

1 COP9 signalosome complex subunit-7-mediated regulation of cAMP levels

2 contributes to autophagic degradation and pathogenesis of rice blast fungus

Magnaporthe oryzae

4

5 Lili Lin^{1*}, Hengyuan Guo^{2,3}, Wajjiha Batool¹, Lianyu Lin¹, Jiayin Cao¹, Qiuli An¹,
6 Sami Rukaiya Aliyu¹, Jiandong Bao^{1,5}, Zonghua Wang^{1,4#}, Justice Norvienyeku^{2,3#}

7

⁸ ¹Ministerial and Provincial Joint Innovation Centre for Safety Production of
⁹ Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China

10 ²Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and
11 Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou,
12 China.

13 ³Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan
14 University, Sanya, China

15 ⁴Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.

⁵The Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

18

¹⁹ #Corresponding authors: Norvienyeku Justice and Zonghua Wang

20 College of Plant Protection, Hainan University, Haikou 570228, China.

21 E-mail: zonghua@163.com, jk_norvienyeku@hainanu.edu.cn

22

23

24 **Summary**

25 • Photo-dependent processes, including circadian rhythm, autophagy,
26 ubiquitination, neddylation/deneddylation, and metabolite biosynthesis,
27 profoundly influence microbial pathogenesis. Although a photomorphogenesis
28 signalosome (COP9/CSN) has been identified, the mechanism by which this
29 large complex contributes to pathophysiological processes in filamentous
30 fungi remains unclear.

31 • Here, we identified eight CSN complex subunits in the rice blast fungus
32 *Magnaporthe oryzae* and functionally characterized the translocon subunits
33 containing a nuclear export or localization signal (NES-NLS).

34 • Targeted gene replacement of these CSN subunits, including *MoCSN3*,
35 *MoCSN5*, *MoCSN6*, *MoCSN7*, and *MoCSN12*, attenuated vegetative growth
36 and conidiation in *M. oryzae* and rendered non-pathogenic deletion strains.
37 *MoCSN7* deletion significantly suppressed arachidonic acid catabolism,
38 compromised cell wall integrity, subverted photo-dependent ubiquitination,
39 and abolished photo-responsiveness. Surprisingly, we also discovered that
40 MoCSN subunits, particularly *MoCsn7*, are required for the cAMP-dependent
41 regulation of autophagic flux.

42 • Therefore, MoCSN significantly contributes to morphological, physiological,
43 and pathogenic differentiation in *M. oryzae* by fostering cross-talk between
44 multiple pathways.

45

46 **Keywords:** Autophagic flux; Microbial pathogenesis; cAMP accumulation; COP9
47 Signalosome complex; Signal transduction.

48

49 **Introduction**

50 Constitutive photomorphogenesis signalosome 9 (COP9 /CSN) is a multi-protein
51 complex that profoundly influences diverse developmental processes in almost all
52 living organisms(Barth et al., 2016). COP9/CSN modulates cellular, metabolic, and
53 signal transduction pathways(Füzesi-Levi et al., 2020; Shackleford and Claret, 2010).
54 The COP9 holocomplex in eukaryotes typically consists of 8–9 subunits. However, the
55 number of subunits constituting a complex may vary among organisms. For instance,
56 while the CSN complex in *Schizosaccharomyces pombe* consists of only four subunits,
57 including CSN1 (Caa1 and Sgnsp), CSN2, and CSN4, the CSN complex in *Drosophila*
58 *melanogaster*, *Arabidopsis thaliana*, and *Homo sapiens* is made up of seven, eight, and
59 ten subunits, respectively(Gutierrez et al., 2020; Peng et al., 2001). The CSN complex
60 was first identified as a vital photomorphogenesis machinery downstream of
61 photoreceptors and has been shown to promote light-dependent physiological
62 development in *A. thaliana* by modulating the nucleocytoplasmic distribution of COP1
63 in response to photoperiods(Osterlund et al., 1999). In addition to acting as negative
64 regulators of photomorphogenesis in plants, subunits of the CSN complex have been
65 implicated in several developmental and cellular processes, including ubiquitination,
66 cell cycle regulation, metabolism, stress tolerance, reproduction, signal transduction,
67 transcriptional regulation, and survival across different organisms(Shackleford and
68 Claret, 2010).

69 The CSN signalosome complex supports numerous developmental events in
70 eukaryotes, partly by facilitating ubiquitin-dependent degradation of aged, misfolded,
71 and mislocalized proteins and promoting ubiquitin homeostasis(Kim et al., 2022). For
72 example, studies have shown that selected subunits of the CSN complex directly
73 interact with the 19S regulatory unit of the 26S proteasome complex in plants and
74 animals(Yu et al., 2011). The binding of these selected CSN subunits, including
75 (CSN2/CSN6) and (CSN4/CSN5) to Cullin-RING E3 ubiquitin ligases of the
76 SkpA-Cul1-F-box (SCF) complex in animals and plants results in deactivation of
77 Cullin-RING E3 ubiquitin ligases by inhibiting or displacing Nedd8 from Cullin. The

78 displacement of Nedd8 or deneddylation triggered by CSN-SCF interaction results in
79 the termination of Cullin-dependent ubiquitination. Deneddylation is an essential
80 biochemical process that effectively prevents auto-ubiquitination by coordinating
81 interactions between substrates and substrate adaptor subunits of the SCF
82 complex(Suisse et al., 2018).

83 The transcriptional repressor Capicua (CIC) promotes the proper development of
84 organs (embryo, lungs, abdominal wall, and brain), guides cell differentiation (neural
85 stem cells and T cells), and enhances the enterohepatic circulation of bile acids in
86 mammals(Lee, 2020). Activation of the Epidermal Growth Factor Receptor and its
87 downstream elements is essential for CIC mislocalization, Cullin 1-dependent
88 ubiquitination, and timely degradation following CIC phosphorylation by MAP
89 kinase(Chen et al., 2021). Recent studies have demonstrated that CSN-mediated
90 deneddylation events impair Cullin1-dependent ubiquitination and CIC degradation,
91 resulting in tumorigenesis and the development of various cancers. Individual CSN
92 complex subunits regulate various cellular and developmental processes in
93 eukaryotes(Serino and Deng, 2003). In *Drosophila*, disruption of *CSN4* and *CSN5*
94 triggers a DNA double-strand-break-dependent meiotic checkpoint, resulting in larval
95 mortality, attenuation of oocyte development, and photoreceptor differentiation(Cope
96 and Deshaies, 2003). However, the deletion of *S. pombe* *CSN1* and *CSN2* arrested the
97 progression of the cell cycle at the G2 phase, triggered the accumulation of damaged
98 DNA, and rendered the *CSN1* and *CSN2* defective strains vulnerable to
99 radiation-induced stress.

100 RNAi-mediated silencing of selected subunits of the CSN complex
101 in *Caenorhabditis elegans* suppressed the activities of germ-line RNA helicases (GLHs)
102 and katanin (a microtubule-severing factor), causing worm sterility and disrupting the
103 functionality of multiple cellular processes, including microtubule polymerization,
104 nuclear positioning, progression of cell division (anaphase), and cytokinesis(Hartman
105 et al., 1998; Moghe et al., 2011; Pintard et al., 2003; Smith et al., 2002).

106 Compared with animal and plant orthologs, little is known about how filamentous
107 fungus CSN complex subunits contribute to pathophysiological development. However,

108 the impact of CSN-dependent regulation on photo-responsive processes, including
109 circadian rhythm, morphogenesis, and sporogenesis, has been documented in
110 fungi(Busch et al., 2003; Wilson et al., 2021). The photomorphogenesis signalosome
111 complex helps maintain the periodicity of the circadian clock by facilitating the
112 ubiquitination of the WD-40 domain-containing protein (FWD-1), a
113 substrate-recruiting subunit of the SCF complex that activates the degradation of the
114 essential circadian protein FREQUENCY (FRQ) following phosphorylation(He et al.,
115 2005). Additional studies have shown that deletion of subunit-2 (CSN2) of the CSN
116 complex in *Neurospora crassa* suppresses FRQ protein degradation and subsequently
117 triggers indeterminate conidiation and attenuation in the vegetative growth of *N.*
118 *crassa*(He et al., 2005). In *Aspergillus nidulans*, targeted gene deletion of CSN
119 signalosome complex subunits disrupted the progression of photo-responsive
120 developmental processes, deactivated regulatory mechanisms associated with
121 secondary metabolic pathways, and abolished photosporogenesis in *A.*
122 *nidulans* specifically lacking CSN4 and CSN5(Busch et al., 2003). Furthermore, the
123 deletion of CSN5, which is thought to catalyze deneddylation, in the necrotrophic plant
124 pathogenic fungus *Alternaria alternata* impaired a series of developmental and cellular
125 processes, including vegetative growth, conidiogenesis, stress tolerance, and virulence,
126 and significantly downregulated the expression of genes associated with essential
127 metabolic pathways(Wang et al., 2018).

128 Although CSN-regulated parameters such as sporulation, secondary metabolism,
129 stress tolerance, ubiquitination, morphogenesis, cell division, and cell proliferation
130 profoundly influence the dissemination, initiation, and development of diseases caused
131 by filamentous plant pathogenic fungi, there are limited reports on the direct
132 contributions of individual subunits of the CSN complex to the physiological and
133 pathogenic development of phytopathogenic fungi. A limited understanding of the
134 significance of CSN subunits in fungal pathogenesis is a bottleneck hindering the
135 targeting of CSN signalosome complex subunits in antifungal compound development.

136 The aim of this study was to identify core subunits that potentially regulate the
137 nucleocytoplasmic shuttling of the CSN complex in *Magnaporthe oryzae*, a model

138 fungus for studying plant-pathogen interactions, using bioinformatics analyses
139 followed by targeted gene replacement, proteomics, and metabolomics. Such
140 approaches will help to comprehensively evaluate the influence of CSN
141 complex-mediated photomorphogenesis on photogenic processes, including
142 sporulation, redox homeostasis, autophagy, and pathogenicity in the economically
143 destructive rice blast fungus.

144

145 **Results**

146 ***M. oryzae* CSN signalosome complex subunits share a close evolutionary 147 relationship with *Fusarium graminearum* and *N. crassa* orthologs**

148 Comparative phylogenetic analyses were performed to ascertain the evolutionary
149 link between the individual CSN subunits identified in rice blast fungus and orthologs
150 from *A. thaliana*, *A. nidulans*, *Aspergillus oryzae*, *F. graminearum*, *N. crassa*, *H.*
151 *sapiens*, *O. sativa* (ssp. *japonica*), and *Phytophthora infestans*. The results showed that
152 in addition to Csn12, which is selectively conserved in *A. oryzae*, *A. nidulans*, *F.*
153 *graminearum*, *M. oryzae*, and *N. crassa*, the canonical CSN subunits were conserved in
154 all nine organisms sampled for phylogenetic studies. We noted that the evolutionary
155 lineage of the individual CSN subunits identified in *M. oryzae* varies among organisms.
156 For instance, while Csn1 and Csn5 in *M. oryzae* share evolutionary ties with orthologs
157 in *N. crassa*, Csn4 aligns closely with its ortholog from *A. nidulans*. Csn6, Csn7, and
158 Csn12 clustered with *N. crassa* and *F. graminearum* (Figure 1A-H).

159 Comparative analyses showed that the composition and domain architecture of
160 Csn1, Csn2, Csn4, Csn5, and Csn6 are relatively conserved across species. However,
161 compared to plants (*A. thaliana* and *O. sativa japonica*), animals (*H. sapiens*), and
162 oomycetes (*P. infestans*), the Csn3 sequence obtained from *M. oryzae* and other
163 filamentous fungi, including *A. nidulans*, *A. oryzae*, *F. graminearum*, *M. oryzae*, and *N.*
164 *crassa*, lacks the conserved Proteasome, COP9, and Initiation factor 3 domains. In
165 addition, while Csn7 sequences retrieved from *A. nidulans*, *F. graminearum*, and *M.*
166 *oryzae* contained a single PCI, Csn7 orthologs in *H. sapiens* and *A. thaliana* possessed

167 a helix (CTD) in addition to the PCI domain (Figure 1I-P). From these observations, we
168 inferred that the intra- and inter-species structural divergence between the
169 corresponding orthologs of CSN subunits might reflect functional diversity between
170 individual CSN subunit orthologs in different organisms.

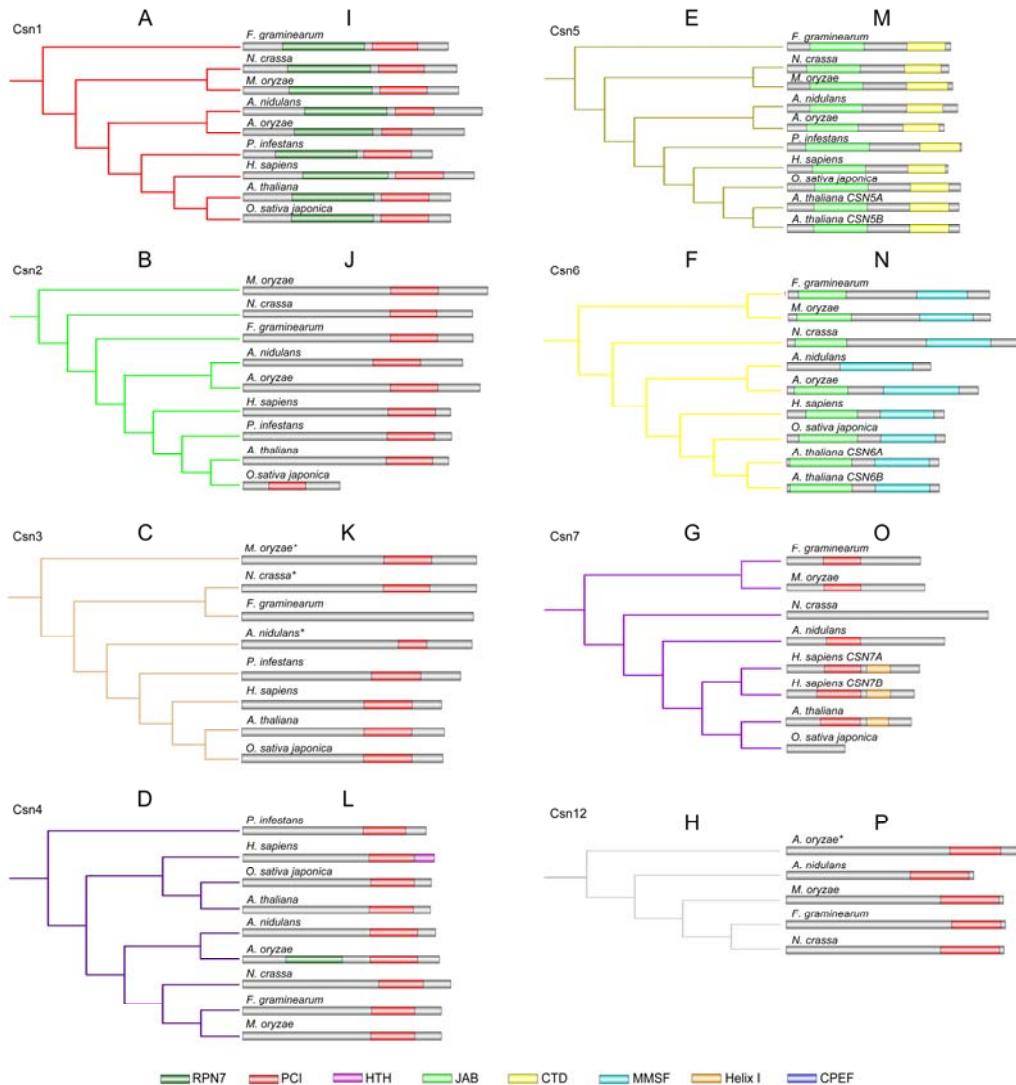


Figure 1 Phylogenetic and domain composition of putative orthologs of CSN subunits retrieved from different organisms. A-H, The cladogram represents the phylogenetic relationship between CSN complex subunits identified in selected organisms. The likelihood neighbor-joining trees were constructed with the MEGA-X software. I-P, The distribution and functional domain architecture of CSN subunits identified in the selected organisms. Domain prediction was performed using the Pfam server, and sequences with significant similarity to functional domains were used to construct domain

178 models for the CSN subunits using GPS IBS 1.0.2 software.

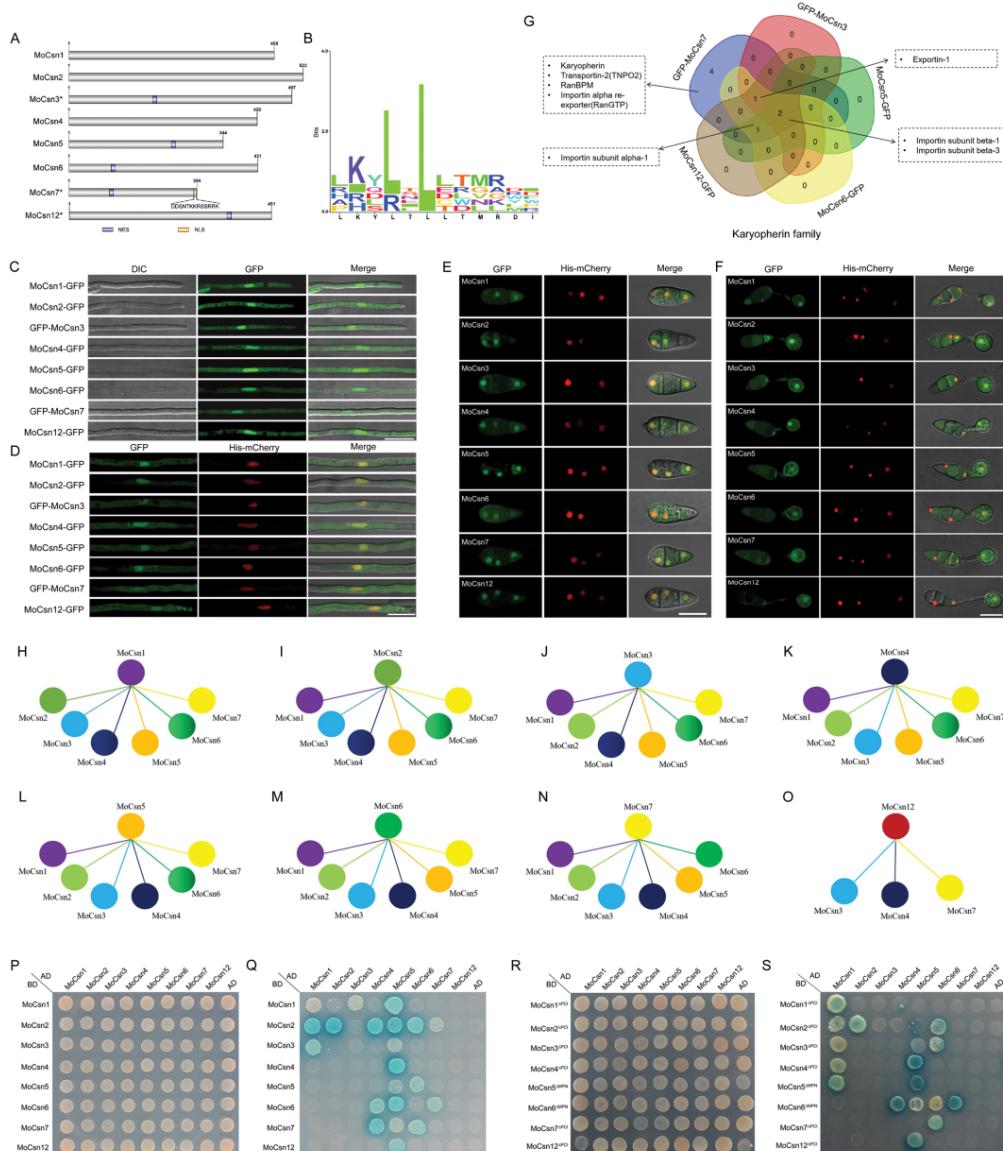
179

180 **Nuclear export and import signals likely regulate the dynamic nucleocytoplasmic**
181 **localization of the CSN complex**

182 Results obtained from the screening of NLS/NES in CSN subunits identified in *M.*
183 *oryzae*, identified a strong NES consensus motif signature in Csn3, Csn5, Csn7, and
184 Csn12 (NetNES/NN-Score >0.7) and a relatively weak NES consensus motif signature
185 in Csn6 (NetNES/NN-Score =0.6), while Csn7 was the only subunit with a consensus
186 NLS motif signature in *M. oryzae* (Figure 2A-B).

187 While most CSN subunits are exclusively localized in the nucleus in some cell
188 types or organisms, recent work has shown that some subunits localize to both the
189 nucleus and (Chamovitz and DENG, 1997; Wang et al., 2009). Therefore, to ascertain
190 the localization and gain insights into the possible biological functions of CSN subunits
191 in rice blast fungus, we monitored the subcellular localization of MoCsn subunits at
192 different developmental stages in *M. oryzae* (hyphae, conidia, and appressorium) by
193 fusing GFP fluorescent protein to the C-terminus of the eight CSN subunits consisting
194 of the CSN complex in *M. oryzae*. Microscopy revealed that, except for MoCsn3-GFP
195 and MoCsn7-GFP, the other subunits, i.e., MoCsn1-GFP, MoCsn2-GFP, MoCsn4-GFP,
196 MoCsn5-GFP, MoCsn6-GFP, and MoCsn12-GFP, accumulated strongly in the nucleus
197 and were weakly localized to the cytoplasm (Figure 2C and Figure S1A-B). Contrary to
198 our expectations, MoCsn3-GFP and MoCsn7-GFP displayed persistent cytoplasmic
199 localization patterns (Figure S1C-D).

200 Since the NLS signal peptide is located at the C-terminal of MoCsn7, we reasoned
201 that fusing GFP to the C-terminal might result in the mislocalization of MoCsn7. To
202 validate this possibility, we generated N-terminal GFP-fusion constructs for MoCsn3
203 and MoCsn7 (GFP-MoCsn3 and GFP-MoCsn7, respectively) and transformed them
204 independently into wild-type protoplasts. Microscopy of individual positive
205 transformants harboring GFP-MoCsn3 and GFP-MoCsn7 revealed strong
206 GFP-MoCsn3 and GFP-MoCsn7 fluorescence signals in the nucleocytoplasmic regions.
207 However, GFP-MoCsn3 and GFP-MoCsn7 fluorescence signals in the cytoplasm were


208 weaker than those recorded in the nucleus (Figure 2C and Figure S1A-B). From these
209 observations, we inferred that the NLS region (C-terminal) is essential for the proper
210 localization of MoCsn7. In addition, the C-terminus of MoCsn3 appears to be essential
211 for its nuclear localization.

212 We also demonstrated that the individual CSN subunits identified in *M.*
213 *oryzae* partially colocalized with H1-mCherry fluorescence (a nuclear marker) at all
214 developmental stages, including mycelia, conidia, and appressorium formation
215 (Figure 2D-F). The nucleocytoplasmic localization pattern observed for the eight CSN
216 subunits identified in rice blast fungus suggests that the COP9-complex likely
217 contributes to the development of *M. oryzae* via direct or indirect modulation of
218 cellular and developmental processes in both the nucleoplasm and cytoplasm.

219 Furthermore, we screened for protein interactions using co-immunoprecipitation
220 of GFP-MoCsn3, MoCsn5-GFP, MoCsn6-GFP, GFP-MoCsn7, and MoCsn12-GFP.
221 Our data revealed that karyopherin (MGG_01449), transportin-2
222 (TNPO2/MGG_09208), RanBPM (MGG_00753), and importin alpha re-exporter
223 (RanGTP/MGG_03994) were exclusively found in the GFP-MoCsn7
224 immuno-complex. GFP-MoCsn7, GFP-MoCsn3, and MoCsn12-GFP
225 immunoprecipitated complexes contained exportin-1 (MGG_03994). We also found
226 that importin subunit alpha (MGG_15072) interacted with MoCsn5-GFP,
227 MoCsn6-GFP, MoCsn7, and MoCsn12-GFP. Meanwhile, importin subunit beta-1
228 (MGG_03668) and importin subunit beta-3 (MGG_03537) were present in the
229 interaction complexes of all the CSN subunits tested (Figure 2G). Therefore, five
230 subunits (MoCsn3, MoCsn5, MoCsn6, MoCsn7, and MoCsn12) may interact with
231 exportins and play individual or overlapping roles in exporting other subunits and
232 associated cargo from the nucleus to cytoplasm in *M. oryzae*.

233 Additional co-immunoprecipitation and yeast two-hybrid analysis results revealed
234 dynamic physical interactions between MoCSN subunits in vivo (Figure 2H-O and
235 Table S1) and *in vitro* (Figure 2P-Q). We also demonstrated that truncation of the PCI
236 motif in MoCsn1 (MoCsn1^{ΔPCI}), MoCsn2 (MoCsn2^{ΔPCI}), and MoCsn7 (MoCsn7^{ΔPCI})
237 abolished the physical interaction between MoCsn1^{ΔPCI}-BD and MoCsn1-AD and

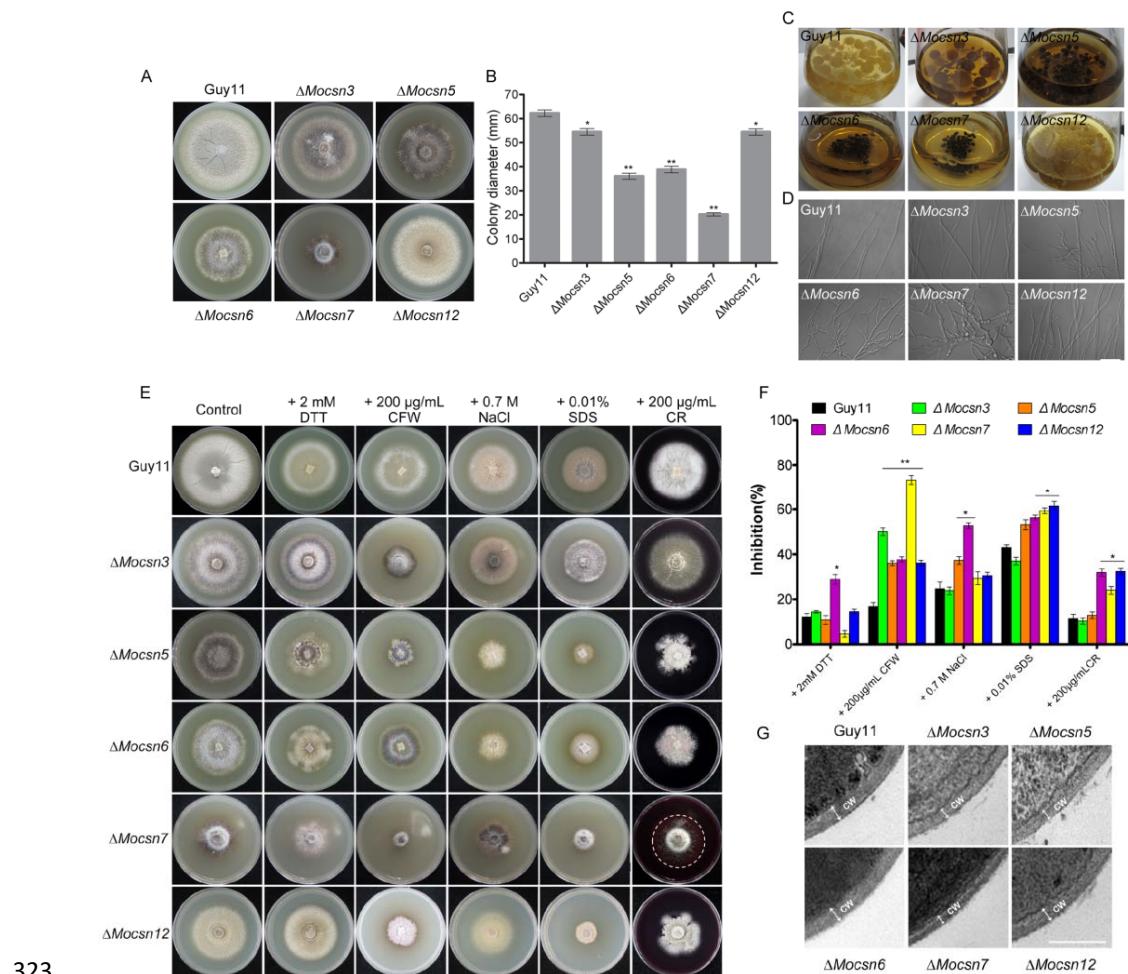
238 MoCsn5-AD; MoCsn2^{ΔPCI} and MoCsn4-AD, MoCsn5-AD, and MoCsn7-AD; and
 239 MoCsn7^{ΔPCI}-BD and MoCsn4-AD and MoCsn5-AD. Interestingly, truncation of the
 240 PCI motif in MoCsn4 triggered a physical interaction between MoCsn4^{ΔPCI}-BD and
 241 MoCsn1-AD. Deletion of the MPN motif led to a physical interaction between
 242 MoCsn6^{ΔMPN}-BD and MoCsn1-AD (Figure 2R-S). Based on these observations, we
 243 propose that the PCI and MPN domains, particularly the PCI domains in MoCsn1 and
 244 MoCsn2, play a crucial role in regulating the structural conformations required to
 245 facilitate the interaction network between CSN subunits in rice blast fungus.

247 **Figure 2** Detailed sequence feature analysis of individual CSN subunits and dynamic interaction
 248 network between CSN subunits and karyopherin protein family in *M. oryzae*. A, Schematic plot of NES

249 and NLS signal peptide in the individual subunit of the *M. oryzae* CSN complex. B, Aligned sequence
250 logo of NES signatures identified in MoCsn3, MoCsn5, MoCsn6, MoCsn7, and
251 MoCsn12. C, Localization pattern of *M. oryzae* CSN subunits with GFP fused to their
252 C-terminus (MoCsn-GFP) in vegetative hyphae of rice blast fungus. D-F, Co-localization of CSN
253 subunits with His-mCherry in aberrant conidia and pathogenic development of the rice blast pathogen.
254 G, Venn chart of proteins from the karyopherin family that interacts with the individual subunits of the
255 Csn complex in *M. oryzae*. H-O, Interaction architecture prevailing between individual subunits of the
256 MoCsn holocomplex based on mass spectrometry analysis. The interaction outlooks were constructed
257 with co-immunoprecipitation data obtained from three technical replicates. Only subunits recovered
258 from the immuno-complexes of the three replicates of the bait subunit are considered putative
259 interactors. P, Yeast-two-hybrid assay showing the growth paired subunits of the CSN complex on
260 synthetic defined minimal yeast media plates supplemented with Trp-Leu as a measure of interaction
261 between the paired subunits MoCsn-AD and MoCsn-BD *in vitro*. Q, Growth of yeast transformants
262 expressing the MoCsn-AD and MoCsn-BD on SD supplemented with
263 Trp-Leu-His-Ade+ α -gal. R, Yeast-two-hybrid assay showing the growth paired subunits of the CSN
264 complex on SD minimal yeast media plates supplemented with Trp-Leu as a measure of interaction
265 between the paired subunits MoCsn-AD and the domain deletion BD vector of MoCsn *in*
266 *vitro*. S, Growth of yeast transformants expressing the MoCsn-AD and the domain deletion BD vector
267 of MoCsn on SD supplemented with Trp-Leu-His-Ade+X- α -gal. Asterisks (*) represent *M.*
268 *oryzae* CSN subunits with significantly high NES scores (≥ 0.7). Bar = 10 μ m.
269

270 **Targeted gene deletion of NES and NLS motif-containing CSN complex subunits**
271 **suppressed morphological development and compromised cell wall integrity and**
272 **stress tolerance in *M. oryzae***

273 Using homologous recombination, we successfully generated targeted gene
274 deletion strains of *MoCSN7* and other subunits containing an NES signal motif,
275 including *MoCSN3*, *MoCSN5*, *MoCSN6*, and *MoCSN12*. The targeted gene deletion
276 strains generated for the five subunits selected for functional characterization analyses
277 in this study, along with their respective complementation strains, were confirmed by
278 Southern blotting assays (Figure S2A-E).


279 Comparative colony diameter analyses showed that while targeted gene
280 replacement of *MoCSN3* and *MoCSN12* caused a substantial but non-significant
281 reduction in the colony diameter of the Δ *Mocsn3* and Δ *Mocsn12* strains, targeted gene
282 replacement of *MoCSN5*, *MoCSN6*, and *MoCSN7* caused a significant reduction in the
283 vegetative development of the individual deletion strains, particularly in Δ *Mocsn7*
284 (Figure 3A-B). We also observed hyper-melanization in the Δ *Mocsn3*, Δ *Mocsn5*,
285 Δ *Mocsn6*, and Δ *Mocsn7* strains cultivated with solid and liquid CM (Figure 3C).

286 Further microscopy-based morphological assessment of vegetative hyphae
287 produced by individual gene deletion strains revealed that MoCsn5, MoCsn6, and
288 MoCsn7 positively regulate hyphal morphogenesis in *M. oryzae*. Hence, targeted gene
289 disruption of *MoCSN5*, *MoCSN6*, and particularly *MoCSN7* triggered hyper-hyphal
290 branching and severely compromised the morphology of vegetative hyphae produced
291 by the Δ *Mocsn5*, Δ *Mocsn6*, and Δ *Mocsn7* strains (Figure 3D). Furthermore,
292 reintroducing full-length coding sequences for individual *MoCSN* genes into their
293 corresponding mutant strains fully rescued the vegetative growth defects observed in
294 the individual Δ *Mocsn* strains (Figure S3A-B). These results show that although the
295 NLS and NES signal peptide motif-containing subunits of the CSN complex are not
296 essential for the direct survival of rice blast fungus, MoCsn5, MoCsn6, and MoCsn7
297 play essential roles in the normal morphological differentiation and vegetative
298 development of *M. oryzae*.

299 Sensitivity assessment of the individual strains to selected osmolytes showed that
300 targeted deletion of *MoCSN3*, *MoCSN5*, *MoCSN6*, *MoCSN7*, and *MoCSN12* generally
301 compromised the stress tolerance of *M. oryzae* and rendered defective strains
302 particularly sensitive to CFW and SDS. In addition, we observed that only targeted
303 disruption of the *MoCSN7* gene compromised cell wall integrity and resulted in leakage
304 of cell wall-associated enzymes during the growth of the Δ *Mocsn7* strains on CM
305 supplemented with CR. We also observed that, except for Δ *Mocsn6*, the other defective
306 strains, particularly Δ *Mocsn7*, exhibited profound immunity against ER-associated
307 reductive stress-inducing agents (Figure 3E-F and Figure S4). These results indicate

308 that individual subunits of the CSN complex exert different influences on reductive and
309 oxidative stress tolerance in *M. oryzae*.

310 Based on these observations, we hypothesized that MoCsn7 plays a core role in
311 promoting oxidative stress tolerance in rice blast fungi by regulating the activities of
312 cell wall biogenesis enzymes. To validate this position, we observed the cell wall
313 texture of individual strains under a transmission electron microscope. Transverse
314 cross-sections of vegetative hyphae cells from the *MoCSN3*, *MoCSN5*, *MoCSN6*,
315 *MoCSN7*, and *MoCSN12* defective strains and wild-type strains revealed the formation
316 of a thinner cell wall in the Δ *Mocsn3*, Δ *Mocsn5*, and Δ *Mocsn7* strains compared to the
317 texture of the cell wall observed in Δ *Mocsn6*, Δ *Mocsn12*, and the wild-type strains
318 (Figure 3G). The attenuation in cell wall texture and the leakage of hydrolytic enzymes,
319 as manifested in the circular watermark preceding the hyphae growth front of the
320 Δ *Mocsn7* strains grown on CR, partly confirms that the MoCsn7 subunit plays a direct
321 or indirect role in promoting cell wall integrity and oxidative or cell wall responsive
322 stress tolerance in *M. oryzae*.

323

324 **Figure 3** The impact of individual CSN subunit deletion on vegetative growth, hyphal branching, stress
325 tolerance, cell membrane, and cell wall integrity in *M. oryzae*. A, Comparative vegetative growth and
326 colony morphology of Δ Mocsn3, Δ Mocsn5, Δ Mocsn6, Δ Mocsn7, Δ Mocsn12, and the strain grown on
327 CM for 10 days. B, A statistical representation of average colony diameters for the individual strains
328 grown on CM for 10 days. C, Hyper-melanization of the Δ Mocsn3, Δ Mocsn5, Δ Mocsn6, and
329 Δ Mocsn7 strains compared to that of the Δ Mocsn12 and the wild-type strains. Individual strains were
330 cultured in liquid CM and incubated under optimum growth conditions for 3 days. D, Micrograph
331 showing the impact of targeted gene deletion of MoCSN3, MoCSN5, MoCSN6, MoCSN7,
332 and MoCSN12 on hyphal branching in *M. oryzae*. Bar = 10 μ m. E, The colony morphology of
333 Δ Mocsn3, Δ Mocsn5, Δ Mocsn6, Δ Mocsn7, Δ Mocsn12, and the wild-type strains cultured on CM
334 medium supplemented independently with 2 mM DTT, 200 μ g/mL CFW, 0.7 M NaCl, 0.01% SDS and
335 200 μ g/mL CR. F, A statistical representation of the inhibitory effects of individual stress-inducing
336 osmolytes on the vegetative development of Δ Mocsn3, Δ Mocsn5, Δ Mocsn6, Δ Mocsn7, Δ and

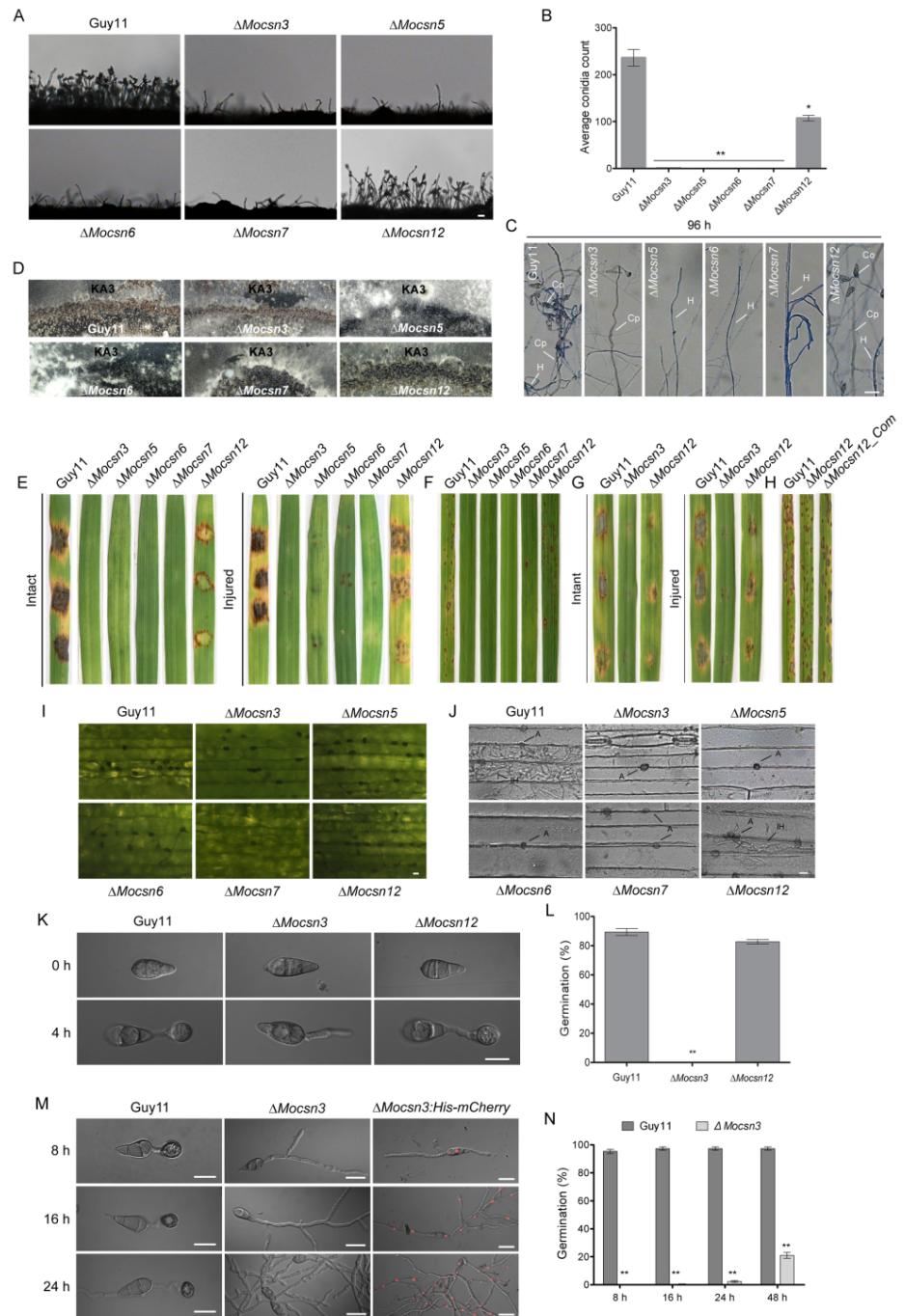
337 *Mocsn12* strains compared to the wild-type strains. G, Transmission electron microscopy images
338 showing the morphological architecture of hyphae cells in wild-type strain compared to that of the
339 individual gene deletion strains of the *MoCSN* complex. Bar =0.5 μ m. Statistical analyses in “B” were
340 performed with consistent results obtained from three biological replicates, each consisting of three
341 technical replicates. Error bars represent the standard deviation between replicates, while single (“*”)
342 and double (“**”) asterisks represent a statistically significant difference of ($P \leq 0.05$) and ($P \leq 0.01$),
343 respectively.

344

345 **Targeted disruption of genes coding for NLS/NES-containing subunits of the**
346 **MoCSN complex differentially compromise sexual/sexual reproduction and**
347 **pathogenicity/virulence in *M. oryzae***

348 Although previous studies have shown that CSN-dependent photomorphogenesis
349 crucially regulates asexual sporulation in *Neurospora*(Zhou et al., 2012), the
350 contribution of the CSN complex to reproductive development in plant pathogenic
351 fungi, including globally destructive rice blast pathogens, has not been extensively
352 examined. Conidiation assays revealed that while targeted gene replacement
353 of *MoCSN3* and *MoCSN12* triggered a significant reduction in asexual reproduction,
354 targeted disruption of *MoCSN5*, *MoCSN6*, and *MoCSN7* completely abolished asexual
355 sporulation (Figure 4A-B). However, we observed that the individual subunits of the
356 MoCSN complex investigated in this study were indispensable for conidiophore
357 genesis in rice blast fungus (Figure 4C). We conclude that NLS/NES motif-containing
358 subunits (and, by extension, the CSN complex) likely promote asexual sporulation in *M.*
359 *oryzae* by modulating pathways or processes independent of conidiophore formation.

360 Additionally, we evaluated sexual sporulation in the $\Delta Mocsn3$, $\Delta Mocsn5$,
361 $\Delta Mocsn6$, $\Delta Mocsn7$, and $\Delta Mocsn12$ strains compared to the wild-type strain using
362 pairwise inoculation of the individual strains with the mating-type KA3 strain on oat
363 agar (OA) culture media. Somatotype microscopy examination of the mating
364 compatibility of the individual strains with KA3 strains revealed the formation of
365 perithecia at the intersection zones in $\Delta Mocsn3$ and KA3, $\Delta Mocsn5$ and
366 KA3, $\Delta Mocsn7$ and KA3, and $\Delta Mocsn12$ and KA3, indicating mating compatibility


367 between the respective defective strains and the KA3 strain. However, the $\Delta Mocsn6$
368 and KA3 strains failed to form perithecia at convergence (Figure 4D). These results
369 indicate that MoCsn5, MoCsn6, and MoCsn7 likely play overlapping roles in
370 promoting the asexual development of rice blast fungus. We also speculate that
371 MoCsn6 likely forms a complex with other CSN subunits to modulate the progression
372 of sexual development in *M. oryzae*.

373 We showed that, except for *MoCSN12*, targeted gene disruption
374 of *MoCSN3* caused a 98% reduction in asexual sporulation in $\Delta Mocsn3$ strains,
375 whereas $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn7$ strains completely lost their asexual
376 sporogenesis abilities. Therefore, to assess the significance of the
377 individual *MoCSN* genes in the pathogenicity and virulence of *M. oryzae*, mycelia
378 obtained from the wild-type, $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, $\Delta Mocsn12$, and
379 complementation strains cultured in CM for 3 days were used to inoculate the leaves of
380 7-day old blast-susceptible barley (Golden promise cultivar) seedlings. At the same
381 time, 14-day-old seedlings of the homogeneous blast-susceptible CO39 rice cultivar
382 were spray-inoculated with suspensions of mycelia obtained from individual strains.
383 We observed that while $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn7$ failed to initiate
384 hyphae-mediated blast infection on “intact” and injured leaves of barley and rice
385 seedlings, the $\Delta Mocsn12$ strain caused blast lesions in both barley and rice seedlings.
386 However, the blast symptoms caused by the $\Delta Mocsn12$ strain were less severe than
387 those of the wild-type and complementation strains (Figure 4E-F). Conidia harvested
388 from the $\Delta Mocsn3$, $\Delta Mocsn12$, and wild-type strains were used for spore suspension
389 drop-inoculation ($\Delta Mocsn3$, $\Delta Mocsn12$, and the wild-type) and spray ($\Delta Mocsn12$ and
390 Guy11) inoculation of susceptible CO39 rice seedlings. Records from
391 conidia-mediated infection assays confirmed that targeted deletion
392 of *MoCSN3* rendered the $\Delta Mocsn3$ strains non-pathogenic, while *MoCSN12* deletion
393 suppressed the virulence of rice blast fungus (Figure 4G-H).

394 To unravel the possible link between subunits of the CSN complex and the
395 pathogenesis of *M. oryzae*, we monitored pathogenic differentiation in the individual
396 defective strains by comparatively examining the formation of hyphal-tip

397 appressorium-like structures in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn7$
398 strains inoculated on barley leaves. We also assayed conidia-associated appressorium
399 formation in conidia obtained from $\Delta Mocsn3$, $\Delta Mocsn12$, and wild-type strains on
400 appressorium-inducing hydrophobic coverslips. The results of these investigations
401 revealed that targeted gene replacement of *MoCSN3*, *MoCSN5*, *MoCSN6*, *MoCSN7*,
402 and *MoCSN12* had no visible adverse effects on the formation and maturation of
403 hyphae-tip appressorium-like structures in *M. oryzae* (Figure 4I). Although
404 histopathological bioassays showed that the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and
405 $\Delta Mocsn7$ strains could form fully melanized hyphae-tip appressorium-like structures
406 during pathogen-host interaction (PHI), these appressorium-like structures could not
407 differentiate into penetration pegs and were unable to invade the epidermal tissues of
408 the host plant. The $\Delta Mocsn12$ strain, on the other hand, produced functional penetration
409 pegs and actively invaded the host cells. However, the tissue colonization efficiency
410 (virulence) of $\Delta Mocsn12$ was drastically reduced compared to that of the wild type
411 (Figure 4J).

412 Furthermore, we demonstrated that the *MoCSN12* deletion had no adverse effects
413 on conidial germination and appressoria morphogenesis in the $\Delta Mocsn12$ strain (Figure
414 4K-L). However, targeted disruption of *MoCSN3* delayed the onset of conidia
415 germination, compromised the polarized development of germ tubes, triggered
416 hyper-branching of germ tubes, and severely suppressed appressorium formation in the
417 $\Delta Mocsn3$ strain (Figure 4M-N). From these results, we concluded that the NLS/NES
418 domain-containing subunits of the CSN complex promote the pathogenicity and
419 virulence of rice blast fungus, possibly by regulating multiple pathways with the
420 pathogenic development of filamentous fungal pathogens.

421

422 **Figure 4** Targeted gene disruption of *MoCSN* subunits attenuated sporulation, pathogenicity, virulence,
 423 and pathogenic differentiation in rice blast fungus. A, The micrograph represents a comparative
 424 microscopic assessment of conidiophore formation upon deleting individual *MoCSN* subunits and the
 425 wild-type strain exposed to light 24 h after the vegetative growth phase. Bar =20 μ m. B, Statistical
 426 analysis of conidiation in individual CSN subunit complementation strains. C, Examination of
 427 conidiophore formation in the Δ *Mocsn3*, Δ *Mocsn5*, Δ *Mocsn6*, Δ *Mocsn7*, and Δ *Mocsn12* strains

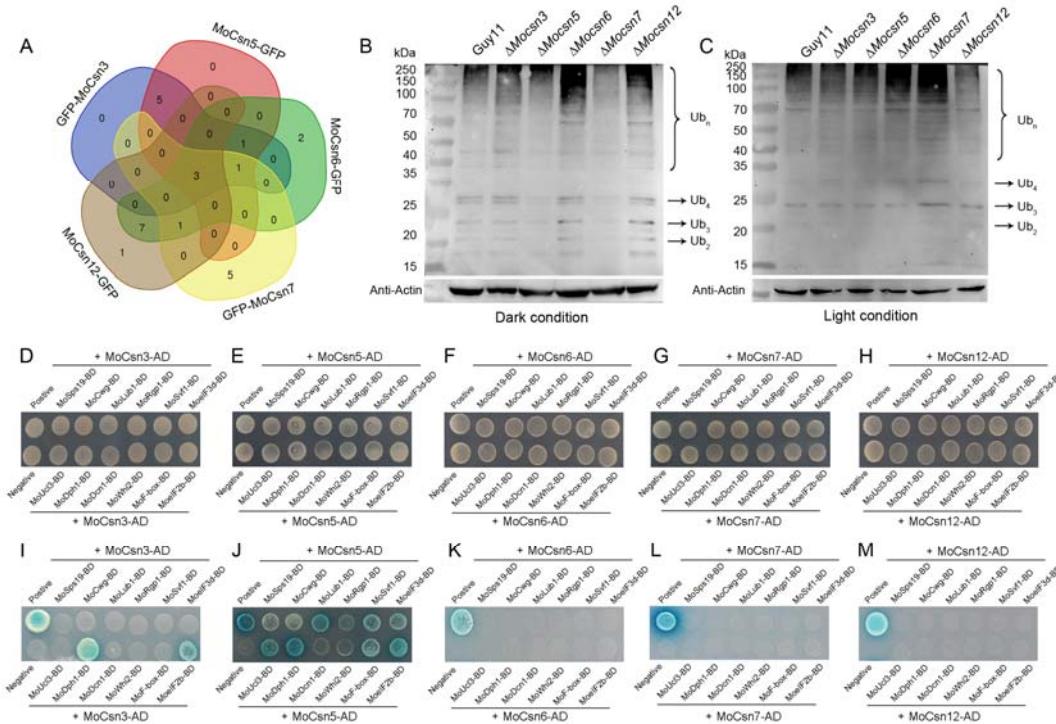
428 compared to wild-type strains at 96 h after induction of conidiogenesis. The strains were treated with
429 lactophenol cotton blue solution to differentiate conidiophores from vegetative hyphae and conidia. Bar
430 =20 μ m. D, Sexual sporulation in strains defective for CSN genes crossed with compatible mating-type
431 strain KA3 mating-inducing culture media for 3 weeks. E, Hyphae-mediated infection characteristics of
432 individual defective strains on intact and injured leaves excised from barley seedlings 7 days
433 post-inoculation (dpi). F, Infection results were obtained from the inoculation of 3-week-old CO39 rice
434 cultivars with mycelia suspensions prepared with mycelium from the individual defective strains 7 dpi.
435 (G-H) Conidia-mediated infection characteristics of Δ *Mocsn3*, Δ *Mocsn12*, and the wild-type strains
436 against barley and CO39 rice cultivars. Excised barley leaves were drop-inoculated with 20 μ L spore
437 suspension, while the CO39 rice seedlings were spray-inoculated with the spore suspensions. I,
438 Comparative formation of appressorium-like structures in the *MoCSN* defective strains and the
439 wild-type on inoculated barley leaves after 3 dpi. J, The histopathogenicity assay shows penetration
440 characteristics of the targeted gene deletion strains generated for individual subunits of the
441 *MoCSN* complex inoculated on barley leaves for 48 h compared to the wild-type. “A and IH” represent
442 appressorium, and invasive hyphae, respectively. K, The micrograph portrays conidia germination and
443 appressorium formation in the Δ *Mocsn3* and Δ *Mocsn12* strains inoculated on hydrophobic slides 4 hpi
444 compared to the wild-type strains. White Bar = 10 μ m magnification. L, Statistical presentation of
445 results obtained from conidia germination and appressorium formation in the Δ *Mocsn3*,
446 Δ *Mocsn12*, and the wild-type strains observed and counted under a light microscope. M, Delayed
447 formation and hyper-germ tube branching in Δ *Mocsn3* strains inoculated on hydrophobic slides after
448 extended periods of 8, 16, and 24 hpi. Bar = 10 μ m. N, Statistical presentation of results obtained from
449 appressorium formation in the Δ *Mocsn3* strain after extended periods of 8, 16, and 24 hpi on
450 hydrophobic slides compared to the wild-type strains. Statistical analyses were performed using results
451 from three independent biological experiments, with each consisting of three technical replicates. The
452 error represents standard deviation, while single “*” and double “**” asterisks represent a significant
453 difference of ($P \leq 0.05$) and ($P \leq 0.01$), respectively.

454

455 **MoCsn6 and MoCsn7 are essential for photo-dependent ubiquitin homeostasis in**
456 ***M. oryzae***

457 Given the profound upregulation in the transcription levels of genes linked to the
458 SCF pathway, we determined whether NLS/NES motif-containing subunits of the CSN
459 complex physically interact with components of the SCF complex. First, we searched
460 for SCF complex-associated proteins in the interactome library generated. Of the 23
461 SCF complex-associated proteins recovered from the co-immunoprecipitation
462 complexes of the individual subunits, 2/26, 5/26, and 1/26 co-immunoprecipitated
463 exclusively with MoCsn6-GFP, GFP-MoCsn7, and MoCsn12-GFP, respectively.
464 Furthermore, we observed that 5/26, 7/26, 1/26, 1/26, and 1/26 ubiquitin
465 pathway-associated proteins were exclusively present in the immuno-complexes of
466 GFP-MoCsn3 and MoCsn5-GFP; MoCsn6-GFP and MoCsn12-GFP; GFP-MoCsn3,
467 MoCsn5-GFP, and MoCsn6-GFP; GFP-MoCsn3, MoCsn5-GFP, MoCsn6-GFP, and
468 GFP-MoCsn7; and GFP-MoCsn3, MoCsn5-GFP, MoCsn6-GFP, and GFP-MoCsn3,
469 respectively. In addition, 3/26 SCF-associated proteins were recovered as common
470 interaction proteins of GFP-MoCsn3, MoCsn5-GFP, MoCsn6-GFP, GFP-MoCsn7,
471 and MoCsn12-GFP (Figure 5A). These results suggest that, among the five CSN
472 subunits investigated in this study, MoCsn7 potentially assumes a more extensive
473 regulatory role in the progression of protein ubiquitination and degradation events in *M.*
474 *oryzae*.

475 Generally, the COP9-signalosome complex facilitates the termination of
476 ubiquitination by decoupling neddylasses from the Cullen protein(Suisse *et al.*, 2018).
477 Therefore, total proteins were extracted from the Δ MoCsn3, Δ MoCsn5, Δ MoCsn6,
478 Δ MoCsn7, Δ MoCsn12, and the wild-type strains cultured independently under
479 continuous light and dark conditions for 3 days were used for a comparative
480 examination of poly-ubiquitination levels in the individual strains by performing
481 anti-ubiquitin antibody blotting assays. This provided further insight into the direct
482 impacts of *MoCSN3*, *MoCSN5*, *MoCSN6*, *MoCSN7*, and *MoCSN12* gene deletions on
483 the progression of the ubiquitination process in rice blast fungus, the possible link
484 between CSN dysfunction, and the observed upregulation in the expression pattern of
485 genes coding for SCF pathway-associated proteins, especially in the Δ MoCsn6 and
486 Δ MoCsn7 strains. The results obtained from the ubiquitination assessment assays


487 revealed a substantial decrease in the accumulation of ubiquitin in the $\Delta Mocsn7$ and
488 $\Delta Mocsn5$ strains under dark conditions compared to the remarkable accumulation of
489 ubiquitin in the wild-type and the other defective strains, particularly the $\Delta Mocsn6$
490 strain under the same culture conditions (Figure 5B). Interestingly, the accumulation of
491 ubiquitin in the $\Delta Mocsn7$ strain was substantially enhanced and higher than that
492 observed in the wild-type, $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn12$ strains under
493 continuous light conditions (Figure 5C). Based on these observations, we reasoned that
494 MoCsn6 likely acts in tandem or combined with other subunits to facilitate
495 ubiquitination under photo-deficient conditions. The MoCsn7 subunit promotes the
496 progression of photogenic ubiquitination in *M. oryzae*.

497 Subsequently, we performed RT-qPCR assays to validate the expression of genes
498 coding for ubiquitination pathway-associated proteins. This included
499 deubiquitination-protection protein dph1(MoDPH1), ubiquitin homeostasis protein
500 lub1(MoLUB1), defective in Cullin neddylation protein 1 (MoDCN1), ubiquitin
501 C-terminal hydrolase L3 (MoUCL3), ubiquitin-conjugating enzyme (MoUCE), E3
502 ubiquitin-protein ligase ptr1 + RNA transporter 1 (MoPTR1), ubiquitin
503 carboxyl-terminal hydrolase 6 (MoUCL6), SCF E3 ubiquitin ligase complex F-box
504 protein grrA (MoGRRA), and ESCRT-I component (MoESCRT1); genes coding for
505 putative interacting karyopherin proteins (RanBPM/MoBPM, transportin-2/MoTSP2,
506 exportin-1/MoEXP1, and ranGTPase-activating protein 1/MoRGP1); and genes coding
507 for putative interactors we perceived to directly, or indirectly associate with the
508 physiological and pathological defects observed in the defective strains, including
509 eukaryotic translation initiation factor3 subunit D (MoeIF3D), survival factor protein 1
510 (MoSVF1), translation initiation factor eIF-2B subunit alpha (MoeIF2B), UV excision
511 repair protein Rad23 (MoRad23), stress-induced phosphoprotein 1 (MoSIP1),
512 sporulation protein SPS19 (MoSPS19), general stress response protein Whi2
513 (MoWHI2), and cell wall glucanosyltransferase (MoCWG) recovered from the
514 immuno-complex of the individual CSN subunits investigated in this study. Compared
515 to *MoCSN3*, *MoCSN5*, *MoCSN6*, and *MoCSN12* we observed that targeted gene
516 replacement of *MoCSN7* significantly inhibited the expression of genes coding for

517 *MoDPH1*, *MoLUB1*, *MoDCN1*, *MoBPM*, *MoUCL3*, *MoPTR1*, *MoSIP1*, *MoSPS19*, and
518 *MoCWG* (Figure S5A-B). In addition, yeast two-hybrid bioassays revealed direct
519 interactions between MoCsn3-AD and MoDph1-BD, MoCsn3-AD and MoeIf2b-BD,
520 MoCsn5-AD and MoUcl3-BD, MoCsn5-AD and MoDph1-BD, MoCsn5-AD and
521 MoLub1-BD, and MoCsn5-AD and MoeIf2b-BD. Interestingly, none of the selected
522 proteins directly interacted with MoCsn7 *in vitro* (Figure 5F-J). We hypothesized that
523 the regulation of downstream substrates of the CSN complex, including MoDPH1,
524 MoLub1, MoDcn1, MoBpm, MoUcl3, MoPtr1, Moip1, MoSps19, and MoCwg, by the
525 MoCsn7 subunit is likely not mediated by physical interaction. Hence, targeted gene
526 disruption of *MoCSN7* attenuates the transduction of upstream signals required for
527 optimum transcription.

528 To validate this hypothesis, MoLub1, MoDcn1, and MoSps19 were independently
529 expressed in the Δ *Mocsn3*, Δ *Mocsn5*, and Δ *Mocsn7* strains under the constitutive
530 ribosomal protein 27 (RP27) promoter(Dong et al., 2009). Results obtained from the
531 phenotypic evaluation of individual strains harboring the MoDcn1, MoLub1, and
532 MoSps19 overexpression constructs showed that constitutive expression of MoDcn1,
533 MoLub1, and MoSps19 resulted in the substantial but differential restoration of growth
534 and conidiation defects associated with MoCsn3, MoCsn5, MoCsn6, MoCsn7, and
535 MoCsn12 defective strains. Overexpression of MoDcn1 and MoSps19 also abolished
536 hyper-melanization exclusively in the Δ *Mocsn7* strains. Meanwhile, overexpression of
537 MoDcn1 in the wild-type strain triggered a remarkable reduction in the conidiation
538 characteristics of the Guy11-MoDcn1-OE strains (Figure S5C-E). Finally, the
539 constitutive expression of MoDcn1 exclusively rescued the pathogenicity defects in the
540 Δ *Mocsn3* and Δ *Mocsn5* strains (Figure S5F). Therefore, we conclude that the CSN
541 complex subunits, particularly MoCsn7, positively promote morphogenesis and
542 conidiogenesis in rice blast fungus, partly through transcriptional or post-translational
543 regulation of downstream genes coding for substrate proteins associated with the SCF
544 pathway, including *MoDCN1*, *MoLUB1*, and *MoSPS19*. We further suggest that
545 MoDcn1 may be under internal feedback regulation in rice blast fungi for optimum
546 conidiogenesis.

547

548

549 **Figure 5** The interaction network between NLS/NES motif containing CSN subunits and SCF
550 pathway-associated proteins and the impact of NLS/NES motif containing dysfunctional CSN
551 subunits on ubiquitination processes in *M. oryzae*. A, The Venn chart showing the number of
552 SCF-associated proteins recovered from immuno-complexes of the individual NLS/NES
553 motif-containing subunits of the MoCSN complex. B-C, Western-blot image showing ubiquitination
554 levels in the Δ Mocsn3, Δ Mocsn5, Δ Mocsn6, Δ Mocsn7, Δ and Δ Mocsn12 strains compared to the
555 wild-type strains in response to dark and light treatment. D-H, Yeast-two-hybrid assay showing the
556 growth of NLS/NES motif containing CSN subunits paired with SCF pathway-associated proteins on
557 synthetic defined minimal yeast media plates supplemented with Trp-Leu to monitor the likely
558 existence of physical interaction between the paired subunits MoCsn-AD and MoSCF-BD *in vitro*. I-M,
559 Yeast-two-hybrid assay showing the growth of NLS/NES motif containing CSN subunits paired with
560 SCF pathway-associated proteins on synthetic defined minimal yeast media plates supplemented with
561 Trp-Leu-His-Ade+X- α -gal to monitor the likely existence of physical interaction between the paired
562 subunits MoCsn-AD and MoSCF-BD *in vitro*.

563

564 **Comparative non-targeted metabolomic assessment of CSN dysfunction on**

565 **metabolomic differentiation in *M. oryzae***

566 With the fundamental knowledge that light-responsive reactions have a
567 far-reaching influence on the progression of metabolic and cellular processes, we
568 evaluated the impact of targeted gene replacement of selected NLS/NES
569 motif-containing subunits of the CSN signalosome complex on metabolomic
570 differentiation in rice blast fungus. Total crude extracts were obtained from the
571 mycelia of the $\Delta Mocsn3$ strains (representing a reduction in conidiation exclusively),
572 $\Delta Mocsn5$ strains (representing multiple phenotypic defects, including loss of
573 pathogenicity, sporulation, photoperiodism, and growth), and $\Delta Mocsn7$ strains (to
574 exclusively represent strains with defects in stress tolerance). Extracts obtained from
575 the individual strains were used for QTOF-UPHPLC-assisted non-targeted
576 metabolomic profiling(Norvienyeku et al., 2021). In total, 139, 408, 204, and 199
577 metabolites were exclusively recorded in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn7$, and
578 Guy11 strains, respectively. $\Delta Mocsn3$, $\Delta Mocsn5$, and $\Delta Mocsn7$ shared 48 metabolites,
579 while $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn7$, and Guy11 strains had 1364 metabolites in
580 common (Table S2). Further principal component analyses (PCA) showed that the
581 recorded metabolites were consistently present in at least five of the six independent
582 repeats (Figure S6A-B) and confirmed the reliability of the total mycelium
583 metabolome data generated for the individual strains in this study.

584

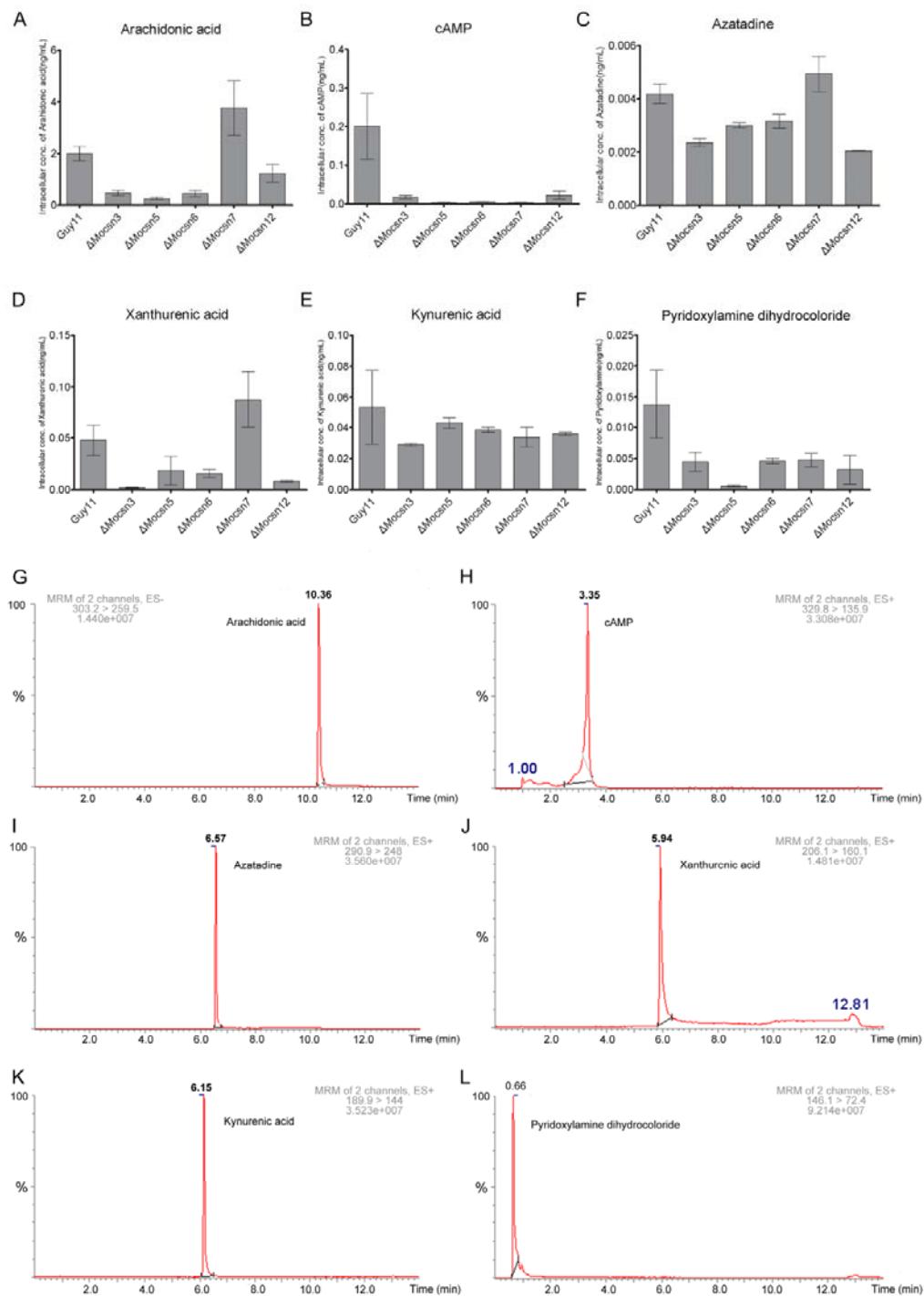
585 **Targeted gene deletion of *MoCSN3*, *MoCSN5*, and *MoCSN7* suppressed the
586 generation of metabolites associated with key catabolism and metabolism
587 pathways in *M. oryzae***

588 Membrane-associated saturated fatty acids significantly contribute to enforcing
589 membrane integrity and protecting cells against leakage(Oberhauser et al., 2020). In
590 *Saccharomyces cerevisiae*, disruption of CSN5 caused a significant reduction in
591 ergosterol levels and severely accelerated the membrane's permeability to monovalent
592 and divalent cations(Licursi et al., 2014).

593 Comparative non-targeted metabolomic analyses showed that targeted gene
594 deletion of *MoCSN3*, *MoCSN5*, and *MoCSN7* triggered an imbalance in the generation

595 and enrichment of metabolites associated with essential fatty acid metabolism
596 pathways in rice blast fungus. We observed that targeted gene disruption
597 of *MoCSN3*, *MoCSN5*, and *MoCSN7* triggered the upregulation of metabolites
598 associated with linoleic acid and sphingolipids. However, metabolites associated with
599 arachidonic acid, saturated fatty acid, purine, secondary metabolite biosynthesis, and
600 amino acid metabolic pathways were downregulated in the metabolomes of the
601 Δ *Mocsn3*, Δ *Mocsn5*, and Δ *Mocsn7* strains. In addition, the generation of metabolites
602 associated with pyrimidine, oxidative phosphorylation, and the TCA-cycle pathways
603 was suppressed exclusively in the Δ *Mocsn7* strains (Figure S7A-F). Furthermore,
604 intra-mutant strain pathway enrichment analyses showed relatively higher enrichment
605 of metabolites associated with amino acids (arginine, alanine, aspartate, glutamate,
606 proline, lysine, threonine, serine, glycine, phenylalanine, and tyrosine) in the
607 metabolome of the Δ *Mocsn7* strains compared to other CSN defective strains (Figure
608 S7G-L). From these observations, we propose that the CSN signalosome complex
609 positively regulates the cross-talk between diverse metabolic and catabolic pathways
610 in *M. oryzae*.

611


612 **The addition of metabolites down-regulated in MoCSN defective strains can
613 partially rescue conidiation defects associated with Δ *Mocsn* strains**

614 Differential metabolomic analyses revealed that targeted gene replacement
615 of *MoCSN3*, *MoCSN5*, and *MoCSN7* triggered a significant reduction in the
616 enrichment of fatty acids and fatty acid derivatives, including eicosapentaenoic acid,
617 prostaglandin b1, tretinoin, choline, cAMP, and succinate. In addition, the arachidonic
618 acid levels were significantly inhibited in the metabolomes of Δ *Mocsn3* and
619 Δ *Mocsn5* (Figure S7A-L). Additionally, we observed that interference in the CSN
620 signalosome complex significantly suppressed the abundance of cytidine, uridine,
621 adenosine monophosphate (AMP), and xanthine/hypoxanthine (derivatives of
622 nucleotide biosynthesis and pyrimidine degradation pathways) in rice blast fungus

623 (Figure 6A-B). Further targeted metabolomic analyses confirmed a substantial decrease
624 in intracellular levels of cAMP and pyridoxamine. However, the intracellular levels of
625 arachidonic acid, xanthurenic acid, and azatadine were higher in the $\Delta Mocsn7$ strain
626 than in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn12$, and wild-type strains (Figure
627 6C-N)

628 To ascertain whether the observed suppression in the generation of these
629 metabolites is the limiting factor for growth, conidiation, stress tolerance, and
630 pathogenic defects observed in the individual CSN subunit-defective strains, we
631 assessed growth and conidiation in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$,
632 $\Delta Mocsn7$, and $\Delta Mocsn12$ strains cultured on CM supplemented independently with
633 compounds that were differentially downregulated in the $\Delta Mocsn3$, $\Delta Mocsn5$,
634 and $\Delta Mocsn7$ strains. The compounds used included arachidonic acid, cytidine, cAMP,
635 xanthan, choline, uridine, kynurenine, and compounds that were exclusively present in
636 the hyphae metabolome of the $\Delta Mocsn7$ strains, including quinoline, hydroxycinnamic
637 acid, uric acid, 5-hydroxytryptamine, hydrochlorothiazide, glimepiride, milrinone,
638 Raffinose, phosphoric acid, 4-hydroxy-3-methoxybenzyl alcohol, 5'-guanylic acid,
639 equol, deoxycytidine, 5-hydroxytryptamine, nitrocatechol, mandelic acid, uridine
640 monophosphate, quabbin, and phthalic acid. The results obtained from these bioassays
641 showed that exogenous inclusion of 4-hydroxy-3-methoxybenzyl alcohol, 5'-guanylic
642 acid, and equol caused a reduction in the vegetative growth of the wild-type strain and
643 further aggravated the growth defects associated with the $\Delta Mocsn6$,
644 $\Delta Mocsn7$, and $\Delta Mocsn12$ strains. Milrinone and quinoline exclusively restored
645 conidiation defects associated with the $\Delta Mocsn3$, $\Delta Mocsn5$, and $\Delta Mocsn6$ strains.
646 Deoxycytidine, uric acid, nitrocatechol, UMP, phthalic acid, and glimepiride
647 selectively restored conidiation in the $\Delta Mocsn3$, $\Delta Mocsn5$, and $\Delta Mocsn6$ strains.
648 Interestingly, these compounds failed to reverse the conidiation defects in the $\Delta Mocsn7$
649 strain (Table S3). In addition, we observed that saturated fatty acids and compounds
650 upstream of metabolism and catabolism pathways, including arachidonic acid, linoleic
651 acid, prostaglandin, oleic acid, pyrimidine, and choline, failed to rescue growth and
652 conidiation defects associated with individual CSN gene deletion strains. Accordingly,

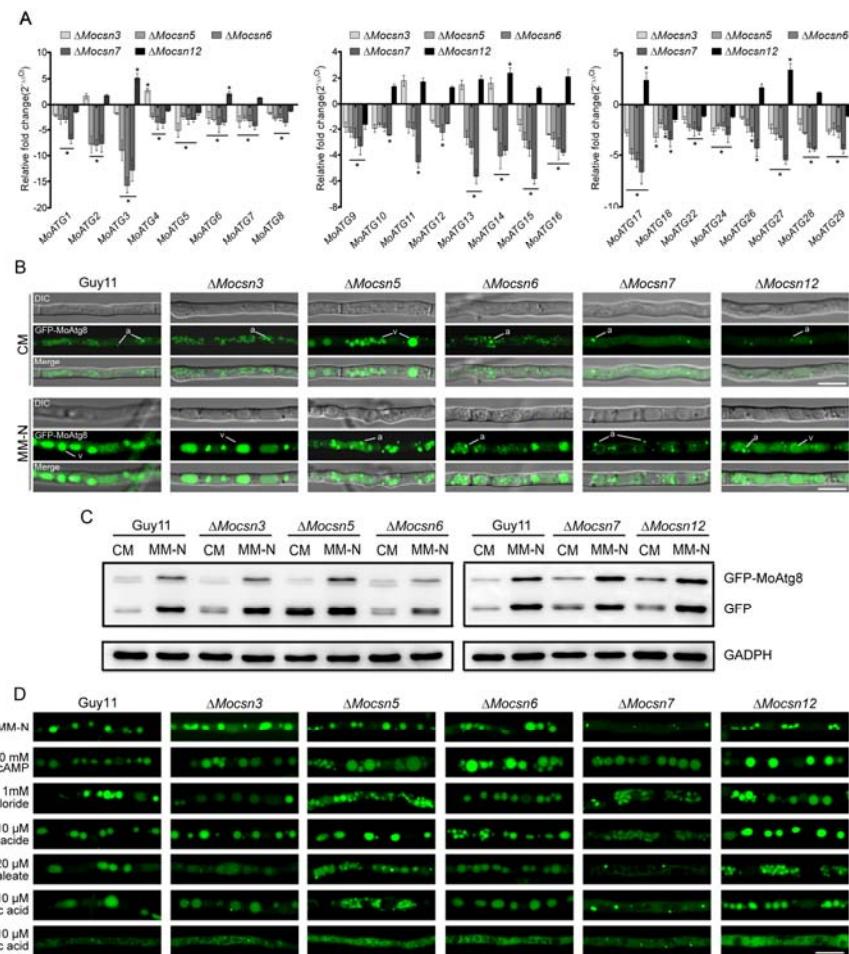
653 we concluded that the CSN signalosome complex positively affects conidiogenesis in
654 filamentous fungi through the synergistic regulation of diverse metabolic pathways.
655 Furthermore, we reasoned that the physical presence of the *MoCSN7* subunit is
656 essential for the biosynthesis of fatty acids and pyrimidine derivatives required to drive
657 conidiation in *M. oryzae*.

658

659 **Figure 6** Targeted gene replacement of selected CSN subunits caused metabolome imbalance and
 660 severely suppressed the generation of cAMP in the Δ Mocsn strains. A, The heat-map cluster represents
 661 the abundance and intensity of metabolites in the Δ Mocsn3, Δ Mocsn5, and Δ Mocsn7 strains compared to
 662 the wild-type strains collected in the positive (Pos.+) ionization mode. B, The heat-map clusters

663 representing the abundance intensity of metabolites recorded in the $\Delta Mocsn3$, $\Delta Mocsn5$, and
664 $\Delta Mocsn7$ strains compared to the wild-type strains collected in the negative (Neg.-) ionization mode.
665 C-N, Results from chromatographic quantification of selected and differentially expressed signaling
666 molecules in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, $\Delta Mocsn12$, and wild-type
667 strains. Comparative quantitative metabolomics were analyzed using ANOVA. The relative levels of the
668 selected signaling molecules in the individual strains were measured using HPLC analytical standards as
669 references. Differentially present metabolites with relative standard deviation (RSD) $<30\%$ t-test P-value
670 (q-value) <0.05 , mass error $\leq \pm 3$ with t-test P-value (q-value) ≤ 0.05 , and computed relative standard
671 deviation (RSD) $<30\%$.

672


673 ***MoCSN7* essentially promotes autophagic flux in *M. oryzae* by modulating the
674 intracellular levels of cAMP under starvation**

675 To examine the impact of targeted gene disruption of *MoCSN3*, *MoCSN5*, *MoCSN6*,
676 *MoCSN7*, and *MoCSN12* on autophagosome formation, maturation,
677 autophagolysosomal fusion, and degradation (autophagic influx), we performed a
678 qPCR assay to monitor the expression pattern of genes coding for autophagy-related
679 proteins (listed in Table S4) in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, and
680 $\Delta Mocsn12$ strains and compared it to that of the wild-type. Results obtained from
681 transcriptomic analyses showed that targeted disruption of *MoCSN5*,
682 *MoCSN6*, and *MoCSN7* significantly suppressed the expression of 24/24
683 autophagy-related genes identified in rice blast fungus. Deletion
684 of *MoCSN3* and *MoCSN7* exclusively and significantly enhanced the expression of
685 *MoATG4*, *MoATG3*, *MoATG6*, *MoATG7*, *MoATG10*, *MoATG15*, *MoATG16*,
686 *MoATG17*, *MoATG26*, *MoATG27*, and *MoATG28*) respectively. Additionally, we
687 observed significant upregulation in the expression of genes encoding
688 *MoATG2*, *MoATG11*, *MoATG13*, and *MoATG4* in the $\Delta Mocsn3$ and $\Delta Mocsn12$ strains
689 (Figure 7A). These results indicate that subunits of the CSN complex,
690 particularly *MoCSN5*, *MoCSN6*, and *MoCSN7*, significantly influence the initiation
691 and sequential progression of autophagic influx (autophagosome formation, maturation,

692 autophagosome-vacuole/lysosome fusion, and likely cargo selection)(Klionsky and
693 Eskelinen, 2014).

694 ATG8 proteins facilitate autophagosome formation, maturation,
695 autophagosome-vacuolar fusion, and cargo selection by establishing anchorage with
696 the headgroup of the membrane lipid phosphatidylethanolamine through
697 lipidation(Martens and Fracchiolla, 2020). The association of ATG8 with all stages of
698 the autophagic process makes it an ideal genetic marker for monitoring autophagic
699 flux(Gómez-Sánchez et al., 2015). Therefore, to assess the initiation and progression of
700 autophagic events in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, and
701 $\Delta Mocsn12$ strains relative to the wild-type, individual strains harboring the
702 GFP-MoAtg8 fusion constructs were cultured under nutrient-sufficient (CM) and
703 nutrient-deficient (MM-N) conditions and examined under a confocal microscope.
704 Results obtained from microscopic examination showed the formation of
705 autophagosomes (punctate structures of GFP-MoAtg8 fluorescence) in the
706 $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn12$ strains under non-starvation conditions;
707 there was no visible induction of autophagosome formation in the $\Delta Mocsn7$, and the
708 wild-type strains under nutrient-sufficient conditions (Figure 7B). Furthermore, we
709 observed that targeted gene disruption of *MoCSN5*, *MoCSN6*, and *MoCSN12*
710 substantially suppressed autophagic degradation under starvation, as puncta of
711 GFP-MoAtg8 fluorescence remained visible in the autophago-vacuolar complex,
712 whereas deletion of *MoCSN7* exclusively abolished autophagosome-vacuolar fusion
713 under starvation (Figure 7B). Results obtained from western blot analyses conducted to
714 measure autophagic flux in the individual strains further confirmed substantial
715 suppression in the progression of autophagic degradation in the
716 $\Delta Mocsn5$, $\Delta Mocsn7$, and $\Delta Mocsn12$ strains under starvation, whereas the levels of
717 autophagic flux recorded in the $\Delta Mocsn3$ and $\Delta Mocsn6$ strains were comparable to the
718 level of autophagic flux observed in the wild-type strain (Figure 7C). Meanwhile, of the
719 metabolites that were downregulated in $\Delta Mocsn3$, $\Delta Mocsn5$, and $\Delta Mocsn7$, exogenous
720 application of cAMP exclusively restored autophagic flux-related defects observed in
721 the $\Delta Mocsn5$, $\Delta Mocsn7$, and $\Delta Mocsn12$ strains (Figure 7D). Accordingly, we inferred

722 that individual subunits of the CSN complex play diverse roles in the progression of
723 autophagic flux in rice blast fungi. These observations suggest that the CSN complex
724 contributes to the progression of autophagic flux by regulating cAMP generation and
725 accumulation in *M. oryzae*.

726

727 **Figure 7** Targeted gene replacement of selected CSN subunits attenuated autophagic flux by cAMP
728 biosynthesis and the expression of autophagy-associated proteins in the MoCSN defective strains. A,
729 Relative fold-expression of genes coding autophagy-associated (ATG) proteins in the $\Delta Mocsn3$,
730 $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, $\Delta Mocsn12$, and wild-type strains after starvation for 6 h. B,
731 Comparative localization pattern of the universal autophagy marker GFP-MoAtg8 fluorescence signals
732 in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, $\Delta Mocsn12$, and wild-type strains under nutrient
733 sufficient (CM) and nutrient deficient (MM-N) conditions. C, Immuno-blot-based analysis of
734 GFP-MoAtg8/PE turn-over in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, $\Delta Mocsn7$, $\Delta Mocsn12$, and wild-type
735 strains under nutrient sufficient (CM) and nutrient deficient (MM-N) conditions. D, The micrograph
736 showing the progression or suppression of autophagic flux in the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$,
737 $\Delta Mocsn7$, $\Delta Mocsn12$, and wild-type strains in MM-N supplemented independently with cAMP,
738 pyridoxylamine, xanthurenic acid, azatadine dimaleate, kynurenic acid, and arachidonic acid. Note: the
739 RT-qPCR assisted expression results were obtained from three biological replicates, each consisting of
740 three technical replicates. The expression of the actin coding gene (MoACTIN) was used as the
741 reference gene. Fold-expression of the MoATGs in the $\Delta Mocsn$ was computed using the delta delta-CT
742 method ($2^{-\Delta\Delta CT}$). The expression of MoATGs in the wild-type strains was used as the internal control.
743 For microscopy and immunoblotting assays, the individual strains were first cultured in CM for 2–3
744 days and later transferred into MM-N for 6 h to induce autophagy. The GADPH protein content was
745 used as the control. (“a”) and (“v”) denote autophagosome and vacuole, respectively. Bar = 10 μ m.

746

747 **Discussion**

748 The CSN signalosome complex was previously considered a conserved
749 nuclear-localized protein complex(Füzesi-Levi *et al.*, 2014). However, recent studies
750 have shown that subunits of the CSN complex localize to both the nucleus and the
751 cytoplasm in animal cell lines(Füzesi-Levi *et al.*, 2014). All eight CSN subunits
752 identified in rice blast fungus displayed a nucleocytoplasmic localization pattern. The
753 uniform localization pattern of the CSN signalosome complex subunits in *M.*
754 *oryzae* partly confirmed them as constituents of the CSN complex.

755 The presence of nuclear localization signals (NLS) or nuclear export signals (NES)
756 facilitates the nucleocytoplasmic shuttling of proteins and protein complexes(Fu *et al.*,
757 2018; Görlich *et al.*, 1995; Johnson *et al.*, 1999). The successful import or exit of
758 proteins through the nuclear pore complex (NPC) is mediated by monopartite and
759 bipartite proline-tyrosine-rich nuclear localization and leucine-rich nuclear export
760 signals(Bernhofer *et al.*, 2018). Karyopherin recognizes proteins containing these
761 transport signal motifs, a conserved eukaryotic translocon that mediates the subsequent
762 transport of nucleocytoplasmic-destined proteins into or out of the nucleus(Bernhofer
763 *et al.*, 2018).

764 Whether the CSN signalosome enters or exits the nucleus as a holocomplex; is still
765 unknown. However, studies have shown that the NLS and NES in CSN5 facilitate its
766 nucleocytoplasmic shuttling either as an individual subunit or as a mini-complex(Liu *et*
767 *al.*, 2010). In addition, these signals function in transporting cargo proteins into and out
768 of the nucleus. For instance, studies have shown that truncating the NES signal in
769 CSN5 impairs its role as an adaptor for cyclin-dependent kinase inhibitor 1 B (p27) and
770 chromosomal maintenance 1/exportin 1 (CRM1), inhibits the nucleocytoplasmic
771 translocation of p27-CSN5-CRM1, and prevents the degradation of tagged p27, which
772 is linked to carcinogenic effects in humans(Sugiyama *et al.*, 2001). However, the
773 impact of the NLS/NES motif-containing subunits of the CSN complex and their likely
774 impact on the nucleocytoplasmic localization of the CSN complex in filamentous fungi
775 remains unknown.

776 In this study, we demonstrated that targeted replacement of translocon subunits,
777 particularly *MoCSN5*, *MoCSN6*, and *MoCSN7*, suppressed growth and abolished
778 asexual sporulation and pathogenicity of rice blast fungus. These observations provide
779 practical insights into the significant contributions of the core translocon subunits of
780 the CSN complex to the pathophysiological development of filamentous fungi.

781 In addition, we found that the NLS signal at the C-terminus of MoCsn7
782 functionally mediated the localization of MoCsn7 to the nucleus. Unexpectedly, we
783 observed that fusing GFP to the C-terminus of MoCsn3 lacking the NLS failed to
784 localize to the nucleoplasm. Given these observations, we speculate that MoCsn3 and
785 MoCsn7, in association with nuclear translocons, likely regulate cytoplasm-nuclear
786 migration of the CSN complex as a holocomplex or subcomplex.

787 The distinctive interaction pattern observed among subunits of the CSN complex
788 from CoIP assays compared to the results obtained from Y2H assays suggests both
789 direct and indirect interactions within subunits of the CSN complex in *M. oryzae*. Contrary to the suggestion that PCI domain-containing subunits play a
790 conserved role in fostering interactions between subunits of the CSN complex (Lee et
791 al., 2011; Qin et al., 2020), we demonstrated that targeted truncation of PCI in MoCsn1,
792 MoCsn2, MoCsn3, MoCsn4, MoCsn7, and MoCsn12, and the MPN domain in
793 MoCsn5 and MoCsn6 has no adverse or enhancing effect on the *in vitro* interaction
794 network observed between subunits of the CSN complex in *M. oryzae*. Although
795 MoCsn2 and MoCsn5 showed extensive one-on-one interaction with multiple subunits
796 of the CSN complex according to results obtained from the Y2H bioassay conducted in
797 the study, we postulated that MoCsn2, rather than MoCsn5, functions as a core
798 regulator of the subunit-subunit interaction network in *M. oryzae*. Previous studies
799 have shown that CSN5 actively interacts with the DNA-binding domain of GAL4 to
800 produce a false-positive interaction outlook (Nordgård et al., 2001). However, the
801 extent to which prevailing hierarchical *in vivo* and *in vitro* interaction networks
802 recorded among CSN subunits influence the morphological and pathological
803 development of rice blast is still unknown.

805 In addition to hierarchical interactions observed among individual subunits of the
806 CSN complex, previous studies have demonstrated the existence of direct interactions
807 between subunits of the COP9-signalosome complex and proteins outside the CSN
808 complex (non-CSN complex proteins), including proteins associated with the
809 ubiquitin-proteasome pathway, protein kinases, SOS1 protein, and eukaryotic
810 translation initiation factors (eIFs)(Dubiel et al., 2015; Schwechheimer, 2004; Zarich et
811 al., 2019). In humans, 825 proteins from diverse cellular pathways have been identified
812 as putative interacting proteins in the COP9-signalosome complex(Fang et al., 2012).
813 In this study, we recovered 575 proteins from the immunoprecipitation of the CSN
814 subunits. However, only 57/575 core putative interactors (proteins present in the
815 immuno-complexes of all the CSN subunits identified in *M. oryzae* except for
816 MoCSN1) were identified. These include some known CNS complex-associated
817 proteins, such as cullin1, cullin3, cullin 4 B, 26S proteasome non-ATPase regulatory
818 subunit4, protein transporter SEC61 subunit alpha, E3 ubiquitin-protein ligase (UPL3),
819 transcriptional repressor rco-1, E3-ubiquitin ligase complex SCF subunits con-3,
820 30S-ribosomal protein S14p/S29e, actin-like protein-3, AGC/AKT protein kinase,
821 eukaryotic translation initiation factor2 subunit alpha, HET-C protein, and vacuolar
822 protein sorting-associated protein-21. A total of 270 proteins were identified as
823 common/core interactors of all CSN subunits identified in humans(Fang et al., 2012).
824 The significant reduction in the number of core interactors identified for the CSN
825 complex in *M. oryzae* compared to the CSN complex in humans likely reflects the
826 differences in the complexity of cellular processes between filamentous fungi and
827 animals.

828 Cyclooxygenases, lipoxygenases, and enzymes associated with the cytochrome
829 P450 pathway mediate the generation of oxylipins, including the biosynthesis of
830 prostaglandins, thromboxanes, and leukotrienes, through the peroxidation of
831 polyunsaturated fatty acids (PUFA) such as arachidonic acid, linoleic acid, linolenic
832 acid, eicosapentaenoic acid (EPA), stearidonic acid, adrenic acid, dihomo- γ -linolenic
833 acid, and docosahexaenoic acid (DHA)(Gabbs et al., 2015; Tourdot et al., 2014). In In
834 mammals, these biologically active PUFA derivatives (oxylipins) crucially regulate the

835 progression of physiological, developmental, and cellular processes, including
836 apoptosis, tissue repair, blood clotting, cell proliferation, blood vessel permeability,
837 pain, inflammation, immune responses, and blood pressure(Buczynski et al., 2009).
838 Irrespective of the significant importance of eicosanoids and their downstream
839 derivatives in activating essential signaling pathways, under certain conditions, their
840 presence in biological systems could have detrimental consequences(Gabbs et al.,
841 2015).

842 Previous studies have shown that light period and temperature regulate membrane
843 phospholipid and triacylglycerol metabolism. This synthesis increases the uptake of
844 eicosanoids and their downstream derivatives(Norambuena et al., 2015). Recent studies
845 have reported the generation of biologically active oxylipins derived from oxygenase (a
846 significant type of cyclooxygenase) mediated oxidation of arachidonic acid in multiple
847 human pathogenic fungal species, including *Candida albicans*, *Cryptococcus*
848 *neoformans*, *Paracoccidioides brasiliensis*, *Fusarium dimerim*, *Microsporum*
849 *audiouinii*, *Microsporum canis*, *Trichophyton rubrum*, *Absidia corymbifera*,
850 *Histoplasma capsulatum*, *Blastomyces dermatitidis*, *Penicillium spp.*, *Rhizopus spp.*,
851 *Rhizomucor pusillus*, and numerous *Aspergillus* species(Tourdot et al., 2014).

852 However, the photogenic role of the evolutionarily conserved constitutive
853 photomorphogenesis complex in fungal physiology and pathogenesis and the possible
854 regulation of PUFA and eicosanoid metabolism is still unknown. In this study, we
855 experimentally demonstrated that targeted gene deletion of individual CSN
856 signalosome subunits in *M. oryzae* abolished phototropism (photoresponse) in all
857 defective strains except Δ *Mocsn3*. However, comparative non-targeted metabolomics
858 analyses revealed a corresponding inhibition in the level (abundance) of two critical
859 polyunsaturated fatty acids (eicosapentaenoic acid and arachidonic acid),
860 phytosphingosine, prostaglandin b4, and accompanying derivative signaling molecules,
861 including cAMP, indicating a potential breakdown in photo-dependent metabolism and
862 signaling processes.

863 Oxylipins and oxylipin derivatives derived from oleic, linoleic, and linolenic acids
864 function as essential chemical signaling molecules that modulate asexual and sexual

865 reproduction in filamentous fungi, particularly in *A. nidulans*(Tsitsigiannis *et al.*, 2005),
866 there is no conclusive data regarding the direct or indirect regulatory influence of the
867 CSN signalosome complex on the production of oxylipins and their derivatives in
868 filamentous fungi(Tsitsigiannis and Keller, 2007). Targeted gene deletion of 3/5 of the
869 NES-NLS motif-containing subunits (*MoCSN5*, *MoCSN6*, and *MoCSN7*) of the CSN
870 complex in *M. oryzae* completely abolished asexual and sexual sporulation in rice blast
871 fungus. These results directly correlate with the significant suppression in the
872 metabolism of PUFAs, eicosanoids, and other oxylipin derivatives in the *MoCSN*
873 defective strains generated in this study, especially the Δ *Mocsn7* strains.

874 Moreover, small changes in the biosynthesis of membrane lipids hinders the
875 production of lipid-based signaling molecules required to stimulate the biosynthesis
876 and uptake of amino acids. This suggests the existence of a close association between
877 fatty acid metabolism and the cellular regulatory roles of the CSN complex. For
878 instance, in plants, phenylalanine, tyrosine, and tryptophan synthesis pathways
879 attenuate light-regulated redox homeostasis(Vivancos *et al.*, 2011). Consistent with
880 previous reports, we showed that in addition to the suppression of eicosanoid
881 metabolism, targeted gene replacement of the CSN complex constituents in rice blast
882 fungus inhibited the metabolism of diverse groups of amino acids, including glutamic
883 acid, histidine, lysine, and arginine. We inferred from these results that the CSN
884 signalosome complex likely plays a crucial role in fostering cross-talk between
885 eicosanoid metabolism pathways, amino acid biosynthesis pathways, and nucleotide
886 metabolism pathways.

887 Also, we demonstrated that the exogenous application of metabolites
888 down-regulated in the metabolome of the defective strains, as well as metabolites
889 identified exclusively in the metabolome of the Δ *Mocsn7* strain, partially restored
890 conidiation defects recorded in Δ *Mocsn3*, Δ *Mocsn5*, Δ *Mocsn6*, and Δ *Mocsn12*, in a
891 unanimous manner. The inability of these exogenously applied compounds to alter
892 sporulation defects observed in the Δ *Mocsn7* strains, coupled with the hypersensitivity
893 of the Δ *Mocsn7* strains to the cell wall and cell membrane stress-inducing osmolytes,
894 support our hypothesis that Csn7 is likely the core subunit of the CSN signalosome

895 complex functionally assigned to regulate the photo-responsive essential cellular
896 metabolites needed to drive redox/oxidative balance and photosporogenesis in
897 filamentous fungi. Therefore, the presence of the Csn7 subunit is essential for
898 coordinating the activities of metabolic pathways in *M. oryzae* and other filamentous
899 fungal species.

900 Small signaling molecules, including cAMP, kynurenic acid, xanthurenic acid,
901 azatadine, and pyridoxylamine, affect autophagic influx differently across organisms.
902 For instance, studies have shown that cAMP functions as either a positive or negative
903 regulator of autophagy, depending on the cell type(Grisan et al., 2021), kynurenic
904 acid(Grisan et al., 2021) and pyridoxylamine(Zhao et al., 2018) act as potent
905 autophagic inhibitors, and xanthurenic acid has been shown to promote autophagosome
906 biogenesis(Hou et al., 2020). Although the CSN has been implicated in the regulation
907 of secondary metabolite biosynthesis and the progression of autophagic flux, there is no
908 evidence that the CSN complex mediates the regulation of secondary metabolism
909 during the progression of autophagic processes in filamentous fungi. Our findings
910 showed that the targeted gene replacement *MoCSN7* exclusively suppressed the
911 catabolism of arachidonic acid and consequently attenuated the generation of cAMP in
912 the $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and $\Delta Mocsn12$ strains. In *S. cerevisiae*, elevated
913 cAMP levels have been reported to suppress autophagic flux(Cebollero and Reggiori,
914 2009).

915 We also showed that exogenous application of cAMP fully restored autophagic
916 flux in *MoCSN* defective strains. This observation is consistent with the positive role of
917 cAMP in promoting autophagic flux in mammalian liver cells(Grisan et al., 2021;
918 Wilson and Roach, 2002). Accordingly, we reasoned that the CSN signalosome
919 complex, especially the Csn7 subunit, coordinates the initiation and progression of
920 autophagic events in filamentous fungi under starvation conditions by facilitating an
921 increase in the intracellular levels of cAMP, possibly via photo-dependent catabolism
922 of arachidonic acid under nutrient-limited conditions.

923

924 **Conclusion**

925 Although the COP9/CSN signalosome complex has long been identified as a
926 positive regulator of autophagosome formation, maturation, and autophagic
927 degradation, little is known about the molecular mechanisms that facilitate
928 CSN-mediated regulation of autophagic flux, especially in filamentous fungi. Here,
929 we observed that the genetic deactivation of putative translocon subunits of the CSN
930 complex, particularly CSN7 (MoCsn7) in rice blast fungus, resulted in the
931 accumulation of arachidonic acid exclusively in the *MoCSN7* mutant strains and
932 caused an almost uniformly significant reduction in the generation of cAMP in the
933 *MoCSN* null mutant strains generated in this study. Compared to the
934 other *MoCSN* defective strains investigated, targeted replacement of *MoCSN7*
935 exclusively abolished autophagic-vacuolar fusion and autophagic degradation under
936 starvation. Phenocopy assays showed that the exogenous application of arachidonic
937 acid inhibited autophagic flux in wild-type and defective strains under starvation
938 conditions. In contrast, the exogenous application of cAMP fully rectified the
939 abnormalities associated with the progression of autophagic flux in $\Delta Mocsn$ strains
940 under starvation stress. Interestingly, the exogenous application of rapamycin, a
941 macrolide antibiotic from *Streptomyces hygroscopicus*, is known to potently induce
942 autophagy by suppressing the mTOR/TOR pathway in eukaryotes but failed to rescue
943 autophagic defects observed in the $\Delta Mocsn7$ strains. While CSN5 has been suggested
944 as a core regulator of the CSN complex in some selected organisms, here, we
945 demonstrated that the CSN7a ortholog (*MoCSN7*) in rice blast fungus exerts a
946 significant regulatory effect on the expression of autophagy-associated proteins and
947 the progression of autophagic flux in *M. oryzae* through cAMP-dependent signal
948 transduction. We showed that the CSN signalosome complex promotes morphological,
949 reproductive, stress tolerance, and pathological development of rice blast fungus
950 through synergistic and likely photo-dependent coordination of multiple cellular,
951 biochemical, and metabolic pathways. Although cAMP has been shown to positively
952 regulate pathogenic differentiation in fungi, the direct impact of cAMP on the
953 progression of autophagic flux in filamentous fungi has not been reported. This study
954 provides insights into the impact of CSN-mediated regulation of cAMP and other

955 polyunsaturated fatty acids derivatives on autophagic degradation in *M. oryzae*.
956 Understanding the regulatory parameters of pathogenesis in this pathogen is of great
957 concern to the broader scientific community because it poses a huge economic
958 burden.

959 **Materials and Methods**

960 **Identification of CSN subunit *M. oryzae*, phylogenetic, domain structure, and** 961 **sequence feature analyses**

962 The eight genes coding for CSN subunits which comprises of the seven conical
963 CSN subunits (Csn1-Csn7) and an additional subunit Csn12 were identified in the *M.*
964 *oryzae* genome by performing a BLASTp/reverse BLASTp search with amino acid
965 sequences retrieved for CSN complex subunits in *H. sapiens*, *N. crassa*, and *A.*
966 *thaliana* from the KEGG and fungi and Oomycetes genomic resource
967 platforms(Basenko et al., 2018). Domain profiling of the individual CSN subunits
968 identified in the individual organisms using the Pfam 32.0 platform(Emms and Kelly,
969 2015). To identify MoCSN subunits with nuclear localization and Nuclear export
970 signals (NLS/NES) and functionally evaluate or infer their influence on
971 nucleocytoplasmic localization, we searched the amino acid sequences of the
972 individual CSN subunits identified in *M. oryzae* using the NES prediction platform
973 NetNES 1.1 Server(La Cour et al., 2004) and NLStradamus for NLS
974 prediction(Nguyen Ba et al., 2009).

975 **Fungal strains and culture conditions**

976 The parental wild-type *M. oryzae* (Guy11) strain, obtained from Dr. Didier
977 Tharreau (CIRAD, Montpellier, France), was used as the background in the targeted
978 gene replacement of all subunits of the *MoCSN* gene. Bacteria-competent cells used to
979 propagate the constructed plasmids were prepared from *Escherichia coli* (*E. coli*)
980 strain *DH5α*.

981 For vegetative growth, the wild-type, mutant, and complementation strains were
982 cultured in a complete medium (for 1 L CM; 6 g yeast extract, 6 g casein hydrolysate,

983 10 g sucrose, and 20 g agar) at 25 °C. For conidiation, the strains were cultured on rice
984 bran agar medium (for 1 L RBA; 40 g rice bran, 20 g agar, pH 6.0) for 7 days under dark
985 conditions. The cultured strains were later transferred into an incubator with continuous
986 light for 3 days before vegetative hyphae were removed using sterilized microslides.
987 Stress sensitivity of the individual strains was assayed by culturing the mutant strains
988 along with the wild-type strains on CM supplemented with different stress-inducing
989 agents (oxidative stress-inducing agents: 200 µg/mL Calcofluor White (F3543;
990 Sigma-Aldrich, St. Louis, MO, USA), 0.7 M NaCl, 0.01% sodium dodecyl sulfate, 200
991 µg/mL Congo Red (0379; TAGENE, Xiamen, China); reductive stress-inducing agents:
992 2 mM DTT (1758-9030; Inalco, Paris, France).

993 For the circadian rhythm assay, the wild-type and $\Delta Mocsn$ strains were cultured on
994 prune agar (PA) medium and incubated for 2 days under dark conditions at a stable
995 temperature of 25 °C. After 2 days, the strains were transferred into an incubator with a
996 photoperiod of 12 h light/12 h dark. Note: PA media with a final pH of 6.5 was prepared
997 using 40 mL prune juice, 2.5 g lactose, 2.5 g sucrose, 1 g yeast extract, and 20 g agar.
998

999 **Generation of gene replacement mutant and complementation**

1000 Split markers for gene knockout were constructed and used for targeted gene
1001 replacement of *MoCSN* in *M. oryzae*. To construct split markers for *MoCSN3*, 0.97 kb
1002 upstream and 1.29 kb downstream fragments of the flanking regions were amplified
1003 with primers *MoCSN3-AF/AR* and *MoCSN3-BF/BR*, respectively; for *MoCSN5*, 1.07
1004 kb upstream and 1.26 kb downstream fragments of the flanking regions were amplified
1005 with primers *MoCSN5-AF/AR* and *MoCSN5-BF/BR*, respectively; for *MoCSN6*, 1.41
1006 kb upstream and 0.97 kb downstream fragments of the flanking regions were amplified
1007 with primers *MoCSN6-AF/AR* and *MoCSN6-BF/BR*, respectively; *MoCSN7*, 1.12 kb
1008 upstream and 0.74 kb downstream fragments of the flanking regions were amplified
1009 with primers *MoCSN7-AF/AR* and *MoCSN7-BF/BR*, respectively; *MoCSN12*, 0.87 kb
1010 upstream and 0.98 kb downstream fragments of the flanking regions were amplified
1011 with primers *MoCSN12-AF/AR* and *MoCSN12-BF/BR*, respectively.

1012 The upstream fragments were cloned into the upstream half of HPH on pCX62
1013 using the *Kpn* I and *Eco*R I restriction enzyme sites. The downstream fragments were
1014 cloned into the downstream half of HPH on the pCX62 vector using the *Bam*H I
1015 and *Xba* I restriction enzyme sites and overlap extension PCR cloning
1016 (OE-PCR)(Bryksin and Matsumura, 2013). The products used to construct the targeted
1017 gene deletion constructs were amplified using primer pairs MoCSN-AF+HY/R and
1018 YG/F+ MoCSN-BR listed in (Table S5). *M. oryzae* protoplast preparation and fungal
1019 transformation were performed as described by(Nakayashiki et al., 2005; Talbot et al.,
1020 1993). The transformants were screened using MoCSN-OF/MoCSN-OR and
1021 MoCSN-UF/MoCSN-UR. The MoCSN gene-defective strains generated in this study
1022 were confirmed using a Southern blotting assay.

1023 To construct the complementation/MoCSN-GFP-fusion vector, the fragment,
1024 including the native promoter and the whole ORF sequence without a stop codon, was
1025 amplified. The product was cloned into the pKNTG vector upstream of the GFP site
1026 using the *Eco*R I and *Bam*H I enzyme restriction sites. To generate complementation
1027 and localization strains, the constructed vectors for the individual genes were
1028 transformed into protoplasts of the respective Δ *Mocsn* strains. The transformants were
1029 screened using PCR and the MoCSN-OF and GFP-R primer pair and scanned for
1030 fluorescence intensity using a microscope.

1031

1032 **Genomic DNA isolation**

1033 Genomic DNA extraction from wild-type Guy11, Δ *Mocsn*, and complementation
1034 strains using the CTAB DNA extraction procedure described by (Brandfass and
1035 Karlovsky, 2008; Shabbir et al., 2022) with minor modifications.

1036

1037 **Conidiation, appressoria formation, conidiophore assessment, and mating-type 1038 assays**

1039 Conidiation was evaluated by washing conidia from 10-day-old culture plates with
1040 sterilized ddH₂O and filtered through three layers of lens paper into a 2 mL EP tube.
1041 Appressorium formation was monitored by placing 20 μ L of spore suspension

1042 (concentration of 5×10^4 spores per mL) on hydrophobic coverslips and incubating
1043 under humid and dark conditions and at a temperature of 28 °C for 4, 8, 16, and 24 h. An
1044 average of 100 conidia was examined for each experiment, and consistent results from
1045 three independent biological experiments with three technical replicates were used for
1046 appressorium formation computation.

1047 For the conidiophore assay, blocks of RBA containing the strains were transferred
1048 onto microslides, with the side bearing the hyphae resting on the slide surface, and
1049 incubated at 28°C in the light for 48 h and 96 h. After this period, the blocks were
1050 removed and treated with lactophenol cotton blue (LCB) dye for 5 min. A 100 mL LCB
1051 solution (20 mL phenol, 0.6 g cotton blue, 44 mL glycerin, 16 mL lactic acid, and
1052 ddH₂O) was diluted three-fold to obtain a working solution. Finally, the excess dye was
1053 washed off the slides with ddH₂O and visualized using the bright field (BF) mode of an
1054 Olympus Bx51 Microscope.

1055 Mating capabilities of the individual strains were assayed by pairing or
1056 co-culturing the $\Delta Mocsn$ with the standard tester strain KA3 (*MAT1-1*) cultivated on
1057 oatmeal agar medium (OA) at a stable temperature of 20°C for 3-4 weeks. The KA3
1058 (*MAT1-1*) standard tester strains were obtained from Dr. Didier Tharreau.

1059

1060 **Infection assay**

1061 For hyphae-mediated infection assessment, the individual strains were cultured in
1062 liquid CM for 3 days in a shaking incubator at a rotator speed of 110 rpm and a stable
1063 temperature of 28°C. The mycelia were filtered using Whatman filter paper, washed
1064 with sterilized ddH₂O, and allowed to stand for 5 min until excess water was drained.
1065 The mycelia were then used as propagules to inoculate intact and injured leaves excised
1066 from 7-day-old barley seedlings. The inoculated leaves and the uninoculated controls
1067 were first incubated in a dark chamber with 90% relative humidity and a temperature of
1068 25°C for 24 h. The inoculated leaves along with control group were transferred to a
1069 growth chamber with a photoperiod of 12 h light/12 h dark. The mycelia obtained from
1070 the individual strains were also ground to prepare mycelial suspensions. The mycelial
1071 suspensions were fortified with 0.02% v/v Tween 20. Mycelial suspensions were used

1072 to spray-inoculate 3-week-old blast-susceptible rice seedlings (*Oryza sativa* cv. CO39),
1073 following the procedures and inoculation conditions described for barley infection.
1074 Disease development and lesion severity were assessed at 7 days post-inoculation (dpi)
1075 and used as a measure of pathogenicity and virulence characteristics of the defective
1076 strains compared to the wild-type.

1077 Histopathological examinations (host penetration and colonization assays) were
1078 performed by inoculating the underside of the barley leaves with mycelia. Inoculated
1079 tissues were incubated under the conditions described above. Host invasion and
1080 colonization characteristics of the individual strains were assessed at 24 hours
1081 post-inoculation (hpi) using a light microscope.

1082

1083 **Microscopy analysis**

1084 For microscopy, an Olympus DP72 fluorescent microscope or a Nikon A1 plus
1085 confocal microscope was used to observe the fluorescence of GFP and mCherry. The
1086 emission and excitation wavelengths were 488 nm and 561 nm, respectively.

1087

1088 **Co-localization assay**

1089 To confirm the localization of MoCsn, we constructed a MoCsn-GFP vector and
1090 co-transformed MoCsn-GFP with the histone-mCherry (His-mCherry) marker into
1091 Guy11. The transformants were screened using PCR and a primer pair (MoCSN-OF
1092 and GFP-R) and further confirmed using fluorescence microscopy. Histone-mCherry
1093 (His-mCherry)(Zhang et al., 2019) was obtained from Dr. Lianhu Zhang of Jiangxi
1094 Agricultural University.

1095

1096 **Transmission electron microscopy observation**

1097 Vegetative hyphae of the Guy11 and Δ MoCsn strains were cultured in liquid CM
1098 for 3 days. The hyphae were fixed with 2.5% glutaraldehyde in phosphate buffer (pH
1099 7.0), washed three times with phosphate buffer, fixed with 1% OsO₄ in phosphate
1100 buffer for 1 h, and washed three times with phosphate buffer. The specimens were
1101 dehydrated using a graded series of ethanol (30%, 50%, 80%, 90%, 95%, and 100%)

1102 for approximately 20 min at each concentration, following previously reported
1103 procedures(Zhong et al., 2016).

1104

1105 **Co-Immunoprecipitation assay**

1106 Total proteins extracted from the individual MoCsn-GFP strains, along with the
1107 control strain harboring the empty GFP vector, were incubated with 30 μ L of anti-GFP
1108 magarose beads (beads No.SM03801; Smart-life Sciences, China) for 4 h at 4 °C to
1109 immunoprecipitate the GFP-fusion proteins from cellular extracts. Then, a magnetic
1110 frame was used to wash the beads three times with 500 μ L cold wash buffer (50 mM
1111 Tris, 0.15 M NaCl, pH 7.4) and resuspended in 80 μ L SDS-loading buffer. Proteins
1112 eluted from anti-GFP magarose beads were analyzed using immunoblotting with
1113 anti-GFP antibodies (anti-GFP No.334578; Abmart, China), followed by mass
1114 spectrometry (BGI, China).

1115

1116 **Yeast two-hybrid assay**

1117 Full-length MoCsn cDNA was amplified and cloned into a pGBKT7/pGADT7
1118 plasmid to obtain the bait vector MoCsn-BD and prey vector MoCsn-AD according to
1119 a previous protocol(Young, 1998) to generate clone vectors and positive transgenic
1120 yeast strains for yeast two-hybrid screening of interactions between the subunits of the
1121 MoCsn complex. The interaction between pGBKT7-53 and pGADT7-T was used as a
1122 positive control, and pGBKT7-Lam and pGADT7-T were used as negative control. The
1123 resultant bait and prey vectors were confirmed using sequencing and co-transformation
1124 into the yeast strain AH109. All transformants were assayed with 1×10^6 cells/ μ L
1125 droplets on SD-Leu-Trp and SD-Leu-Trp-His-Ade plates with 20 mg/mL X- α -gal.

1126

1127 **Total RNA extraction and Real-time RT-PCR assay**

1128 The strains were grown in liquid CM in a shaking incubator at a stable rotor
1129 speed of 110 rpm for 4 days. Mycelia from the cultured strains were filtered and
1130 washed thoroughly with sterilized ddH₂O. Excess water was removed using Whatman
1131 filter paper, and the mycelia were freeze-dried in liquid nitrogen. The samples were

1132 ground in liquid nitrogen, and total RNA was extracted using the HiPure Universal
1133 RNA kit (R4130-02; Magen, China). The expression of individual genes under
1134 different conditions or in $\Delta Mocsn$ was monitored using quantitative real-time PCR
1135 (qRT-PCR) assays. Reverse RNA transcription was performed using the PrimeScript
1136 RT Reagent Kit with gDNA Eraser (RR047A; Takara Bio, Japan). A 10 μ L reaction
1137 mix was formulated as follows: 5 μ L TB green, 3.4 μ L RNase-free water, 0.3 μ L of
1138 each 10 μ M forward and reverse primers (listed in Table S5), and 1 μ L cDNA
1139 template. qRT-PCR was performed using an Eppendorf Realplex2 Master Cycler
1140 (Eppendorf AG 223341, Hamburg, Germany). Raw qRT-PCR data were analyzed
1141 using the delta delta-CT ($2^{-\Delta\Delta C_t}$) method described by (Rao et al., 2013; Sami et al.,
1142 2020). Tubulin expression was used as the reference or internal control. Error bars
1143 represent the mean \pm SD. RT-qPCR data were generated from three independent
1144 biological experiments, each consisting of three technical replicates.

1145

1146 **Metabolomics analysis**

1147 The strains were cultured in liquid CM for 4 days in a shaking incubator at a
1148 stable rotor speed of 110 rpm. The mycelia were filtered, quickly frozen in liquid
1149 nitrogen, and then kept in a low-temperature freeze dryer (Labconco Free Zone 12 L,
1150 Labconco, USA) to dry for 48 h. The dry powder (0.025 g) was placed in a 1.5 mL
1151 Eppendorf tube containing 800 μ L extraction buffer (methanol: acetonitrile: ddH₂O,
1152 2:2:1 (v/v/v)), 50 Hz for 5 min, and incubated in an ultrasonic water bath for 10 min.
1153 After incubation, the mixture was centrifuged at 15294 g for 15 min. The supernatants
1154 were then pipetted into new 1.5 mL sterilized Eppendorf tubes and concentrated using
1155 vacuum-assisted freezing until dry. Then, 200 μ L of 10% methanol was added and
1156 incubated in an ultrasonic water bath for 10 min to dissolve the precipitate. After
1157 incubation, the mixture was centrifuged at 15294 g for 15 min, filtered through 0.22
1158 μ m Millex Millipore membranes into sample bottles with glass inserts, and stored at
1159 4 °C. Non-targeted metabolomics analysis by BGI, China, was used in this study.

1160

1161

1162 **Acknowledgements**

1163 We are grateful to the members of Z.W. laboratory for their insightful discussions.

1164

1165 **Funding**

1166 This work was supported by grants from the National Natural Science Foundation of
1167 China J.N. (No.31950410552), National Natural Science Foundation of China to Z.W.
1168 (U1805232 and 32272513), and Scientific Research Foundation of the Graduate
1169 School of Fujian Agriculture and Forestry University.

1170

1171 **AUTHOR CONTRIBUTIONS**

1172 J.N. and L.L^{*}, conceived, designed and sourced funding for the research, J.N., L.L^{*},
1173 and Z.W, secured the funding, L.L, J.N., H.G., W.B., J.C., S.R.A., and Q.A.
1174 performed the experiments. L.L^{*}, W.Z. J.N., and H.G. analyzed the data. L.L., drafted
1175 the manuscript. J.N., L.L, Q.C., and Z.W. revised the manuscript. All authors
1176 contributed to the final manuscript.

1177

1178 **Availability of data and materials**

1179 The data supporting the findings of this study are available from the corresponding
1180 author upon reasonable request.

1181

1182 **Declarations**

1183 Ethics Approval and Consent to Participate in this study complied with the ethical
1184 standards of China where this research was carried out.

1185 Consent for Publication: All authors consent to publication of the study.

1186 Competing interests: The authors declare that they have no competing interests.

1187

1188 **Supplementary Information**

1189 **Figure S1:** The carboxyl-terminal (C-terminal) is essential for nucleocytoplasmic
1190 localization of MoCsn3 and MoCsn7 during vegetative growth and pathogenic
1191 differentiation in *M. oryzae*.

1192 **Figure S2:** Southern blotting assays confirmed the replacement of genes coding for
1193 NLS/NES subunits of the CSN complex in *M. oryzae* via single insertion and
1194 successful complementation.

1195 **Figure S3:** Re-introduction of full-length ORF of individual MoCSN genes rescued
1196 growth and conidiation defects associated with $\Delta Mocsn$ strains.

1197 **Figure S4:** Targeted gene disruption of *MoCSN7* severely compromised cell wall
1198 integrity of *M. oryzae*.

1199 **Figure S5:** The expression pattern of *MoCSN*, ubiquitinating, and
1200 phytochrome-related genes in the *M. oryzae* strains treated with blue and red light.

1201 **Figure S6:** The PCA analysis of the reliability of metabolites identified between
1202 replicates for the individual strains.

1203 **Figure S7:** The enrichment analysis of metabolic pathways of differential metabolites
1204 in Guy11, $\Delta Mocsn3$, $\Delta Mocsn5$, and $\Delta Mocsn7$.

1205 **Table S1:** Annotation and Q-score values for MoCsn interaction subunits recovered
1206 from the individual MoCsn immuno-complexes.

1207 **Table S2:** The numerical distribution of metabolites identified in the metabolome of
1208 individual strains.

1209 **Table S3:** Exogenous application down-regulated metabolites selectively rescued
1210 vegetative growth and conidiation defects $\Delta Mocsn3$, $\Delta Mocsn5$, $\Delta Mocsn6$, and
1211 $\Delta Mocsn12$ strains.

1212 **Table S4:** List and gene accession numbers of autophagy-related proteins identified
1213 in *M. oryzae*.

1214 **Table S5:** List and nucleotide sequence for the primer pairs used in this study.

1215

1216 **References**

1217 Barth, E., Hübner, R., Baniahmad, A., and Marz, M. (2016). The evolution of COP9
1218 signalosome in unicellular and multicellular organisms. *Genome Biology and*
1219 *Evolution* 8, 1279-1289.

1220 Basenko, E.Y., Pulman, J.A., Shanmugasundram, A., Harb, O.S., Crouch, K., Starns,
1221 D., Warrenfeltz, S., Aurrecoechea, C., Stoeckert Jr, C.J., and Kissinger, J.C.
1222 (2018). FungiDB: an integrated bioinformatic resource for fungi and oomycetes.
1223 *Journal of Fungi* 4, 39.

1224 Bernhofer, M., Goldberg, T., Wolf, S., Ahmed, M., Zaugg, J., Boden, M., and Rost, B.
1225 (2018). NLSdb—major update for database of nuclear localization signals and
1226 nuclear export signals. *Nucleic acids research* 46, D503-D508.

1227 Brandfass, C., and Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and
1228 real-time PCR assays for *Fusarium culmorum* and *F. graminearum* DNA in plant
1229 material with reduced sampling error. *International journal of molecular sciences*
1230 9, 2306-2321.

1231 Bryksin, A., and Matsumura, I. (2013). Overlap extension PCR cloning. *Synthetic*
1232 *Biology*, 31-42.

1233 Buczynski, M., Dumla, D., and Dennis, E. (2009). An integrated omics analysis of
1234 eicosanoid biology (vol 50, pg 1015, 2009). *Journal of lipid research* 50,
1235 1505-1505.

1236 Busch, S., Eckert, S.E., Krappmann, S., and Braus, G.H. (2003). The COP9
1237 signalosome is an essential regulator of development in the filamentous fungus
1238 *Aspergillus nidulans*. *Molecular microbiology* 49, 717-730.

1239 Cebollero, E., and Reggiori, F. (2009). Regulation of autophagy in yeast
1240 *Saccharomyces cerevisiae*. *Biochimica et Biophysica Acta (BBA)-Molecular*
1241 *Cell Research* 1793, 1413-1421.

1242 Chamovitz, D., and DENG, X.W. (1997). The COP9 complex: a link between
1243 photomorphogenesis and general developmental regulation? *Plant, Cell &*
1244 *Environment* 20, 734-739.

1245 Chen, Y., Shao, X., Cao, J., Zhu, H., Yang, B., He, Q., and Ying, M. (2021).
1246 Phosphorylation regulates cullin-based ubiquitination in tumorigenesis. *Acta*
1247 *Pharmaceutica Sinica B* 11, 309-321.

1248 Cope, G.A., and Deshaies, R.J. (2003). COP9 signalosome: a multifunctional
1249 regulator of SCF and other cullin-based ubiquitin ligases. *Cell* 114, 663-671.

1250 Dong, B., Liu, X.-H., Lu, J.-P., Zhang, F.-S., Gao, H.-M., Wang, H.-K., and Lin, F.-C.
1251 (2009). MgAtg9 trafficking in *Magnaporthe oryzae*. *Autophagy* 5, 946-953.

1252 Dubiel, D., Rockel, B., Naumann, M., and Dubiel, W. (2015). Diversity of COP9
1253 signalosome structures and functional consequences. *FEBS letters* 589,
1254 2507-2513.

1255 Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole
1256 genome comparisons dramatically improves orthogroup inference accuracy.
1257 *Genome biology* 16, 1-14.

1258 Fang, L., Kaake, R.M., Patel, V.R., Yang, Y., Baldi, P., and Huang, L. (2012).
1259 Mapping the protein interaction network of the human COP9 signalosome

1260 complex using a label-free QTAX strategy. *Molecular & Cellular Proteomics* 11,
1261 138-147.

1262 Fu, X., Liang, C., Li, F., Wang, L., Wu, X., Lu, A., Xiao, G., and Zhang, G. (2018).
1263 The rules and functions of nucleocytoplasmic shuttling proteins. *International*
1264 *journal of molecular sciences* 19, 1445.

1265 Füzesi-Levi, M.G., Ben-Nissan, G., Bianchi, E., Zhou, H., Deery, M.J., Lilley, K.S.,
1266 Levin, Y., and Sharon, M. (2014). Dynamic regulation of the COP9 signalosome
1267 in response to DNA damage. *Molecular and cellular biology* 34, 1066-1076.

1268 Füzesi-Levi, M.G., Fainer, I., Ivanov Enchev, R., Ben-Nissan, G., Levin, Y.,
1269 Kupervasser, M., Friedlander, G., Salame, T.M., Nevo, R., and Peter, M. (2020).
1270 CSNAP, the smallest CSN subunit, modulates proteostasis through cullin-RING
1271 ubiquitin ligases. *Cell Death & Differentiation* 27, 984-998.

1272 Gabbs, M., Leng, S., Devassy, J.G., Moniruzzaman, M., and Aukema, H.M. (2015).
1273 Advances in our understanding of oxylipins derived from dietary PUFAs.
1274 *Advances in nutrition* 6, 513-540.

1275 Gómez-Sánchez, R., Pizarro-Estrella, E., Yakhine-Diop, S.M., Rodríguez-Arribas, M.,
1276 Bravo-San Pedro, J.M., Fuentes, J.M., and González-Polo, R.A. (2015). Routine
1277 Western blot to check autophagic flux: cautions and recommendations.
1278 *Analytical biochemistry* 477, 13-20.

1279 Görlich, D., Kostka, S., Kraft, R., Dingwall, C., Laskey, R.A., Hartmann, E., and
1280 Prehn, S. (1995). Two different subunits of importin cooperate to recognize
1281 nuclear localization signals and bind them to the nuclear envelope. *Current*
1282 *Biology* 5, 383-392.

1283 Grisan, F., Iannucci, L.F., Surdo, N.C., Gerbino, A., Zanin, S., Di Benedetto, G.,
1284 Pozzan, T., and Lefkimiatis, K. (2021). PKA compartmentalization links cAMP
1285 signaling and autophagy. *Cell Death & Differentiation* 28, 2436-2449.

1286 Gutierrez, C., Chemmama, I.E., Mao, H., Yu, C., Echeverria, I., Block, S.A.,
1287 Rychnovsky, S.D., Zheng, N., Sali, A., and Huang, L. (2020). Structural
1288 dynamics of the human COP9 signalosome revealed by cross-linking mass
1289 spectrometry and integrative modeling. *Proceedings of the National Academy of*
1290 *Sciences* 117, 4088-4098.

1291 Hartman, J.J., Mahr, J., McNally, K., Okawa, K., Iwamatsu, A., Thomas, S.,
1292 Cheesman, S., Heuser, J., Vale, R.D., and McNally, F.J. (1998). Katanin, a
1293 microtubule-severing protein, is a novel AAA ATPase that targets to the
1294 centrosome using a WD40-containing subunit. *Cell* 93, 277-287.

1295 He, Q., Cheng, P., He, Q., and Liu, Y. (2005). The COP9 signalosome regulates the
1296 *Neurospora* circadian clock by controlling the stability of the SCFFWD-1
1297 complex. *Genes & development* 19, 1518-1531.

1298 Hou, T., Sun, X., Zhu, J., Hon, K.-L., Jiang, P., Chu, I.M.-T., Tsang, M.S.-M., Lam,
1299 C.W.-K., Zeng, H., and Wong, C.-K. (2020). IL-37 ameliorating allergic
1300 inflammation in atopic dermatitis through regulating microbiota and
1301 AMPK-mTOR signaling pathway-modulated autophagy mechanism. *Frontiers in*
1302 *Immunology* 11, 752.

1303 Johnson, C., Van Antwerp, D., and Hope, T.J. (1999). An N-terminal nuclear export

1304 signal is required for the nucleocytoplasmic shuttling of I κ B α . The EMBO
1305 journal 18, 6682-6693.

1306 Kim, W.D., Mathavarajah, S., and Huber, R.J. (2022). The cellular and developmental
1307 roles of cullins, neddylation, and the COP9 signalosome in Dictyostelium
1308 discoideum. *Frontiers in Physiology*, 311.

1309 Klionsky, D.J., and Eskelinen, E.-L. (2014). The vacuole vs. the lysosome: When size
1310 matters. *Autophagy* 10, 185-187.

1311 La Cour, T., Kiemer, L., Mølgaard, A., Gupta, R., Skriver, K., and Brunak, S. (2004).
1312 Analysis and prediction of leucine-rich nuclear export signals. *Protein
1313 Engineering Design and Selection* 17, 527-536.

1314 Lee, M.-H., Zhao, R., Phan, L., and Yeung, S.-C.J. (2011). Roles of COP9
1315 signalosome in cancer. *Cell cycle* 10, 3057-3066.

1316 Lee, Y. (2020). Regulation and function of capicua in mammals. *Experimental &
1317 molecular medicine* 52, 531-537.

1318 Licursi, V., Salvi, C., De Cesare, V., Rinaldi, T., Mattei, B., Fabbri, C., Serino, G.,
1319 Bramasole, L., Zimbler, J.Z., and Pick, E. (2014). The COP9 signalosome is
1320 involved in the regulation of lipid metabolism and of transition metals uptake in
1321 *Saccharomyces cerevisiae*. *The FEBS journal* 281, 175-190.

1322 Liu, Q., Yu, J., Zhuo, X., Jiang, Q., and Zhang, C. (2010). Pericentrin contains five
1323 NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell
1324 cycle. *Cell research* 20, 948-962.

1325 Martens, S., and Fracchiolla, D. (2020). Activation and targeting of ATG8 protein
1326 lipidation. *Cell discovery* 6, 23.

1327 Moghe, S., Jiang, F., Miura, Y., Cerny, R.L., Tsai, M.Y., and Furukawa, M. (2011).
1328 The CUL3 - KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora -
1329 A. *Biology open* 1, 82-91.

1330 Nakayashiki, H., Hanada, S., Quoc, N.B., Kadotani, N., Tosa, Y., and Mayama, S.
1331 (2005). RNA silencing as a tool for exploring gene function in ascomycete fungi.
1332 *Fungal Genetics and Biology* 42, 275-283.

1333 Nguyen Ba, A.N., Pogoutse, A., Provart, N., and Moses, A.M. (2009). NLStradamus:
1334 a simple Hidden Markov Model for nuclear localization signal prediction. *BMC
1335 bioinformatics* 10, 1-11.

1336 Norambuena, F., Morais, S., Emery, J.A., and Turchini, G.M. (2015). Arachidonic
1337 acid and eicosapentaenoic acid metabolism in juvenile Atlantic salmon as
1338 affected by water temperature. *PLoS One* 10, e0143622.

1339 Nordgård, O., Dahle, Ø., Andersen, T.Ø., and Gabrielsen, O.S. (2001). JAB1/CSN5
1340 interacts with the GAL4 DNA binding domain: a note of caution about
1341 two-hybrid interactions. *Biochimie* 83, 969-971.

1342 Norviényeku, J., Lin, L., Waheed, A., Chen, X., Bao, J., Aliyu, S.R., Lin, L., Shabbir,
1343 A., Batoor, W., and Zhong, Z. (2021). Bayogenin 3 - O - cellobioside confers
1344 non - cultivar - specific defence against the rice blast fungus *Pyricularia oryzae*.
1345 *Plant Biotechnology Journal* 19, 589-601.

1346 Oberhauser, L., Granziera, S., Colom, A., Goujon, A., Lavallard, V., Matile, S., Roux,
1347 A., Brun, T., and Maechler, P. (2020). Palmitate and oleate modify membrane

1348 fluidity and kinase activities of INS-1E β -cells alongside altered
1349 metabolism-secretion coupling. *Biochimica et Biophysica Acta*
1350 (BBA)-Molecular Cell Research 1867, 118619.

1351 Osterlund, M.T., Ang, L.-H., and Deng, X.W. (1999). The role of COP1 in repression
1352 of *Arabidopsis* photomorphogenic development. *Trends in cell biology* 9,
1353 113-118.

1354 Peng, Z., Serino, G., and Deng, X.-W. (2001). A role of *Arabidopsis* COP9
1355 signalosome in multifaceted developmental processes revealed by the
1356 characterization of its subunit 3.

1357 Pintard, L., Kurz, T., Glaser, S., Willis, J.H., Peter, M., and Bowerman, B. (2003).
1358 Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for
1359 degradation at the meiosis-to-mitosis transition in *C. elegans*. *Current Biology* 13,
1360 911-921.

1361 Qin, N., Xu, D., Li, J., and Deng, X.W. (2020). COP9 signalosome: Discovery,
1362 conservation, activity, and function. *Journal of Integrative Plant Biology* 62,
1363 90-103.

1364 Rao, X., Huang, X., Zhou, Z., and Lin, X. (2013). An improvement of the $2^{\Delta\Delta CT}$ method for quantitative real-time polymerase chain reaction data
1365 analysis. *Biostatistics, bioinformatics and biomathematics* 3, 71.

1366 Sami, A., Naqvi, S.S., Qayyum, M., Rao, A.R., Sabitaliyevich, U.Y., and Ahmad, M.S.
1367 (2020). Calcium based siRNA coating: a novel approach for knockdown of
1368 HER2 gene in MCF-7 cells using gold nanoparticles. *Cellular and Molecular
1369 Biology* 66, 105-111.

1370 Schwechheimer, C. (2004). The COP9 signalosome (CSN): an evolutionary conserved
1371 proteolysis regulator in eukaryotic development. *Biochimica et Biophysica Acta*
1372 (BBA)-Molecular Cell Research 1695, 45-54.

1373 Serino, G., and Deng, X.-W. (2003). The COP9 signalosome: regulating plant
1374 development through the control of proteolysis. *Annual review of plant biology*
1375 54, 165-182.

1376 Shabbir, A., Batool, W., Yu, D., Lin, L., An, Q., Xiaomin, C., Guo, H., Yuan, S.,
1377 Malota, S., and Wang, Z. (2022). Magnaporthe oryzae Chloroplast Targeting
1378 Endo- β -1, 4-Xylanase I MoXYL1A Regulates Conidiation, Appressorium
1379 Maturation and Virulence of the Rice Blast Fungus. *Rice* 15, 44.

1380 Shackleford, T.J., and Claret, F.X. (2010). JAB1/CSN5: a new player in cell cycle
1381 control and cancer. *Cell division* 5, 1-14.

1382 Smith, P., Leung-Chiu, W., Montgomery, R., Orsborn, A., Kuznicki, K.,
1383 Gressman-Coberly, E., Mutapcic, L., and Bennett, K. (2002). The GLH proteins,
1384 *Caenorhabditis elegans* P granule components, associate with CSN-5 and KGB-1,
1385 proteins necessary for fertility, and with ZYX-1, a predicted cytoskeletal protein.
1386 *Developmental Biology* 251, 333-347.

1387 Sugiyama, Y., Tomoda, K., Tanaka, T., Arata, Y., Yoneda-Kato, N., and Kato, J.-y.
1388 (2001). Direct binding of the signal-transducing adaptor Grb2 facilitates
1389 down-regulation of the cyclin-dependent kinase inhibitor p27Kip1. *Journal of
1390 Biological Chemistry* 276, 12084-12090.

1391

1392 Suisse, A., Békés, M., Huang, T.T., and Treisman, J.E. (2018). The COP9 signalosome
1393 inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase
1394 activity. *Fly* 12, 118-126.

1395 Talbot, N.J., Ebbole, D.J., and Hamer, J.E. (1993). Identification and characterization
1396 of MPG1, a gene involved in pathogenicity from the rice blast fungus
1397 *Magnaporthe grisea*. *The Plant Cell* 5, 1575-1590.

1398 Tourdot, B.E., Ahmed, I., and Holinstat, M. (2014). The emerging role of oxylipins in
1399 thrombosis and diabetes. *Frontiers in pharmacology* 4, 176.

1400 Tsitsigiannis, D.I., and Keller, N.P. (2007). Oxylipins as developmental and host–
1401 fungal communication signals. *Trends in microbiology* 15, 109-118.

1402 Tsitsigiannis, D.I., Kowieski, T.M., Zarnowski, R., and Keller, N.P. (2005). Three
1403 putative oxylipin biosynthetic genes integrate sexual and asexual development in
1404 *Aspergillus nidulans*. *Microbiology* 151, 1809-1821.

1405 Vivancos, P.D., Driscoll, S.P., Bulman, C.A., Ying, L., Emami, K., Treumann, A.,
1406 Mauve, C., Noctor, G., and Foyer, C.H. (2011). Perturbations of amino acid
1407 metabolism associated with glyphosate-dependent inhibition of shikimic acid
1408 metabolism affect cellular redox homeostasis and alter the abundance of proteins
1409 involved in photosynthesis and photorespiration. *Plant physiology* 157, 256-268.

1410 Wang, M., Yang, X., Ruan, R., Fu, H., and Li, H. (2018). Csn5 is required for the
1411 conidiogenesis and pathogenesis of the *Alternaria alternata* tangerine pathotype.
1412 *Frontiers in Microbiology* 9, 508.

1413 Wang, X., Li, W., Piqueras, R., Cao, K., Deng, X.W., and Wei, N. (2009). Regulation
1414 of COP1 nuclear localization by the COP9 signalosome via direct interaction
1415 with CSN1. *The Plant Journal* 58, 655-667.

1416 Wilson, A.M., Wilken, P.M., Wingfield, M.J., and Wingfield, B.D. (2021). Genetic
1417 networks that govern sexual reproduction in the Pezizomycotina. *Microbiology*
1418 and *Molecular Biology Reviews* 85, e00020-00021.

1419 Wilson, W.A., and Roach, P.J. (2002). Nutrient-regulated protein kinases in budding
1420 yeast. *Cell* 111, 155-158.

1421 Young, K. (1998). Yeast two-hybrid: so many interactions,(in) so little time....
1422 *Biology of reproduction* 58, 302-311.

1423 Yu, Z., Kleifeld, O., Lande-Atir, A., Bsoul, M., Kleiman, M., Krutauz, D., Book, A.,
1424 Vierstra, R.D., Hofmann, K., and Reis, N. (2011). Dual function of Rpn5 in two
1425 PCI complexes, the 26S proteasome and COP9 signalosome. *Molecular biology*
1426 of the cell 22, 911-920.

1427 Zarich, N., Anta, B., Fernández-Medarde, A., Ballester, A., de Lucas, M.P., Cámara,
1428 A.B., Anta, B., Oliva, J.L., Rojas-Cabañeros, J.M., and Santos, E. (2019). The
1429 CSN3 subunit of the COP9 signalosome interacts with the HD region of Sos1
1430 regulating stability of this GEF protein. *Oncogenesis* 8, 2.

1431 Zhang, L., Zhang, D., Chen, Y., Ye, W., Lin, Q., Lu, G., Ebbole, D.J., Olsson, S., and
1432 Wang, Z. (2019). *Magnaporthe oryzae* CK2 accumulates in nuclei, nucleoli, at
1433 septal pores and forms a large ring structure in appressoria, and is involved in
1434 rice blast pathogenesis. *Frontiers in cellular and infection microbiology* 9, 113.

1435 Zhao, X., Chen, Y., Tan, X., Zhang, L., Zhang, H., Li, Z., Liu, S., Li, R., Lin, T., and

1436 Liao, R. (2018). Advanced glycation end - products suppress autophagic flux in
1437 podocytes by activating mammalian target of rapamycin and inhibiting nuclear
1438 translocation of transcription factor EB. *The Journal of Pathology* 245, 235-248.

1439 Zhong, K., Li, X., Le, X., Kong, X., Zhang, H., Zheng, X., Wang, P., and Zhang, Z.
1440 (2016). MoDnm1 dynamin mediating peroxisomal and mitochondrial fission in
1441 complex with MoFis1 and MoMdv1 is important for development of functional
1442 appressorium in *Magnaporthe oryzae*. *PLoS pathogens* 12, e1005823.

1443 Zhou, Z., Wang, Y., Cai, G., and He, Q. (2012). *Neurospora* COP9 signalosome
1444 integrity plays major roles for hyphal growth, conidial development, and
1445 circadian function. *PLoS Genetics* 8, e1002712.

1446