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Abstract 

Humans spend more energy on the brain than any other species. However, the high energy 
demand cannot be fully explained by brain size scaling alone. We hypothesized that energy-
demanding signaling strategies may have contributed to human cognitive development. We 
measured the energy distribution along signaling pathways using multimodal brain imaging and 
found that evolutionarily novel connections have up to 67% higher energetic costs of signaling 
than sensory-motor pathways. Additionally, histology, transcriptomic data, and molecular 
imaging independently reveal an upregulation of signaling at G-protein coupled receptors in 
energy-demanding regions. We found that neuromodulators are predominantly involved in 
complex cognition such as reading or memory processing. Our study suggests that the 
upregulation of neuromodulator activity, alongside increased brain size, is a crucial aspect of 
human brain evolution.  
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Introduction 

Over the course of 400 million years, the brains of various species have developed according to 
universal organizational principles (Clark et al., 2001; Sterling & Laughlin, 2017). Neurons are the 
local signaling units that form a dense connectome of widespread signaling pathways via their 
synapses. Notably, certain mammals have larger brain sizes, higher brain-to-body ratios, and 
greater neuron numbers than humans, and even Neanderthals had larger brains than homo 
sapiens (DeFelipe, 2011; Herculano-Houzel, 2012; Mortensen et al., 2014; Semendeferi et al., 2002; 
Smaers et al., 2021; Somel et al., 2013). This suggests that scaling the brain architecture is not 
sufficient for the emergence of complex cognition (Caceres et al., 2003; Fu et al., 2011; Preuss, 
2011; Rakic, 2009; Roberts et al., 2022; Somel et al., 2013). 

An alternative approach to uncover mechanisms related to human cognition is via its energy 
metabolism. The brain relies on a constant supply of energy substrates and, in humans, has the 
highest energy demand compared to the body (Heldstab et al., 2022; Martin, 1981; Navarrete et al., 
2011; Pontzer et al., 2016). This suggests that energy should be distributed efficiently and 
according to its value for information processing (Bullmore & Sporns, 2012; Conrad et al., 2017; 
Laughlin, 2003; Laughlin et al., 1998). On a cellular level, the energetic costs of signaling of 
individual neurons have been optimized across evolution and are stable across different 
mammals (J. J. Harris et al., 2015; Herculano-Houzel, 2011; Howarth et al., 2012; Hyder et al., 2013; 
Karbowski, 2012; Laughlin, 2001). On a systems level, the energy demand of larger functional 
systems is, however, unknown. We hypothesized that the distribution of energy metabolism 
along signaling pathways will reveal mechanisms of complex information processing in the 
human brain.   
 

Results 

We quantified the energetic costs of signaling as the relationship between cortical glucose 
metabolism and synchronized signaling across the brain connectome. Healthy subjects were 
scanned on an integrated PET/MRI-scanner to simultaneously measure the cerebral metabolic 
rate of glucose (CMRglc) and the extent of synchronized signaling between brain voxels, i.e., the 
degree of functional connectivity (dFC) (Fig. 1A).  

We identified a linear relationship between CMRglc and dFC in each individual brain of three 
different cohorts that were measured at two different institutions (Fig. 1B, C). We first analyzed 
data from an exploratory cohort (TUM.exp1 and TUM.exp2, age : 43 ± 7 years, 4 females, N = 9, 
measured twice) and replicated our results in three other datasets from two cohorts (TUM.rep 
cohort, age : 27 ± 5 years, 6 females, N = 11, measured once; VIE.rep1 and VIE.rep2 cohort, age 
: 27 ± 7 years, 5 females, N = 10, measured twice) using the identical analysis pipeline (Fig. 1B; 
all p_smash < 0.024, correcting for spatial autocorrelation with permutation testing, see 
Methods). Fig. 1C shows exemplarily plots of individual subject data, while the results of each 
subject and imaging session can be found in Fig. S1 of the Supplemental Material (Pearson's r: 
mean = 0.42, s.d. = 0.08; all p < 0.1 * 10^-24, from individual correlation analyses, N = 47; 
p_smash > 0.05 for N = 8 datasets). 
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There was no significant difference in Pearson's r between cohorts (Pearson's r range = [0.17, 
0.57]; mean = 0.42; s.d. = 0.08; F(1,28) = 2.41, p = 0.13, one-way ANOVA). Please note that 
across cohorts and scanners, we identified a similar increase in energy demand per connection 
(slope range = 1.12 - 3.79; mean = 2.42; s.d. = 0.69; F(1,28) = 0.07, p = 0.79, one-way ANOVA), 
but varying baseline CMRglc (y-intercept). Furthermore, the linear increase in energetic costs is 
independent of sex and age (Pearson's r female / male: mean = 0.44 / 0.41, standard deviation 
(s.d.) = 0.10 / 0.05; F(1,28) = 0.82, p = 0.37, one-way ANOVA; Pearson's r age = 0.07; p = 0.70; CI: 
[-0.30, 0.42]; N = 30 subjects). We also found no effect of gray matter partial volume on the 
energy-connectivity scaling using voxel-based morphometry as an explanatory variable in the 
linear model (F(2,330) = 50.05, p = 0.13, one-way ANOVA). Finally, we tested the stability of the 
energy-connectivity scaling for different connectivity measures. Results show a consistent 
scaling of energetic costs of signaling with both dynamic functional and structural connectivity 
(Fig. S2 of the Supplementary Materials). We deposited scripts and data in online repositories, 
and one can replicate individual steps of the analysis in an online notebook (see Data and code 
availability).  
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Fig. 1: Glucose metabolism scales linearly with the degree of functional connectivity in 
individual brains. (A) We analyzed the voxel-wise relationship of CMRglc and dFC in the individual 
brain space of each subject from an exploratory cohort measured twice at our institution (TUM.exp1/2: 
light/dark orange), from a younger replication cohort measured again at our institution (TUM.rep: 
violet), and from a second replication cohort of healthy subjects that were scanned twice at a different 
institution (VIE.rep1/2: light/dark green). For group statistics, brain data were transformed into a 
standard brain space (MNI, see Methods) on either the level of voxels or averaged for functional 
regions of a standard parcellation atlas (MMP, see Methods). (B) Significant Pearson's correlation 
between voxel-wise CMRglc and dFC in MNI space averaged across individuals from each of the five 
groups. The distribution of Pearson's r-values of each individual dataset are summarized in violin plots. 
(C) Exemplary plots of significant Pearson's correlation between voxel-wise CMRglc and dFC of 
individual datasets. Regression plots of all subjects can be found in Fig. S1 of the Supplementary 
material. 
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Next, we identified regions with deviating energetic costs of signaling calculated as the residual 
CMRglc per dFC (Fig. 2A, upper row). Across all cohorts and individual brains, we identified a 
consistent cortical distribution of energetic costs for signaling. The brain map in Fig. 2A shows 
regions of higher (red) and lower (blue) energetic costs averaged across subjects of the cohort 
TUM.exp1. We performed identical analyses on the remaining four datasets and found a 
consistent cortical energy distribution in each of the cohorts, with higher energetic costs of 
signaling in frontal and lower costs in sensory cortices (Fig. 2B; significant spatial similarity 
between the pattern of each cohort and that of TUM.exp1, all p_smash < 0.0001, voxel-wise 
permutation test (two-sided) preserving spatial autocorrelation, 1000 permutations). Fig. 2C 
shows the average map of energetic costs of signaling average across all subjects of all cohorts. 
Please note that residual CMRglc varies by +/- 25% across the connectome compared to an 
average metabolic rate of CMRglc = 31.4 µmol / (min * 100 g).  

We then investigated whether energetic costs of signaling relate to certain functional domains 
of the cortex. Fig. 2D shows the result of a group analysis identifying cortical regions with 
significant deviations in CMRglc against the null hypothesis of the linear model fit (yellow; p < 
0.01, voxel-wise non-parametric permutation t-test (two-sided) with 5000 permutations, 
corrected for multiple comparisons using the family-wise error rate). Results show that 28.7% 
of all regions have significantly lower (blue) and 24.1% of regions have significantly higher (red) 
energetic costs than predicted by the model. On the subject level, we identified a set of 76 
regions (23% of all regions) with diverging energetic costs in > 95% of all datasets (colored ROIs 
in Fig. 2E; dots represent single subjects) and a core set of 23 regions (7% of all functional 
regions) with deviating energetic costs in each subject of all datasets. The color scheme in Fig. 
2F indicates the affiliation of cost-deviating regions to one of seven established functional 
networks (see Methods). The pie charts show that regions with lower energetic costs cluster in 
sensory-motor networks (violet, blue, and green sum up to 75%), while regions with higher 
energetic costs are mainly located in fronto-parietal networks (red and yellow sum up to 78%).  

In summary, we identify a consistent pattern of varying energetic costs of signaling pathways in 
individual subject data. In particular, the energy demand for signaling in fronto-parietal 
networks is up to 67% higher than in sensory-motor networks.   
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Fig 2: Regional distribution of energetic costs of signaling across the brain connectome. (A) 
Upper row: Scatterplot of dFC (x-axis) and CMRglc (y-axis) for a single subject with corresponding 
distribution of residual CMRglc showing voxels with higher (red) and lower (blue) energy demand per 
dFC. Lower row: Brain map of average energetic costs of signaling in cohort TUM.exp1. The 
scatterplot of fitted (x-axis) vs. residual (y-axis) CMRglc across all subjects shows a random 
distribution, indicating no unexplained structure in the model (r = 0, p = 1, CI = [-0.03, 0.03]). (B) 
Significant spatial similarity between the distribution of energetic costs of signaling in TUM.exp1 and 
each of the four cohorts. (C) Voxel-wise scatter plot and region-wise brain surface of energetic costs 
of signaling averaged across the subjects of all cohorts. (D) Brain surface showing regions with 
significantly deviating (yellow), and specifically with higher (red) and lower (blue) energetic costs of 
signaling. Pie chart summarizes the distribution of regions with varying energetic costs. (E) Strip plot 
illustrates the region-wise (x-axis) distribution of energetic costs of signaling for each subject of all 
cohorts (dots) sorted from low-to-high median costs. Regions are colored if energetic costs deviate 
from the normalized cortex mean in > 95% of all subjects. Color codes illustrate the affiliation of regions 
to one of seven normative functional networks (see Methods). (F) Pie charts summarize the affiliation 
of regions with lower (left) and higher (right) energetic costs of signaling to any of the seven normative 
brain networks projected on the brain surface. 

 

Given the higher energetic costs of certain signaling pathways, we next investigated whether 
the human brain has an overall higher glucose metabolism as compared to other species. The 
biological scaling of metabolism in relation to the size or volume of an organ is called metabolic 
allometry. We replicated the scaling exponent of 0.86 (Karbowski, 2007) for the log – log 
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relationship between cortical glucose metabolism and brain volume across ten mammals (least-
square fit, log(glc) = log(volume)^0.86 - 0.09; R2 = 0.993; p < 0.0001; N = 10). The average 
glucose metabolism in our human cohorts (CMRglc = 31.35 µmol / (min * 100g)) lies within the 
confidence interval of the least-square fit (Fig. 3A; CI: [0.81, 0.91]). This means that the energy 
metabolism of the entire human brain is as high as predicted for its size by the law of metabolic 
allometry.  

Are energy demanding regions specific to human evolution? Using a morphometric atlas that 
describes the expansion of homologous brain regions from chimpanzees to humans (see 
Methods), we found a positive linear relationship between the energetic costs of signaling and 
brain expansion (Fig. 3B; r = 0.29, p < 0.0001; p_smash = 0.051, CI: [0.42, 1.04]; N = 168 regions 
from MMP-parcellation). Please note that the x-axis indicates the extent of expansion during 
evolution and not the actual size of a region. In summary, the entire human brain evolved 
according to the allometric scaling law of metabolism. However, regions that expanded most 
during human evolution show an excessive energy demand compared to the rest of the brain.   

In a next step, we studied the microstructure of brain regions with high energetic costs of 
signaling by means of the BigBrain Atlas (see Methods). This is a histological atlas of the cellular 
distribution across 50 cortical layers of a human donor brain (Fig. 3C). For each region, the 
staining intensity of brain cells is plotted along the cortical depth and transformed into a 
density distribution. The density skewness indicates the relative distribution of cells along the 
cortical depth (left skewness ~ higher cell density in lower layers). We then calculated the 
correlation between energetic costs of signaling and the cell density distribution across cortical 
regions. Results show a significant negative relationship between energetic costs and the 
skewness towards upper layers (Fig. 3C, right; r = -0.53, p < 0.0001, p_smash = 0.002, CI: [-6.89, 
-4.53]; N = 168 MMP-regions). This means that regions with high energetic costs of signaling 
have a higher cell density in lower cortical layers compared to regions with low energetic costs.   

 

 
Fig 3: Energetic costs of signaling relate to the evolution of brain morphology on the macro- 
and microscale. (A) Allometric scaling of brain glucose metabolism with volume across ten mammals 
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including humans (external data, see Methods). Our data from grey matter (GM) fall within the 
confidence interval of the model fit (orange dot). (B) Significant Pearson's correlation between 
energetic costs of signaling and the degree of cortical expansion from non-human to human primates. 
(C) Energetic costs of signaling correlate with cell density in infragranular layers. Histological slice of 
the BigBrain atlas (see Methods) showing the staining intensity for cells in the gray matter (top). The 
distribution of staining intensity for cells between pial and white matter (WM) surfaces is shown for two 
exemplary regions (violet, yellow) which is then translated into the skewness of staining intensity 
(bottom). The two regions are examples for high cell density in supragranular (yellow, right tailed) and 
infragranular (violet, left tailed) layers. The brain surface shows the cortical distribution of layer 
predominance across the entire cortex. The scatterplot reveals a significant negative Pearson's 
correlation between energetic costs of signaling and cell density skewness, indicating highest 
energetic costs in regions with highest cell density in infragranular layers. 

 

Given the difference in macroscale and microscale morphology, we hypothesized a unique 
molecular profile associated with the distribution of energetic costs of signaling. The Allen 
Human Brain Atlas (AHBA) provides transcriptomic data sampled across the cortical surface and 
averaged across six donor brains (see Methods). We projected the AHBA microarray data onto 
our map of energetic costs of signaling and performed pairwise correlations between regional 
costs and each of the expression profiles of 8426 brain specific genes across cortical regions. 
Results show that 617 gene expression profiles significantly correlate with energetic costs of 
signaling across the human cortex (Fig. 4A, left; p < 0.005, FDR-corrected for multiple 
comparisons).  We then investigate the putative function of the significantly correlated genes 
using a gene ontology enrichment (GOE) analysis. The analysis of ‘cellular components’ 
revealed that regions with high energetic costs of signaling are significantly enriched in genes 
coding for synapses, part of synapses and dendrites, i.e. cellular compartments that are 
involved in signal transduction (Fig. 4A, middle; p < 0.02, FDR-corrected; Table S1). The analysis 
of ‘molecular functions’ identified seven significantly enriched clusters, also predominantly 
related to signal transduction (Fig. 4A, right; p < 0.05, FDR-corrected; Table S2). Specifically, we 
found gene annotations for activity of receptors and transporters involved in metabotropic, i.e. 
G-protein-coupled, neuromodulation and voltage-gated signaling. Results were replicated using 
a different GOE-tool and database (see Methods, Tables S3, S4). A summary of the ‘molecular 
functions’ is depicted in the stacked pie chart of Fig. 4B. This shows that 95% of genes that are 
overexpressed in regions with high energetic costs are involved in signal transduction (green), 
and mainly in metabotropic signaling (pink, 40%). In other terms, the human brain spends 
excessive energy on the long-lasting regulation of (fast) neurotransmission with (slow) 
neuromodulators such as serotonin, dopamine or noradrenaline.  

Next, we replicated this finding about the genetic upregulation of neuromodulator activity with 
receptor imaging data. In a strong collaborative approach, colleagues recently gathered PET 
imaging data about the brain-wide activity of 19 unique receptors and transporters from 28 
different PET studies (see Methods). This includes receptor-activity maps of the serotonergic 
(5HT1b, 5HT6, 5HT1a, 5HTT, 5HT2a, 5HT4), dopaminergic (D1, FDOPA, DAT, D2), cholinergic 
(A4B2, VAChT, M1), adrenergic (NAT), histaminergic (H3), cannabinoid (CB1), and opioid (MU) 
system, in addition to three receptors of the glutamatergic (mGluR5, NMDA) and GABA-ergic 
(GABAa-bz) system. We entered all PET maps of ligand occupancy into a partial least-squares 
regression (PLS) analysis to test the joint explanatory power of neuromodulator activity for the 
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spatial distribution of energetic costs of signaling. The first component of the PLS analysis (brain 
map in Fig. 4C) explains 86% of the cortical variance in energetic costs (p = 0.0002 after 5000 
randomizations). Specifically, 16 receptors and transporters significantly contribute to the main 
latent variable (bar plots in Fig. 4C). This means that the cortical distribution of energetic costs 
of signaling is strongly related to the regional level of neuromodulator activity.  

We finally validated the consistency between transcriptomic- and PET imaging data for 
individual receptors. Three of the 617 overexpressed genes from the AHBA specifically code for 
membrane receptors whose density was captured by unique PET-ligands respectively (see 
‘bold’ ligands in Fig. 4C; receptor / gene / PET-ligand combination listed here: opioid receptor 
mu / OPRM1 / [11 C]-carfentanil; serotonergic receptor 5HT4 / HTR4 / [11 C]-SB207145; 
cholinergic receptor alpha-4 beta-2 / CHRNA4 / [18 F]-flubatine). This allowed us to specifically 
test the consistency between gene expression levels and imaging-based activity for unique 
receptors. For each of the three receptors, ligand-activity confirmed the level of gene 
expression with similar signs and slopes of regressions across cortical regions (Fig. 4C, right; PET 
data: MU: r = 0.32, p < 0.0001, CI = [0.17, 0.46]; 5HT4: r = -0.05, p = 0.532, CI: [-0.21, 0.11]; 
A4B2: r = 0.41, p < 0.0001, CI: [0.26, 0.53]). Together, transcriptomics and molecular imaging 
independently suggest a high level of neuromodulator activity in energetically expensive 
regions of the brain. Particularly, our analyses point towards excessive energy demands for 
long-lasting, G-protein coupled neuromodulation.  

So far, we have identified a high density of slow-acting neuromodulator activity in 
evolutionarily novel cortex. In a final step, we explored whether these regions are involved in 
higher cognitive processing. This would support the notion of an expensive signaling 
architecture being dedicated to human cognition. The Neurosynth project is a meta-analytic 
database with statistical maps aggregating voxel-wise activity for a wide range of cognitive 
functions derived from thousands of neuroimaging studies (see Methods). We extracted the 
regional activity maps for 23 cognitive domains ranging from simple sensory processing to 
complex cognition and evaluated the similarity between the chemoarchitecture map of Fig. 4C 
with each activity map. Results show that regions with strong neuromodulator activity 
particularly contribute to complex functions such as memory processing and reading but are 
less prominent in activity patterns of sensory-motor processing (Fig. 4D).  
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Fig 4: Regional activity of neuromodulators relates to high energetic costs of signaling and 
complex cognition. (A) Significant Pearson's correlations (dashed lines) between energetic costs 
and each of 8.426 brain specific gene expression values across 170 cortical regions. Gene ontology 
enrichment analysis identifies cellular components (middle) and molecular functions (right) that are 
significantly associated with correlated genes. (B) Hierarchical summary of the gene ontology 
enrichment analysis stressing the involvement of genes coding for proteins involved in signal 
transduction (95%, green), and particularly of G-protein coupled, metabotropic, neuromodulation 
(40%, pink) and ionotropic signaling (26%, orange). (C) Multi-dimensional PLS-analysis reveals that 
86% of the cortical distribution of energetic costs (first latent variable, PLS 1) is explained by the linear 
combination of neurochemical signaling as defined by receptor-PET imaging of 19 neuromodulators 
and neurotransmitters (metabotropic: pink, ionotropic: orange, transporters: grey). Error bars 
represent 95% confidence intervals using bootstrap resampling (5000 permutations). (Right) For three 
receptors, both transcriptomic (colored bars in A) and imaging ('bold' ligands in C) data are available 
which allows to validate activity of unique receptors with gene expression data. For the ionotropic 
(A4B2) and the two metabotropic (MU, 5HT4) receptors, the separate regression analyses between 
energetic costs and both transcriptomic and imaging data yield similar directions and slopes (colored 
regressions: PET imaging, grey regressions: transcriptomic data), supporting the results from imaging 
with transcriptomic data. (D) Joyplot shows histograms of the voxel-wise first latent score between 
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energetic costs and chemoarchitecture profiles (z-score > 2.3) for each of 23 cognitive domains (y-
axis) from the meta-analytic Neurosynth database (see Methods). Color-coding illustrates the 
increasing rank (blue > red) of average energetic costs from simple sensory processing to higher 
cognitive functions. 

 

Discussion 
Using a unique imaging setup, we quantified the energetic costs of signaling across the human 
brain. We identified an excessive demand for the long-term regulation of neurotransmitter 
signaling via neuromodulators. Intriguingly, neuromodulator activity is dense in the 
evolutionarily novel cortex and is particularly involved in cognitive processing. 

On a global level, we confirm that total cerebral energy metabolism scales according to the law 
of metabolic allometry (Balaban, 2013; Karbowski, 2007; West et al., 2002). This means that the 
human brain consumes less energy per volume than its predecessors. It has been suggested 
that this is due to an energy-efficient global signaling architecture in humans (Bullmore & 
Sporns, 2012; Conrad et al., 2017; Laughlin, 2001; Preuss, 2011; Sterling & Laughlin, 2017). We 
measured an average metabolic rate of 31.35 µmol glucose/min per 100g of gray matter tissue, 
which is the equivalent of around 12 cubes of sugar that are metabolized by an average-sized 
human brain per day. On the regional level, however, we identified up to 50% variance in 
energetic costs for individual signaling pathways. Specifically, we noticed higher energy 
metabolism in evolutionarily novel structures. This regional variance in metabolism corresponds 
with findings from transcriptomic and metabolomic analyses of post-mortem brains from 
humans and primates, which suggest metabolic upregulation in the frontal cortices (Caceres et 
al., 2003; Fu et al., 2011; Somel et al., 2013; Wei et al., 2019). 

What is the mechanism behind the excessive energy demands in evolutionarily novel cortex? 
Using transcriptomic and receptor imaging data, we find that excessive energy metabolism in 
evolutionarily novel cortex is related to neuronal signaling and particularly to neuromodulator 
activity. These neuromodulators, such as serotonin, dopamine, and noradrenaline, act as 
general modulators of brain-wide circuits (Grossman & Cohen, 2022; Nadim & Bucher, 2014). 
The G-protein-mediated regulation of fast neurotransmitter signaling creates a long-lasting and 
widespread effect on information processing. This effect is more about setting the tone of 
general excitability than transferring individual bits of information. 

The greater energy demand of slow-acting neuromodulators compared to fast 
neurotransmitter signaling is due to a sequence of biochemical steps that include second 
messengers and protein transformations (Greengard, 2001). This confirms our observation of 
excessive energy demand for regions with a large number of neuromodulators in addition to a 
linear relationship between energy expenditure and the degree of signaling pathways. Regions 
with an upregulation of metabotropic signaling also have a distinct cellular and genetic 
composition. Our analysis of histological data indicates a higher cell density in lower cortical 
layers, while transcriptomic data show an enrichment of genes associated with signal 
integration at dendrites and synapses. This is supported by recent autoradiography data that 
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links information integration to cellular components, particularly those in lower cortical layers 
(Goulas et al., 2021). 

Recent research has suggested that the energetic costs of signaling increase during long-term 
processes such as memory formation (Bazzari & Parri, 2019). Our human data indicate that 
brain regions with high energetic costs of metabotropic signaling play an important role in 
cognitive processing over longer timescales, including memory processing, cognitive inhibition, 
and reading. Additionally, neuromodulators have been linked to cognitive dysfunctions 
associated with major mental disorders (Roth, 2019). Unfortunately, the efficacy of current 
psychoactive drugs in regulating neuromodulators is limited, and further research is needed to 
better understand the dysfunction of metabotropic signaling in those patients.  

Our findings suggest that the evolution of human cognition may have emerged not only from an 
overall larger brain, but particularly by the development of slow-acting neuromodulator 
circuits. It seems that the benefits of increased cortical energy metabolism, together with an 
increased supply of energy substrates (Heldstab et al., 2022; Navarrete et al., 2011; Pontzer et 
al., 2016), have outweighed its risks. Yet, our knowledge of how the interaction of slow-acting 
neuromodulators with fast information processing contributes to human cognition is still 
limited.  
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Materials and Methods 
The data processing was performed using the Python packages Pandas (Pandas - Python Data 
Analysis Library, n.d.) and Numpy (C. R. Harris et al., 2020), the neuroimaging data were 
handled using Nilearn (Abraham et al., 2014) and Nibabel (Brett et al., 2022), the plotting was 
performed with Matplotlib (Hunter, 2007), Seaborn (Waskom, 2021) and Joyplot (Taccari, 
2017/2023); whereas the brain surface representations were printed using WBplot (J. Burt, 
2020/2022). 

 

Participants 

Forty-seven datasets from thirty healthy participants from three independent cohorts were 
included in the study. Three additionally available datasets had to be excluded, two due to 
motion artifacts with framewise displacement > 0.25 mm (Power et al., 2014)  and one due to 
incomplete data. All participants were right-handed and did not report any history of 
psychiatric conditions. Participants were informed about the objectives and potential risks of 
the study, and signed a written consent inform. The study was approved by the local 
institutional review board and was conducted in accordance with the Declaration of Helsinki. 
Three cohorts of participants were analyzed, two of them were recruited from our site and 
another from an external site: i) a within-subject exploration sample (TUM.exp) of 9 
participants (mean age = 43 years, std = 7 years; 4 females); ii) a prospective replication sample 
(TUM.rep) of 11 participants (mean age = 27 years, std = 5 years; 6 females); and iii) an external 
within-subject replication sample (VIE.rep) (Sundar et al., 2018) of 10 participants (mean age = 
27 years, std= 7 years; 5 females). Two participants from the VIE.rep cohort had only one 
session. 

 

Data acquisition 

At TUM, we simultaneously measured FDG-PET activity and BOLD-fMRI signals during resting 
conditions while the participants kept their eyes open, except for the second imaging session of 
TUM.exp, where the participants had their eyes closed. Data were acquired on an integrated 
PET/MR (3T) Siemens Biograph mMR scanner (Siemens, Erlangen, Germany) and used a 12-
channel phase-array head coil for the MRI acquisition. The PET data were collected in list-mode 
format with an average intravenous bolus injection of 184 MBq (s.d. = 12 MBq) of [18F]FDG. In 
parallel to the PET measurement, automatic arterial blood samples were taken from the radial 
artery every second to measure blood radioactivity using a Twilite blood sampler (Swisstrace, 
Zurich, Switzerland).  

The functional MRI data were acquired during a 10 min time interval using a single-shot echo 
planar imaging sequence (300 volumes; 35 slices; repetition time, TR = 2000 ms; echo time, TE = 
30 ms; flip angle, FA = 90°; field of view, FOV = 192 × 192 mm2; matrix size = 64 × 64; voxel size 
= 3 × 3 × 3.6 mm3). Diffusion-weighted images were acquired using a single-shot echo planar 
imaging sequence (60 slices; 30 non-colinear gradient directions; b-value = 800 s/mm² and one 
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b=0 s/mm² image; TR = 10800 ms, TE = 82 ms; FA = 90°; FOV = 260 x 264 mm²; matrix size = 130 
x 132; voxel size = 2 x 2 x 2 mm3). Anatomical images were based on a T1-weighted 3D-MPRAGE 
sequence (256 slices; TR = 2300 ms; TE = 2.98 ms; FA = 9°; FOV = 256 × 240 mm2; matrix size = 
256 × 240; voxel size = 1 × 1 × 1 mm3).  

The acquisition and formats of data from the VIE-site were similar to the TUM-site and 
described elsewhere (Sundar et al., 2018). The main differences were a higher dose and 
variability of injected [18F]FDG (mean dose = 356 MBq, std = 66 MBq), manual measurement of 
the blood radioactivity for the arterial input function, and a slightly different fMRI protocol with 
acquisition time (~7 min), TR (2400 ms) and voxel size (2 × 2 × 3.7 mm3). 

 

Data processing 

The following pre- and postprocessing pipelines for MR- and PET-data were established on the 
TUM.exp-dataset and applied without further modification to the TUM.rep- and VIE.rep-
datasets, except for reasons of different data structure between TUM- and VIE-data which is 
explicitly stated below. All processing steps and calculation of parameter maps were performed 
in native space of each modality and only transformed for group analyses into a standard brain 
space of the Montreal neurological institute MNI152NLin6ASym with 3 mm voxel resolution. 
For the region-of-interest (ROI) analyses, we used the HCP-MMP1.0 parcellation scheme, a 
population-based cortical parcellation with 180 ROIs per hemisphere from the Human 
Connectome Project dataset (Glasser et al., 2016) and calculated the median value of the 
metric of interest per ROI. Furthermore, each ROI was labeled according to its location within 
one of seven normative brain functional networks (Yeo et al., 2011). 

MRI 

The preprocessing of the structural and functional MRI data was performed using the 
Configurable Pipeline for the Analysis of Connectomes (Sharad et al., 2014) (C-PAC, version 
1.4.0) following a standard protocol:  

- The anatomical images were skull-stripped, segmented into three tissue types 
(cerebrospinal fluid - CSF, white matter - WM, gray matter - GM) and registered to the 
MNI152NLin6ASym template provided by FSL (S. M. Smith et al., 2004). The individual gray 
matter masks were generated by keeping the voxels with a probability of over 25% in the 
gray matter probability maps and a temporal signal-to-noise ratio (tSNR) over the 15 
percentiles of all tSNR values in the functional image. The gray matter group masks for 
every cohort were derived by averaging the gray matter probability maps across subjects 
and keeping the voxels with a gray matter probability over 25%. For the joint analysis, the 
gray matter group masks of every cohort were multiplied with each other. The voxel-based 
morphometry (VBM) analysis was performed using FSL-VBM (Douaud et al., 2007). The 
modulated grey matter images were smoothed with an isotropic Gaussian kernel (FWHM = 
5 mm).  

- Functional images were slice-time corrected, realigned, motion corrected, skull-stripped 
and registered to the anatomical images. Thereafter, the global mean intensity was 
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normalized across the fMRI run, the nuisance signals were regressed-out (scanner drift, 
physiological noise and head motion signals) and the timeseries were bandpass-filtered 
(0.01 - 0.1 Hz). Next, the degree of functional connectivity (dFC) was calculated based on 
the voxel-wise Pearson´s correlation (p < 0.001 significance threshold) of the preprocessed 
timeseries of each voxel within the individual gray matter mask using the function 
3dDegreeCentrality from AFNI (Craddock et al., 2016). Finally, the dFC-map was spatially 
smoothed (Gaussian filter, FWHM = 6 mm) and registered to the MNI152NLin6ASym 3 mm 
template through the anatomical image. The regression of the nuisance signals modeled the 
scanner drift using quadratic and linear detrending, whereas the physiological noise was 
modeled using the five principal components with the highest variance from the 
decomposition of white matter and cerebrospinal fluid voxel time series (CompCor) 
(Behzadi et al., 2007). 

- The dynamic functional connectivity was calculated as the standard deviation over time of 
the degree of functional connectivity generated from sliding windows time series (Yu et al., 
2015) (width = 40 s in steps of 20 s). The dynamic dFC map was spatially smoothed 
(Gaussian filter, FWHM = 6 mm) and registered to the MNI152NLin6ASym 3 mm template 
through the anatomical image. 

- Diffusion-weighted images preprocessing and probabilistic tractography were performed 
using MRtrix3 (version 3.0.0) (Tournier et al., 2019), FSL (Jenkinson et al., 2012) and 
Advanced Normalization Tools (ANTs) (Avants et al., 2011), following the anatomically-
constrained tractography pipeline (R. E. Smith et al., 2012). The preprocessing included 
denoising, eddy-current correction, motion correction (using FSL topup) and bias-field 
correction (using ANTs). The structural connectivity matrices were derived from the 
preprocessed images using single-tissue constrained spherical deconvolution probabilistic 
tractography (Tournier et al., 2007). Additionally, a spherical-deconvolution informed 
filtering was applied to the tractograms, constrained by the anatomical tissue masks and 
the HCP-MMP parcellation. Finally, the strength of the structural connectivity was derived 
from the communicability between each pair of brain regions (Crofts & Higham, 2009), 
capturing the communication capacity of direct and indirect connections. 

PET 

For the TUM cohorts, the first 45 minutes of the PET acquisition were reconstructed offline 
using the NiftyPET library (Markiewicz et al., 2018) based on the ordered subsets expectation 
maximization (OSEM) algorithm with 14 subsets, 4 iterations, and divided into 33 dynamic 
frames: 10 x 12 s, 8 x 30 s, 8 x 60 s, 2 x 180 s and 5 x 300 s. The attenuation-correction was 
based on the T1-derived pseudo-CT images (Burgos et al., 2014). For the VIE cohort, the first 40 
minutes of the PET acquisition were reconstructed offline using the Siemens e7 reconstruction 
tool based on the OSEM algorithm with 21 subsets, 3 iterations, and divided into 30 dynamic 
frames: 24 x 5 s, 1 x 60s, 1 x 120 s, 1 x 300 s, 1 x 600 s and 2 x 1200 s post injection. The 
attenuation-correction was based on low-dose CT images from the participants (Sundar et al., 
2018). 

All reconstructed PET images were motion corrected and spatially smoothed (Gaussian filter, 
FWHM = 6 mm). The net uptake rate constant (Ki) was calculated using the Patlak plot model 
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(Patlak & Blasberg, 1985) based on the last 5 frames of the preprocessed PET images (frames 
between 20 to 45 minutes) and the arterial input function derived from the preprocessed 
arterial blood samples. The cerebral metabolic rate of glucose (CMRglc) was calculated by 
multiplying the Ki map with the concentration of glucose in plasma of every participant, divided 
by a lumped constant of 0.65 (Wu, 2003). Finally, the CMRglc maps were partial volume 
corrected using the GM, WM and CSF masks derived from the T1 images using the iterative 
Yang method (Yang et al., 2017) and registered to the MNI152NLin6ASym 3 mm template 
through the anatomical image. 

Arterial input function (AIF) 

For the TUM cohorts, the blood time-activity curves (TAC) were preprocessed using the Turku 
PET Center command-line interface library TPCCLIB (Oikonen et al., n.d.) (version 0.7.5). First, 
the blood TAC were converted to plasma TAC using the b2plasma function, based on the 
reference FDG plasma/blood ratio function (Phelps et al., 1979) over time and the hematocrit 
value of each participant when measured, otherwise a reference value of 0.4/0.45 
(female/male) was used (Chernecky & Berger, 2012). For the VIE cohort, the whole blood 
samples were centrifuged to measure the radioactivity in the plasma. For all cohorts, the 
plasma TAC was modeled using a sum of exponential functions, which was fitted to the middle 
of the reconstructed PET timeframes to derive the AIF (Feng et al., 1993). For four participants 
from the TUM.exp cohort without complete arterial sampling, the AIF was generated based on 
a population-based input function (PBIF) (Vriens et al., 2009) derived from all the participants 
from the TUM. 

Population-based input function (PBIF) 

The population-based arterial input function (AIF) was calculated as the average AIF across 
participants with arterial input sampling from our center (n = 16). The individual AIF were then 
normalized by the expected FDG concentration immediately after injection Cp*(0) (Equation 1) 
(Shiozaki et al., 2000): 

𝑃𝐵𝐼𝐹(𝑡)  =  
1
𝑛,

𝐴𝐼𝐹(𝑡)
𝐶𝑝!∗(0)

#

!$%

 

(1) 

where Cp i*(0) is the initial plasma concentration of [18F]FDG, defined as the expected 
concentration directly after tracer injection, calculated by evaluating Equation 2 at t=0. 
Equation 2 models the plasma concentration of tracer as an exponential function during the 
period of intravascular and extravascular [18F]FDG equilibrium (Buxton, 2017), between 5 and 
30 min after tracer injection (Sadato et al., 1998). 

𝐶𝑝∗(𝑡)  =  𝐶𝑝∗(0) ⋅ 𝑒&'( 

(2) 

α was derived by fitting Equation 2 with the non-linear least squares optimization method from 
SciPy (Virtanen et al., 2020). For four participants of TUM.exp, who did not have arterial 
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sampling due to technical errors, their individual AIFs (AIFiPBIF) were calculated based on the 
population-based input function (Equation 1), scaled by the expected [18F]FDG concentration 
immediately after injection (Cp*(0)) (Equation 3). 

𝐴𝐼𝐹!)*+,(𝑡)  =  𝐶𝑝∗(0) ⋅ 𝑃𝐵𝐼𝐹(𝑡) 

(3) 

where Cp*(0) can be approximated as a function of the injected dose (iD), and the participant 
body weight (W) and height (H), when arterial sampling is not available (Equation 4) (Shiozaki et 
al., 2000; Vriens et al., 2009). 

𝐶𝑝∗(0)  =  
𝑖𝐷

𝑐 ⋅ 𝐻- ⋅ 𝑊. 

(4) 

where h, w and c were derived by minimizing the coefficient of variation of c (𝐶𝑉  =   /.1.(3)
567#(3)

) 

across the participants with arterial input sampling in our center, while varying independently 
the parameters h and w in the ranges of 0 to 2 and 0 to 1 in Equation 4, respectively (Shiozaki et 
al., 2000). 

Energetic costs of signaling 

The relationship between brain energy metabolism (CMRglc) and the degree of brain-wide 
functional connectivity (dFC) was modelled using a linear regression model (Equation 5) across 
cortical voxels within the GM mask. 

CMRglc  =  dFC ⋅ β + ε	 

(5) 

The energetic costs were defined as the residual after fitting the model in Equation 5, 
representing the variation in CMRglc not explained by dFC. Positive energetic costs, located 
above the regression line, represent areas with a higher energy demand than expected for a 
given dFC, whereas negative energetic costs, located below the regression line, represent areas 
with a lower energy demand than expected for a given dFC. 

 

External data sources 

Here, we integrated our group imaging data with 7 different external datasets about brain 
morphology, histology, transcriptomic data, molecular imaging, and comparative brain data. 
Each of the external datasets was provided in their own regional parcellation schemes and first 
converted to the HCP-MMP1.0 parcellation using the parcellation conversion tools provided by 
the Enigma-toolbox (Larivière et al., 2021). 

1. Allometric scaling between total brain metabolism and brain volume across species 
(Karbowski, 2007) 
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This dataset includes the CMRglc of unanaesthetised adult animals during resting 
conditions from ten different species, including humans, compiled from previous. The 
total glucose utilization rate was derived by multiplying the CMRglc with the 
correspondent brain volume. 

2. Cortical expansion from non-human primates to humans (Wei et al., 2019, p. 201) 
This dataset provides a brain map of the cortical expansion from chimpanzees (Pan 
troglodytes) to humans (Homo sapiens) using surface-to-surface mapping of 3D cortical 
regions across both species based on in vivo T1-weighted MR-images of 29 chimpanzees 
and 30 humans. 

3. BigBrain Atlas (Amunts et al., 2013) 
This dataset provides an ultra-high-resolution volumetric reconstruction of a 
postmortem, Merker-stained human brain from a 65-year-old. We used the version with 
50 equivolumetric surfaces sampled between the pial and white matter surfaces 
provided by the BigBrain Warp toolbox (Paquola et al., 2021). First, the volume values 
were inverted to reflect the cellular density across cortical depth (Paquola et al., 2019), 
and then the skewness of each intensity profile was calculated to illustrate the 
distribution of cellular density between infra- and supra-granular layers (Zilles et al., 
2002). 

4. Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2012) 
This dataset provides microarray data collected across the entire cortex of six human 
donor brains. We used a preprocessed version of the data provided by the Enigma-
toolbox (Larivière et al., 2021), based on the Abagen-toolbox (R. D. Markello et al., 
2021). Preprocessing included the intensity-based filtering of microarray probes, the 
selection of a representative probe for each gene across hemispheres, the matching of 
microarray samples to brain parcels from the HCP-MMP1.0 parcellation, the 
normalization using the scaled robust sigmoid function across genes and samples, and 
the averaging within parcels and across donors of genes with a similarity across donors 
of at least 0.2, leaving a total of 8426 genes for further analysis. For the gene sets below, 
we calculated the region-wise mean and z-scored expression values for each gene. 

5. Genotype Tissue Expression database (GTEx v8) (The GTEx Consortium, 2020) 
This dataset provides tissue-specific gene expression profiles collected from 54 non-
diseased tissue sites from around 1000 participants. A list of 1588 genes that are 
expressed significantly more in the brain than compared to other organs was extracted 
based on a p < 0.05 (one-sided t-test, FDR corrected) and used as a background list for 
the gene ontology enrichment analysis (Wei et al., 2019).  

6. External PET neuroreceptors maps (Hansen, 2022) 
This dataset compiles data from 28 different and previously published PET-imaging 
studies on the chemoarchitecture of the healthy human. It includes group-averaged 
volumetric PET maps of ligand occupancy from 19 unique receptors and transporters 
across 9 neurotransmitter and -modulator systems: dopamine, norepinephrine, 
serotonin, acetylcholine, glutamate, GABA, histamine, cannabinoid, and opioid. A 
subsequent analysis between transcriptomic and PET-imaging data included the 
following three PET ligands: the cholinergic nicotinic (acetylcholine) receptor alpha 4 
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beta 2 ([18 F]flubatine tracer), the opioid receptor mu 1 ([11 C]carfentanil tracer) and 
the serotonin 5-hydroxytryptamine receptor 4 ([11 C]SB207145 tracer).  

7. Neurosynth database (Yarkoni et al., 2011) 
This dataset provides meta-analytic, statistical maps of brain activity related to 23 
cognitive terms that are gathered from thousands of studies and ranging from 
sensorimotor to higher-order cognitive functions (Margulies et al., 2016).  The 
statistically significant areas from the meta-analytic maps (z-score > 2.3) were used as 
masks to extract the distribution of the joint PLS score between the energetic costs and 
chemoarchitecture maps.  
 

Statistical analysis 

Correlation analyses 

The significance of the relationship between two variables was evaluated parametrically, based 
on the p-value associated to the Pearson`s correlation between them, and non-parametrically, 
based on the distribution of p-values derived from permuting the data 1000 times while 
preserving the spatial autocorrelation information of the target map (p_smash) using the 
Brainsmash toolbox (J. B. Burt et al., 2020, p. 202). To test for possible differences between 
cohorts and sex, these two variables were used as between-subject factors in independent one-
way ANOVA analyses. The slope and correlation values derived from the linear relationship 
between CMRglc and dFC were used as the dependent variable. Additionally, the effect of age 
on the linear relationship between CMRglc and dFC was tested by calculating the Pearson`s 
correlation between the individual correlation values and age. The ANOVA and correlation 
analyses were performed using the python package Pingouin (version 0.3.9) (Vallat, 2018). 

 

Analysis of spatial similarity between brain maps 

The spatial similarity between the distribution of energetic costs of TUM.exp1 and those of the 
remaining cohorts was assessed based on a spatial Pearson`s correlation between them. The 
statistical significance of this correlation was evaluated by comparing it to a null distribution of 
correlation values derived from permuting the energetic costs of the TUM.exp1 map (1000 
times) while preserving its spatial autocorrelation. 

 

Statistical comparison between linear models 

A one-way ANOVA was used to test for differences in the CMRglc variance explained by two 
linear models: a simple one with dFC as the only predictor variable, and a multiple linear model 
with dFC and other connectivity measures as additional predictors. The model comparison was 
performed in R Statistical Software (version 4.1.2) (R Core Team, 2022). 

 

Allometric scaling 
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Allometry describes the scaling relationship of body parameters (Shingleton, 2010). Metabolic 
allometry of the brain models total brain size as a function of total glucose utilization rate 
according to the general allometric scaling law (Karbowski, 2007): 

brain	size	~	intercept ∗ total	glucose	metabolism899:;<=>?@	B8@=:> 

(6) 

Equation 6 was fitted as a linear regression between log-log data of brain size and total glucose 
metabolism using the non-linear least squares optimization method provided by the python 
library SciPy (version 1.7.3) (Virtanen et al., 2020). 

 

Group analysis of energetic costs  

Brain regions with significantly deviating energetic costs were identified using voxel-wise one-
sample t-tests of the individual parameter maps across all participants from all cohorts using 
the FSL randomize (Winkler et al., 2014) permutation-testing tool (p < 0.01, familywise error 
rate corrected, 5000 permutations). 

 

Gene ontology enrichment (GOE) analysis 

In this analysis we assessed the differentially expressed genes and their putative functions in 
brain regions of varying energetic costs. Across cortical regions, we correlated expression 
values of the 8426 AHBA genes with the average energetic costs map. Significantly correlated 
genes (p < 0.005, Benjamini-Hochberg FDR corrected) were subsequently used as an input to 
the GOE analysis and visualization tool GOrilla (version 03/06/2021) (Eden et al., 2009), and 
replicated using a different tool, Panther (version 17.0) (Mi et al., 2019). This analysis identifies 
gene ontology annotations for which the genes are significantly enriched using a minimal 
hypergeometric (mHG) p-value threshold of 10-3 (Eden et al., 2007, 2009),  and corrected for 
multiple comparisons using a Benjamini-Hochberg FDR correction. As background, we used the 
brain specific gene set from the GTEx database (see External data sources). 

 

Partial least square analysis (PLS) 

The pyls python library (R. Markello, n.d.) was used to perform the PLS analysis between the z-
scored map of energetic costs (334 ROIs x 30 participants) and the set of external PET-maps 
about the chemoarchitecture of the human brain (334 ROIs x 19 neurotransmitter receptors, 
see above). This analysis uses singular value decomposition to reveal the shared information 
between the two datasets represented as a set of orthogonal latent variables. The statistical 
significance of the latent variables was determined using permutation testing (5000 
permutations), whereas bootstrap resampling (5000 times) was used to examine the 
contribution and reliability of the input features to each latent variable. The energetic costs 
score (surface representation in figure 4C) was calculated by projecting the energetic costs 
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maps onto the first latent variable, whereas the receptor loadings (bar plot in figure 4C) are the 
Pearson correlation between the neuroreceptors map and the first energetic costs score. 
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