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Abstract

Motivation: Despite the advances in sequencing technology, massive proteins with known sequences

remain functionally unannotated. Biological network alignment (NA), which aims to find the node

correspondence between species’ protein-protein interaction (PPI) networks, has been a popular strategy

to uncover missing annotations by transferring functional knowledge across species. Traditional NA

methods assumed that topologically similar proteins in PPIs are functionally similar. However, it was

recently reported that functionally unrelated proteins can be as topologically similar as functionally related

pairs, and a new data-driven or supervised NA paradigm has been proposed, which uses protein function

data to discern which topological features correspond to functional relatedness.

Results: Here, we propose GraNA, a deep learning framework for the supervised NA paradigm for the

pairwise network alignment problem. Employing graph neural networks, GraNA utilizes within-network

interactions and across-network anchor links for learning protein representations and predicting functional

correspondence between across-species proteins. A major strength of GraNA is its flexibility to integrate

multi-faceted non-functional relationship data, such as sequence similarity and ortholog relationships, as

anchor links to guide the mapping of functionally related proteins across species. Evaluating GraNA on

a benchmark dataset composed of several NA tasks between different pairs of species, we observed

that GraNA accurately predicted the functional relatedness of proteins and robustly transferred functional

annotations across species, outperforming a number of existing NA methods. When applied to a case

study on a humanized yeast network, GraNA also successfully discovered functionally replaceable

human-yeast protein pairs that were documented in previous studies.

Availability: The code of GraNA is available at https://github.com/luo-group/GraNA.

Contact: yunan@gatech.edu

1 Introduction

In biomedical research, it is often challenging or infeasible to directly

perform experiments on humans due to technical or ethical reasons (O’Neil

et al., 2017). Model organisms thus have been indispensable tools for

studying fundamental questions in human disease and clinical applications.

Compared to humans, model organisms are simpler biological systems

for comprehensive function characterization, have faster generation

cycles that facilitate genetic screens, and can be readily manipulated

genetically (Irion and Nüsslein-Volhard, 2022). The characterization and

understanding of model organisms can provide great opportunities for

translational studies in biomedicine. For example, baker’s yeast (S.

cerevisiae) has been used as the model organism to map molecular

pathways of Parkinson’s disease in humans (Khurana et al., 2017).

A pivotal challenge to fully realizing the potential of model organism

studies for studying biomedicine is transferring the functional knowledge

we learned in one species to better understand the functions of the proteins

from different species (Park et al., 2013). A popular strategy to find

functionally similar proteins is through sequence similarity search (e.g.,

by BLAST (Altschul et al., 1990)), yet sequence-similar proteins may
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perform different functions. In fact, it has been found that 42% of human-

yeast orthologs are not functionally related (Balakrishnan et al., 2012; Gu

and Milenković, 2021), i.e., not sharing common functional annotations.

Moreover, proteins perform functions by interacting with other proteins,

which form biological pathways and protein-protein interaction (PPI)

networks. Therefore, in many species, similar functions can be carried out

by proteins that do not have the most similar sequences but instead have

similar functional roles in a biological pathway (Park et al., 2013). For this

reason, network alignment (NA) has emerged as a complementary solution

to sequence alignment for identifying the functional correspondence of

proteins of different species.

Traditionally, NA aims to find the node mapping between compared

networks that can reveal topologically similar regions, rather than just

similar sequences. This problem is closely related to the subgraph

isomorphism problem of determining whether a network is a subgraph

of the other (Ullmann, 1976), which is known as NP-hard (Cook, 1971).

NA of biological networks has been widely studied in bioinformatics

and a large number of NA methods have been developed. Those

methods circumvented the intractable complexity of the isomorphism

problem by heuristically defining topological similarity based on a node’s

neighborhood structure. Examples include search algorithms (Patro and

Kingsford, 2012; Mamano and Hayes, 2017), genetic algorithms (Saraph

and Milenković, 2014; Vijayan and Milenković, 2017), random walk-

based methods (Singh et al., 2008; Kalecky and Cho, 2018), graphlet-based

methods (Malod-Dognin and Pržulj, 2015; Milenković et al., 2010),

latent embedding methods (Fan et al., 2019; Li et al., 2022), and many

others (Meng et al., 2016). Moreover, in the context of the NA of

social networks, graph representation learning-based methods have been

proposed (Chen et al., 2020).

Although based on various heuristics, most existing NA methods

for biological networks have a common key assumption: proteins that

are in similar topological positions with respect to other proteins in the

PPI network tend to have the same functions. However, observations in

recent studies questioned this assumption, in which nodes aligned by those

methods, while having high topological similarity, did not correspond to

proteins that perform the same functions, and the topological similarity

of functionally related nodes was barely higher than that of functionally

unrelated pairs (Elmsallati et al., 2015; Meng et al., 2016; Guzzi and

Milenković, 2018). The major reason for the failure of the assumption

stems from the intrinsic noisy and incomplete nature of biological networks

which contain a copious amount of spurious and missing edges. Even if we

could obtain error-free PPI networks, the similar topology of cross-species

subnetworks that share similar functions can be altered during evolution

due to events such as gene duplication, deletion, and mutation. Therefore,

solely relying on topological similarity to align biological networks may

result in unsatisfactory accuracy.

Recently, Gu and Milenković (Gu and Milenković, 2020, 2021)

proposed a new paradigm called data-driven NA to address the limitation

of traditional NA methods. Essentially, this new paradigm transforms NA

from an unsupervised problem to a supervised task, and supervised models

are trained on both PPI network and protein function data to learn to align

functionally similar nodes. The key insight is that, using function data as

supervision, the model will be driven to tease topological features that

are more informative for NA (termed as topological relatedness in (Gu

and Milenković, 2020)) apart from other signals, such as network noise

or incompleteness that are likely to break the common assumption of

traditional NA methods. In contrast, most traditional NA methods are

unsupervised and may not easily capture such topological features. Gu et

al. have developed supervised NA methods TARA and TARA++ (Gu and

Milenković, 2020, 2021), which first built graphlet features (Milenković

and Pržulj, 2008) of network nodes and trained a logistic classifier with

function data to distinguish between functionally related and unrelated

node pairs. While outperforming traditional unsupervised NA methods,

TARA (or TARA++) still has several limitations. First, its prediction

performance is suboptimal as the linear logistic classifier may not be able to

capture high-order, nonlinear topological features. In addition, TARA(++)

is a two-stage method, where protein representations are learned in the

first stage using unsupervised algorithms such as graphlet (Milenković

et al., 2010) or node2vec (Grover and Leskovec, 2016), and in the second

stage network alignment based on the learned representations is performed

using supervised logistic regression. The two-stage approach may result in

suboptimal alignment quality as the representation learning in the first stage

is not optimized toward maximizing the alignment accuracy. Moreover,

TARA(++) is not readily extended from pairwise NA to other NA problems,

such as heterogeneous NA and temporal NA, for large-scale networks due

to the high computational cost of counting heterogeneous or temporal

graphlets (Gu et al., 2018; Vijayan and Milenković, 2018).

In this work, we develop GraNA, a more powerful and flexible

supervised NA model for the data-driven NA paradigm for the pairwise,

many-to-many network alignment problem (Guzzi and Milenković,

2018). GraNA is a graph neural network (GNN) that learns informative

representations for protein nodes and predicts the functionally related node

pairs across networks in an end-to-end fashion. Following TARA-TS (Gu

and Milenković, 2021), GraNA also represents the two PPI networks

to be aligned as a joint graph and integrates heterogeneous information

as anchor links to guide the network alignment. As protein orthologs,

defined as proteins/genes in different species that originated from the

same ancestor, tend to retain function over evolution, GraNA further

integrates across-network orthologous relationships as anchor edges to

guide the alignment. One strength of GraNA is that heterogeneous data

can be readily incorporated as additional nodes, edges, or features to

facilitate network alignment. For example, GraNA integrates sequence

similarity edges as additional anchor links to guide the alignment and

pre-computed network embeddings as node features to better encode the

topological roles of network nodes. GraNA is trained as a link prediction

model, where function data (i.e., whether a given pair of proteins have

functions in common) is used as training data. We also proposed a

negative sampling strategy to improve the model training effectiveness.

Since multi-modal data are integrated, GraNA is able to learn informative

protein representations that reflect orthologous relationships, topology,

and sequence similarity to better characterize functional similarity between

proteins. Evaluated on NA tasks between five species, GraNA accurately

aligned across-species protein pairs that are functionally similar. We

further showed that the alignments produced by GraNA can be used to

achieve accurate across-species protein function annotations. Moreover,

we demonstrated GraNA’s applicability by applying it to predict the

functional replacement of essential yeast genes by their human orthologs,

in which GraNA re-discovered previously validated replaceable pairs in

important pathways.

2 Methods

Problem formulation: In this paper, we focus on pairwise NA of two

species’ PPI networks. We are given as input an integrated graph G =

(G1, G2, E12), where the undirected graph Gk = (Vk, Ek) is the PPI

network of species k (k = 1, 2), with Vk as the set of the proteins and Ek

as the set of physical interactions between proteins; E12 ⊆ V1 × V2 is a

set of across-network edges that serve as anchor links for aligning the PPIs,

such as orthologous proteins pairs. In the data-driven NA framework, the

NA problem is formulated as a supervised link prediction task, where a

set of functionally related protein pairs R = {(u1, u2)|u1 ∈ V1, u2 ∈

V2} is given as training data to train a model to predict whether a new

pair of proteins are functionally related. Following previous work (Gu
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Fig. 1. Schematic overview of GraNA. GraNA is a supervised graph neural network (GNN) that aligns functionally similar proteins in the protein-protein interaction (PPI) networks of two

species. It integrates orthologs and sequence similarity relationships as anchor links to guide alignments. GraNA derives positional and distance embeddings as node features for proteins

and performs iterative within- and across-network message passing to learn protein representations that capture protein functional similarity. The concatenated representations of a pair of

proteins are used to make the final prediction using a fully-connected (FC) neural network.

and Milenković, 2021; Li et al., 2022), the functional relatedness of two

proteins is defined based on whether they share the same Gene Ontology

(GO) terms (Section 3.1).

Overview of GraNA: We propose, GraNA, a novel framework based

on graph neural networks (GNNs) for supervised network alignment

(Fig. 1). Receiving PPIs G1, G2, and anchor links E12 as input, GraNA

first builds positional and distance embeddings as node features for every

node. It then uses a GNN, which performs both within- and across-

network message passing through PPI edges and anchor links (orthologs

and sequence similarity), to enhance and refine those features into

final representations that capture topological and evolutionary similarity

relationships. GraNA is trained with protein function data to predict

whether a pair of across-network proteins share the same function.

2.1 Graph neural network architecture of GraNA

GNNs have been widely used to model graph-structured data such as social

networks, physical systems, or chemical molecules (Dwivedi et al., 2020).

Here, we develop a novel GNN architecture, adapted from the Generalized

Aggregation Network (Li et al., 2020a), to model our input PPI networks

G = (G1 = (V1, E1), G2 = (V2, E2), E12). The key of GNNs is the

graph convolution (also known as message passing) where a node first

aggregates the features from its neighbor nodes, updates them with neural

network layers, and then sends out the updated features to its neighbors.

Through iterative graph convolutions on the PPI networks G1, G2 and

anchor links E12, our model can learn an embedding for each node that

encodes information of both graph topology and relationships of anchor

links. GraNA has L layers of graph convolution blocks, where the ℓ-th

block contains a series of non-linear neural network layers that transform

node i’s embedding h
ℓ
i ∈ R

d to h
ℓ+1
i ∈ R

d, where ℓ ∈ [L] and i ∈ [n],

n = |V1|+|V2|. In particular, h0
i is the initialized node feature (described

in Section 2.2).

Within each graph convolution block are within- and across-network

propagation layers that update the node embeddings. In the ℓ-th block,

the node embeddings h
ℓ
i are first updated by the propagation along PPI

edges (within-network message passing), in which a node aggregates its

neighbor’s features using the attention mechanism:

mi =
∑

j∈N in(i)

αij · hℓ
j where αij =

exp(γ · hℓ
j)

∑

j′∈N in(i) exp(γ · hℓ
j′
)
,

(1)

where N in(i) is the set of neighboring nodes of node i in terms of the

within-network edge setE1∪E2, and γ is a learnable parameter known as

the inverse temperature. Next, node embeddings are updated with across-

network message passing through anchor links:

µi =
∑

j∈N ac(i)

βij ·h
ℓ
j where βij =

exp(ω · hℓ
j)

∑

j′∈N ac(i) exp(ω · hℓ
j′
)
, (2)

where N ac(i) is the set of neighboring nodes of node i in terms of

the across-network edge set E12, and ω is a learnable temperature

parameter. The final updated embedding h
ℓ+1
i is obtained using multi-

layer perceptron (MLP) f, f ′ followed by a residual connection (He et al.,

2016): h
ℓ+1
i = f(hℓ

i + mi) + f ′(hℓ
i + µi) + h

ℓ
i . In GraNA, we

stacked seven graph convolution blocks to build the GNN, where each

block performs one iteration of within-network propagation (Eq. 1) and one

iteration of across-network propagation (Eq. 2). Pair normalization (Zhao

and Akoglu, 2019) and ReLU non-linear transformation (Nair and Hinton,

2010) are applied between two adjacent convolution blocks.

After the graph convolution, the representations of nodes i ∈ V1

and j ∈ V2, hL
i and h

L
j , are concatenated and passed to a two-layer

MLP to out a probability score that predicts whether the two nodes

should be aligned. GraNA is trained using the binary cross entropy

loss. The hyperparameters for training GraNA were selected based on

GraNA’s performances on valid sets, and we further tested the effect

of different hyperparameters on GraNA’s performances. The details of

how we select our hyperparameters, the effects different hyperparameters

have upon GraNA, and other implementation details are provided in the

Supplementary Information.

2.2 Network features of proteins

While GNNs are able to learn node embeddings that encode topological

information of the input PPI network structure, previous studies have found

that GNNs might perform poorly when the graph exhibit symmetries in

local structure, such as node or edge isomorphism. This is related to the

theoretic limitation of GNNs due to their equivalence to the 1-Weisfeiler-

Lehman test of graph isomorphism (Xu et al., 2018). Some existing NA

methods also suffered from this limitation. For example, the state-of-the-

art NA method ETNA (Li et al., 2022) has to filter out nodes with the same

neighborhood structure, since these are indistinguishable to their model

when only topological information is used.

Inspired by several solutions in graph machine learning (Dwivedi et al.,

2020; Li et al., 2020b), we introduce two types of node features, as the

initializations of node embeddings h
0
i , to improve the expressiveness of

our GNN model and facilitate the topological feature learning. We use two
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complementary network features, namely the graph Laplacian positional

embeddings, which encode a node’s position with respect to other nodes in

the network, and the diffusion-based embeddings, which capture a node’s

distance to other nodes in random walks. Intuitively, the two types of

embeddings capture the long-range relationships between network nodes.

In GraNA, these features are incorporated as the initialization of node

embeddings h0
i and then refined by message passing around each node’s

direct neighbor vicinity. Therefore, GraNA can capture both local and

global topological proximity in the network. Next, we describe how to

construct the positional and distance features.

Distance embeddings: Random walk or PageRank-based algorithms

have been widely used to learn network embeddings (Perozzi et al., 2014;

Grover and Leskovec, 2016) and improve expressiveness of GNNs (Li

et al., 2020b). For example, the distance matrix at the equilibrium states

of a random walk with restart has been used to encode the topological

roles of genes or proteins in molecular networks (Cowen et al., 2017;

Cho et al., 2016). Following those ideas, in this work, we compute

distance embeddings for network nodes using NetMF (Qiu et al., 2018),

a unified framework that generalizes several previous network embedding

methods (Perozzi et al., 2014; Grover and Leskovec, 2016) and estimates

the distance similarity matrix M in a closed form:

M =
vol(G)

bT

(

T
∑

r=1

(D−1A)r

)

D−1, (3)

where A is the n× n adjacency matrix of the network, D is the diagonal

degree matrix, vol(G) =
∑n

i=1 Dii is the volume of the graph G, b is the

parameter for negative sampling, T is the context window size. Unlike the

adjacency matrix A that only contains direct neighbor relationships, the

NetMF matrixM encodes the similarity between long-distance neighbors.

The entry Mij approximates the number of paths with length up to T

between nodes i and j. In GraNA, setting b = 1 and T = 10 following

the default choices (Qiu et al., 2018), we computed matrices M for the

two input PPIs separately and used the i-th row of logM as the distance

embedding for node i. As the row vector has a high dimension as the

number of nodes, we applied a linear neural network layer to project the row

vector from dimension n to d (d ≪ n), where d is the hidden dimension

in GraNA’s graph convolution layers.

Positional embeddings: In addition to distance embeddings, we

further build positional features such that nodes nearby in the network

have similar embeddings while distant nodes have different embeddings.

For this purpose, GraNA applies the Laplacian positional encoding,

which has been shown to be able to encode graph positional features

in GNNs (Dwivedi et al., 2020). The idea is to use graph Laplacian

eigenvectors that embed the graph into Euclidean space while preserving

the global graph structure. Mathematically, the normalized graph

Laplacian is factorized as L = I−D−1/2AD−1/2 = U⊤ΛU , where Λ

and U refers to the eigenvalues and Laplacian eigenvectors, respectively.

In GraNA, thed-smallest non-trivial eigenvectors are used as the positional

embeddings and concatenated with the distance embeddings together as

the initialized node features h0
i .

2.3 Integrating heterogeneous information for NA

In addition to PPIs, there are other types of relationships that can help

characterize the functional similarity of proteins, such as gene-gene

interactions, sequence similarity, phenotype similarity, and associations

between proteins and other entities such as diseases. A naive way to

integrate multiple data sources is to collapse them as additional but the

same type of nodes and edges in a flattened network, which, however,

may lose context-specific information. Heterogeneous data integration,

which treats distinct types of nodes and edges separately, has been shown

effective to integrate diverse data sources (Cho et al., 2016; Luo et al.,

2017). A few previous NA studies consider the heterogeneous NA problem,

but their approaches required non-trivial modifications in the optimization

objective and feature engineering as compared to the homogeneous NA

problem. On the contrary, one of the major advantages of GraNA is that it

can readily integrate heterogeneous information to facilitate the alignment

of networks by simply including the data as additional nodes, edges, or

feature embeddings and applying heterogeneous graph convolutions to

capture context-specific information.

As a proof-of-concept, here we apply GraNA to incorporate sequence

similarity relationships as another type of anchor links in addition to the

orthologous relationships. Now we have two sets of across-network edges

as input, which are denoted as E
(r)
12 for r = 1, 2. To learn embeddings

from heterogeneous data, we perform separate across-network message

passing for each edge type: µ
(r)
i =

∑

j∈N ac
r
(i) βij · hℓ

j . Compared to

Eq. 2, note that the aggregation and the weights βij here are defined on i’s

neighbor nodes that are connected by the r-th type of edgesN ac
r (i), instead

of all neighbors N (i). After performing both types of message passing,

we obtain the updated node embedding using a sum pooling operation

over all edge types: hℓ+1
i = f(hℓ

i +mi)+
∑

r f
(r)(hℓ

i +µ
(r)
i )+h

ℓ
i ,

where f (r) is a fully connected neural network specific to edge type r.

We expect that, by multi-view information from orthologs and sequence

similarity edges, GraNA can better distill the topological features that

are useful to predict functional relatedness. Of note, GraNA is a generic

framework, and other types of node or edge data can be integrated into

GraNA in a similar way.

2.4 Enhancing model learning with hard negative sampling

Supervised NA essentially is a positive-unlabeled learning problem,

meaning that we only observed positive protein pairs that are functionally

related (e.g., have at least one GO term in common), denoted

as Ip = {(p, q)|proteins p and q are functionally related}, without

observing validated negative samples. For a new pair (p∗, q∗) /∈ Ip,

it does not necessarily mean that the two proteins do not have the same

function, rather, it is more likely their functions have not been thoroughly

characterized by experiments. To generate negative samples for training a

supervised classifier to distinguish functionally related and unrelated pairs,

previous NA methods usually chose to randomly sample a set of pairs not

in Ip as the negative set In (Gu and Milenković, 2021, 2020).

We reason that the random negative sampling might lead the machine

learning model to learn the node’s presence in the training data rather

than functional relatedness. Denote V p
1 as the set of proteins in PPI G1

that are involved in positive pairs, i.e., V p
1 = {p|p ∈ V1 and (p, q) ∈

Ip for some q ∈ V2}, and V p
2 has a similar meaning. As only a small

fraction of proteins in V1 and V2 are involved in the positive set, for

most randomly-sampled negative pairs (p, q), it is likely that p and q

are new proteins that did not occur in V p
1 or V p

2 , respectively. Due to

the distribution discrepancy between positive and negative samples in the

training set, machine learning models trained on this data may only learn

to predict for a given pair of proteins (p, q) whether p
?
∈ V p

1 or q
?
∈ V p

2 ,

rather than predicting (p, q)
?
∈ Ip.

To encourage the model to learn the functional relatedness instead of

node representativeness in the training data, we propose a hard negative

sampling strategy to construct the negative set, where the sampled negative

edges must contain nodes that have both appeared in positive edges. We

achieve this by performing edge swap between positive edges: given

two positive pairs (p1, q1) and (p2, q2), we swap their endpoints and

add new edges (p1, q2) and (p2, q1) to the negative set if there did

not show in Ip. Equivalently, the set of negative edges is defined as

Ihard
n = {(p, q)|p ∈ V p

1 , q ∈ V p
2 , (p, q) /∈ Ip}. In our experiments,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538184doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538184
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supervised biological network alignment with graph neural networks 5

we also compared to two other negative sampling strategies, including the

“easy" sampling used in previous NA studies (Gu and Milenković, 2020,

2021): Ieasy
n = {(p, q)|p ∈ V1, q ∈ V2, (p, q) /∈ Ip}, and a “semi-hard"

sampling that requires a sampled negative edge to contain at least one node

that has appeared in positive edges : Isemi
n = {(p, q)|(p ∈ V p

1 and q ∈

V2) or (p ∈ V1 and q ∈ V p
2 ), (p, q) /∈ Ip}.

3 Results

We performed several experiments to assess GraNA’s ability to capture

the functional similarity of proteins and predict protein functions across

species. We also conducted ablation studies to better understand the

model’s prediction performance. Furthermore, we used a proof-of-concept

case study to demonstrate GraNA’s applicability in functional genomics.

3.1 Datasets

Network data: The PPI network data of six species (Saccharomyces

cerevisiae, Schizosaccharomyces pombe, Homo sapiens, Caenorhabditis

elegans, Mus musculus, and Drosophila melanogaster) were downloaded

from BioGRID (v3.5.187) (Stark et al., 2006). We used both orthologs

and sequence similarity relationships as anchor links to guide network

alignment. For orthologs, we followed the ETNA study (Li et al., 2022)

and downloaded orthology data from OrthoMCL (v6.1) (Li et al., 2003).

For sequence-similar pairs, we retrieved the expert-reviewed sequences,

if any, of proteins in our PPI networks from the UniProtKB/Swiss-

Prot database (Consortium, 2023). We then used MMseqs2 (Steinegger

and Söding, 2017) to perform sequence similarity searches between the

proteins of pairwise species and kept protein pairs with an E-value≤ 10−7

as anchor links. We chose this cutoff following previous work (Gu and

Milenković, 2021; Kalecky and Cho, 2018), and we observed that varying

this cutoff in a wide range had no significant impact on our GraNA’s

prediction performance (Fig. S1). The statistics of the PPI networks and

the anchor links can be found in Supplementary Tables S1 and S2.

Functional annotations: We collected the functional annotations

(terms) from Gene Ontology (GO) (Ashburner et al., 2000) (2020-

07-16) and considered two proteins to be functionally similar if their

corresponding genes have the same GO terms. Following ETNA (Li et al.,

2022), we only kept annotations related to the Biological Process (BP)

category, which are propagated through is a and part of relations, and

included evidence codes EXP, IDA, IMP, IGI, and IEP. As GO terms

appearing at the higher levels of the GO hierarchy might be too general

or redundant, following ETNA (Li et al., 2022) and other studies (Gu and

Milenković, 2020, 2021), we focused our analyses on specific functions by

creating a slim set of GO terms associated with at least 10 genes but no more

than 100 genes. Another expert-curated GO slim terms were also added

to this slim set (Greene et al., 2015). The statistics of functionally similar

protein pairs between species can be found in Supplementary Table S2.

3.2 GraNA better exploits topological similarity for network

alignment

We first assessed GraNA’s ability for network alignment by applying it

to align the networks between human and four major model organisms,

including S. cerevisiae, M. Musculus, C. elegans, and D. melanogaster,

and between two yeast species (S. cerevisiae and S. pombe). The prediction

task was formulated as a link prediction problem, i.e., predicting whether

two proteins have the same function. We created an out-of-distribution

train/test split (with a ratio of 8:2) such that proteins present in the training

set never occur in the test set. In another more challenging split, we further

forced that the training proteins and test proteins do not have > 30%

sequence identity.

We compared GraNA to two unsupervised embedding-based methods

(ETNA (Li et al., 2022), MUNK (Lim et al., 2018)), a graph theoretic

method (IsoRank (Singh et al., 2008)), a sequence similarity-based method

(MMseqs2 (Steinegger and Söding, 2017)), and two supervised methods

(TARA-TS and TARA++ (Gu and Milenković, 2021)). We used the same

PPI networks and orthologs anchor links for all baseline methods. Anchor

links for protein pairs that share GO terms were removed to avoid data

leakage. To make a fair comparison, we included a variant of our method

(GraNA-o) that only used orthologs (without sequence-similar pairs) as

anchor links. Unsupervised methods were evaluated on the same test set

used for supervised methods. The running time analyses of GraNA and

representative baseline methods can be found in Supplementary Table S6.

The evaluation results suggested that GraNA consistently outperformed

other methods for aligning functionally related proteins in all five NA tasks

in terms of the AUROC and AUPRC metrics (Fig. 2). Precision, recall,

and total number of predicted alignments were reported in Figs. S11, S12,

and S13. We first confirmed the advantage of the supervised NA paradigm

over the traditional unsupervised paradigm: GraNA(-o) substantially

improved other unsupervised methods (MMseqs2, IsoRank, MUNK,

and ETNA) with clear margins. For example, the AUROC and AUPRC

improvements achieved by GraNA over the best unsupervised method

(ETNA) were 11% and 55%, respectively (averaged over five tasks).

Compared to those unsupervised methods that entirely rely on the topology

to align nodes and are susceptible to the noise and incompleteness in

biological networks, GraNA further leveraged function data as direct

supervision signals to tease topological features that are directly related

functional relatedness from background noise and greatly improved the

alignment quality.

In addition, compared to TARA-TS and TARA++, the only methods for

the supervised NA paradigm in literature, we found that our method is a

more powerful deep learning solution for supervised NA. For example,

GraNA-o on average had 53% higher AUPRC scores than TARA-TS.

Interestingly, TARA-TS, despite as a supervised method, sometimes even

had a lower performance than the state-of-the-art unsupervised method

ETNA. The potential reason is that TARA-TS only used a linear logistic

model that only able to model linear feature interactions in the data,

while GraNA is an end-to-end graph neural network, which captures

more complex, non-linear feature dependencies, and can better exploit

topological similarity and predict node alignment.

Moreover, although GraNA-o outperformed other methods in most

scenarios, in a few cases, it was only on par with the second-best baseline

(TARA-TS; Fig. 2, 3rd and 5th columns). However, we found that when

integrating both orthologs and sequence similarity as anchor links, the full

model (GraNA) further improved GraNA-o and outperformed all other

baselines in all tasks in both AUROC and AUPRC, suggesting that GraNA

was an effective tool to integrate heterogeneous data for boosting the

network alignment performance. In contrast, we observed that TARA-TS,

even when given the two types of anchor links, was not able to improve

the alignment performance (to be discussed in Section 3.4 and Fig. 4a).

On a more challenging data split where the sequences in the train

and test sets have no sequence identity > 30%, we also observed that

GraNA clearly outperformed the second best baselines ETNA and TARA-

TS (Fig. S3 and S4). We also had similar observations when using other

sequence identity cutoffs to create the train/test splits (Fig. S2). This strict

benchmark suggested that GraNA can generalize its prediction for proteins

that are sequence-dissimilar from what it has seen in the training data.

Additionally, we created another challenging evaluation dataset based

on a temporary split strategy, where the snapshot of the GO database as

of 2018-07-02 was used as training data, and the GO snapshot as of 2022-

12-04, excluding all training annotations, was used as test data. On this

dataset, we again observed similar results where GraNA outperformed

baselines such as ETNA and TARA-TS (Fig. S5). This demonstrated

GraNA’s generalizability when making predictions for proteins whose

functions are not completely characterized.
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a

b

Fig. 2. Performances of network alignment prediction. GraNA and other baselines were evaluated for aligning functionally similar proteins across five pairs of species, using (a) AUROC

and (b) AUPRC as metrics. GraNA-o is a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the full model that uses both orthologs and sequence similarity

as anchor links. The default E-value cutoff 10−3 is used for MMseqs2. As MUNK is not a bidirectional NA method, the performances of its forward and backward predictions were shown

separately as MUNK-f and MUNK-b. Performances were evaluated using five independent train/test data splits. Raw AUROC and AUPRC scores are provided in Tables S4 and S5.

Fig. 3. Performance of protein function prediction. Based on the network alignments produced by each method for four pairs of species (H. sapiens-S. cerevisiae, H. sapiens-M. Musculus,

H. sapiens-C. elegans, H. sapiens-D. melanogaster), we chose the top 5,000 ranked protein pairs and transferred all the functional annotations of one protein in an aligned pair to predict

the other protein’s function. The accuracy of the function prediction was evaluated by calculating the Jaccard index between the sets of the two aligned proteins. Box plots showed the

distribution of the Jaccard index of the top 5,000 aligned pairs for each method on five NA tasks.

Overall, these results demonstrated that GraNA can better explore

topological similarity to accurately align networks. The flexible GNN

framework further allowed GraNA to integrate heterogeneous data types

that capture multi-view similarity relationships to improve the alignment

quality.

3.3 GraNA translates accurate network alignments to

function predictions

One important application of NA is to better understand human protein

functions by transferring our learned function knowledge about model

organisms. Therefore, after evaluating the performance of aligning

functionally related proteins, we next studied whether the network

alignments produced by GraNA can facilitate protein function prediction.

Here, we applied GraNA to generate the alignments between humans and

the four model organisms. Then, we considered the top 5,000 ranked

protein pairs aligned by GraNA and calculate the Jaccard index between

the functional annotations of the two proteins in each pair. As a protein

may have multiple functions, this evaluation aimed to quantify the overlap

between the sets of functions of the two aligned proteins, which was

more complex and challenging than the evaluation in the last section

which predicted whether two proteins share at least one function. We

also compared a random baseline that randomly samples 5,000 pairs from

proteins that have at least one GO term, in addition to our previously

introduced baselines. Furthermore, we have also evaluated GraNA in an

established protein function prediction framework (Meng et al., 2016).

We observed from Fig. 3 that, even with the partial model GraNA-o,

our method has already outperformed other methods on three out of the

four tasks in terms of Jaccard similarity. The full model GraNA, which

integrated heterogeneous orthologs and sequence similarity edges, further

boosted the function prediction performance. These results suggested that

GraNA was able to not only align functionally similar protein pairs but

also prioritize “most similar" pairs to the top of its prediction list. GraNA’s

ability to prioritize functionally similar proteins has important implications

when studying human diseases, since it can suggest the most functionally

similar counterpart of a human gene in model organisms for detailed

characterization. Moreover, we noted that the improvements achieved

by GraNA over other methods were more pronounceable for species

with high-quality PPI networks (e.g., S. cerevisiae). On the alignment

task between human (H. sapiens) and roundworm (C. elegans), GraNA

achieved performance on par with the second best baseline, which was

likely due to that the PPI of C. elegans is the sparsest among all four model

organisms (density < 0.2%). This finding was consistent with the ETNA
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a b c

Fig. 4. Ablation studies validated key designs of GraNA. (a) Comparison between GraNA and two of the best baselines, TARA-TS and ETNA on heterogeneous data integration, where

either orthologs, sequence similarity, or both were used as the anchor links for the network alignment between H. sapiens and S. cerevisiae. (b-c) Ablation analyses that compared different

negative sampling strategies (b) and node features (c) for the network alignment between S. cerevisiae and S. pombe. AUPRC scores of the two best baselines (ETNA and TARA-TS) were

shown in (b) and (c) for reference. Performances were based on five independent trials of train/test split. Comparisons on all species can be found in Supplementary Information. (Lap:

Laplacian embeddings; Net: NetMF embeddings.)

study (Li et al., 2022). We also compared GraNA with other methods using

the functional coherence (FC) metric (Singh et al., 2008; Chindelevitch

et al., 2013), a variant of the Jaccard index that only focuses on standardized

GO terms to avoid bias caused by terms from different levels of the GO

hierarchy, and observed similar performance (Fig. S10). Additionally, by

using the protein function prediction framework (Meng et al., 2016), we

observed that GraNA predicted a smaller set of predictions with higher

precision compared to TARA++, which is useful when high-confidence

and limited false positive predictions are desired (Fig. S14). Overall, this

experiment here suggested that GraNA translated its effective network

alignments to the accurate predictions of protein functions, demonstrating

its potential for across-species functional annotations.

3.4 Analyses of key model designs in GraNA

Having validated that GraNA outperformed state-of-the-art methods for

aligning networks and predicting functions, we performed ablation studies

to understand the GraNA model in more detail and attribute performance

improvements to several key design choices in GraNA.

Heterogeneous anchors. As GraNA is a flexible framework to

integrate heterogeneous data, we first investigated the effects of using

heterogeneous data on the performance of network alignment. We

compared GraNA variants that used only orthologs, only sequence

similarity, or both as anchor links. We observed that with either of the

anchor links, GraNA was able to achieve an AUPRC better than the two

best baselines (ETNA and TARA-TS) and combining both of them led

to the best AUPRC score (Figs. 4a and S6). Interestingly, we found the

two baselines, when given two types of anchors, did not improve their

network alignment accuracy compared to when a single type of anchor

was used (Figs. 4a and S7). These comparisons indicated that information

contained in the two types of edges are not redundant but complementary,

and GraNA can integrate them more effectively than other baselines. The

major reason was that GraNA implemented separate message passing

mechanisms to handle different types of anchors, while ETNA and TARA-

TS (with node2vec features (Grover and Leskovec, 2016)) mixed them as

a single type of edges. We expect that integrating more data that capture

multiple aspects of protein similarity can further help GraNA to better

characterize protein functional relatedness.

Hard negative sampling. Another novel design in GraNA is the hard

negative sampling which prevented the model from only learning from

trivial training samples. To better illustrate this, we compared GraNA

models trained with three negative sampling strategies, including easy,

semi-hard, and hard negative sampling (Methods). We observed that

GraNA trained with easy and semi-hard samplings already outperformed

the second-best baseline, and using the hard sampling further improved

the AUPRC by 20% and showed a more significant margin over baselines

(Fig. 4b). Hard negative sampling is a critical ingredient that makes GraNA

accurate and generalizable. As discussed in the Methods section, random

negative sampling tends to create a training set that confuses the machine

learning model, and the model may just learn whether protein appeared

in the training set rather than the functional relatedness between protein

pairs. In contrast, hard negative sampling forces our model to discriminate

between functionally related and unrelated pairs.

Node features. We used both distance features (NetMF embeddings)

and positional features (Laplacian embeddings) to initialize the node

features in GraNA. Here, we analyze the effect of the node features by

comparing GraNA variants that used only one or both of the NetMF

and Laplacian embeddings, or randomly initialized node features. We

observed that with random node features, the prediction performance was

only comparable with the unsupervised ETNA method (Fig. 4c). When

replacing the random features with network-informed features (NetMF

and Laplacian), GraNA significantly improved its AUPRC scores. Finally,

incorporating both embeddings led to the highest AUPRC score. This

comparison underscored the effectiveness of using informative features.

Although the GNN model alone was able to capture topological properties

of network nodes, it still only captured localized information as a node’s

features were only propagated to its nearby neighbors with a few times

(e.g., < 10) of message passing. However, the two embeddings we used

were able to encode global, long-range neighbor relationships between

nodes, which were complementary to the topological features learned by

the GNN and jointly enhanced GraNA’s effectiveness.

3.5 Application: predicting replaceability for a humanized

yeast network

Finally, we demonstrate the applicability of GraNA using a task of

identifying replaceable human-yeast gene pairs. Recent studies have

identified many human genes that can substitute for their yeast orthologs

and sustain yeast growth (Kachroo et al., 2015; Laurent et al., 2020),

which provides a tractable system known as ‘humanized yeast’ to allow

for high-throughput assays of human gene functions. Given that not all

yeast genes can be replaced by their human orthologs, biological NA

methods might become useful tools to predict the replaceability among

human-yeast orthologs.

We collected the experiment data from Kachroo et al. (Kachroo et al.,

2015), which has assayed 414 essential yeast genes for complementation

by their human orthologs and found 47% of them could be humanized.

After filtering out genes that are not included in the PPI network of S.

cerevisiae that we used in this work, we obtained 411 gene pairs, out

of which 174 replaceable pairs are labeled as positive samples and the
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Fig. 5. An application of GraNA on predicting replaceable human-yeast gene pairs in humanized yeast network. GraNA was used to predict whether human genes can replace their yeast

orthologs for the functions in humanized yeast network. (a) Using 414 validated positive and negative human-yeast gene pairs by Kachroo et al. (Kachroo et al., 2015) as the test set, we

compared a pre-trained GraNA model (GraNA-pt), a fine-tuned GraNA model (GraNA-ft), and ETNA to evaluate their ability to distinguish replaceable and non-replaceable human-gene

pairs in the test set. The performance of GraNA-ft was evaluated using five-fold cross-validation whereas GraNA-pt and ETNA were evaluated on the whole test set directly. (b-c) Case

studies where GraNA was used to predict the replaceability in two pathways: (b) Proteasome complex and (c) CCT complex. We visualized the complex validated by Kachroo et al. (Kachroo

et al., 2022) for comparison, where validated replaceable genes were colored in red, non-replaceable genes in green, and unvalidated genes in gray. For GraNA’s predicted network, the

predicted score for each gene was normalized into a z-score and colored with a gradient colormap from green (most non-replaceable) to red (most replaceable).

remaining as negative. To avoid potential signal leakage, in our data we

further removed 169 orthologs that coincide with the 411 pairs. Using

this data as a binary classification test set, we first applied a baseline

method, ETNA, to predict the replaceability of each human-yeast pair.

We observed that ETNA’s predicted performance was nearly random

(AUC∼0.5; Fig. 5a). This was not surprising because, by design, ETNA

was trained to classify between orthologs and non-orthologs, while all

the positive and negative pairs in the test sets here are all human-yeast

orthologs, which appeared to be indistinguishable to ETNA. Next, we

applied the GraNA model pre-trained on our H. sapiens-S. cerevisiae

alignment task (GraNA-pt) to predict for those 411 gene pairs. Even though

GraNA-pt was not directly trained to predict replaceability, we found that

it still had a better-than-random prediction accuracy (AUC=0.56; Fig. 5a)

on the test set, which suggested that the functional similarity relationships

captured by GraNA were relatively more generalizable. After fine-tuning

the trained GraNA model on the 411 gene pairs by re-training the parameter

of the top MLP layers and freezing GNN layers, we observed that this

model (GraNA-ft) reached an AUC of 0.68 in five-fold cross-validation

(Fig 5a), which was higher than the AUC of the supervised TARA-TS

model (Fig S8). This suggested that the prediction accuracy of GraNA on

this task could be improved with direct supervision.

As a case study, we applied GraNA to study the replaceability in

protein complexes. We selected as two examples the proteasome complex

and the CCT complex that have experimental validation data (Kachroo

et al., 2022, 2017, 2015). In both examples, we used the genes in

the complex as the test set and the remaining genes with experimental

validation data as the training set. For the Proteasome complex that

contains both replaceable and non-replaceable genes, except for PRE8,

GraNA correctly predicted a positive z-score for replaceable genes and

a negative z-score for non-replaceable genes (AUC=0.91; Fig. 5b). For

the CCT complex that was mainly enriched with non-replaceable genes,

GraNA’s prediction also recapitulated the replaceability in the network,

where validated non-replaceable genes were predicted with a negative

z-score (Fig 5c).

Overall, these results demonstrated the applicability of GraNA for

extending the network alignments to empower other functional analyses

of genes and proteins.

4 Conclusion

NA is a fundamental problem in various domains, such as linking users

across social network platforms (Zafarani and Liu, 2013), unifying entities

across different knowledge databases (Zhu et al., 2017), and aligning

keypoints in computer vision (Sarlin et al., 2020). In this paper, we studied

the NA problem for biological networks. We have presented GraNA, a

deep learning model for aligning functionally related proteins in cross-

species PPI networks. Our work was motivated by the recently proposed

supervised network alignment methods such as TARA/TARA-TS (Gu and

Milenković, 2020, 2021), which represent the two PPIs being aligned as

a joint graph connected by anchor links and integrate topology, sequence,

and function information to characterize the function similarity between

cross-species protein pairs. GraNA integrates PPI networks, ortholog

and sequence similarity relationships, network distance and positional

embeddings, and protein function data to learn to align across-species

proteins that are functionally similar. Experiments showed that GraNA

outperformed state-of-the-art NA methods, including both supervised and

unsupervised approaches, on aligning pairwise PPI networks for five

species, and the high-quality network alignments of GraNA also enable

accurate functional prediction across species. We further investigated

several key model designs of GraNA that led to performance improvements

and demonstrated the applicability of GraNA using a case study of

predicting replaceability in humanized yeast network. GraNA is a flexible

framework and can be readily extended in the future to integrate diverse

types of entity and association data to facilitate NA. As previous methods

such as TARA, GraNA can also be generalized to study other NA problems,

including multi-species NA and temporary NA.
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1 Supplementary Information

1.1 Experimental setup

For network alignment prediction, GraNA was trained on the training set, tuned on

the valid set, and evaluated on the test set along with other NA baselines, where

the split ratio is 70/10/20. For each dataset, data split was performed 5 times with 5

different seeds.

In the context of NA for biological networks, many different evaluation metrics

have been proposed, and they often focus on different aspects of network alignment

prediction. Ma and Liao (2020) categorized some of the most commonly used metrics

into two types: biological evaluation and topological evaluation. Apart from the

metrics summarized by Ma and Liao (2020), Fan et al. (2019); Li et al. (2022)

also used AUPRC and AUROC for evaluating the predicted network alignment. In

this work, we selected metrics following Singh et al. (2008); Chindelevitch et al.

(2013); Fan et al. (2019); Li et al. (2022) and included AUROC, AUPRC, Jaccard

index (also known as Gene Ontology Consistency), and functional coherence (FC)

as metrics. As the prediction of GraNA is a many-to-many mapping between the

across-species proteins, we cannot directly leverage a particular set of metrics used

in previous studies Saraph and Milenković (2014); Vijayan and Milenković (2017),

such as Edge Correctness (EC) and Node Correctness (NC), which are based on the

assumption that the mapping is one-to-one and require non-trivial modification for

our purpose.

For protein function prediction, we chose the Jaccard index and functional

coherence of the top 200 predicted node pairs given for each train/test split (1000

pairs in total after combining the top pairs from five runs). For a fair comparison,

we filtered anchor links that coincide with positive test pairs from our training data.

Jaccard index describes how similar two proteins are in terms of function, as it is

calculated as |S1 ∩ S2|/|S1 ∪ S2|, where S1, S2 represent respectively the set

of GO terms the two nodes are annotated with. Following previous studies (Singh

et al., 2008; Chindelevitch et al., 2013), we define functional coherence as follows.

GO terms were first mapped to a standardized GO set. Within this set, all GO terms

are at a distance of 5 to the root of the GO hierarchy, and any GO terms with a

distance less than 5 to the root are dropped. We measured the distance only by

considering the relations is a and part of in Biological Process (BP) of the GO, and

we retrieved the ancestor information of each GO term through the QuickGO REST

API (Binns et al., 2009). This design aimed to avoid evaluating functional similarity at

different levels of the Gene Ontology graph. For each protein pair (x, y), functional

coherence is defined as |Sx ∩ Sy|/|Sx ∪ Sy|, whereas Sx, Sy represent the sets

of standardized GO terms with protein x, y respectively. Using Jaccard index and

functional coherence, we are able to quantify the proportion of functional knowledge

that is successfully transferred from the network alignment established by GraNA.

1.2 Baselines

In experiments, we compare GraNA with several existing NA methods. For a fair

comparison, all baseline methods were trained, if needed, and evaluated on the same

data as GraNA. Specifically, for baselines that require anchor links, we used the

same ortholog anchor links that GraNA uses. Default parameters were used for all

baselines.

For unsupervised NA method, we included IsoRank (Singh et al., 2008),

MMseqs2 (Steinegger and Söding, 2017), MUNK (Fan et al., 2019), and ETNA (Li

et al., 2022). MMseqs2 is a tool for calculating sequence similarity and clustering

proteins based on their sequences. We included it as a baseline method for assessing

the relatedness of sequence similarity to functional similarity. IsoRank is an

unsupervised multi-network alignment method, which is based on the intuition that

functionally similar proteins have similar sequences and neighborhood topologies.

The alignment of networks is formulated as an eigenvalue problem. IsoRank was

originally designed to align orthologous pairs using sequence similarity as anchor

links. MUNK, linking two PPIs via orthologs, uses matrix factorization to create a

functional embedding in a way that proteins from different species are embedded in

the same space. Then, a score matrix is calculated between two species, which can be

used for network alignment prediction. ETNA is the state-of-the-art unsupervised NA

method. It first learns representations for proteins from the PPIs via autoencoder and

then applies a cross-training mechanism using orthologs to align the embeddings

from two species. For the supervised NA method, we included TARA-TS and

TARA++ (Gu and Milenković, 2021). From the three versions of TARA-TS

(graphlet (Milenković and Pržulj, 2008), node2vec (Grover and Leskovec, 2016),

metapath2vec (Dong et al., 2017)), we chose the version based on node2vec as

it showed the best performance among the three as shown in their experiments.

Regarding TARA++, for the protein function prediction evaluation framework (Meng

et al., 2016), we implemented TARA++ according to its original definition, which

is the intersection of TARA and TARA-TS predictions. For network alignment

prediction, we had to make a tweak on TARA++: in the TARA++ paper, TARA++ was

developed for the function prediction task but not for the network alignment task.

Therefore, we adapted TARA++ to the network alignment prediction to compare

with GraNA – we first ran TARA and TARA-TS to obtain the predicted probability

(produced by the logistic regression classifier) that a given protein pair shares at least

one GO term and then we took the average to TARA’s and TARA-TS’s predicted

probabilities. The averaged probability was used as the prediction of TARA++. The

average operation here followed the same idea of the intersection operation in the

original TARA++ for function prediction, which took the consensus predictions of

TARA and TARA-TS. In addition to the average, we have tried combining TARA and

TARA-TS by taking their minimum or maximum predicted probability for network

alignment, and the results were similar. Using this approach, we were able to compare

TARA++ to other methods in our network alignment benchmark.

1.3 Hyperparameters

The hyperparameters in GraNA include the total number of epochs, batch size,

learning rate, hidden dimension, number of graph convolution blocks, and graph

convolution type. We comprehensively tested the robustness of GraNA against

different hyperparameter settings. The search space of hyperparameters for training

GraNA was shown in Table S3. For each train/valid/test split, GraNA was first

trained on the training set and then validated on the validation set. We chose the final

combination of hyperparameters for training GraNA based on GraNA’s performances

(AUROC and AUPRC) on the validation set. To avoid an exponential number of

combinations of hyperparameters that would make the grid search infeasible, we

fixed the values of other hyperparameters when tuning one specific hyperparameter.

We evaluated four different types of graph convolution layer: GCN (Kipf and

Welling, 2016), SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), and

GEN (Li et al., 2020a). The four architectures differ from each other mainly in their

neighborhood information aggregation mechanisms. GCN aggregates neighborhood

information in a weighted mean manner based on node degrees and edge weights

from the normalized Laplacian matrix. SAGE, in comparison, takes a mean over

neighborhood node features for constructing the message for one node. GAT employs

the attention mechanism for aggregating node features, whereas GEN is the layer

we used in GraNA, and it aggregates neighborhood information through a softmax

function.

Raw results averaged on five independent train/valid split for each

hyperparameter setting for alignment between S. cerevisiae and S. pombe were shown

in Figure S9. We observed that GraNA was robust to hyperparameters. Given the

results of hyperparameter tuning and the computational resources available to us, we

built a total of 7 graph convolution blocks, each with a hidden dimension of 128

and a convolution type of GEN (Li et al., 2020a), for GraNA. During training, we

used the Adam optimizer with an initial learning rate of 0.001 and a weight decay of

5e-4, and we set the batch size to be 216. We trained GraNA for a maximum of 200

epochs. GraNA was trained on a single NVIDIA A40 GPU card. The running time

analyses of GraNA and baseline methods (TARA, TARA-TS, ETNA) are provided

in Table S6.
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2 Supplementary Tables

Table S1. The number of nodes and edges in the PPI network of each species.

Abbreviations: sce: S. cerevisiae, spo: S. pombe, hsa: H. sapiens, mmu: M.

Musculus, cel: C. elegans, and dme: D. melanogaster.

Type sce spo hsa mmu cel dme

Nodes 5,669 2,334 17,120 7,762 4,439 7711

Edges 110,776 10,525 418,512 47,833 18,301 49,769

Table S2. The number of anchor links (orthologs and sequence similarity) and

protein pairs sharing function in each pair of PPI networks. Orth only: anchor

links that were included only as orthologs; Both orth and seq: anchor links that

were both included as orthologs and sequence similarity relationships; Seq only:

anchor links that were included only as sequence similarity; Pairs sharing func:

cross-species protein pairs that share at least one function. Species abbreviations

are identical to Table S1.

Type sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

Orthologs 1,485 2,221 10,819 2,561 4,603

Seq similarity 8,324 37,711 191,172 23,419 40,828

Orth only 555 878 3,208 1,400 2,963

Both orth and seq 930 1,343 7,611 1,161 1,640

Seq only 7,394 36,368 183,561 22,258 39,188

Pairs sharing func 195,519 1,021,948 1,938,820 327,907 1,090,256

Table S3. The search space of hyperparameters for training GraNA. GraNA

is trained on train set and validated on valid set. The final combination of

hyperparameters is determined based on GraNA’s performance on the valid set.

Hyperparameter Range

Epochs [50,100,200,300]

Batch size [213, 214, 215, 216, 217]

Learning rate [0.0001, 0.001, 0.01]

Hidden dimension [32, 64, 128, 256]

Block number [1, 3, 5, 7, 9]

Convolution type [GCN, SAGE, GAT, GEN]

Table S4. AUROC of GraNA and baseline methods for predicting network

alignment across species. For each dataset, we reported the AUROC values

averaged over five independent train/test data splits. The abbreviations are

identical to Table S1.

Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

MMseqs2 0.5057 0.5095 0.5102 0.5117 0.5101

IsoRank 0.5650 0.5179 0.5104 0.5143 0.5129

MUNK-f 0.5644 0.5819 0.5372 0.5111 0.5641

MUNK-b 0.5566 0.5772 0.5288 0.5079 0.5576

TARA-TS 0.6241 0.6384 0.6495 0.5848 0.6346

TARA++ 0.6270 0.6311 0.6533 0.5921 0.6372

ETNA 0.7045 0.6631 0.5805 0.5784 0.5891

GraNA-o 0.7707 0.6944 0.6568 0.6174 0.6367

GraNA-s 0.7681 0.6952 0.6473 0.6000 0.6287

GraNA 0.7865 0.7165 0.6755 0.6335 0.6506

Table S5. AUPRC of GraNA and baseline methods for predicting network

alignment across species. For each dataset, we reported the AUPRC values

averaged over five independent train/test data splits. The abbreviations are

identical to Table S1.

Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

MMseqs2 0.0598 0.0547 0.0683 0.0635 0.0572

IsoRank 0.0770 0.0476 0.0628 0.0558 0.0512

MUNK-f 0.0748 0.0562 0.0675 0.0569 0.0578

MUNK-b 0.0740 0.0556 0.0661 0.0559 0.0564

TARA-TS 0.1019 0.0841 0.1140 0.0720 0.0842

TARA++ 0.0927 0.0756 0.1168 0.0783 0.0861

ETNA 0.1832 0.1053 0.0914 0.0720 0.0706

GraNA-o 0.2635 0.1258 0.1320 0.0931 0.0956

GraNA-s 0.2670 0.1336 0.1359 0.0970 0.1010

GraNA 0.2892 0.1511 0.1518 0.1078 0.1120

Table S6. Running time analysis of GraNA and baseline methods TARA,

TARA-TS, and ETNA. The time needed for building topological features and

training model were reported in minutes. Inference time could be neglected

compared to feature-building and model-training time. The abbreviations are

identical to Table S1.

Method Time sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

TARA
feature 47 205 150 137 162

train <1 1 2 <1 1

TARA-TS
feature <1 1 1 1 1

train <1 1 2 <1 1

ETNA
feature <1 7 7 6 7

train <1 <1 <1 <1 <1

GraNA
feature <1 7 7 6 7

train 9 76 117 20 75
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3 Supplementary Figures

Fig. S1. Impacts of E-value cutoff values used to identify sequence-similar protein pairs as

anchor links. In GraNA, sequence similarity relationships are used as one type of anchor link.

These sequence-similar protein pairs were identified by performing a sequence similarity

search by MMseqs2 and selecting those pairs with an E-value smaller than a cutoff. We

trained a GraNA variant that only used sequence similarity as anchor links (labeled as

GraNA-s) and evaluated its AUPRC score of aligning the PPI networks of H. sapiens and

S. cerevisiae when different E-value cutoffs were used. For reference, the AUPRC scores

of GraNA-o and GraNA were shown. Since GraNA-o did not include sequence similarity

as anchor links and GraNA used the default E-value cutoff of 10−7 , their AUPRC scores

were constant values in the figure.

Fig. S2. AUPRC of GraNA on data splits with different sequence identity thresholds. To

validate GraNA’s effectiveness, we evaluate GraNA using harder data splits, which require

that the train split and the test split are dissimilar in sequences. In practice, we fix the training

sets and only filter test sets. Using MMseqs2 (Steinegger and Söding, 2017) to search the

proteins in the test set that are under the sequence identity threshold, we constitute new test

sets for each threshold. We select sequence identity thresholds 10%, 30%, 50%, 80%, and

100% (the original test split) and evaluate GraNA’s performance for each threshold on five

independent data splits for H. sapiens and S. cerevisiae.

Fig. S3. AUROC of network alignment prediction on sequence identity-based data splits.

To further validate GraNA’s effectiveness under difficult data splits, we compared GraNA

with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant

of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured

proteins from the train split and the test split are dissimilar in terms of their sequence

identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not

appear in the training set, here we create several more challenging train/test splits such that

for the chosen species (the first species, the second species, or both species), its proteins in

the test split must have sequence identity lower than 30% to its proteins in the train split.

In our experiments, we iteratively sampled proteins and added those proteins together with

their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence

identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S4. AUPRC of network alignment prediction on sequence identity-based data splits.

To further validate GraNA’s effectiveness under difficult data splits, we compared GraNA

with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant

of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured

proteins from the train split and the test split are dissimilar in terms of their sequence

identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not

appear in the training set, here we create several more challenging train/test splits such that

for the chosen species (the first species, the second species, or both species), its proteins in

the test split must have sequence identity lower than 30% to its proteins in the train split.

In our experiments, we iteratively sampled proteins and added those proteins together with

their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence

identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S5. Network alignment performance on predicting newly discovered alignments

between H. sapiens-M. Musculus based on known alignments. To further demonstrate

GraNA’s potential for application, we compared GraNA with the best unsupervised and

supervised baselines (ETNA and TARA-TS) on predicting the newly discovered alignments

from GO (Consortium, 2004) (2022-12-04) that are not included in GO (Consortium, 2004)

(2018-07-02). Following the method of generating the alignments in the benchmark dataset,

we first create a slim set of GO terms from GO (2018-07-02) and then use it to generate

new alignments in GO (2022-12-04), which contains 48% more functionally similar pairs.

Supervised methods are trained on the supervision from 2018. All methods are evaluated on

the dataset that includes all newly discovered alignments as positive samples and negative

samples downsampled to an equal amount of positive samples. Experiments were repeated

using five random seeds for negative sampling.
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Fig. S6. Network alignment performance of GraNA using different anchor links. We

evaluated the performances of GraNA using only orthologs, only sequence similarity, and

both orthologs and sequence similarity as anchor links for network alignment. Five pairs

of PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.

sapiens-C. elegans, H. sapiens-D. melanogaster) are used for evaluation. AUPRC of five

independent train/test data splits were reported.
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Fig. S7. Evalutation of the ability to integrate heterogeneous anchor links. To validate

GraNA’s ability to leverage orthology information and sequence similarity information at

the same time, we compared GraNA with two of the best baselines, TARA-TS and ETNA,

for network alignment using different anchor links. We used either orthologs, sequence

similarity, or both orthologs and sequence similarity as anchor links for aligning five pairs of

PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H. sapiens-

C. elegans, H. sapiens-D. melanogaster), on five independent data splits. Abbreviations:

orth: orthologs; seq: sequence similarity.

Fig. S8. ROC curve of GraNA and baselines in the case study. We further included TARA-

TS for comparison in predicting the replaceability of human genes with their yeast orthologs.

TARA-TS is trained and evaluated on the dataset of experimental results by Kachroo et

al. (Kachroo et al., 2015) via five-fold cross-validation.
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Fig. S9. AUROC of GraNA for predicting the alignment between S. cerevisiae and S.

pombe averaged over five independent data splits on valid set. While we are evaluating one

type of hyperparameter, the other hyperparameters remain fixed. We evaluated in total 6

types of hyperparameters, including the total number of epochs, batch size, learning rate,

hidden dimension, block number, and convolution type.

Fig. S10. Functional coherence (FC) based on the network alignments produced by each

method for four pairs of species (H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.

sapiens-C. elegans, H. sapiens-D. melanogaster). We chose the top 5,000 ranked protein

pairs and transferred all the functional annotations of one protein in an aligned pair to

predict the other protein’s function. The accuracy of the function prediction was evaluated

by calculating the FC between the sets of the two aligned proteins. Unlike Jaccard index,

FC only focuses on standardized GO terms (at a distance 5 to the root of the GO root) to

avoid bias caused by terms from different levels of the GO hierarchy. Box plots showed

the distribution of the FC of the top 5,000 aligned pairs for each method on five NA tasks

under five random seeds.
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Fig. S11. Precision of network alignment prediction. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we used

precision as the metric. For GraNA’s predictions, we first selected the probability threshold

maximizing the f1 score on the valid set and used this threshold to make final alignment

predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as

anchor links whereas GraNA refers to the full model that uses both orthologs and sequence

similarity as anchor links. As MUNK is not a bidirectional NA method, the performances

of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.

Performances were evaluated using five independent train/test data splits.

Fig. S12. Recall of network alignment prediction. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we used

recall as the metric. For GraNA’s predictions, we first selected the probability threshold

maximizing the f1 score on the valid set and used this threshold to make final alignment

predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as

anchor links whereas GraNA refers to the full model that uses both orthologs and sequence

similarity as anchor links. As MUNK is not a bidirectional NA method, the performances

of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.

Performances were evaluated using five independent train/test data splits.
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Fig. S13. Total number of predicted network alignments. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we

reported the total number of network alignments predicted by each method. For GraNA’s

predictions, we first selected the probability threshold maximizing the f1 score on the valid

set and used this threshold to make final alignment predictions on the test set. GraNA-o is

a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the

full model that uses both orthologs and sequence similarity as anchor links. As MUNK is

not a bidirectional NA method, the performances of its forward and backward predictions

were shown separately as MUNK-f and MUNK-b. Performances were evaluated using five

independent train/test data splits.
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Fig. S14. Performances of protein function prediction. We evaluated TARA, TARA-TS, TARA++, and GraNA in the context of cross-species protein function prediction in an established

protein function prediction framework (Meng et al., 2016), and we used precision, recall, F1 score, and total number of predictions (protein-GO pairs) as metrics. The evaluation framework

starts by performing network alignment prediction on a test set of protein pairs, and then it evaluates the functional predictions made based on the predicted network alignment via statistical

tests. Consistent with other experiments in our manuscript, we only evaluated the methods on pairs of proteins that both have at least one alignment. As the data was unbalanced in the test

set, we subsampled negative pairs of proteins to the number of positive pairs of proteins to construct a balanced test set. We restricted the function prediction only for GO terms from the

slim set to avoid transferring general GO terms such as Biological Process. TARA++ prediction was the overlap of the predictions of TARA and TARA-TS. Performances were evaluated

using five independent train/test data splits.
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