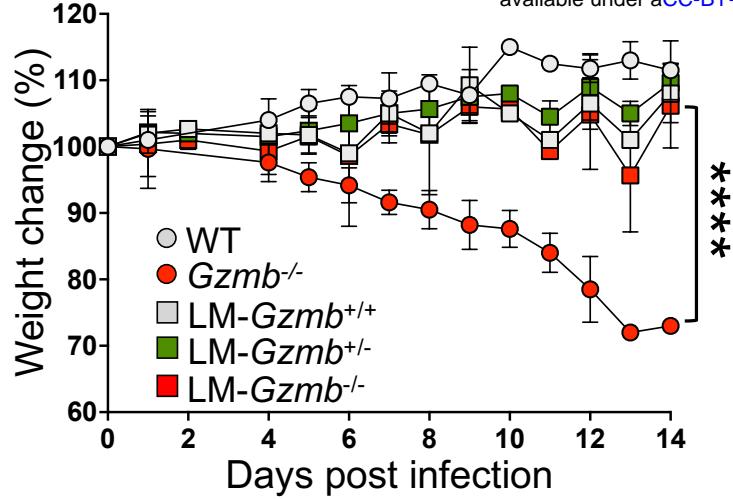
538 28. Baxter M, Colville A. 2016. Adverse events in faecal microbiota transplant: a
539 review of the literature. *J Hosp Infect* 92:117-27.

540 29. DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH,
541 Turbett S, Chung RT, Chen YB, Hohmann EL. 2019. Drug-Resistant *E. coli*
542 Bacteremia Transmitted by Fecal Microbiota Transplant. *N Engl J Med* 381:2043-
543 2050.

544 30. Pop M, Walker AW, Paulson J, Lindsay B, Antonio M, Hossain MA, Oundo J,
545 Tamboura B, Mai V, Astrovskaia I, Corrada Bravo H, Rance R, Stares M, Levine
546 MM, Panchalingam S, Kotloff K, Ikumapayi UN, Ebruke C, Adeyemi M, Ahmed D,
547 Ahmed F, Alam MT, Amin R, Siddiqui S, Ochieng JB, Ouma E, Juma J, Mailu E,
548 Omore R, Morris JG, Breiman RF, Saha D, Parkhill J, Nataro JP, Stine OC.
549 2014. Diarrhea in young children from low-income countries leads to large-scale
550 alterations in intestinal microbiota composition. *Genome Biol* 15:R76.

551 31. Quaye EK, Adjei RL, Isawumi A, Allen DJ, Caporaso JG, Quaye O. 2023. Altered
552 Faecal Microbiota Composition and Structure of Ghanaian Children with Acute
553 Gastroenteritis. *Int J Mol Sci* 24.

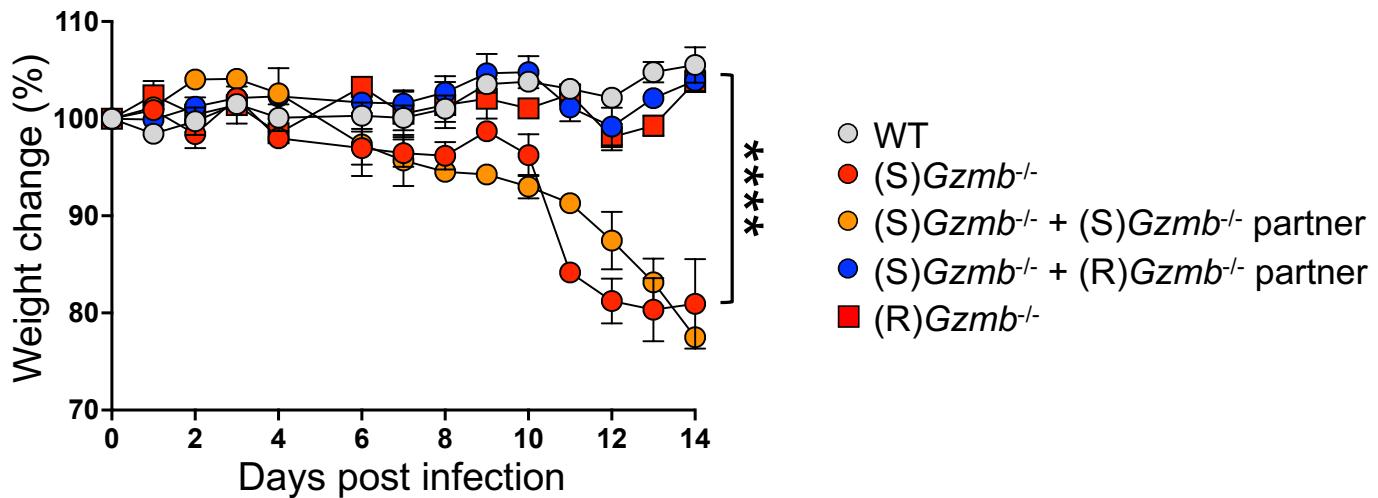
554 32. Afonina IS, Cullen SP, Martin SJ. 2010. Cytotoxic and non-cytotoxic roles of the
555 CTL/NK protease granzyme B. *Immunol Rev* 235:105-16.

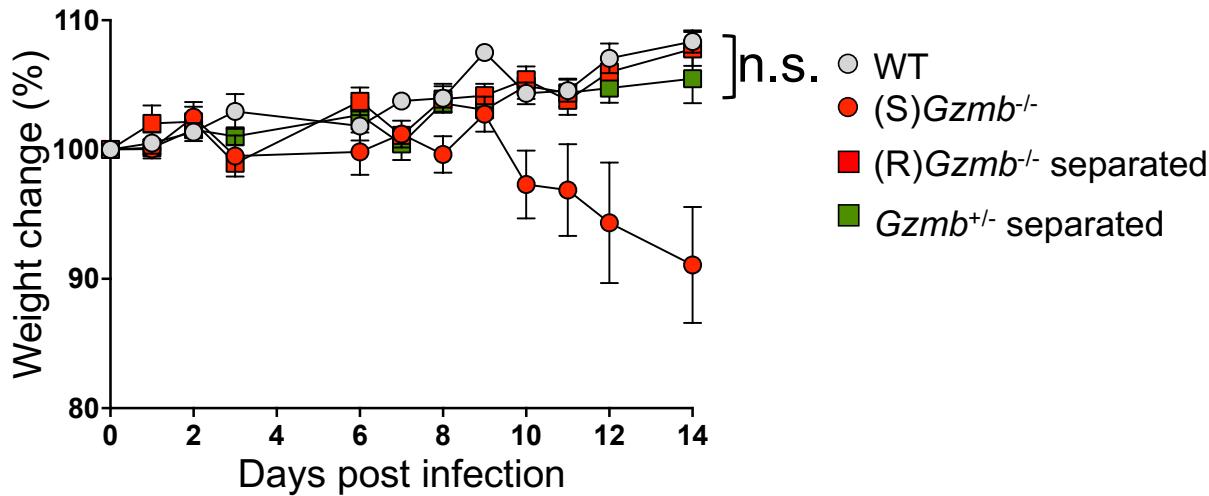




556 33. Olivares-Villagomez D, Algood HM, Singh K, Parekh VV, Ryan KE, Piazuelo MB,
557 Wilson KT, Van Kaer L. 2011. Intestinal epithelial cells modulate CD4 T cell
558 responses via the thymus leukemia antigen. *J Immunol* 187:4051-60.

559 34. Singh K, Gobert AP, Coburn LA, Barry DP, Allaman M, Asim M, Luis PB,
560 Schneider C, Milne GL, Boone HH, Shilts MH, Washington MK, Das SR,
561 Piazuelo MB, Wilson KT. 2019. Dietary Arginine Regulates Severity of
562 Experimental Colitis and Affects the Colonic Microbiome. *Front Cell Infect*
563 Microbiol

564 35. Zhang Q, Lu Q, Luo Y. 2020. Fecal Microbiota Transplantation and Detection of
565 Prevalence of IgA-Coated Bacteria in the Gut. *J Vis Exp* doi:10.3791/60772.

566 36. Bokoliya SC, Dorsett Y, Panier H, Zhou Y. 2021. Procedures for Fecal Microbiota
567 Transplantation in Murine Microbiome Studies. *Front Cell Infect Microbiol*
568 11:711055.


569


Figure 1. *Gzmb*^{-/-} littermate mice are resistant to severe *C. rodentium* infection.

Littermate (LM) mice were infected with $5-10 \times 10^8$ CFU, and monitored daily for weight (A), signs of disease, such as diarrhea, scruffiness, and rectal irritation/bleeding (B). At day 14-15, colon injury (C) and *C. rodentium* colonization (D) were determined. $n = 4-11$. Data represent at least 3 independent experiments. For (A), $****P < 0.0001$, Student's t test for each time point after day 8. For (B) $**P < 0.01$, Student's t test. For (C), $*P < 0.05$, One-Way ANOVA. Bar indicates $250\mu\text{m}$.

A

B

C

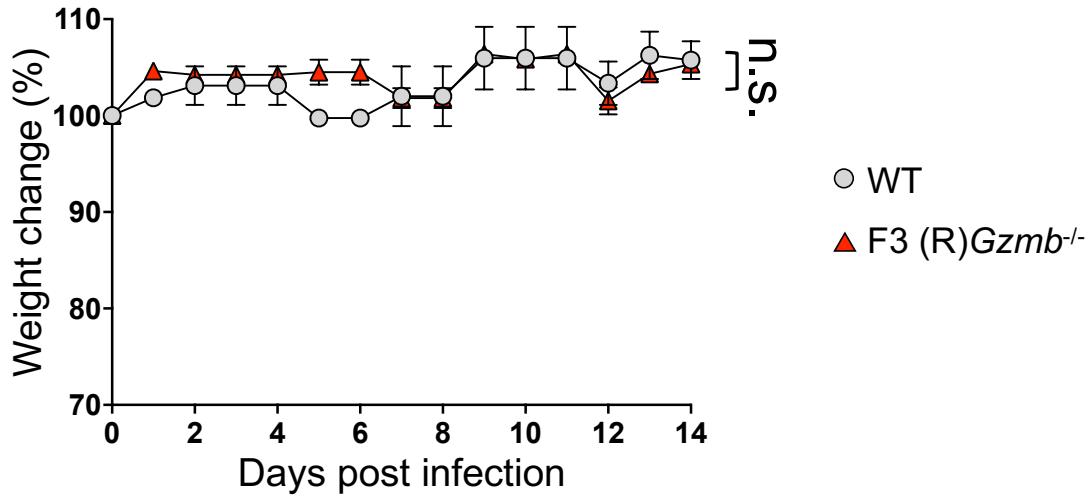
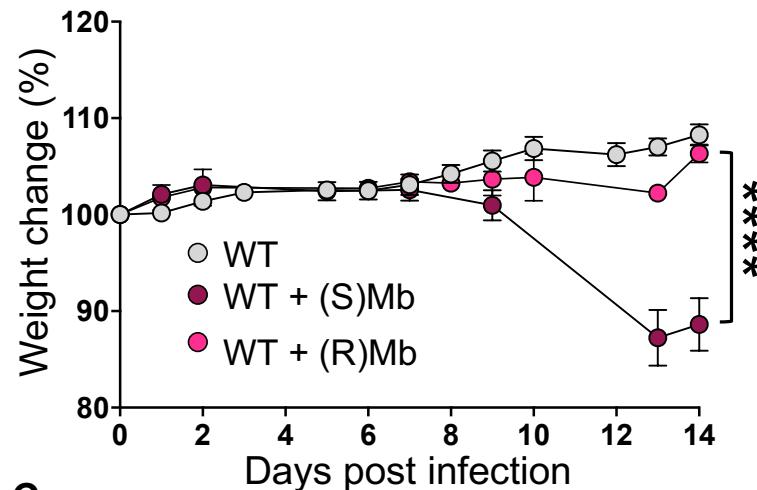
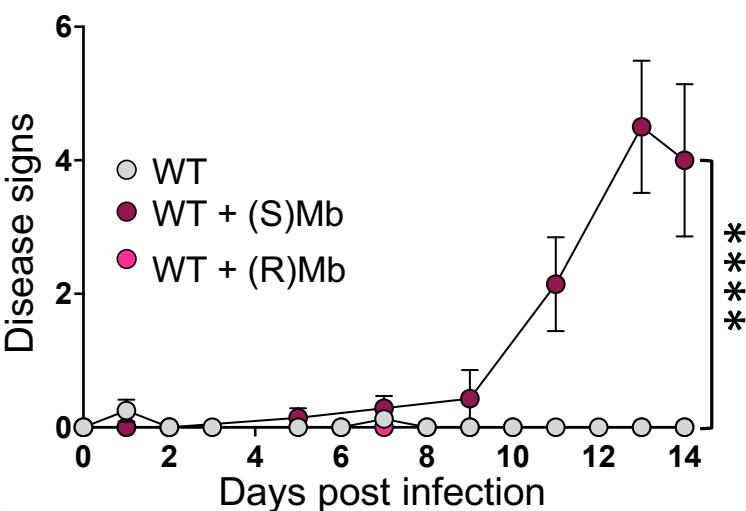
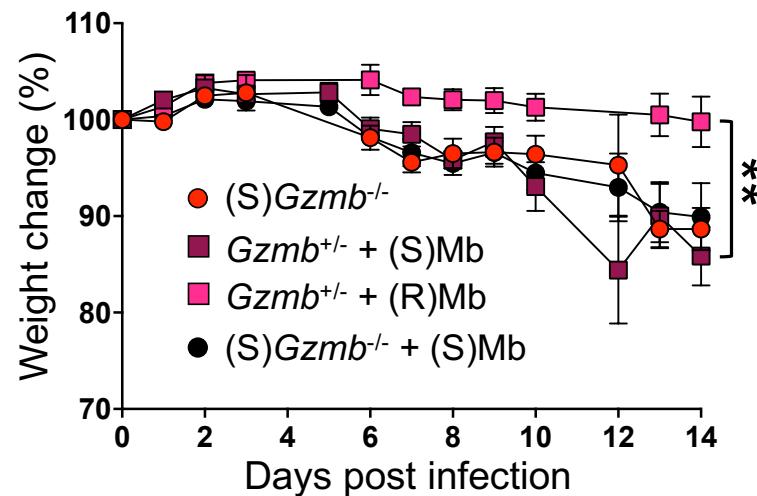
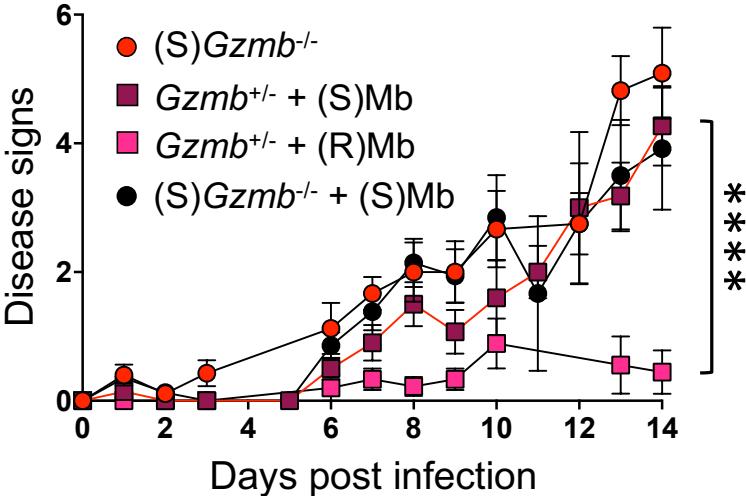




Figure 2. Resistance to *C. rodentium* is acquired by co-housing and maintained through time. (A) (S)Gzmb^{-/-} mice were co-housed with a single (S)Gzmb^{-/-} mouse from a different litter, or a single (R)Gzmb^{-/-} mouse starting at weaning age. Three to four weeks later, mice were infected with $5-10 \times 10^8$ CFU of *C. rodentium*. Mice were monitored for weight change. (B) Littermate (R)Gzmb^{-/-} and Gzmb^{+/-} mice were separated at weaning age and infected as in (A). (C) (R)Gzmb^{-/-} mice were bred among themselves. F3 mice were infected as in (A). n= 4-10. Data represent at least 3 independent experiments. For (A), ***P<0.001, Student's t test for each time point after day 8. n.s.= not significant.


A


B

C

D

E

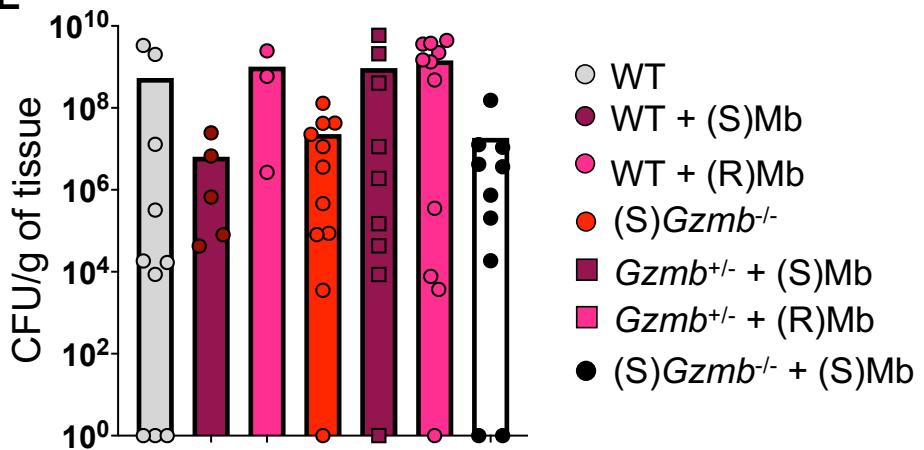
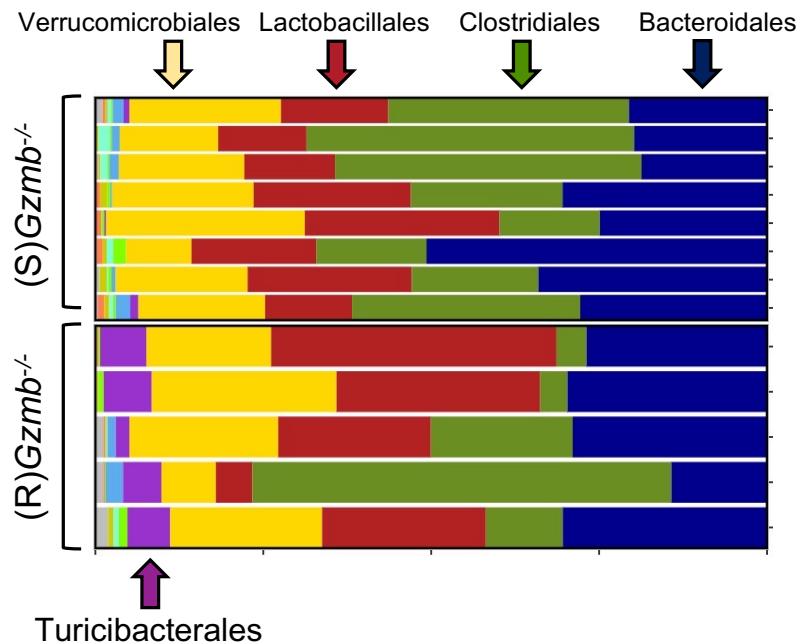
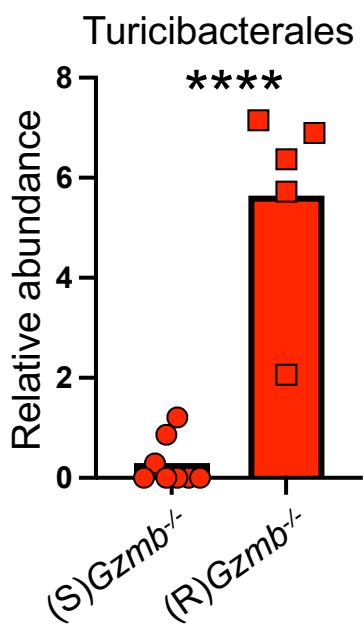




Figure 3. Resistance and susceptibility to severe *C. rodentium* infection are acquired by microbiota (Mb) transplant. The indicated mice were treated with a broad-spectrum antibiotic cocktail followed by fecal oral gavage from the indicated mice. Three weeks after microbiota transplant, mice were infected with $5-10 \times 10^8$ CFU of *C. rodentium*. Mice were weighed (A and C) and monitored for disease signs (C and D). At the end point, *C. rodentium* colonization was determined. n= 5-12. Data is combined from at least 3 independent experiments. **P<0.01, Student's t test for day 14; ****P<0.001, Student's t test for day 14.

A

B

C

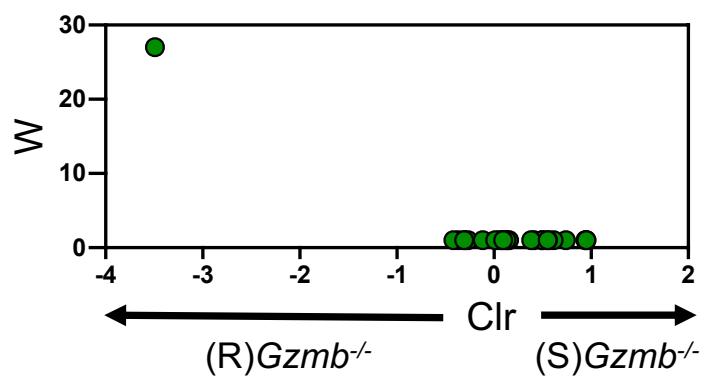
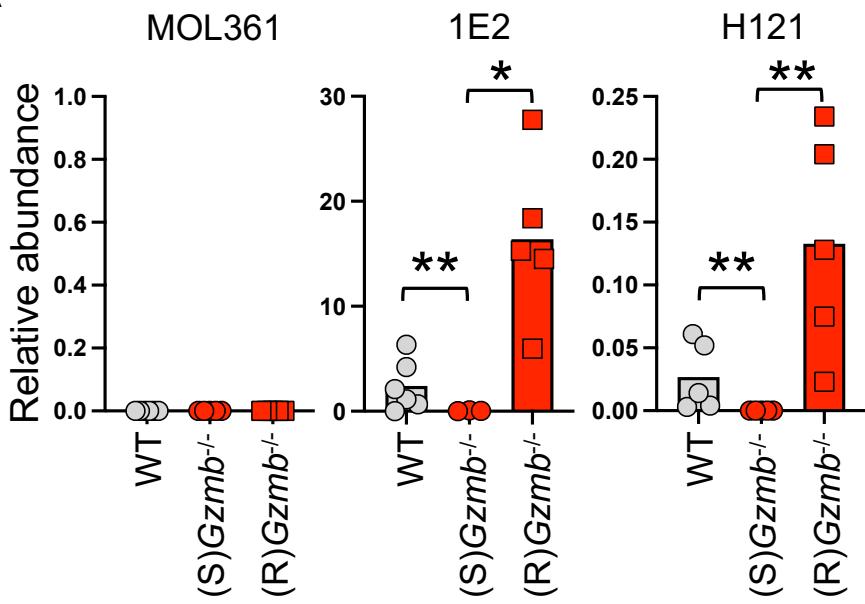
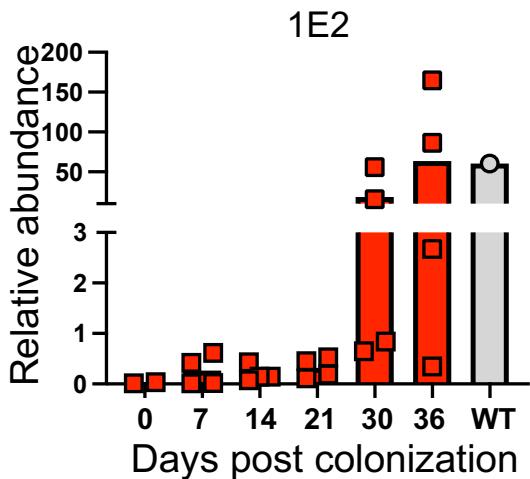
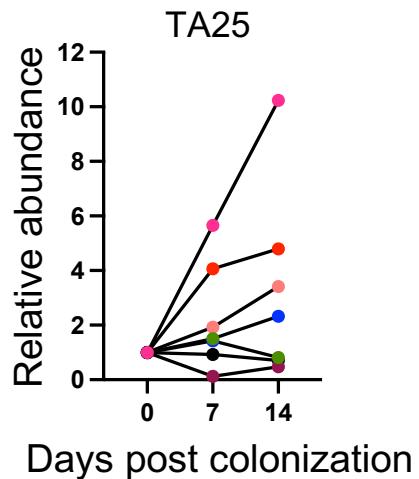
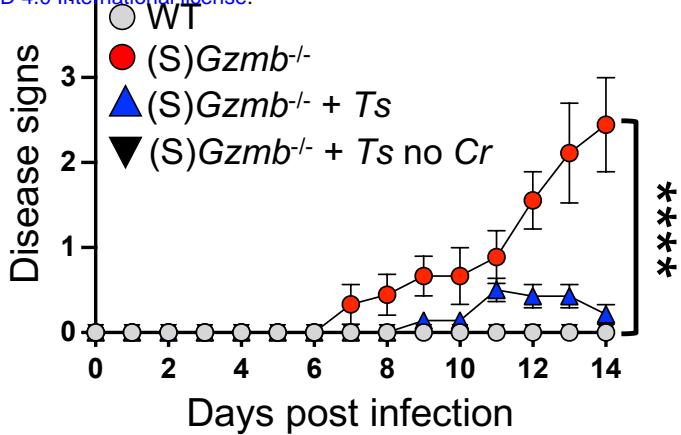
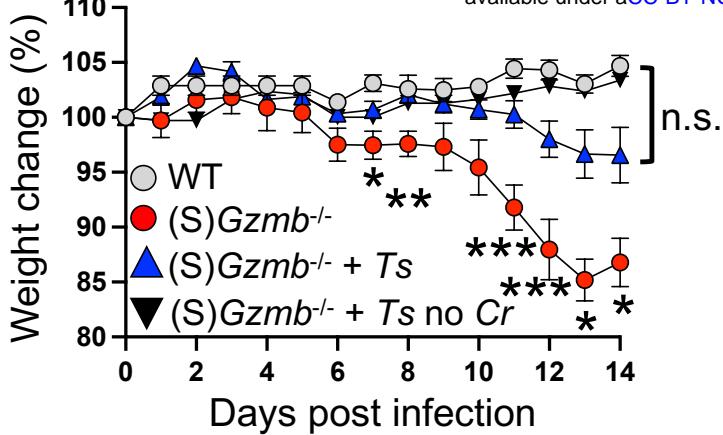
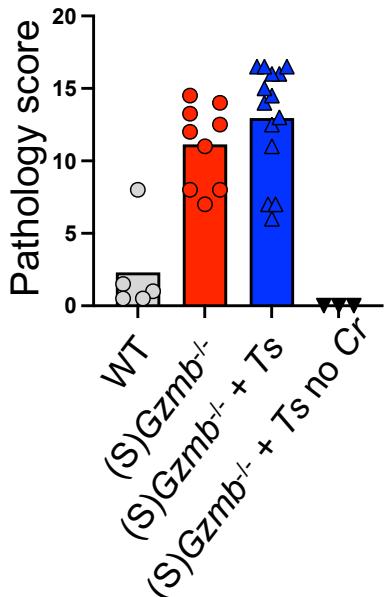
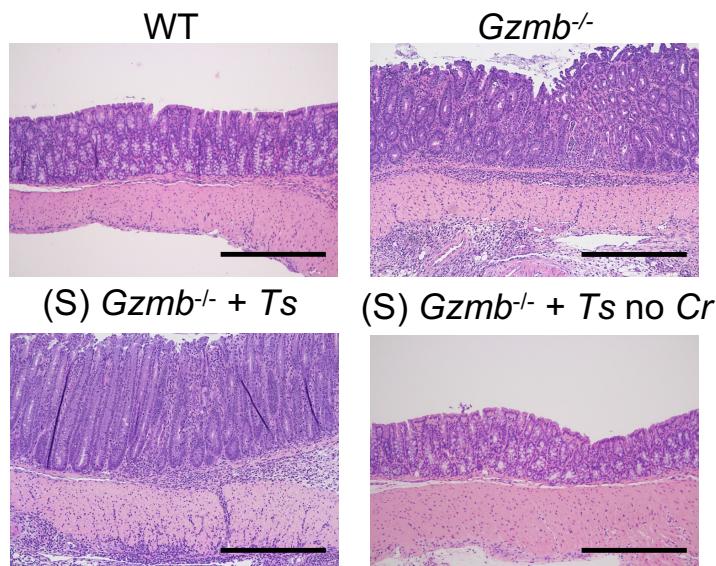




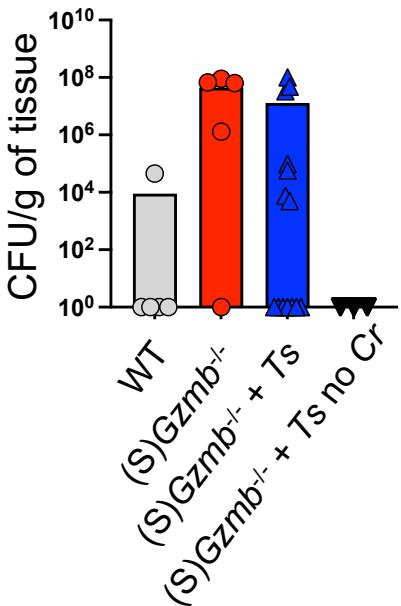
Figure 4. Turicibacterales are better represented in resistant mice. (A) 16S RNA gene sequence analysis from stool of the indicated naïve mice was analyzed for order abundance. (B) Relative abundance of the order Turicibacterales of the same samples as in (A). (C) ANCOM analysis. n= 5 -8. ***P<0.001, Student's t test.

A

B

C


Figure 5. *T. sanguinis* is present in resistant *Gzmb*^{-/-} mice and is transferable. (A) Relative abundance of the *T. sanguinis* isolates in the feces of the indicated mice. Non-antibiotic treated (S)*Gzmb*^{-/-} mice were gavaged with stool content from resistant mice (B) or with cultured *T. sanguinis* TA25 (identified by the 1E2 primers) (C). Each symbol represents an individual mouse. n=4-6. *P<0.05; **p<0.01, Student's t test.

C

D

Figure 6. *T. sanguinis* confers partial protection from severe *C. rodentium* infection. Mice were colonized with $1-10 \times 10^6$ CFU of *T. sanguinis* isolate TA25 3 times (d0, d3, and d7). Approximately 14 days later, mice were infected with $5-10 \times 10^8$ CFU of *C. rodentium* and monitored for weight (A) and signs of disease. At the end point, colon pathology (C) and *C. rodentium* colonization (D) were determined. *Ts* = *T. sanguinis*; *Cr* = *C. rodentium*. Bar = 250 μ m. n=5-14. In bar graphs, each symbol represents an individual mouse. *P<0.05; **P<0.01; ***P<0.005; ****P<0.001; Student's t test.

A

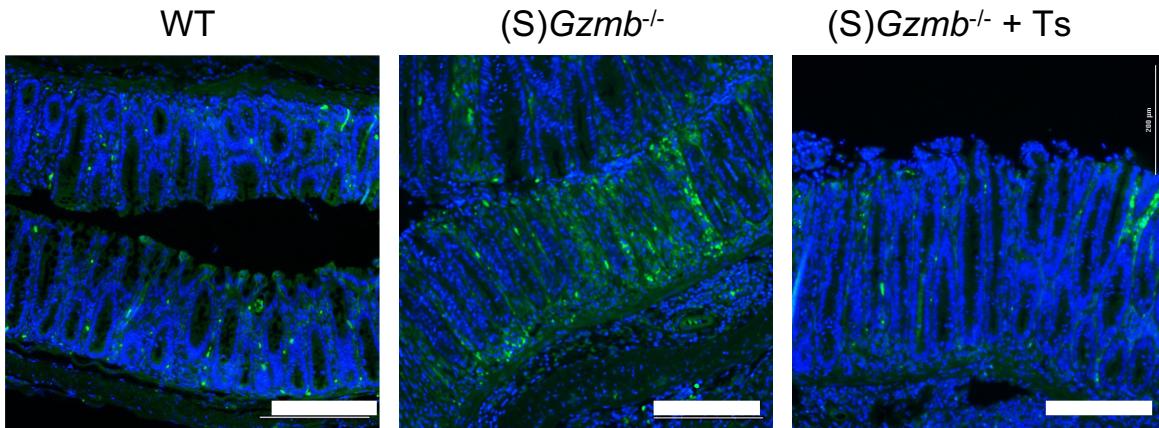


Figure 7. *C. rodentium* colonization in the indicated mice. These samples are representative mice from Figure 6. Bar = 250 μ m. Colon tissue from GFP-*C. rodentium* infected mice was fixed with 4% paraformaldehyde, paraffine embedded, and stained for DAPI. Samples were visualized using a Cytation C10 Confocal Imaging Reader and Gen 5+ software (Agilent BioTek).