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Abstract

Motivation: Despite the advances in sequencing technology, massive proteins with known sequences
remain functionally unannotated. Biological network alignment (NA), which aims to find the node
correspondence between species’ protein-protein interaction (PPI) networks, has been a popular strategy
to uncover missing annotations by transferring functional knowledge across species. Traditional NA
methods assumed that topologically similar proteins in PPls are functionally similar. However, it was
recently reported that functionally unrelated proteins can be as topologically similar as functionally related
pairs, and a new data-driven or supervised NA paradigm has been proposed, which uses protein function
data to discern which topological features correspond to functional relatedness.

Results: Here, we propose GraNA, a deep learning framework for the supervised NA paradigm for the
pairwise network alignment problem. Employing graph neural networks, GraNA utilizes within-network
interactions and across-network anchor links for learning protein representations and predicting functional
correspondence between across-species proteins. A major strength of GraNA is its flexibility to integrate
multi-faceted non-functional relationship data, such as sequence similarity and ortholog relationships, as
anchor links to guide the mapping of functionally related proteins across species. Evaluating GraNA on
a benchmark dataset composed of several NA tasks between different pairs of species, we observed
that GraNA accurately predicted the functional relatedness of proteins and robustly transferred functional
annotations across species, outperforming a number of existing NA methods. When applied to a case
study on a humanized yeast network, GraNA also successfully discovered functionally replaceable
human-yeast protein pairs that were documented in previous studies.

Availability: The code of GraNA is available at https://github.com/luo-group/GraNA.

Contact: yunan@gatech.edu

1 Introduction genetically (Irion and Niisslein-Volhard, 2022). The characterization and
In biomedical research, it is often challenging or infeasible to directly understfmdmg of ,m"‘?el o.rgan1sFr1.s can provide great op portunmes for
perform experiments on humans due to technical or ethical reasons (O’ Neil translational studies in biomedicine. For example, baker’s yeast (S.

et al., 2017). Model organisms thus have been indispensable tools for cerevisiae) has been used as the model organism to map molecular

pathways of Parkinson’s disease in humans (Khurana et al., 2017).
A pivotal challenge to fully realizing the potential of model organism
studies for studying biomedicine is transferring the functional knowledge

studying fundamental questions in human disease and clinical applications.
Compared to humans, model organisms are simpler biological systems

for comprehensive function characterization, have faster generation ; ) . A
we learned in one species to better understand the functions of the proteins

cycles that facilitate genetic screens, and can be readily manipulated |
from different species (Park et al., 2013). A popular strategy to find

functionally similar proteins is through sequence similarity search (e.g.,
by BLAST (Altschul et al., 1990)), yet sequence-similar proteins may
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perform different functions. In fact, it has been found that 42% of human-
yeast orthologs are not functionally related (Balakrishnan et al., 2012; Gu
and Milenkovic¢, 2021), i.e., not sharing common functional annotations.
Moreover, proteins perform functions by interacting with other proteins,
which form biological pathways and protein-protein interaction (PPI)
networks. Therefore, in many species, similar functions can be carried out
by proteins that do not have the most similar sequences but instead have
similar functional roles in a biological pathway (Park et al., 2013). For this
reason, network alignment (NA) has emerged as a complementary solution
to sequence alignment for identifying the functional correspondence of
proteins of different species.

Traditionally, NA aims to find the node mapping between compared
networks that can reveal topologically similar regions, rather than just
similar sequences. This problem is closely related to the subgraph
isomorphism problem of determining whether a network is a subgraph
of the other (Ullmann, 1976), which is known as NP-hard (Cook, 1971).
NA of biological networks has been widely studied in bioinformatics
and a large number of NA methods have been developed. Those
methods circumvented the intractable complexity of the isomorphism
problem by heuristically defining topological similarity based on a node’s
neighborhood structure. Examples include search algorithms (Patro and
Kingsford, 2012; Mamano and Hayes, 2017), genetic algorithms (Saraph
and Milenkovié, 2014; Vijayan and Milenkovi¢, 2017), random walk-
based methods (Singh ez al., 2008; Kalecky and Cho, 2018), graphlet-based
methods (Malod-Dognin and Przulj, 2015; Milenkovi¢ et al., 2010),
latent embedding methods (Fan et al., 2019; Li et al., 2022), and many
others (Meng et al., 2016). Moreover, in the context of the NA of
social networks, graph representation learning-based methods have been
proposed (Chen et al., 2020).

Although based on various heuristics, most existing NA methods
for biological networks have a common key assumption: proteins that
are in similar topological positions with respect to other proteins in the
PPI network tend to have the same functions. However, observations in
recent studies questioned this assumption, in which nodes aligned by those
methods, while having high topological similarity, did not correspond to
proteins that perform the same functions, and the topological similarity
of functionally related nodes was barely higher than that of functionally
unrelated pairs (Elmsallati et al., 2015; Meng et al., 2016; Guzzi and
Milenkovi¢, 2018). The major reason for the failure of the assumption
stems from the intrinsic noisy and incomplete nature of biological networks
which contain a copious amount of spurious and missing edges. Even if we
could obtain error-free PPI networks, the similar topology of cross-species
subnetworks that share similar functions can be altered during evolution
due to events such as gene duplication, deletion, and mutation. Therefore,
solely relying on topological similarity to align biological networks may
result in unsatisfactory accuracy.

Recently, Gu and Milenkovi¢ (Gu and Milenkovi¢, 2020, 2021)
proposed a new paradigm called data-driven NA to address the limitation
of traditional NA methods. Essentially, this new paradigm transforms NA
from an unsupervised problem to a supervised task, and supervised models
are trained on both PPI network and protein function data to learn to align
functionally similar nodes. The key insight is that, using function data as
supervision, the model will be driven to tease topological features that
are more informative for NA (termed as topological relatedness in (Gu
and Milenkovié, 2020)) apart from other signals, such as network noise
or incompleteness that are likely to break the common assumption of
traditional NA methods. In contrast, most traditional NA methods are
unsupervised and may not easily capture such topological features. Gu et
al. have developed supervised NA methods TARA and TARA++ (Gu and
Milenkovi¢, 2020, 2021), which first built graphlet features (Milenkovié
and PrZzulj, 2008) of network nodes and trained a logistic classifier with
function data to distinguish between functionally related and unrelated

node pairs. While outperforming traditional unsupervised NA methods,
TARA (or TARA++) still has several limitations. First, its prediction
performance is suboptimal as the linear logistic classifier may not be able to
capture high-order, nonlinear topological features. In addition, TARA(++)
is a two-stage method, where protein representations are learned in the
first stage using unsupervised algorithms such as graphlet (Milenkovié
et al., 2010) or node2vec (Grover and Leskovec, 2016), and in the second
stage network alignment based on the learned representations is performed
using supervised logistic regression. The two-stage approach may result in
suboptimal alignment quality as the representation learning in the first stage
is not optimized toward maximizing the alignment accuracy. Moreover,
TARA(++) is notreadily extended from pairwise NA to other NA problems,
such as heterogeneous NA and temporal NA, for large-scale networks due
to the high computational cost of counting heterogeneous or temporal
graphlets (Gu et al., 2018; Vijayan and Milenkovié, 2018).

In this work, we develop GraNA, a more powerful and flexible
supervised NA model for the data-driven NA paradigm for the pairwise,
many-to-many network alignment problem (Guzzi and Milenkovic,
2018). GraNA is a graph neural network (GNN) that learns informative
representations for protein nodes and predicts the functionally related node
pairs across networks in an end-to-end fashion. Following TARA-TS (Gu
and Milenkovié¢, 2021), GraNA also represents the two PPI networks
to be aligned as a joint graph and integrates heterogeneous information
as anchor links to guide the network alignment. As protein orthologs,
defined as proteins/genes in different species that originated from the
same ancestor, tend to retain function over evolution, GraNA further
integrates across-network orthologous relationships as anchor edges to
guide the alignment. One strength of GraNA is that heterogeneous data
can be readily incorporated as additional nodes, edges, or features to
facilitate network alignment. For example, GraNA integrates sequence
similarity edges as additional anchor links to guide the alignment and
pre-computed network embeddings as node features to better encode the
topological roles of network nodes. GraNA is trained as a link prediction
model, where function data (i.e., whether a given pair of proteins have
functions in common) is used as training data. We also proposed a
negative sampling strategy to improve the model training effectiveness.
Since multi-modal data are integrated, GraNA is able to learn informative
protein representations that reflect orthologous relationships, topology,
and sequence similarity to better characterize functional similarity between
proteins. Evaluated on NA tasks between five species, GraNA accurately
aligned across-species protein pairs that are functionally similar. We
further showed that the alignments produced by GraNA can be used to
achieve accurate across-species protein function annotations. Moreover,
we demonstrated GraNA’s applicability by applying it to predict the
functional replacement of essential yeast genes by their human orthologs,
in which GraNA re-discovered previously validated replaceable pairs in
important pathways.

2 Methods

Problem formulation: In this paper, we focus on pairwise NA of two
species’ PPI networks. We are given as input an integrated graph G =
(G1, G2, E12), where the undirected graph Gy, = (Vi, E},) is the PPI
network of species k (k = 1, 2), with V}, as the set of the proteins and Ey,
as the set of physical interactions between proteins; F12 C V1 X Vaisa
set of across-network edges that serve as anchor links for aligning the PPIs,
such as orthologous proteins pairs. In the data-driven NA framework, the
NA problem is formulated as a supervised link prediction task, where a
set of functionally related protein pairs R = {(u1,u2)|u1 € Vi,u2 €
V> } is given as training data to train a model to predict whether a new
pair of proteins are functionally related. Following previous work (Gu
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Fig. 1. Schematic overview of GraNA. GraNA is a supervised graph neural network (GNN) that aligns functionally similar proteins in the protein-protein interaction (PPI) networks of two

species. It integrates orthologs and sequence similarity relationships as anchor links to guide alignments. GraNA derives positional and distance embeddings as node features for proteins

and performs iterative within- and across-network message passing to learn protein representations that capture protein functional similarity. The concatenated representations of a pair of

proteins are used to make the final prediction using a fully-connected (FC) neural network.

and Milenkovié, 2021; Li et al., 2022), the functional relatedness of two
proteins is defined based on whether they share the same Gene Ontology
(GO) terms (Section 3.1).

Overview of GraNA: We propose, GraNA, a novel framework based
on graph neural networks (GNNs) for supervised network alignment
(Fig. 1). Receiving PPIs GG1, G2, and anchor links 12 as input, GraNA
first builds positional and distance embeddings as node features for every
node. It then uses a GNN, which performs both within- and across-
network message passing through PPI edges and anchor links (orthologs
and sequence similarity), to enhance and refine those features into
final representations that capture topological and evolutionary similarity
relationships. GraNA is trained with protein function data to predict
whether a pair of across-network proteins share the same function.

2.1 Graph neural network architecture of GraNA

GNNs have been widely used to model graph-structured data such as social
networks, physical systems, or chemical molecules (Dwivedi et al., 2020).
Here, we develop a novel GNN architecture, adapted from the Generalized
Aggregation Network (Li et al., 2020a), to model our input PPI networks
G = (G1 = (1, F1),G2 = (Va, E2), E12). The key of GNNs is the
graph convolution (also known as message passing) where a node first
aggregates the features from its neighbor nodes, updates them with neural
network layers, and then sends out the updated features to its neighbors.
Through iterative graph convolutions on the PPI networks G1, G2 and
anchor links E72, our model can learn an embedding for each node that
encodes information of both graph topology and relationships of anchor
links. GraNA has L layers of graph convolution blocks, where the ¢-th
block contains a series of non-linear neural network layers that transform
node i’s embedding hf € R% to hf'H € RY, where £ € [L] and i € [n],
n = |Vi|+|Va|. Inparticular, h? is the initialized node feature (described
in Section 2.2).

Within each graph convolution block are within- and across-network
propagation layers that update the node embeddings. In the ¢-th block,
the node embeddings hf are first updated by the propagation along PPI
edges (within-network message passing), in which a node aggregates its
neighbor’s features using the attention mechanism:

. he
exp(y - h)
é K
Zj’eNi"(i) exp(y - hj/)
€]
where N'(3) is the set of neighboring nodes of node 7 in terms of the
within-network edge set E'; U E'2, and 7y is a learnable parameter known as

m; = Z Qg - hﬁ where Qg5 =
JENT (i)

the inverse temperature. Next, node embeddings are updated with across-
network message passing through anchor links:

exp(w - hﬁ)
Zj’e/\[ﬂc(i) exp(w : hﬁ/)

Z ﬁij hﬁ where Bij =
JEN(4)

pi = y6)

where N%(4) is the set of neighboring nodes of node i in terms of
the across-network edge set Fj2, and w is a learnable temperature
parameter. The final updated embedding hf+1 is obtained using multi-
layer perceptron (MLP) f, f/ followed by a residual connection (He et al.,
2016): hf+1 = f(hf + m;) + f'(h{ + p;) + hf. In GraNA, we
stacked seven graph convolution blocks to build the GNN, where each
block performs one iteration of within-network propagation (Eq. 1) and one
iteration of across-network propagation (Eq. 2). Pair normalization (Zhao
and Akoglu, 2019) and ReLU non-linear transformation (Nair and Hinton,
2010) are applied between two adjacent convolution blocks.

After the graph convolution, the representations of nodes ¢ € V;
and j € Va, hl.L and h]L. , are concatenated and passed to a two-layer
MLP to out a probability score that predicts whether the two nodes
should be aligned. GraNA is trained using the binary cross entropy
loss. The hyperparameters for training GraNA were selected based on
GraNA’s performances on valid sets, and we further tested the effect
of different hyperparameters on GraNA’s performances. The details of
how we select our hyperparameters, the effects different hyperparameters
have upon GraNA, and other implementation details are provided in the
Supplementary Information.

2.2 Network features of proteins

While GNNs are able to learn node embeddings that encode topological
information of the input PPI network structure, previous studies have found
that GNNs might perform poorly when the graph exhibit symmetries in
local structure, such as node or edge isomorphism. This is related to the
theoretic limitation of GNNs due to their equivalence to the 1-Weisfeiler-
Lehman test of graph isomorphism (Xu et al., 2018). Some existing NA
methods also suffered from this limitation. For example, the state-of-the-
art NA method ETNA (Li et al., 2022) has to filter out nodes with the same
neighborhood structure, since these are indistinguishable to their model
when only topological information is used.

Inspired by several solutions in graph machine learning (Dwivedi et al.,
2020; Li et al., 2020b), we introduce two types of node features, as the
initializations of node embeddings h?, to improve the expressiveness of
our GNN model and facilitate the topological feature learning. We use two
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complementary network features, namely the graph Laplacian positional
embeddings, which encode a node’s position with respect to other nodes in
the network, and the diffusion-based embeddings, which capture a node’s
distance to other nodes in random walks. Intuitively, the two types of
embeddings capture the long-range relationships between network nodes.
In GraNA, these features are incorporated as the initialization of node
embeddings h? and then refined by message passing around each node’s
direct neighbor vicinity. Therefore, GraNA can capture both local and
global topological proximity in the network. Next, we describe how to
construct the positional and distance features.

Distance embeddings: Random walk or PageRank-based algorithms
have been widely used to learn network embeddings (Perozzi et al., 2014;
Grover and Leskovec, 2016) and improve expressiveness of GNNs (Li
et al., 2020b). For example, the distance matrix at the equilibrium states
of a random walk with restart has been used to encode the topological
roles of genes or proteins in molecular networks (Cowen et al., 2017,
Cho et al., 2016). Following those ideas, in this work, we compute
distance embeddings for network nodes using NetMF (Qiu ef al., 2018),
a unified framework that generalizes several previous network embedding
methods (Perozzi et al., 2014; Grover and Leskovec, 2016) and estimates
the distance similarity matrix M in a closed form:

T
M = VO;(TG) (Z(DUX)’”) D1, 3)

r=1

where A is the n X n adjacency matrix of the network, D is the diagonal
degree matrix, vol(G) = Y7 ; Dj; is the volume of the graph G, bis the
parameter for negative sampling, 7" is the context window size. Unlike the
adjacency matrix A that only contains direct neighbor relationships, the
NetMF matrix M encodes the similarity between long-distance neighbors.
The entry M;; approximates the number of paths with length up to T'
between nodes 4 and j. In GraNA, setting b = 1 and T' = 10 following
the default choices (Qiu ef al., 2018), we computed matrices M for the
two input PPIs separately and used the i-th row of log M as the distance
embedding for node 7. As the row vector has a high dimension as the
number of nodes, we applied a linear neural network layer to project the row
vector from dimension n to d (d < n), where d is the hidden dimension
in GraNA’s graph convolution layers.

Positional embeddings: In addition to distance embeddings, we
further build positional features such that nodes nearby in the network
have similar embeddings while distant nodes have different embeddings.
For this purpose, GraNA applies the Laplacian positional encoding,
which has been shown to be able to encode graph positional features
in GNNs (Dwivedi et al., 2020). The idea is to use graph Laplacian
eigenvectors that embed the graph into Euclidean space while preserving
the global graph structure. Mathematically, the normalized graph
Laplacian is factorizedas L = 1— D~1/24D~1/2 = UT AU, where A
and U refers to the eigenvalues and Laplacian eigenvectors, respectively.
In GraNA, the d-smallest non-trivial eigenvectors are used as the positional
embeddings and concatenated with the distance embeddings together as
the initialized node features h?.

2.3 Integrating heterogeneous information for NA

In addition to PPIs, there are other types of relationships that can help
characterize the functional similarity of proteins, such as gene-gene
interactions, sequence similarity, phenotype similarity, and associations
between proteins and other entities such as diseases. A naive way to
integrate multiple data sources is to collapse them as additional but the
same type of nodes and edges in a flattened network, which, however,
may lose context-specific information. Heterogeneous data integration,
which treats distinct types of nodes and edges separately, has been shown

effective to integrate diverse data sources (Cho et al., 2016; Luo et al.,
2017). A few previous NA studies consider the heterogeneous NA problem,
but their approaches required non-trivial modifications in the optimization
objective and feature engineering as compared to the homogeneous NA
problem. On the contrary, one of the major advantages of GraNA is that it
can readily integrate heterogeneous information to facilitate the alignment
of networks by simply including the data as additional nodes, edges, or
feature embeddings and applying heterogeneous graph convolutions to
capture context-specific information.

As a proof-of-concept, here we apply GraNA to incorporate sequence
similarity relationships as another type of anchor links in addition to the
orthologous relationships. Now we have two sets of across-network edges
as input, which are denoted as E{Q for r = 1, 2. To learn embeddings
from heterogeneous data, we perform separate across-network message
passing for each edge type: HET) = Zje/\/’,‘ic(i) Bij - hﬁ-. Compared to
Eq. 2, note that the aggregation and the weights 3;; here are defined on ¢’s
neighbor nodes that are connected by the r-th type of edges N2 (4), instead
of all neighbors N(7). After performing both types of message passing,
we obtain the updated node embedding using a sum pooling operation
over all edge types: hf"'l =fhf+m)+>, f)(hé+ p,gr)) +h¢,
where f(™) is a fully connected neural network specific to edge type 7.
We expect that, by multi-view information from orthologs and sequence
similarity edges, GraNA can better distill the topological features that
are useful to predict functional relatedness. Of note, GraNA is a generic
framework, and other types of node or edge data can be integrated into
GraNA in a similar way.

2.4 Enhancing model learning with hard negative sampling

Supervised NA essentially is a positive-unlabeled learning problem,
meaning that we only observed positive protein pairs that are functionally
related (e.g., have at least one GO term in common), denoted
as I, = {(p,q)|proteins p and g are functionally related}, without
observing validated negative samples. For a new pair (p*,¢*) ¢ Zp,
it does not necessarily mean that the two proteins do not have the same
function, rather, it is more likely their functions have not been thoroughly
characterized by experiments. To generate negative samples for training a
supervised classifier to distinguish functionally related and unrelated pairs,
previous NA methods usually chose to randomly sample a set of pairs not
in Z,, as the negative set Z,, (Gu and Milenkovi¢, 2021, 2020).

‘We reason that the random negative sampling might lead the machine
learning model to learn the node’s presence in the training data rather
than functional relatedness. Denote le as the set of proteins in PPI G
that are involved in positive pairs, i.e., V¥ = {p|p € V1 and (p,q) €
T, for some ¢ € Va}, and V2p has a similar meaning. As only a small
fraction of proteins in V7 and Vo are involved in the positive set, for
most randomly-sampled negative pairs (p, ¢), it is likely that p and ¢
are new proteins that did not occur in le or VQP, respectively. Due to
the distribution discrepancy between positive and negative samples in the
training set, machine learning models trained on this data may only learn

? ?
to predict for a given pair of proteins (p, g) whether p € le orge VP,

rather than predicting (p, q) é Ip.

To encourage the model to learn the functional relatedness instead of
node representativeness in the training data, we propose a hard negative
sampling strategy to construct the negative set, where the sampled negative
edges must contain nodes that have both appeared in positive edges. We
achieve this by performing edge swap between positive edges: given
two positive pairs (p1,q1) and (p2,q2), we swap their endpoints and
add new edges (p1,q2) and (p2,q1) to the negative set if there did
not show in Z,. Equivalently, the set of negative edges is defined as
Thad = {(p,q)lp € V¥, q € VI, (p,q) ¢ Ip}. In our experiments,
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we also compared to two other negative sampling strategies, including the
“easy" sampling used in previous NA studies (Gu and Milenkovi¢, 2020,
2021): ™ = {(p,q)|p € Vi,q € V2, (p,q) ¢ Zp}, and a “semi-hard"
sampling that requires a sampled negative edge to contain at least one node
that has appeared in positive edges : Z*™ = {(p, q)|(p € V} andq €
Va)or (pe Viandg € VY), (p,q) & Ip}.

3 Results

We performed several experiments to assess GraNA’s ability to capture
the functional similarity of proteins and predict protein functions across
species. We also conducted ablation studies to better understand the
model’s prediction performance. Furthermore, we used a proof-of-concept
case study to demonstrate GraNA’s applicability in functional genomics.

3.1 Datasets

Network data: The PPI network data of six species (Saccharomyces
cerevisiae, Schizosaccharomyces pombe, Homo sapiens, Caenorhabditis
elegans, Mus musculus, and Drosophila melanogaster) were downloaded
from BioGRID (v3.5.187) (Stark et al., 2006). We used both orthologs
and sequence similarity relationships as anchor links to guide network
alignment. For orthologs, we followed the ETNA study (Li ef al., 2022)
and downloaded orthology data from OrthoMCL (v6.1) (Li et al., 2003).
For sequence-similar pairs, we retrieved the expert-reviewed sequences,
if any, of proteins in our PPI networks from the UniProtKB/Swiss-
Prot database (Consortium, 2023). We then used MMseqs2 (Steinegger
and Soding, 2017) to perform sequence similarity searches between the
proteins of pairwise species and kept protein pairs with an E-value < 10~7
as anchor links. We chose this cutoff following previous work (Gu and
Milenkovi¢, 2021; Kalecky and Cho, 2018), and we observed that varying
this cutoff in a wide range had no significant impact on our GraNA’s
prediction performance (Fig. S1). The statistics of the PPI networks and
the anchor links can be found in Supplementary Tables S1 and S2.
Functional annotations: We collected the functional annotations
(terms) from Gene Ontology (GO) (Ashburner et al., 2000) (2020-
07-16) and considered two proteins to be functionally similar if their
corresponding genes have the same GO terms. Following ETNA (Li et al.,
2022), we only kept annotations related to the Biological Process (BP)
category, which are propagated through is a and part of relations, and
included evidence codes EXP, IDA, IMP, IGI, and IEP. As GO terms
appearing at the higher levels of the GO hierarchy might be too general
or redundant, following ETNA (Li ef al., 2022) and other studies (Gu and
Milenkovic, 2020, 2021), we focused our analyses on specific functions by
creating a slim set of GO terms associated with atleast 10 genes but no more
than 100 genes. Another expert-curated GO slim terms were also added
to this slim set (Greene et al., 2015). The statistics of functionally similar
protein pairs between species can be found in Supplementary Table S2.

3.2 GraNA better exploits topological similarity for network
alignment

We first assessed GraNA’s ability for network alignment by applying it
to align the networks between human and four major model organisms,
including S. cerevisiae, M. Musculus, C. elegans, and D. melanogaster,
and between two yeast species (S. cerevisiae and S. pombe). The prediction
task was formulated as a link prediction problem, i.e., predicting whether
two proteins have the same function. We created an out-of-distribution
train/test split (with a ratio of 8:2) such that proteins present in the training
set never occur in the test set. In another more challenging split, we further
forced that the training proteins and test proteins do not have > 30%
sequence identity.

We compared GraNA to two unsupervised embedding-based methods
(ETNA (Li et al., 2022), MUNK (Lim et al., 2018)), a graph theoretic

method (IsoRank (Singh ez al., 2008)), a sequence similarity-based method
(MMseqs2 (Steinegger and Soding, 2017)), and two supervised methods
(TARA-TS and TARA++ (Gu and Milenkovié, 2021)). We used the same
PPI networks and orthologs anchor links for all baseline methods. Anchor
links for protein pairs that share GO terms were removed to avoid data
leakage. To make a fair comparison, we included a variant of our method
(GraNA-o) that only used orthologs (without sequence-similar pairs) as
anchor links. Unsupervised methods were evaluated on the same test set
used for supervised methods. The running time analyses of GraNA and
representative baseline methods can be found in Supplementary Table S6.

The evaluationresults suggested that GraNA consistently outperformed
other methods for aligning functionally related proteins in all five NA tasks
in terms of the AUROC and AUPRC metrics (Fig. 2). Precision, recall,
and total number of predicted alignments were reported in Figs. S11, S12,
and S13. We first confirmed the advantage of the supervised NA paradigm
over the traditional unsupervised paradigm: GraNA(-o) substantially
improved other unsupervised methods (MMseqs2, IsoRank, MUNK,
and ETNA) with clear margins. For example, the AUROC and AUPRC
improvements achieved by GraNA over the best unsupervised method
(ETNA) were 11% and 55%, respectively (averaged over five tasks).
Compared to those unsupervised methods that entirely rely on the topology
to align nodes and are susceptible to the noise and incompleteness in
biological networks, GraNA further leveraged function data as direct
supervision signals to tease topological features that are directly related
functional relatedness from background noise and greatly improved the
alignment quality.

Inaddition, compared to TARA-TS and TARA++, the only methods for
the supervised NA paradigm in literature, we found that our method is a
more powerful deep learning solution for supervised NA. For example,
GraNA-o on average had 53% higher AUPRC scores than TARA-TS.
Interestingly, TARA-TS, despite as a supervised method, sometimes even
had a lower performance than the state-of-the-art unsupervised method
ETNA. The potential reason is that TARA-TS only used a linear logistic
model that only able to model linear feature interactions in the data,
while GraNA is an end-to-end graph neural network, which captures
more complex, non-linear feature dependencies, and can better exploit
topological similarity and predict node alignment.

Moreover, although GraNA-o outperformed other methods in most
scenarios, in a few cases, it was only on par with the second-best baseline
(TARA-TS; Fig. 2, 3rd and 5th columns). However, we found that when
integrating both orthologs and sequence similarity as anchor links, the full
model (GraNA) further improved GraNA-o and outperformed all other
baselines in all tasks in both AUROC and AUPRC, suggesting that GraNA
was an effective tool to integrate heterogeneous data for boosting the
network alignment performance. In contrast, we observed that TARA-TS,
even when given the two types of anchor links, was not able to improve
the alignment performance (to be discussed in Section 3.4 and Fig. 4a).

On a more challenging data split where the sequences in the train
and test sets have no sequence identity > 30%, we also observed that
GraNA clearly outperformed the second best baselines ETNA and TARA-
TS (Fig. S3 and S4). We also had similar observations when using other
sequence identity cutoffs to create the train/test splits (Fig. S2). This strict
benchmark suggested that GraNA can generalize its prediction for proteins
that are sequence-dissimilar from what it has seen in the training data.

Additionally, we created another challenging evaluation dataset based
on a temporary split strategy, where the snapshot of the GO database as
of 2018-07-02 was used as training data, and the GO snapshot as of 2022-
12-04, excluding all training annotations, was used as test data. On this
dataset, we again observed similar results where GraNA outperformed
baselines such as ETNA and TARA-TS (Fig. S5). This demonstrated
GraNA’s generalizability when making predictions for proteins whose
functions are not completely characterized.
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Fig. 2. Performances of network alignment prediction. GraNA and other baselines were evaluated for aligning functionally similar proteins across five pairs of species, using (a) AUROC
and (b) AUPRC as metrics. GraNA-o is a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the full model that uses both orthologs and sequence similarity
as anchor links. The default E-value cutoff 10 3 is used for MMseqs2. As MUNK is not a bidirectional NA method, the performances of its forward and backward predictions were shown
separately as MUNK-f and MUNK-b. Performances were evaluated using five independent train/test data splits. Raw AUROC and AUPRC scores are provided in Tables S4 and S5.
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Fig. 3. Performance of protein function prediction. Based on the network alignments produced by each method for four pairs of species (H. sapiens-S. cerevisiae, H. sapiens-M. Musculus,

H. sapiens-C. elegans, H. sapiens-D. melanogaster), we chose the top 5,000 ranked protein pairs and transferred all the functional annotations of one protein in an aligned pair to predict

the other protein’s function. The accuracy of the function prediction was evaluated by calculating the Jaccard index between the sets of the two aligned proteins. Box plots showed the

distribution of the Jaccard index of the top 5,000 aligned pairs for each method on five NA tasks.

Overall, these results demonstrated that GraNA can better explore
topological similarity to accurately align networks. The flexible GNN
framework further allowed GraNA to integrate heterogeneous data types
that capture multi-view similarity relationships to improve the alignment
quality.

3.3 GraNA translates accurate network alignments to
function predictions

One important application of NA is to better understand human protein
functions by transferring our learned function knowledge about model
organisms. Therefore, after evaluating the performance of aligning
functionally related proteins, we next studied whether the network
alignments produced by GraNA can facilitate protein function prediction.
Here, we applied GraNA to generate the alignments between humans and
the four model organisms. Then, we considered the top 5,000 ranked
protein pairs aligned by GraNA and calculate the Jaccard index between
the functional annotations of the two proteins in each pair. As a protein
may have multiple functions, this evaluation aimed to quantify the overlap
between the sets of functions of the two aligned proteins, which was
more complex and challenging than the evaluation in the last section
which predicted whether two proteins share at least one function. We

also compared a random baseline that randomly samples 5,000 pairs from
proteins that have at least one GO term, in addition to our previously
introduced baselines. Furthermore, we have also evaluated GraNA in an
established protein function prediction framework (Meng et al., 2016).
We observed from Fig. 3 that, even with the partial model GraNA-o,
our method has already outperformed other methods on three out of the
four tasks in terms of Jaccard similarity. The full model GraNA, which
integrated heterogeneous orthologs and sequence similarity edges, further
boosted the function prediction performance. These results suggested that
GraNA was able to not only align functionally similar protein pairs but
also prioritize “most similar" pairs to the top of its prediction list. GraNA’s
ability to prioritize functionally similar proteins has important implications
when studying human diseases, since it can suggest the most functionally
similar counterpart of a human gene in model organisms for detailed
characterization. Moreover, we noted that the improvements achieved
by GraNA over other methods were more pronounceable for species
with high-quality PPI networks (e.g., S. cerevisiae). On the alignment
task between human (H. sapiens) and roundworm (C. elegans), GraNA
achieved performance on par with the second best baseline, which was
likely due to that the PPI of C. elegans is the sparsest among all four model
organisms (density < 0.2%). This finding was consistent with the ETNA
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either orthologs, sequence similarity, or both were used as the anchor links for the network alignment between H. sapiens and S. cerevisiae. (b-c) Ablation analyses that compared different

negative sampling strategies (b) and node features (c) for the network alignment between S. cerevisiae and S. pombe. AUPRC scores of the two best baselines (ETNA and TARA-TS) were

shown in (b) and (c) for reference. Performances were based on five independent trials of train/test split. Comparisons on all species can be found in Supplementary Information. (Lap:

Laplacian embeddings; Net: NetMF embeddings.)

study (Li et al., 2022). We also compared GraNA with other methods using
the functional coherence (FC) metric (Singh et al., 2008; Chindelevitch
etal.,2013), avariant of the Jaccard index that only focuses on standardized
GO terms to avoid bias caused by terms from different levels of the GO
hierarchy, and observed similar performance (Fig. S10). Additionally, by
using the protein function prediction framework (Meng et al., 2016), we
observed that GraNA predicted a smaller set of predictions with higher
precision compared to TARA++, which is useful when high-confidence
and limited false positive predictions are desired (Fig. S14). Overall, this
experiment here suggested that GraNA translated its effective network
alignments to the accurate predictions of protein functions, demonstrating
its potential for across-species functional annotations.

3.4 Analyses of key model designs in GraNA

Having validated that GraNA outperformed state-of-the-art methods for
aligning networks and predicting functions, we performed ablation studies
to understand the GraNA model in more detail and attribute performance
improvements to several key design choices in GraNA.

Heterogeneous anchors. As GraNA is a flexible framework to
integrate heterogeneous data, we first investigated the effects of using
heterogeneous data on the performance of network alignment. We
compared GraNA variants that used only orthologs, only sequence
similarity, or both as anchor links. We observed that with either of the
anchor links, GraNA was able to achieve an AUPRC better than the two
best baselines (ETNA and TARA-TS) and combining both of them led
to the best AUPRC score (Figs. 4a and S6). Interestingly, we found the
two baselines, when given two types of anchors, did not improve their
network alignment accuracy compared to when a single type of anchor
was used (Figs. 4a and S7). These comparisons indicated that information
contained in the two types of edges are not redundant but complementary,
and GraNA can integrate them more effectively than other baselines. The
major reason was that GraNA implemented separate message passing
mechanisms to handle different types of anchors, while ETNA and TARA-
TS (with node2vec features (Grover and Leskovec, 2016)) mixed them as
a single type of edges. We expect that integrating more data that capture
multiple aspects of protein similarity can further help GraNA to better
characterize protein functional relatedness.

Hard negative sampling. Another novel design in GraNA is the hard
negative sampling which prevented the model from only learning from
trivial training samples. To better illustrate this, we compared GraNA
models trained with three negative sampling strategies, including easy,
semi-hard, and hard negative sampling (Methods). We observed that
GraNA trained with easy and semi-hard samplings already outperformed
the second-best baseline, and using the hard sampling further improved

the AUPRC by 20% and showed a more significant margin over baselines
(Fig. 4b). Hard negative sampling is a critical ingredient that makes GraNA
accurate and generalizable. As discussed in the Methods section, random
negative sampling tends to create a training set that confuses the machine
learning model, and the model may just learn whether protein appeared
in the training set rather than the functional relatedness between protein
pairs. In contrast, hard negative sampling forces our model to discriminate
between functionally related and unrelated pairs.

Node features. We used both distance features (NetMF embeddings)
and positional features (Laplacian embeddings) to initialize the node
features in GraNA. Here, we analyze the effect of the node features by
comparing GraNA variants that used only one or both of the NetMF
and Laplacian embeddings, or randomly initialized node features. We
observed that with random node features, the prediction performance was
only comparable with the unsupervised ETNA method (Fig. 4c). When
replacing the random features with network-informed features (NetMF
and Laplacian), GraNA significantly improved its AUPRC scores. Finally,
incorporating both embeddings led to the highest AUPRC score. This
comparison underscored the effectiveness of using informative features.
Although the GNN model alone was able to capture topological properties
of network nodes, it still only captured localized information as a node’s
features were only propagated to its nearby neighbors with a few times
(e.g., < 10) of message passing. However, the two embeddings we used
were able to encode global, long-range neighbor relationships between
nodes, which were complementary to the topological features learned by
the GNN and jointly enhanced GraNA’s effectiveness.

3.5 Application: predicting replaceability for a humanized
yeast network

Finally, we demonstrate the applicability of GraNA using a task of
identifying replaceable human-yeast gene pairs. Recent studies have
identified many human genes that can substitute for their yeast orthologs
and sustain yeast growth (Kachroo et al., 2015; Laurent et al., 2020),
which provides a tractable system known as ‘humanized yeast’ to allow
for high-throughput assays of human gene functions. Given that not all
yeast genes can be replaced by their human orthologs, biological NA
methods might become useful tools to predict the replaceability among
human-yeast orthologs.

We collected the experiment data from Kachroo et al. (Kachroo et al.,
2015), which has assayed 414 essential yeast genes for complementation
by their human orthologs and found 47% of them could be humanized.
After filtering out genes that are not included in the PPI network of S.
cerevisiae that we used in this work, we obtained 411 gene pairs, out
of which 174 replaceable pairs are labeled as positive samples and the
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Fig. 5. An application of GraNA on predicting replaceable human-yeast gene pairs in humanized yeast network. GraNA was used to predict whether human genes can replace their yeast

orthologs for the functions in humanized yeast network. (a) Using 414 validated positive and negative human-yeast gene pairs by Kachroo et al. (Kachroo et al., 2015) as the test set, we

compared a pre-trained GraNA model (GraNA-pt), a fine-tuned GraNA model (GraNA-ft), and ETNA to evaluate their ability to distinguish replaceable and non-replaceable human-gene

pairs in the test set. The performance of GraNA-ft was evaluated using five-fold cross-validation whereas GraNA-pt and ETNA were evaluated on the whole test set directly. (b-c) Case

studies where GraNA was used to predict the replaceability in two pathways: (b) Proteasome complex and (c) CCT complex. We visualized the complex validated by Kachroo et al. (Kachroo

et al., 2022) for comparison, where validated replaceable genes were colored in red, non-replaceable genes in green, and unvalidated genes in gray. For GraNA’s predicted network, the

predicted score for each gene was normalized into a z-score and colored with a gradient colormap from green (most non-replaceable) to red (most replaceable).

remaining as negative. To avoid potential signal leakage, in our data we
further removed 169 orthologs that coincide with the 411 pairs. Using
this data as a binary classification test set, we first applied a baseline
method, ETNA, to predict the replaceability of each human-yeast pair.
We observed that ETNA’s predicted performance was nearly random
(AUC~0.5; Fig. 5a). This was not surprising because, by design, ETNA
was trained to classify between orthologs and non-orthologs, while all
the positive and negative pairs in the test sets here are all human-yeast
orthologs, which appeared to be indistinguishable to ETNA. Next, we
applied the GraNA model pre-trained on our H. sapiens-S. cerevisiae
alignment task (GraNA-pt) to predict for those 411 gene pairs. Even though
GraNA-pt was not directly trained to predict replaceability, we found that
it still had a better-than-random prediction accuracy (AUC=0.56; Fig. 5a)
on the test set, which suggested that the functional similarity relationships
captured by GraNA were relatively more generalizable. After fine-tuning
the trained GraNA model on the 411 gene pairs by re-training the parameter
of the top MLP layers and freezing GNN layers, we observed that this
model (GraNA-ft) reached an AUC of 0.68 in five-fold cross-validation
(Fig 5a), which was higher than the AUC of the supervised TARA-TS
model (Fig S8). This suggested that the prediction accuracy of GraNA on
this task could be improved with direct supervision.

As a case study, we applied GraNA to study the replaceability in
protein complexes. We selected as two examples the proteasome complex
and the CCT complex that have experimental validation data (Kachroo
et al., 2022, 2017, 2015). In both examples, we used the genes in
the complex as the test set and the remaining genes with experimental
validation data as the training set. For the Proteasome complex that
contains both replaceable and non-replaceable genes, except for PRES,
GraNA correctly predicted a positive z-score for replaceable genes and
a negative z-score for non-replaceable genes (AUC=0.91; Fig. 5b). For
the CCT complex that was mainly enriched with non-replaceable genes,
GraNA'’s prediction also recapitulated the replaceability in the network,
where validated non-replaceable genes were predicted with a negative
z-score (Fig 5c¢).

Overall, these results demonstrated the applicability of GraNA for
extending the network alignments to empower other functional analyses
of genes and proteins.

4 Conclusion

NA is a fundamental problem in various domains, such as linking users
across social network platforms (Zafarani and Liu, 2013), unifying entities

across different knowledge databases (Zhu et al., 2017), and aligning
keypoints in computer vision (Sarlin et al., 2020). In this paper, we studied
the NA problem for biological networks. We have presented GraNA, a
deep learning model for aligning functionally related proteins in cross-
species PPI networks. Our work was motivated by the recently proposed
supervised network alignment methods such as TARA/TARA-TS (Gu and
Milenkovi¢, 2020, 2021), which represent the two PPIs being aligned as
a joint graph connected by anchor links and integrate topology, sequence,
and function information to characterize the function similarity between
cross-species protein pairs. GraNA integrates PPI networks, ortholog
and sequence similarity relationships, network distance and positional
embeddings, and protein function data to learn to align across-species
proteins that are functionally similar. Experiments showed that GraNA
outperformed state-of-the-art NA methods, including both supervised and
unsupervised approaches, on aligning pairwise PPI networks for five
species, and the high-quality network alignments of GraNA also enable
accurate functional prediction across species. We further investigated
several key model designs of GraNA that led to performance improvements
and demonstrated the applicability of GraNA using a case study of
predicting replaceability in humanized yeast network. GraNA is a flexible
framework and can be readily extended in the future to integrate diverse
types of entity and association data to facilitate NA. As previous methods
suchas TARA, GraNA can also be generalized to study other NA problems,
including multi-species NA and temporary NA.
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1 Supplementary Information

1.1 Experimental setup

For network alignment prediction, GraNA was trained on the training set, tuned on
the valid set, and evaluated on the test set along with other NA baselines, where
the split ratio is 70/10/20. For each dataset, data split was performed 5 times with 5
different seeds.

In the context of NA for biological networks, many different evaluation metrics
have been proposed, and they often focus on different aspects of network alignment
prediction. Ma and Liao (2020) categorized some of the most commonly used metrics
into two types: biological evaluation and topological evaluation. Apart from the
metrics summarized by Ma and Liao (2020), Fan ef al. (2019); Li et al. (2022)
also used AUPRC and AUROC for evaluating the predicted network alignment. In
this work, we selected metrics following Singh et al. (2008); Chindelevitch et al.
(2013); Fan et al. (2019); Li et al. (2022) and included AUROC, AUPRC, Jaccard
index (also known as Gene Ontology Consistency), and functional coherence (FC)
as metrics. As the prediction of GraNA is a many-to-many mapping between the
across-species proteins, we cannot directly leverage a particular set of metrics used
in previous studies Saraph and Milenkovi¢ (2014); Vijayan and Milenkovi¢ (2017),
such as Edge Correctness (EC) and Node Correctness (NC), which are based on the
assumption that the mapping is one-to-one and require non-trivial modification for
our purpose.

For protein function prediction, we chose the Jaccard index and functional
coherence of the top 200 predicted node pairs given for each train/test split (1000
pairs in total after combining the top pairs from five runs). For a fair comparison,
we filtered anchor links that coincide with positive test pairs from our training data.
Jaccard index describes how similar two proteins are in terms of function, as it is
calculated as |S1 N S2|/[S1 U Sa2|, where Sy, Sa represent respectively the set
of GO terms the two nodes are annotated with. Following previous studies (Singh
et al., 2008; Chindelevitch et al., 2013), we define functional coherence as follows.
GO terms were first mapped to a standardized GO set. Within this set, all GO terms
are at a distance of 5 to the root of the GO hierarchy, and any GO terms with a
distance less than 5 to the root are dropped. We measured the distance only by
considering the relations is a and part of in Biological Process (BP) of the GO, and
we retrieved the ancestor information of each GO term through the QuickGO REST
API (Binns et al., 2009). This design aimed to avoid evaluating functional similarity at
different levels of the Gene Ontology graph. For each protein pair (z, ), functional
coherence is defined as | S, NSy |/[Se U Sy
of standardized GO terms with protein x, y respectively. Using Jaccard index and

, whereas S, S, represent the sets

functional coherence, we are able to quantify the proportion of functional knowledge
that is successfully transferred from the network alignment established by GraNA.

1.2 Baselines

In experiments, we compare GraNA with several existing NA methods. For a fair
comparison, all baseline methods were trained, if needed, and evaluated on the same
data as GraNA. Specifically, for baselines that require anchor links, we used the
same ortholog anchor links that GraNA uses. Default parameters were used for all
baselines.

For unsupervised NA method, we included IsoRank (Singh et al., 2008),
MMseqs2 (Steinegger and Soding, 2017), MUNK (Fan et al., 2019), and ETNA (Li
et al., 2022). MMseqs?2 is a tool for calculating sequence similarity and clustering
proteins based on their sequences. We included it as a baseline method for assessing
the relatedness of sequence similarity to functional similarity. IsoRank is an
unsupervised multi-network alignment method, which is based on the intuition that
functionally similar proteins have similar sequences and neighborhood topologies.
The alignment of networks is formulated as an eigenvalue problem. IsoRank was
originally designed to align orthologous pairs using sequence similarity as anchor
links. MUNK, linking two PPIs via orthologs, uses matrix factorization to create a
functional embedding in a way that proteins from different species are embedded in
the same space. Then, a score matrix is calculated between two species, which can be
used for network alignment prediction. ETNA is the state-of-the-art unsupervised NA
method. It first learns representations for proteins from the PPIs via autoencoder and
then applies a cross-training mechanism using orthologs to align the embeddings
from two species. For the supervised NA method, we included TARA-TS and
TARA++ (Gu and Milenkovié, 2021). From the three versions of TARA-TS
(graphlet (Milenkovi¢ and Przulj, 2008), node2vec (Grover and Leskovec, 2016),
metapath2vec (Dong et al., 2017)), we chose the version based on node2vec as

it showed the best performance among the three as shown in their experiments.
Regarding TARA++, for the protein function prediction evaluation framework (Meng
et al., 2016), we implemented TARA++ according to its original definition, which
is the intersection of TARA and TARA-TS predictions. For network alignment
prediction, we had to make a tweak on TARA++: in the TARA++ paper, TARA++ was
developed for the function prediction task but not for the network alignment task.
Therefore, we adapted TARA++ to the network alignment prediction to compare
with GraNA — we first ran TARA and TARA-TS to obtain the predicted probability
(produced by the logistic regression classifier) that a given protein pair shares at least
one GO term and then we took the average to TARA’s and TARA-TS’s predicted
probabilities. The averaged probability was used as the prediction of TARA++. The
average operation here followed the same idea of the intersection operation in the
original TARA++ for function prediction, which took the consensus predictions of
TARA and TARA-TS. In addition to the average, we have tried combining TARA and
TARA-TS by taking their minimum or maximum predicted probability for network
alignment, and the results were similar. Using this approach, we were able to compare
TARA++ to other methods in our network alignment benchmark.

1.3 Hyperparameters

The hyperparameters in GraNA include the total number of epochs, batch size,
learning rate, hidden dimension, number of graph convolution blocks, and graph
convolution type. We comprehensively tested the robustness of GraNA against
different hyperparameter settings. The search space of hyperparameters for training
GraNA was shown in Table S3. For each train/valid/test split, GraNA was first
trained on the training set and then validated on the validation set. We chose the final
combination of hyperparameters for training GraNA based on GraNA’s performances
(AUROC and AUPRC) on the validation set. To avoid an exponential number of
combinations of hyperparameters that would make the grid search infeasible, we
fixed the values of other hyperparameters when tuning one specific hyperparameter.

We evaluated four different types of graph convolution layer: GCN (Kipf and
Welling, 2016), SAGE (Hamilton et al., 2017), GAT (Velickovié et al., 2017), and
GEN (Li et al., 2020a). The four architectures differ from each other mainly in their
neighborhood information aggregation mechanisms. GCN aggregates neighborhood
information in a weighted mean manner based on node degrees and edge weights
from the normalized Laplacian matrix. SAGE, in comparison, takes a mean over
neighborhood node features for constructing the message for one node. GAT employs
the attention mechanism for aggregating node features, whereas GEN is the layer
we used in GraNA, and it aggregates neighborhood information through a softmax
function.

Raw results averaged on five independent train/valid split for each
hyperparameter setting for alignment between S. cerevisiae and S. pombe were shown
in Figure S9. We observed that GraNA was robust to hyperparameters. Given the
results of hyperparameter tuning and the computational resources available to us, we
built a total of 7 graph convolution blocks, each with a hidden dimension of 128
and a convolution type of GEN (Li et al., 2020a), for GraNA. During training, we
used the Adam optimizer with an initial learning rate of 0.001 and a weight decay of
5e-4, and we set the batch size to be 216, We trained GraNA for a maximum of 200
epochs. GraNA was trained on a single NVIDIA A40 GPU card. The running time
analyses of GraNA and baseline methods (TARA, TARA-TS, ETNA) are provided
in Table S6.
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Table S5. AUPRC of GraNA and baseline methods for predicting network
alignment across species. For each dataset, we reported the AUPRC values

2 Supplementary Tables

averaged over five independent train/test data splits. The abbreviations are

Table S1. The number of nodes and edges in the PPI network of each species. identical to Table SI.

Abbreviations: sce: S. cerevisiae, spo: S. pombe, hsa: H. sapiens, mmu: M. Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

Musculus, cel: C. elegans, and dme: D. melanogaster. MMseqgs2 | 0.0598 0.0547 0.0683 0.0635 0.0572
Type sce spo hsa mmu cel dme IsoRank | 0.0770 0.0476 0.0628 0.0558 0.0512
Nodes | 5,669 2334 17,120 7,762 4,439 7711 MUNK-f | 0.0748 0.0562 0.0675 0.0569 0.0578
Edges | 110,776 10,525 418,512 47,833 18,301 49,769 MUNK-b | 0.0740 0.0556 0.0661 0.0559 0.0564

TARA-TS | 0.1019 0.0841 0.1140 0.0720 0.0842
TARA++ | 0.0927 0.0756 0.1168 0.0783 0.0861
ETNA 0.1832 0.1053 0.0914 0.0720 0.0706

Table S2. The number of anchor links (orthologs and sequence similarity) and GraNA-o | 0.2635 0.1258  0.1320  0.0931 0.0956
protein pairs sharing function in each pair of PPI networks. Orth only: anchor GraNA-s | 0.2670 0.1336  0.1359  0.0970 0.1010
links that were included only as orthologs; Both orth and seq: anchor links that GraNA 0.2892 0.1511 0.1518 0.1078 0.1120

were both included as orthologs and sequence similarity relationships; Seq only:
anchor links that were included only as sequence similarity; Pairs sharing func:
cross-species protein pairs that share at least one function. Species abbreviations
are identical to Table S1.

Type sce-spo  hsa-sce  hsa-mmu hsa-cel hsa-dme
Orthologs 1,485 2,221 10,819 2,561 4,603
Seq similarity 8,324 37,711 191,172 23419 40,828
Orth only 555 878 3,208 1,400 2,963
Both orth and seq 930 1,343 7,611 1,161 1,640
Seq only 7,394 36,368 183,561 22,258 39,188
Pairs sharing func | 195,519 1,021,948 1,938,820 327,907 1,090,256

Table S3. The search space of hyperparameters for training GraNA. GraNA
is trained on train set and validated on valid set. The final combination of
hyperparameters is determined based on GraNA’s performance on the valid set.

Hyperparameter Range
Epochs [50,100,200,300]
Batch size [213, 214 215 216 917
Learning rate [0.0001, 0.001, 0.01]
Hidden dimension [32, 64, 128, 256]
Block number [1,3,5,7,9]
Convolution type | [GCN, SAGE, GAT, GEN]

Table S4. AUROC of GraNA and baseline methods for predicting network
alignment across species. For each dataset, we reported the AUROC values
averaged over five independent train/test data splits. The abbreviations are
identical to Table S1.

Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme
MMseqs2 | 0.5057 0.5095 0.5102 0.5117 0.5101
IsoRank | 0.5650 0.5179 0.5104 0.5143 0.5129
MUNK-f [ 0.5644 0.5819 0.5372 0.5111 0.5641
MUNK-b | 0.5566 0.5772 0.5288 0.5079 0.5576

Table S6. Running time analysis of GraNA and baseline methods TARA,
TARA-TS, and ETNA. The time needed for building topological features and
training model were reported in minutes. Inference time could be neglected
compared to feature-building and model-training time. The abbreviations are

identical to Table S1.
TARA-TS | 0.6241 0.6384 0.6495 0.5848 0.6346
TARA++ 0.6270 0.6311 0.6533 0.5921 0.6372 Method Time sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme
ETNA | 07045 0.6631 0.5805 0.5784 0.5891 TARA | feature| 47 205 150 137 162
GraNA-o | 0.7707 0.6944 0.6568 0.6174 0.6367 train | <l ! 2 <1 !
GraNA-s | 0.7681 0.6952 0.6473  0.6000 0.6287 TARATS | feature | <1 1 1 1 1
GraNA | 0.7865 0.7165 0.6755 0.6335 0.6506 train | <l 1 2 <1 1
ETNA feature <1 7 7 6 7
train <1 <1 <1 <1 <1
feature <1 7 7 6 7
GraNA
e rain 9 76 117 20 75
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3 Supplementary Figures
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Fig. S1. Impacts of E-value cutoff values used to identify sequence-similar protein pairs as
anchor links. In GraNA, sequence similarity relationships are used as one type of anchor link.
These sequence-similar protein pairs were identified by performing a sequence similarity
search by MMseqs2 and selecting those pairs with an E-value smaller than a cutoff. We
trained a GraNA variant that only used sequence similarity as anchor links (labeled as
GraNA-s) and evaluated its AUPRC score of aligning the PPI networks of H. sapiens and
S. cerevisiae when different E-value cutoffs were used. For reference, the AUPRC scores
of GraNA-o and GraNA were shown. Since GraNA-o did not include sequence similarity
as anchor links and GraNA used the default E-value cutoff of 10_7, their AUPRC scores
were constant values in the figure.
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Fig. S2. AUPRC of GraNA on data splits with different sequence identity thresholds. To
validate GraNA’s effectiveness, we evaluate GraNA using harder data splits, which require
that the train split and the test split are dissimilar in sequences. In practice, we fix the training
sets and only filter test sets. Using MMseqs2 (Steinegger and Soding, 2017) to search the
proteins in the test set that are under the sequence identity threshold, we constitute new test
sets for each threshold. We select sequence identity thresholds 10%, 30%, 50%, 80%, and
100% (the original test split) and evaluate GraNA’s performance for each threshold on five
independent data splits for H. sapiens and S. cerevisiae.

S. cerevisiae - S. pombe
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Fig. S3. AUROC of network alignment prediction on sequence identity-based data splits.
To further validate GraNA’s effectiveness under difficult data splits, we compared GraNA
with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant
of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured
proteins from the train split and the test split are dissimilar in terms of their sequence
identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not
appear in the training set, here we create several more challenging train/test splits such that
for the chosen species (the first species, the second species, or both species), its proteins in
the test split must have sequence identity lower than 30% to its proteins in the train split.
In our experiments, we iteratively sampled proteins and added those proteins together with
their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence
identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S4. AUPRC of network alignment prediction on sequence identity-based data splits.
To further validate GraNA'’s effectiveness under difficult data splits, we compared GraNA
with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant
of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured
proteins from the train split and the test split are dissimilar in terms of their sequence
identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not
appear in the training set, here we create several more challenging train/test splits such that
for the chosen species (the first species, the second species, or both species), its proteins in
the test split must have sequence identity lower than 30% to its proteins in the train split.
In our experiments, we iteratively sampled proteins and added those proteins together with
their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence
identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S5. Network alignment performance on predicting newly discovered alignments
between H. sapiens-M. Musculus based on known alignments. To further demonstrate
GraNA’s potential for application, we compared GraNA with the best unsupervised and
supervised baselines (ETNA and TARA-TS) on predicting the newly discovered alignments
from GO (Consortium, 2004) (2022-12-04) that are not included in GO (Consortium, 2004)
(2018-07-02). Following the method of generating the alignments in the benchmark dataset,
we first create a slim set of GO terms from GO (2018-07-02) and then use it to generate
new alignments in GO (2022-12-04), which contains 48% more functionally similar pairs.
Supervised methods are trained on the supervision from 2018. All methods are evaluated on
the dataset that includes all newly discovered alignments as positive samples and negative
samples downsampled to an equal amount of positive samples. Experiments were repeated
using five random seeds for negative sampling.
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Fig. S6. Network alignment performance of GraNA using different anchor links. We
evaluated the performances of GraNA using only orthologs, only sequence similarity, and
both orthologs and sequence similarity as anchor links for network alignment. Five pairs
of PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.
sapiens-C. elegans, H. sapiens-D. melanogaster) are used for evaluation. AUPRC of five
independent train/test data splits were reported.


https://doi.org/10.1101/2023.04.24.538184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.24.538184; this version posted April 28, 2023. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

14 Ding et al.
S. cerevisiae - S. pombe H. sapiens - S. cerevisiae
0.3 0.15 0.8l ° ° o0 o
"
(]
2 o2f, o.10f | y Qor|
o | 1 %
2 |
<
< 01 0.05 06
0.5!
0.0 0.00 50 100 200 300 14 15 16
Orth Seq Both Orth Seq Both Epochs Batch size
H. sapiens - M. musculus H. sapiens - C. elegans
0.15 0.12 0.8 5
o 4 g t“
@) 0.09 Q0.7{ | —
& 0.107 o
o i ! | | | 2
=) 0.06 <
<0.05 il I 1
' 0.03
0.5 !
0.0001  0.001 . 32 64 128 256
0.00 orth Seq Both 0.00 Oorth Seq Both Learning rate Hidden dimension
H. sapiens - D. melanogaster 08 ?L N oo
0.12 L % b J b b
ETNA o d 5 d £ pli
O 0.09 gor I e B
o 2
| 1 -
2 0.06 . B TARATS 2. . 1
<
0.03 |
B GraNA 053 5 7 o GCN SAGE GAT _ GEN
0.00 Block number Convolution type

Orth Seq Both

Fig. S7. Evalutation of the ability to integrate heterogeneous anchor links. To validate
GraNA’s ability to leverage orthology information and sequence similarity information at
the same time, we compared GraNA with two of the best baselines, TARA-TS and ETNA,
for network alignment using different anchor links. We used either orthologs, sequence
similarity, or both orthologs and sequence similarity as anchor links for aligning five pairs of
PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H. sapiens-
C. elegans, H. sapiens-D. melanogaster), on five independent data splits. Abbreviations:
orth: orthologs; seq: sequence similarity.
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Fig. 8. ROC curve of GraNA and baselines in the case study. We further included TARA-
TS for comparison in predicting the replaceability of human genes with their yeast orthologs.
TARA-TS is trained and evaluated on the dataset of experimental results by Kachroo et
al. (Kachroo et al., 2015) via five-fold cross-validation.

Fig. S9. AUROC of GraNA for predicting the alignment between S. cerevisiae and S.
pombe averaged over five independent data splits on valid set. While we are evaluating one
type of hyperparameter, the other hyperparameters remain fixed. We evaluated in total 6
types of hyperparameters, including the total number of epochs, batch size, learning rate,
hidden dimension, block number, and convolution type.
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Fig. S10. Functional coherence (FC) based on the network alignments produced by each
method for four pairs of species (H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.
sapiens-C. elegans, H. sapiens-D. melanogaster). We chose the top 5,000 ranked protein
pairs and transferred all the functional annotations of one protein in an aligned pair to
predict the other protein’s function. The accuracy of the function prediction was evaluated
by calculating the FC between the sets of the two aligned proteins. Unlike Jaccard index,
FC only focuses on standardized GO terms (at a distance 5 to the root of the GO root) to
avoid bias caused by terms from different levels of the GO hierarchy. Box plots showed
the distribution of the FC of the top 5,000 aligned pairs for each method on five NA tasks
under five random seeds.
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Fig. S11. Precision of network alignment prediction. GraNA and other baselines were
evaluated for aligning functionally similar proteins across five pairs of species, and we used
precision as the metric. For GraNA’s predictions, we first selected the probability threshold
maximizing the f1 score on the valid set and used this threshold to make final alignment
predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as
anchor links whereas GraNA refers to the full model that uses both orthologs and sequence
similarity as anchor links. As MUNK is not a bidirectional NA method, the performances
of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.
Performances were evaluated using five independent train/test data splits.
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Fig. S12. Recall of network alignment prediction. GraNA and other baselines were
evaluated for aligning functionally similar proteins across five pairs of species, and we used
recall as the metric. For GraNA’s predictions, we first selected the probability threshold
maximizing the f1 score on the valid set and used this threshold to make final alignment
predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as
anchor links whereas GraNA refers to the full model that uses both orthologs and sequence
similarity as anchor links. As MUNK is not a bidirectional NA method, the performances
of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.
Performances were evaluated using five independent train/test data splits.
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Fig. S13. Total number of predicted network alignments. GraNA and other baselines were
evaluated for aligning functionally similar proteins across five pairs of species, and we
reported the total number of network alignments predicted by each method. For GraNA’s
predictions, we first selected the probability threshold maximizing the f1 score on the valid
set and used this threshold to make final alignment predictions on the test set. GraNA-o is
a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the
full model that uses both orthologs and sequence similarity as anchor links. As MUNK is
not a bidirectional NA method, the performances of its forward and backward predictions
were shown separately as MUNK-f and MUNK-b. Performances were evaluated using five
independent train/test data splits.
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Fig. S14. Performances of protein function prediction. We evaluated TARA, TARA-TS, TARA++, and GraNA in the context of cross-species protein function prediction in an established
protein function prediction framework (Meng et al., 2016), and we used precision, recall, F1 score, and total number of predictions (protein-GO pairs) as metrics. The evaluation framework
starts by performing network alignment prediction on a test set of protein pairs, and then it evaluates the functional predictions made based on the predicted network alignment via statistical
tests. Consistent with other experiments in our manuscript, we only evaluated the methods on pairs of proteins that both have at least one alignment. As the data was unbalanced in the test
set, we subsampled negative pairs of proteins to the number of positive pairs of proteins to construct a balanced test set. We restricted the function prediction only for GO terms from the
slim set to avoid transferring general GO terms such as Biological Process. TARA++ prediction was the overlap of the predictions of TARA and TARA-TS. Performances were evaluated
using five independent train/test data splits.
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