

1 **Understanding natural selection in Holocene Europe using 2 multi-locus genotype identity scans**

3
4 Devansh Pandey^{1*}, Mariana Harris^{2*}, Nandita R. Garud^{3, 4+}, and Vagheesh M. Narasimhan^{1, 5+}

5 ¹Department of Integrative Biology, The University of Texas at Austin,

6 ²Department of Computational Medicine, University of California, Los Angeles,

7 ³Department of Ecology and Evolutionary Biology, University of California, Los Angeles,

8 ⁴Department of Human Genetics, University of California, Los Angeles

9 ⁵Department of Statistics and Data Science, The University of Texas at Austin,

10 *Co-first author

11 ⁺Co-corresponding author

12

13 **Abstract**

14

15 Ancient DNA (aDNA) has been a revolutionary technology in understanding human
16 history but has not been used extensively to study natural selection as large sample sizes to study
17 allele frequency changes over time have thus far not been available. Here, we examined a time
18 transect of 708 published samples over the past 7,000 years of European history using multi-
19 locus genotype-based selection scans. As aDNA data is affected by high missingness,
20 ascertainment bias, DNA damage, random allele calling, and is unphased, we first validated our
21 selection scan, *G12_{ancient}*, on simulated data resembling aDNA under a demographic model that
22 captures broad features of the allele frequency spectrum of European genomes as well as positive
23 controls that have been previously identified and functionally validated in modern European
24 datasets on data from ancient individuals from time periods very close to the present time. We
25 then applied our statistic to the aDNA time transect to detect and resolve the timing of natural
26 selection occurring genome wide and found several candidates of selection across the different
27 time periods that had not been picked up by selection scans using single SNP allele frequency
28 approaches. In addition, enrichment analysis discovered multiple categories of complex traits
29 that might be under adaptation across these periods. Our results demonstrate the utility of
30 applying different types of selection scans to aDNA to uncover putative selection signals at loci
31 in the ancient past that might have been masked in modern samples.

32 **Introduction**

33 With the emergence of large sample size sequencing data, numerous population genetic studies
34 have attempted to identify targets of natural selection in the human genome¹. However, the
35 majority of studies carried out on modern human populations have largely been restricted to

36 detecting selection events that have happened in the most recent periods of human history
37 because selective sweeps decay due to processes including recombination and mutation¹ and can
38 be obscured by demographic events such as admixture^{1,2}. By directly tracking genomic changes
39 over time using aDNA, it may be possible to observe sweeps that otherwise are undetectable
40 from modern data. However, until recently, the large sample sizes required for such analyses
41 were unavailable and, as a result, many aDNA based studies to examine natural selection were
42 largely confined to specific alleles³⁻⁷.
43

44 Recently, increased sample sizes have enabled genome-wide selection scans on aDNA
45^{4,5,8-13}. However, most current approaches have focused on single site statistics that leverage
46 temporal data to detect allele frequency changes over time. An alternative strategy is to use
47 haplotype-based approaches, which are sensitive to footprints of selection left behind by
48 hitchhiking of linked alleles with adaptive alleles. Haplotype scans do not require temporal
49 samples and instead only require samples from a single population group from one specific time
50 to infer recent selective events¹⁴⁻¹⁸ and might provide complementary information to approaches
51 that detect allele frequency changes over time. However, most haplotype-based methods require
52 phased genomes that are particularly challenging to obtain from ancient samples for several
53 reasons. First, aDNA read lengths are incredibly short (30-50bp) and read-based phasing has
54 reduced efficiency at these lengths¹⁹. Second, reference panels constructed from modern
55 haplotypes may introduce bias in calling alleles from aDNA due to divergence that has arisen
56 between ancient and modern genomes. By using trio or family data, where the phasing and
57 imputation can be assessed directly and precisely by examining transmission of alleles,
58 biological information can be used to obtain a ground truth dataset. However, due to the nature
59 of sampling in aDNA studies, there are relatively few trios or families that have been sequenced
60 of sufficient quality that may help with assessing the quality of phasing and imputation methods.
61

62 Recently, statistics that leverage multi-locus genotypes, which represent strings of
63 unphased genotypes from diploid individuals, were proposed to circumvent the need for phased
64 haplotypes²⁰⁻²². However, a major challenge in applying these statistics to aDNA is its low
65 coverage (largely between 0.5-2x coverage), which results in, on average, only one of the two
66 diploid alleles being called. Moreover, the reference allele in modern genomes may bias which
67 of the two diploid alleles is mapped. In this study, we modified a multi-locus genotype-based
68 scan²² for adaptation to be suitable for low-coverage aDNA data using a pseudo-haploidization
69 scheme, in which one allele per site is randomly selected to represent the genotype of the
70 individual at that position. We evaluated the performance of this method, which we call
71 *G12_{ancient}*, on aDNA using simulations and well characterized functionally validated variants. We
72 then applied it to different epochs from an aDNA time transect to examine the timing of selection
73 of well-characterized candidate sweeps. Finally, we examined novel targets of selection to see if
74 our new method could complement other studies of natural selection carried out using allele
75 frequency-based methods¹³.
76

77 We carried out this analysis on a dataset of ancient individuals from Holocene Europe
78 representing a period of significant cultural change, beginning with the transition from hunting
79 and gathering to farming, which resulted in people living in much closer proximity to animals, as
80 well as major dietary changes. This was also a period that covered the transition to state-level

81 societies, which led to large population densities and division of labor²³. Notably, several papers
82 document the first evidence of bacterial and viral pathogens in the aDNA record during the
83 Holocene, and it is of interest to understand if and how humans adapted to these new cultural
84 changes, environments, and diseases that affected us in our evolutionary past^{10,24,25}. Given the
85 large sample sizes spanning this time transect that provide a nearly gapless record of human
86 populations in Europe, we attempted to estimate the timing of selection and generate hypotheses
87 about its correspondence with major demographic and cultural changes.

88 **Results**

89 *A time transect through Holocene Europe*

90
91 In our analysis we examined a collection of 708 recently published samples from Europe
92 ranging from 6572 BP to 353 BP (**Supplementary Data**)^{26–38}. To minimize reference bias or
93 batch effects associated with data processing issues across the set of samples, we chose to
94 include only samples for which hybridization capture was performed on 1.2 million positions³⁹
95 and that had at least 15,000 SNPs for which we could perform high-quality population genetic
96 analysis. We only included samples that did not appear to have significant contamination on the
97 mtDNA or the X chromosome (in males) and were unrelated (up to the third degree). We also
98 chose to only include samples that were uniformly treated with the same Uracil-DNA
99 Glycosylase (UDG) process during library preparation and trimmed the last two bases from each
100 read to reduce the impact of aDNA damage on our computed statistics (**Methods: aDNA data**
101 *curation*).

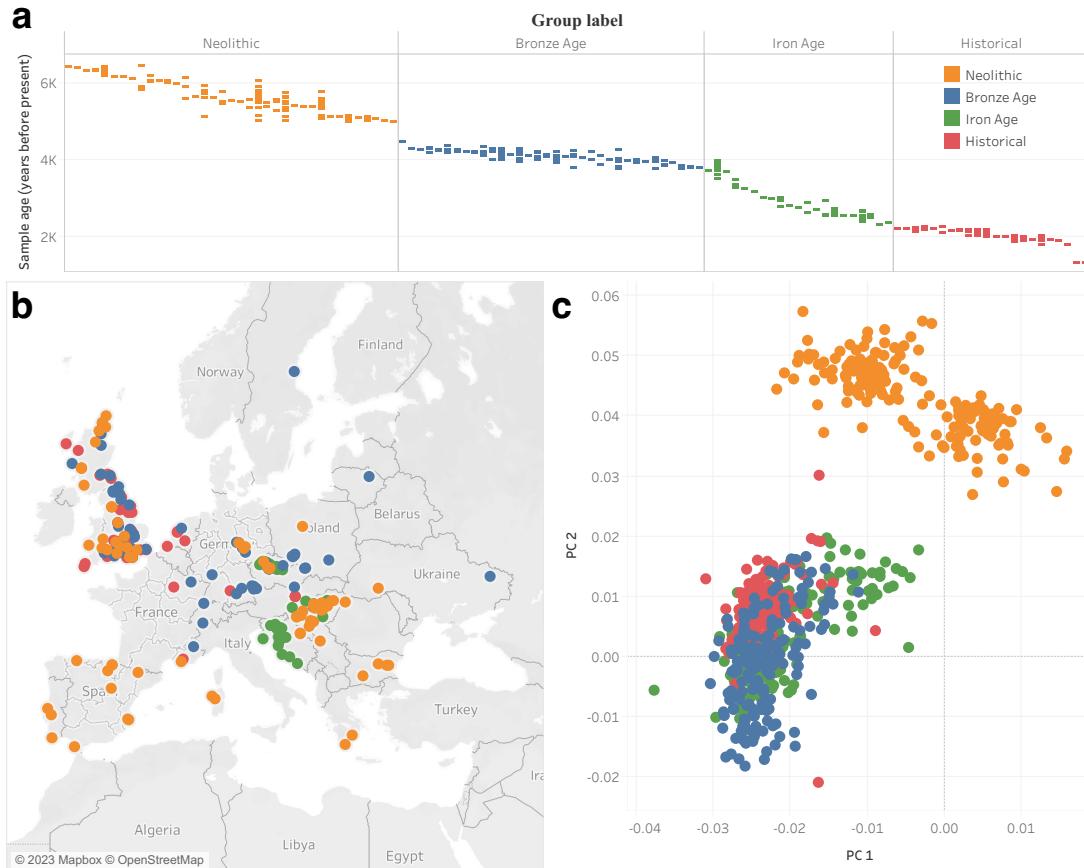
102
103 To homogenize the sample size of our analysis across time periods, we used 177
104 individuals for each epoch which we determined based on f_4 -statistics, time period (based on
105 direct radiocarbon dates or precisely dated archaeological contexts), and geographic location
106 (**Fig. 1**). Samples from each of these assigned population groups were genetically homogenous
107 and had little to no ancestry from additional sources known to enter Europe and contributed in
108 small proportions to a minority of European populations, including the Scythians and
109 Sarmatians, the Uralic-related migrations into Hungary and Fennoscandia, and Iranian farmer
110 related ancestry along the Mediterranean in Southern Europe. The groups of individuals were:

111 **N** First farmers of Europe from the Middle to Late Neolithic (abbreviated as the first letter
112 of Neolithic). These individuals were from across Europe, are dated to between 6572 and 5091
113 BP and are mixtures of European Hunter-Gatherer and Anatolian farmer ancestry.

114
115 **BA** Bronze Age Europeans (abbreviated as the first letters of Bronze Age). These individuals
116 are from the Bell Beaker cultures of Western and Central Europe dated between 5940 to 3780
117 BP.

118
119 **IA** Iron Age Europeans (abbreviated as the first letters of Iron Age). We used samples from
120 Iron Age Britain and other countries in Western Europe dated between 3465 to 2130 BP.

123 **H** Finally, to represent Historical samples from Europe, we included samples from the
124 Roman and late antique periods, primarily from Britain, dated from 1973 to 353 BP.
125



126
127 **Fig. 1: aDNA samples included in this study.** **a** Distribution of archeological or radiocarbon
128 dates for sites (vertical columns) from each time period over the past 7,000 years. Each colored
129 bar represents single samples from a site that has been dated to a particular time. Multiple
130 samples from the same site are annotated along the same column. **b** Locations of ancient
131 individuals that passed our analysis thresholds, forming a sample size of 708 individuals.
132 **c** PCA analysis of ancient individuals projected onto a basis of modern samples.

133 *A modified multi-locus genotype statistic for detecting selection on aDNA*

134
135 For application to unphased data, several multi-locus genotype methods have been
136 recently developed that are similar to extended haplotype-based statistics^{21,22}. Evidence based on
137 simulation studies have suggested that these approaches using unphased information might be as
138 powerful as approaches that use phased information^{21,22}. However, the low coverage (mean:
139 1.5 \times) of aDNA data means that we are unable to call heterozygotes effectively and are therefore
140 unable to use these statistics directly. Due to this low coverage, aDNA samples are processed as
141 ‘pseudo-haploid’ data where one read mapping to a position is chosen at random and the allele of
142 that read is used as the genotype (pseudo-haplodization) (**Supplementary Fig. 1** and **Methods: Generation of modern human data mimicking ancient data**).

145 To examine selection on this type of data, we adapted an approach that has been
146 previously shown to be useful in application to unphased population genomic data, $G12$. $G12$ is
147 capable of detecting selective sweep signatures associated with hard sweeps, expected when
148 adaptation is gradual, and soft sweeps, expected when adaptation is rapid^{40,41}. We modified $G12$
149 to work on pseudo-haploidized aDNA data. This modified statistic which we call $G12_{ancient}$ is
150 computed in windows comprising a fixed number of SNPs and is defined as:

151

$$152 \quad G12_{ancient} = (q_{1k} + q_{2k})^2 + q_{3k}^2 + \dots + q_{nk}^2$$

153

154 Where q_{1k} , q_{2k} , q_{3k} , ..., q_{nk} , denote the frequencies of the unique n, pseudo haploidized
155 multisite genotypes, ranked from most common to most rare. The intuition behind this statistic is
156 that haplotypes that have risen to high frequency are likely to have a large number of individuals
157 with homozygous genotypes (thereby biologically phased as the two haplotypes are identical)
158 and that these homozygous haplotypes provide a similar signal to those from phased data.

159 To validate our modified statistic and its applicability to aDNA data, we took several
160 approaches. As a first line of analysis, we examined the correlation between $G12$ computed on
161 diploid low-coverage data from the 1,000 genomes project⁴² with that of $G12_{ancient}$ computed on
162 the same samples using a pseudo-haploid genotyping scheme along with introducing missingness
163 and ancient DNA damage at typical rates in our dataset (**Methods: Running selection scans on**
164 *ancient datasets and Supplementary Fig. 3*). The correlation between $G12$ and $G12_{ancient}$ across
165 all windows in the genome was 0.95 suggesting that our modified version of the selection
166 statistic $G12_{ancient}$ is almost equivalent to running $G12$, a selection statistic that has already been
167 examined previously and applied to various other datasets. (**Methods: Running selection scans on**
168 *ancient datasets and Supplementary Fig. 3*). Second, we tested the ability of $G12_{ancient}$ in
169 simulated data to demonstrate its performance on a range of theoretical settings. Third, we
170 demonstrate the ability of $G12_{ancient}$ to identify well-characterized and functionally validated
171 variants that have previously been found to be under selection by multiple modern and ancient
172 genomic studies^{8,43} (**Supplementary Table 2**).

173 *Evaluating $G12_{ancient}$ on simulated data*

174

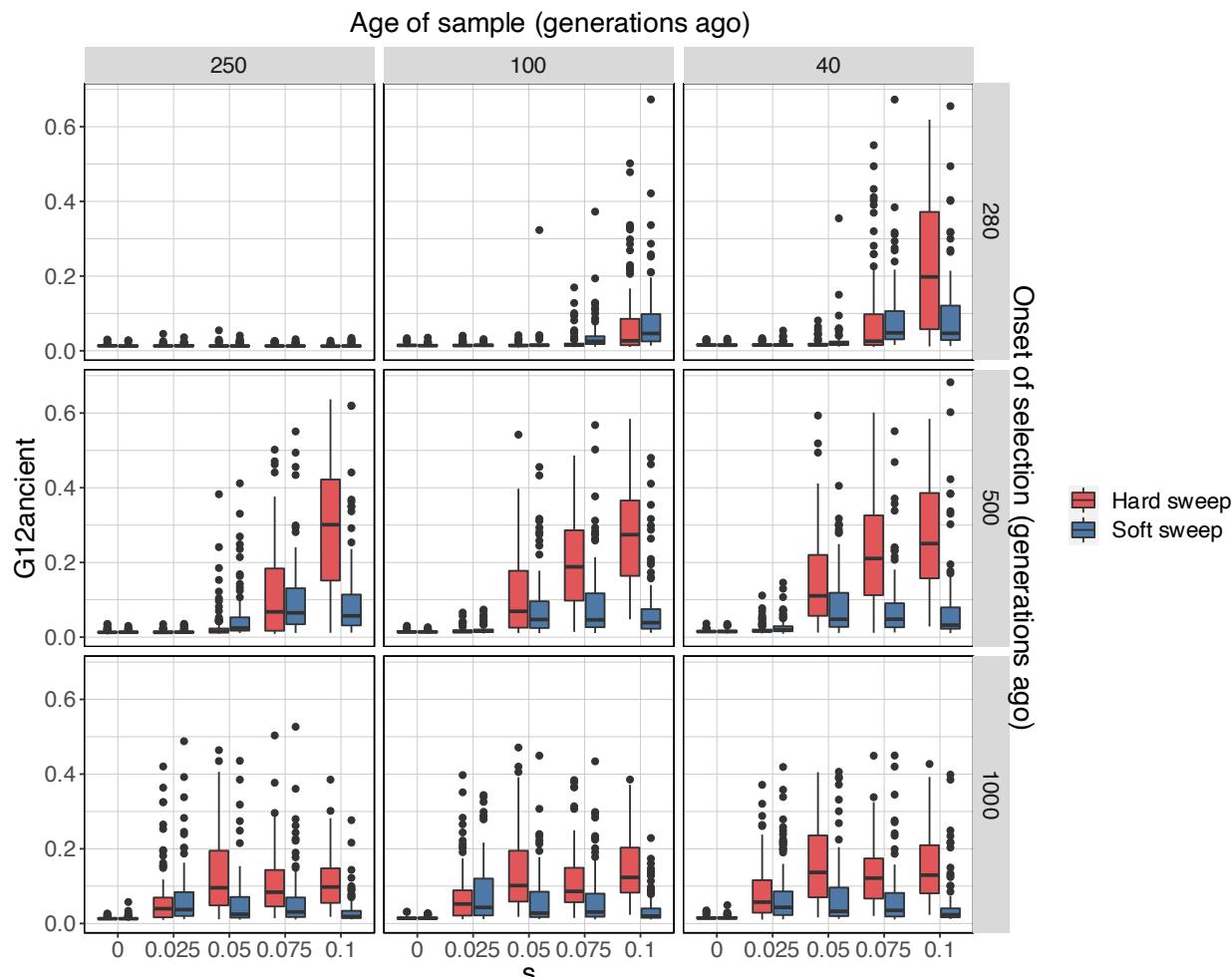
175 To evaluate the performance of $G12_{ancient}$ in simulated aDNA data, we used the forward
176 in time simulator SLiM 3⁴⁴ to generate genotypes incorporating missingness, ascertainment bias,
177 random allele calling, and genotyping error (**Methods: Generation of simulated data**) that are
178 typical of the aDNA data used in our study. We simulated hard and soft sweeps in a population
179 under the Tennessen et al. model⁴⁵, a demographic model that captures broad features of the
180 allele frequency spectrum of modern European genomes. We varied the time of the onset of
181 selection, the selection coefficient (s), and the time period of the sample. We obtained three
182 samples of 177 individuals, matching the sample size of our dataset, spanning the past ~7,000
183 years (250, 100 and 40 generations before present).

184

185 We first showed that our pseudo-haploidization approach does not reduce the ability of
186 $G12_{ancient}$ to detect selection, and that the distribution of $G12_{ancient}$ values of pseudo-haploidized
187 simulated data is comparable to that of running the haplotype-based statistic $H12$ on phased data
188 (**Supplementary Fig. 4**). When incorporating missingness and data sparsity at levels typically

189 observed in aDNA to our simulated datasets (**Methods: Running selection scans on simulated**
 190 *G12_{ancient}* signal is attenuated but can still be differentiated from neutrality. (**Fig. 2** and
 191 **Supplementary Fig. 5**). Additionally, we observe that *G12_{ancient}* increases with stronger selection
 192 (**Fig. 2** with the exception of **Fig. 2**. bottom row). In all selection scenarios analyzed, with the
 193 exception of young sweeps with weak selection, selection can be easily distinguished from
 194 neutrality ($s = 0$).
 195

196 In addition, we assessed the ability of *G12_{ancient}* to detect sweeps of varying degrees of
 197 softness. To do so, we introduced K beneficial mutations at the time of the onset of selection for
 198 $K=5, 10, 25$ and 50 (**Supplementary Fig. 6**). For $K = 5$ the majority of the resulting sweeps
 199 were hard, whereas for higher values of K the probability of a sweep being soft increased
 200 (**Supplementary Fig. 7**). Again, *G12_{ancient}* was able to distinguish selection from neutrality for
 201 varying degrees of softness except for sweeps that were very young (**Supplementary Fig. 6** first
 202 row, sample from 250 generations ago). Additionally, we observed that as sweeps became softer,
 203 the *G12_{ancient}* signal decreased, making it harder to detect sweeps that are old and very soft
 204 (**Supplementary Fig. 6** bottom row, $K = 50$).
 205



206
 207 **Fig. 2: *G12_{ancient}* values for hard (red) and soft sweeps (blue) in simulated aDNA data.**
 208 *G12_{ancient}* values were obtained for varying selection coefficients (s) and onset of selection

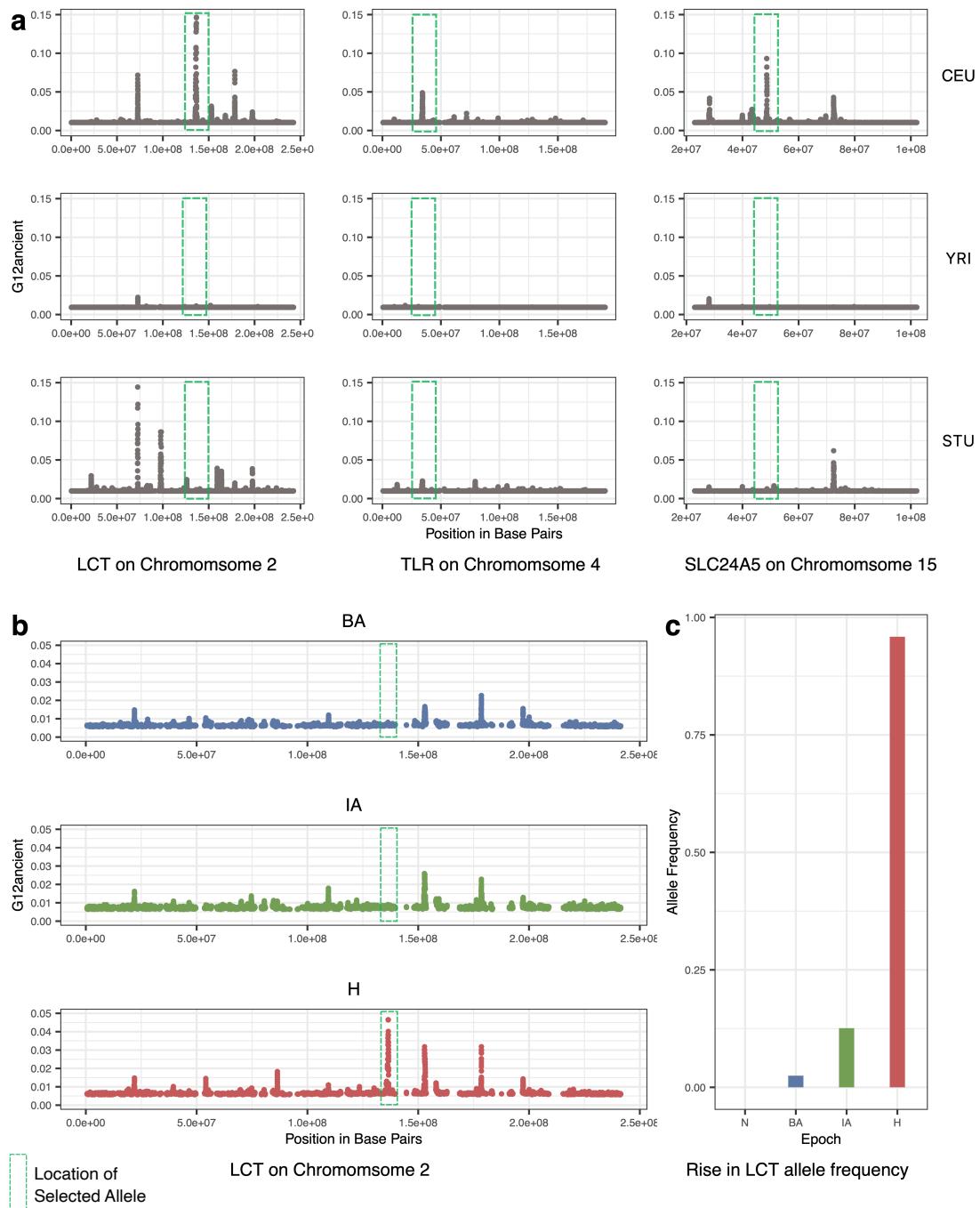
209 (rows). We sampled the population at 3 different time points (columns). For the soft sweep
210 simulations $K=25$ independent adaptive mutations were introduced to the population at the time
211 of the onset of selection. We ran a total of 100 simulations for each combination of parameters
212 with mutation rate $\mu = 1.25 \times 10^{-8}$ /bp, chromosome length $L=5 \times 10^5$ and recombination
213 $r = 1 \times 10^{-8}$ events/bp. Selection $s = 0$ represents neutrality.

214 *Application of G12_{ancient} to functionally validated variants from real data*

215
216 To test the ability of *G12_{ancient}* to detect selection signals on real data, we modified modern
217 genomic data from European individuals from the 1000 genomes project⁴², by introducing
218 missingness, ascertainment bias, sample size and random allele calling to mimic aDNA
219 (**Methods: Generation of modern human data mimicking ancient data**). We then examined the
220 ability of *G12_{ancient}* to detect classic selective signals in the genes *LCT*, *TLR1* and *SLC24A5*
221 which have been identified by multiple previously conducted selection scans and are regions that
222 are highly differentiated between Europeans and Asians (**Supplementary Table 2**). The causal
223 alleles at these loci have been fine mapped in association studies and have also been functionally
224 validated in cellular assays. These alleles are commonly used as positive controls in studies
225 carrying out tests for natural selection in humans⁴³. The *LCT* locus is responsible for conferring
226 lactase persistence into adulthood; *TLR1* is a gene involved in immune cell response and
227 *SLC24A5* is the dominant locus contributing to light skin pigmentation in Europeans^{3,46}.
228

229 Using our aDNA mimicking process on the modern data and then applying *G12_{ancient}*, we
230 were able to identify the *LCT*, *SLC24A5* and *TLR1* loci in the top 3 peaks observed chromosome-
231 wide in the European (CEU) population but not African (YRI) and South Asian (STU)
232 populations (**Fig. 3a**). We also examined the effect of utilizing different parameters for window-
233 sizes and jumps (distance between analysis windows) and obtained an optimal choice of these
234 parameters on real data (**Methods: G12_{ancient} parameter choices and peak calling** and
235 **Supplementary Fig. 8**).

236
237 Next, to establish that our process could identify the timing of signals of natural selection
238 from aDNA, we examined the *LCT* locus at different time periods of European history. This
239 locus is particularly relevant for this analysis as the causal allele was absent in Europe prior to
240 the arrival of Steppe Pastoralists in the Bronze Age and, therefore, could not have been under
241 selection prior to that point^{3,8,12,13,43,47-51}. By applying *G12_{ancient}* across different periods in our
242 time transect, we show that we were able to identify selection at the *LCT* locus, in the historical
243 period (this window is the top peak genome-wide), but we do not see signals of selection for
244 these in the Bronze Age and Iron Age populations (**Fig. 3b**). These results therefore are in line
245 with the rapid increase in frequency of the causal variant rs4988235 only in the historical period
246 (**Fig. 3c**), a finding that has also been replicated in other aDNA studies^{8,13,43}.



247
248

249 **Fig. 3: Recovery of variants well characterized to be under selection in modern Europeans**
250 **(positive controls).** a $G12_{ancient}$ values for modern population data from the 1000 genomes
251 project⁴², which was modified to mimic aDNA. $G12_{ancient}$ can detect several variants that have
252 been previously found to be under selection in modern Europeans. However, $G12_{ancient}$ is
253 completely absent or highly attenuated in populations of other ancestries (YRI and STU). b
254 Using aDNA data, it is observed that the signal for the *LCT* allele is absent in BA and IA
255 populations but is a top peak genome-wide in the H population. c The allele frequency reaches
256 near fixation in the H population but is absent in N period as it was only introduced into Europe

257 by the arrival of pastoralists from the Pontic-Caspian Steppe¹³. In panel **b** we show that we
258 observe high $G12_{ancient}$ only in the historical period but not in previous time periods as a
259 demonstration of our ability to localize the timing of selection to various epochs.

260 *Time stratified selection in ancient Europe*

261
262 Having established that our selection scan can identify signals of selection in simulated
263 data and correctly distinguish between positive and negative controls in real data, we applied
264 $G12_{ancient}$ to the aDNA time transect. We defined a genome-wide threshold for significance as
265 the 5th highest $G12_{ancient}$ value obtained by simulating neutral data under the Tennesen et al
266 model⁴⁵ (**Methods: Running selection scans on simulated data, $G12_{ancient}$ parameter choices**
267 *and peak calling*) $G12_{ancient}$ values above this threshold were classified as putative sweeps. As
268 windows adjacent to each other may belong to the same selective sweep, consecutive analysis
269 windows above the $G12_{ancient}$ neutral threshold were assigned to a single peak. The highest
270 $G12_{ancient}$ value among all windows of a peak was chosen to represent the whole peak. To remove
271 spurious peaks that might have arisen due to high rates of missing data or low recombination
272 rates, we masked the peaks located in those regions (**Methods: Quality control for removing**
273 *false sweeps*). With this approach, around 3-4 peaks per epoch were obtained that reached
274 significance at the genome-wide level.
275

276 We began by re-examining 12 loci previously established to be under selection using
277 aDNA data⁸. Although the selection signals produced by the previous scan and our scan differ in
278 their methodology and, therefore, their ability to detect selective events, we wanted to assess if
279 we might be able to use our approach to localize when in time these signals were selected.
280

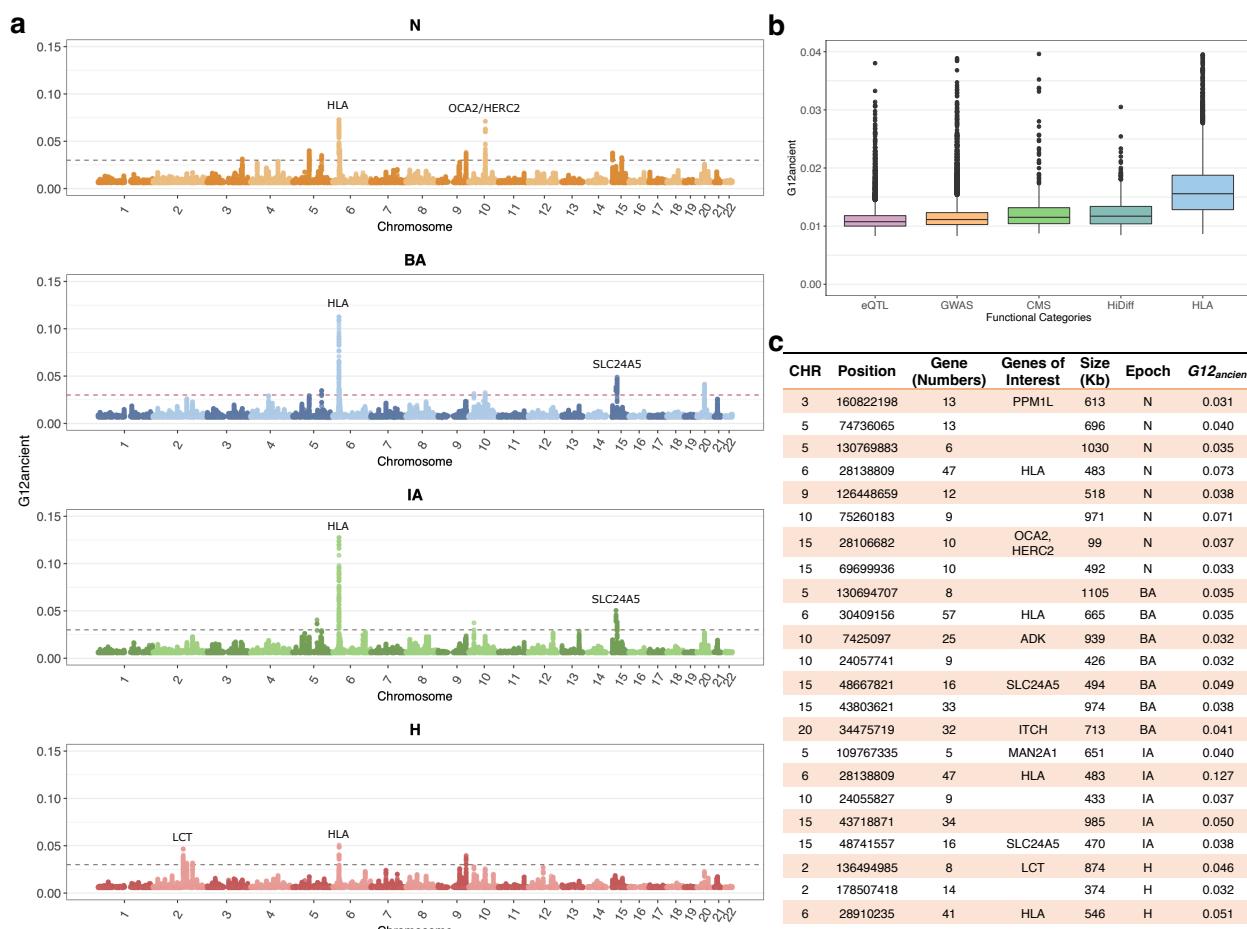
281 As seen in **Fig. 4a**, the time period in which we observe a signal of selection at the *LCT*
282 locus is limited to the historical period. In the N population, among the top peaks, we found a
283 signal which included the gene *OCA2/HERC2*, variations in this gene are associated with eye,
284 skin, and hair pigmentation variation^{8,26,52}. This gene is the primary determinant of light eye
285 color in Europeans and in our analysis, we time the selection signal to the Neolithic¹³. However,
286 we observe a signal of selection at the *HLA* and at neighboring *ZKSCAN3* in most of the epochs
287 (**Fig. 4a** and **Fig. 4c**).
288

289 Outside of these 4 loci, our selection scan also revealed several other candidates which
290 we determined as being above our significance threshold. Several of these were associated with
291 skin and eye pigmentation. In the BA and IA epochs we observed a signal of selection in the
292 gene *SCL24A5*. As mentioned above, this gene is thought to be the major determining locus for
293 light skin pigmentation in Europeans^{3,53}. While highly differentiated between Asians and
294 Europeans and appreciated as a major candidate of selection using modern European Genomes,
295 single SNP allele frequency approaches examining aDNA have yet to identify this particular
296 allele as a candidate^{8,13}. This shows the value of employing alternate types of selection scans on
297 similar datasets to uncover putative selective sweeps.
298

299 We observed a signal at a locus associated with *PPM1L* as on the top peaks in N, which
300 is an obesity related marker in Humans⁵⁴. This signal for selection on obesity and body weight

301 related alleles during the Neolithic or the change in dietary practices from hunting and gathering
 302 to farming is also observed in single SNP based approaches¹³.
 303

304 We also observed several signals in genes that were associated with immunity or auto-
 305 immunity. In the BA population, we observed a candidate in locus containing *ADK*, which
 306 regulates the intra and extracellular concentrations of adenosine which has widespread effects on
 307 cardiovascular and immune systems^{55,56}. We see a signal at the *ITCH* gene in the BA, which is
 308 associated with immune response, and regulation of autoimmune diseases^{57,58}. In the IA we see
 309 candidate sweep at the *MAN2A1* locus - genetic variations in this gene have been shown to cause
 310 human systemic lupus erythematosus⁵⁹. In **Fig. 4c** we report a list of all regions that appear to be
 311 under selection in each epoch along with some genes of interest that lie in those regions.
 312



313
 314 **Fig. 4: *G12ancient* applied on aDNA data.** **a** Manhattan plot of *G12ancient* values genome-wide
 315 with the top signals in each epoch annotated. The gray dashed line is the genome-wide
 316 significance threshold based on simulations under the Tennessen et al. demographic scenario⁴⁵. **b**
 317 Boxplots showing the variation of *G12ancient* across various functional categories. **c** Signals from
 318 genome wide significant top scoring loci for different epochs. The column Gene (Number)
 319 represents the number of genes mapped to the peak. For some genes, we assign a gene of interest
 320 based on fine mapping studies that have examined the results of modern selective sweeps
 321 examining the same regions.

322 *Gene Set Enrichment Analysis*

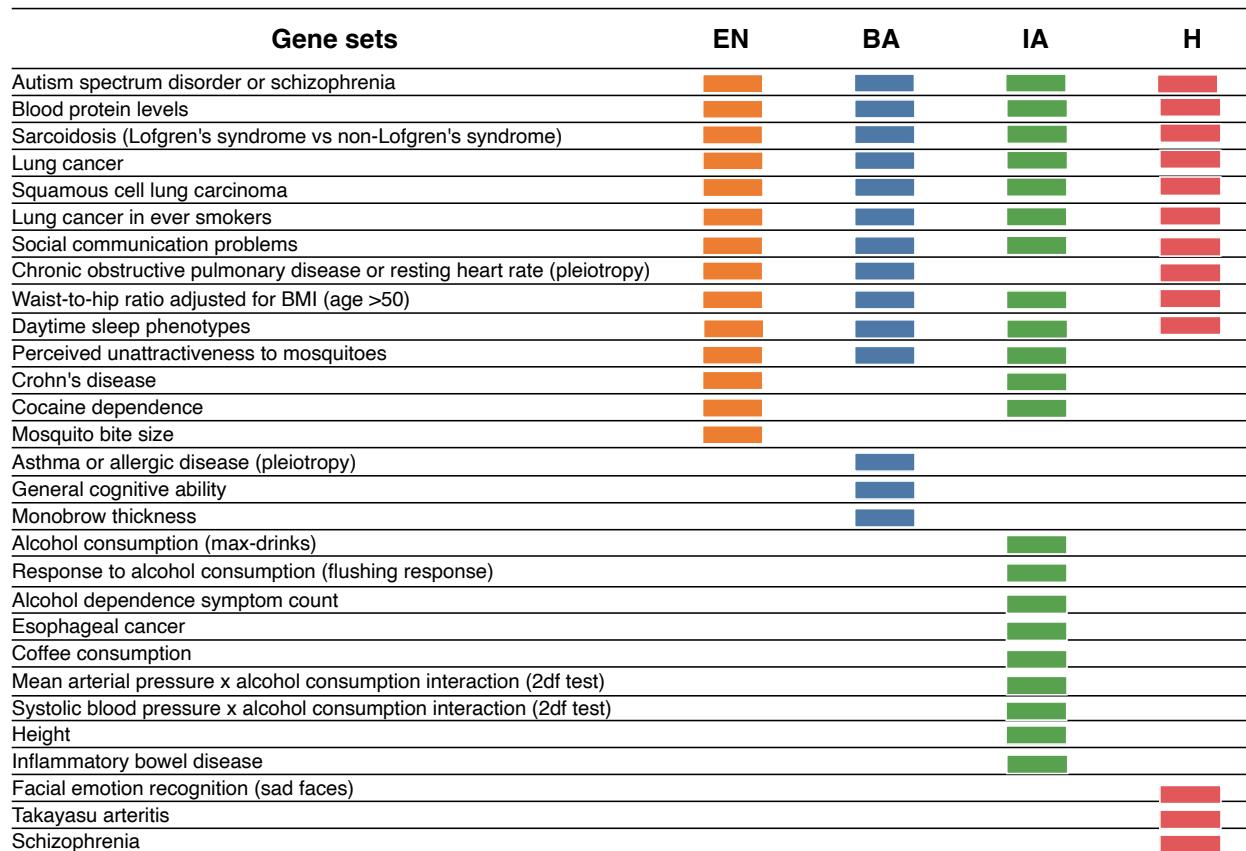
323

324 In addition to examining individual SNPs, we examined mean $G12_{ancient}$ values across
325 broad categories of functional SNPs. We looked at loci that were associated with changes in gene
326 expression (eQTLs), identified as associated in Genome Wide Association Studies (GWAS), or
327 were thought to be previously under selection in Europeans (CMS) or highly differentiated
328 between Europeans and Asians (HiDiff) or were part of the HLA region. We found that
329 functional categories of SNPs were seen with significantly higher $G12_{ancient}$ values compared to
330 SNPs that were not annotated as being functionally relevant, with the HLA region being the most
331 elevated of the functional categories (Fig. 4b).

332

333 We next asked if we could associate biological functions to these top-scoring loci. We
334 computed a p-value based on deviation from neutrality based on simulations (Methods:
335 *Enrichment Analysis*). To determine if categories of genes associated with Genome-Wide
336 Association Studies were significantly associated with selection signals, we carried out
337 enrichment analysis using FUMA⁶⁰, which maps SNPs to genes and performs gene set
338 enrichment analysis for GWAS annotations incorporating LD information as well as gene
339 matching by length and conservation scores (Methods: *Enrichment Analysis*). We found that
340 many categories of GWAS related to anthropometric traits, auto-immune traits as well as disease
341 related traits were under selection across the different time epochs. We report gene sets from the
342 GWAS catalog using FUMA: Gene2Func⁶⁰ and used a conservative significance threshold of -
343 $\log_{10} p \geq 5$. We report the list of all categories for which we observed enrichment in Fig. 5.

344



345

346 **Fig. 5: Gene sets enriched across epochs.** Colored boxes show significantly enriched gene sets
347 for each epoch. Several gene sets are enriched across the 4 time periods.

348 **Discussion**

349

350 In this paper, we introduce a modified version of a previously described selection
351 statistic^{16,22} and applied it to a time transect of aDNA from Europe. To date, while allele
352 frequency-based approaches have been used extensively in the field, approaches using haplotype
353 scans have largely been lacking. A single study⁶¹ performed a selection scan by phasing low
354 coverage aDNA samples, and running a widely used extended haplotype statistic, XP-EHH.
355 Here, we took an alternate approach aimed to reduce bias and artifacts from the use of modern
356 reference panels for phasing and imputing low coverage ancient DNA, but largely maintaining
357 power when compared to phased approaches in simulations.

358

359 Our results, which take advantage of the major increases in sample size in the availability of
360 aDNA data in the past 5-10 years demonstrate the potential of running multi-locus genotype-
361 based scans on aDNA. Our modified statistic, which we verified through simulations and gold
362 standard variants, can potentially be employed in other settings where sequencing coverage is
363 low and there is high missingness requiring pseudo-haploidization. Importantly, since haplotype-
364 based statistics are not as reliant on temporal data to exclude false positives, these statistics are
365 useful for ancient datasets from geographic regions that only have a single timepoint.

366

367 Despite its potential, our approach also has several limitations. As the results from the
368 simulation study show, our statistic is powered mostly for strong selective sweeps ($s > 0.01$).
369 Moreover, the timing of onset of selection is limited by our ability to detect selection below this
370 high threshold and therefore lack of selection at a particular time could also be due to a lack of
371 power. Another major limitation of our approach is that our window-based method is unable to
372 localize selection to a specific allele as it is based on detecting deviation in a surrounding region
373 of 200 SNPs. On data from a capture array like we have, this distance can span large distances
374 and decrease our target resolution. Here we used the closest gene to the peak SNP in a series of
375 windows to connect genes to candidates under selection.

376

377 An important future direction for this type of research is to carefully examine the
378 accuracy of imputation and phasing on low-coverage ancient data using biological confirmation
379 such as from trios, which could become more available as coverage increases for many samples
380 due to lower sequencing cost and better technology. Additional directions could also be to extend
381 these scans to other time periods or more importantly to other geographic regions in the world
382 where aDNA data is becoming rapidly available.

383 **Methods**

384 *aDNA data curation*

385

386 We obtained aDNA data from Allen Ancient DNA Resource⁶²
387 (<https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-683>, version 51), and selected the samples that were enriched for 1240k nuclear targets
388 with an in-solution hybridization capture reagent. We did not include individuals if they had less
389 than a 3% cytosine-to-thymine substitution rate in the first nucleotide for a UDG-treated library
390 as these were indications of contamination. We also removed individuals who had indications of
391 contamination based on polymorphism in mitochondrial DNA or the X chromosome in males,
392 based on estimates from contamix⁶³ and ANGSD⁶⁴. For population genetic analysis to represent
393 each individual at each SNP position, we randomly selected a single sequence (if at least one was
394 available).
395

396

397 Finally, we assembled genome-wide data of various human populations from Holocene
398 Europe dated between ~7000 BP and 500 BP. To maintain homogeneity across time periods, we
399 sampled 177 individuals from each archeological period - the Neolithic, the Bronze Age, the Iron
400 Age and Historical period. For populations with more than 177 individuals, we only chose
401 samples from these periods with the highest coverage and prioritized samples from the same site
402 whenever possible. A list of all samples analyzed is in **Supplementary Data**.

403 *Principal components analysis*

404

405 We carried out PCA using the smartpca package of EIGENSOFT 7.2.1106^{65,66}. We used
406 default parameters and added two options (lsqproject: YES, and numoutlieriter:0) to project the
407 ancient individuals onto the PCA space. We used 991 present-day West Eurasians as a basis for
408 projection of the ancient^{31,67}. We restricted these analyses to the dataset obtained by merging our
409 aDNA data with the modern DNA data on the Human Origins array and restricted it to 597,573
410 SNPs. We treated positions where we did not have sequence data as missing genotypes.

411 *Generation of modern human data mimicking ancient data*

412

413 To examine whether the *G12_{ancient}* based selection scans would be applicable to aDNA
414 data; we developed a process of converting the modern human genomic data from the 1000
415 Genomes project⁴² to mimic the statistical and physical properties of aDNA data and ran the
416 scans on modified modern data. We utilized a pseudo-haploidization scheme in which we
417 randomly selected (probability of selection is 0.5) one of the two alleles from the heterozygous
418 genotype as described in **Supplementary Fig. 1**.
419

420

421 To simulate ascertainment, we restricted the 1,000 genomes samples to just the 1.2
422 million positions that were on the aDNA capture array. Finally, we incorporated missingness on
a per site basis in modern data using the mean (0.55) and standard error (0.23) we observed in

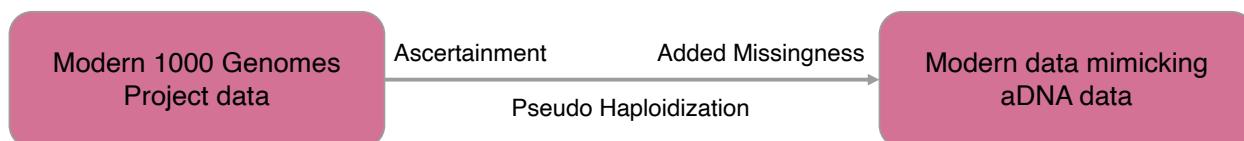
423 our sample of 708 individuals and randomly set the genotypes of a certain proportion of
424 individuals in the modern data to missing (**Supplementary Table 1** and **Supplementary Fig. 2**)
425

Haplotype	A	A	T	C	.
	A	T	T	G	.
Actual Genotype	A/A	A/T	T/T	C/G	
Observed Reads	A, A, A	T, A	T, A, T, T	C, G, C	
Pseudo Haplotype Genotype (pick one read at random)	A	T	T	C	

426
427 **Supplementary Fig. 1:** Pseudo haploidization scheme showing random allele calling for the
428 generation of multi-locus genotypes.
429

Parameter	Modern Samples	Ancient Samples
Mean Missingness (Preprocessing)	0.0131	0.54827
Mean Missingness (Post-processing)	0.53529	0.54827

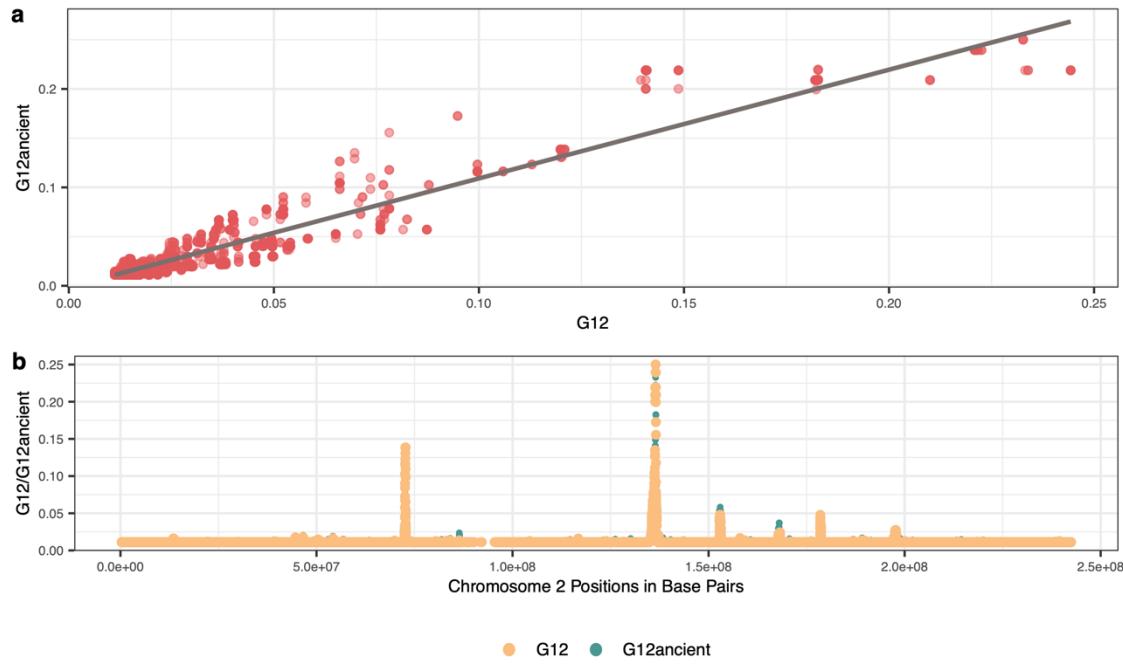
430
431 **Supplementary Table 1:** Differences between the mean fraction of missing individuals per SNP
432 in modern samples vs. the ancient samples, pre, and post-data processing.
433



434
435 **Supplementary Fig. 2:** Data processing scheme, we take modern genomic data and apply
436 ascertainment, pseudo-haplodization and add missingness to the data to make it mimic the
437 artefacts of aDNA data used in this study.
438

Running selection scans on modern data mimicking aDNA processing

439
440 We ran $G12$ on 91 GBR individuals from the 1000 Genomes⁴² with phased genotypes
441 called using the standard process and $G12_{ancient}$ with the same individuals processed using our
442 ancient DNA mimicking approach. We then compared the $G12$ values and $G12_{ancient}$ values at
443 each SNP and calculated the Pearson correlation coefficient between $G12$ and $G12_{ancient}$ values
444 and found out they are strongly positively correlated with each other with a correlation
445 coefficient of 0.95 (**Supplementary Fig. 3**) suggesting that our new statistic behaved similarly to
446 the original $G12$ statistic on our data.
447



448
449
450
451
452

Supplementary Fig. 3: Plots showing strong positive correlation between $G12$ and $G12_{ancient}$ values for GBR individuals. **a** Scatter plot between $G12$ and $G12_{ancient}$ values with a line of best fit showing values are highly correlated. **b** Scatter plot between SNP positions and $G12$ / $G12_{ancient}$ values showing that both plots overlay each other to a very higher degree.

453 *Generation of simulated data*

454
455
456
457
458
459
460
461
462
463
464

We used SLiM 3.7⁴⁴ to simulate hard and soft sweeps under the Tennessen et al. demographic model⁴⁵ with mutation rate $\mu = 1.25 \times 10^{-8}$ /bp, chromosome length $L = 5 \times 10^5$ and recombination $r = 5 \times 10^{-9}$ events/bp. In the hard sweep simulations, a single beneficial mutation was introduced to the population. The simulations were conditioned on the presence of the adaptive mutation, that is, we restarted the simulation if the adaptive mutation was lost. To model soft sweeps, we added $K = 5, 10, 25$ and 50 distinct copies of a beneficial mutation. We varied the time at which these mutations were introduced, $t = 280, 500$ and 1000 generations ago, along with their selection coefficient (s) and sampled the population at three different time points: $250, 100$ and 40 generations before present.

465
466
467
468
469
470
471
472

Based on the missingness observed in our ancient DNA data, we added missing data to our simulated datasets following a beta distribution with mean 0.55 per SNP and standard deviation of 0.23 (**Supplementary Table 1**). Moreover, we followed the pseudo-haplodization scheme used in processing the data (**Supplementary Fig. 2** and **Supplementary Fig. 4**). Finally, in order to incorporate the sparsity of aDNA data, we randomly selected 201 SNPs from our pseudo-haplotype data. That is, we obtained a 201 SNP window for our sample of 177 individuals.

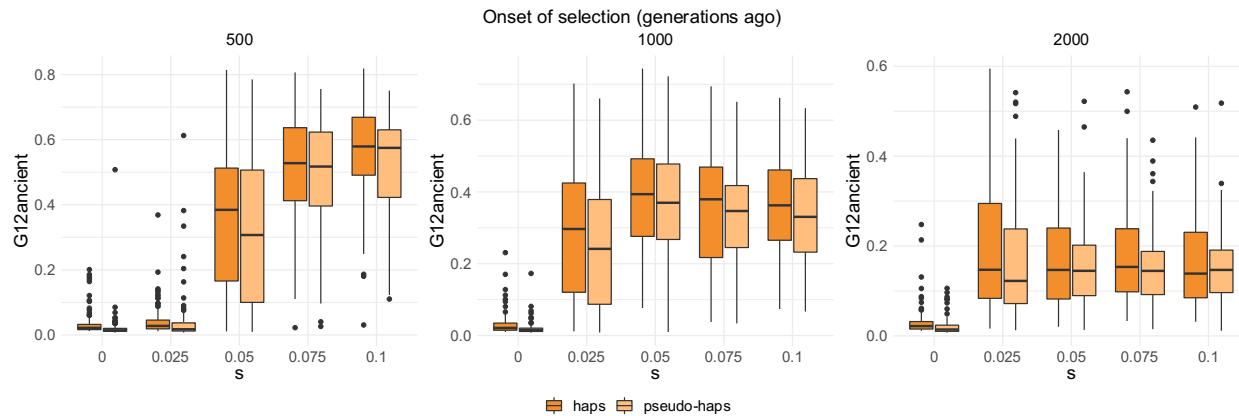
473 *Running selection scans on simulated data*

474

475 We computed $G12_{ancient}$ in simulated data using 201 SNP windows in a total of 100
476 simulations for each combination of parameters tested. We first obtained $G12_{ancient}$ for hard
477 sweeps and neutrality ($s = 0$) with and without applying our pseudo-haplodization scheme and
478 with no missing data (**Supplementary Fig. 4**). We varied the strength of selection and the time
479 of the onset of selection (age of mutation, in generations).

480

481

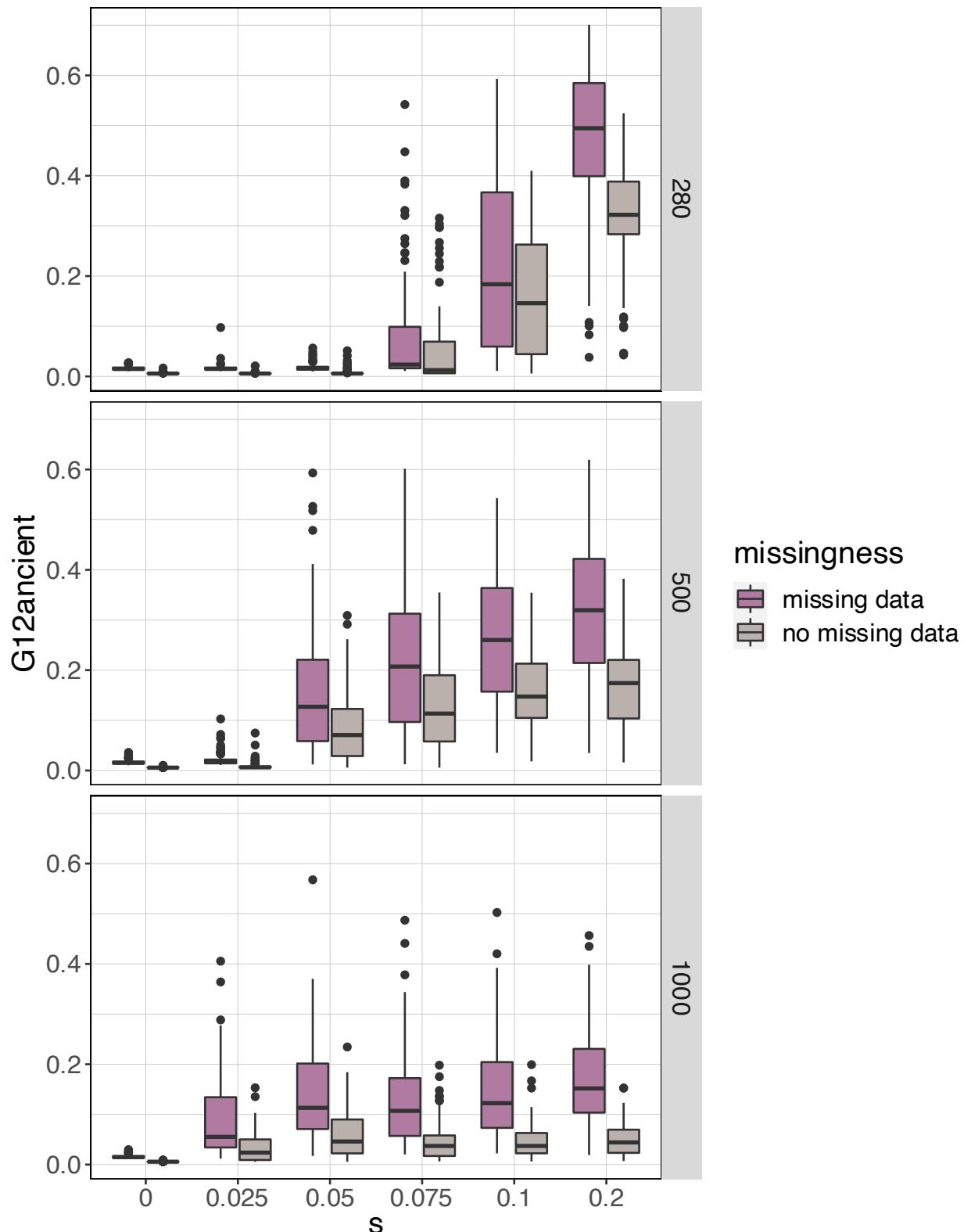


482

483 **Supplementary Fig. 4:** $G12$ and $G12_{ancient}$ values for 177 individuals sampled 40 generations
484 ago. No missing data was added to the simulated data. We ran a total of 100 hard sweep
485 simulations for each combination of parameters with mutation rate $\mu = 1.25 \times 10^{-8}$ /bp,
486 chromosome length $L = 5 \times 10^5$ and recombination $r = 5 \times 10^{-9}$ events/bp.

487

488 Next, we obtained the distribution of $G12_{ancient}$ values in data sets containing missing
489 data. We compared the $G12_{ancient}$ signal obtained from hard sweep and neutral simulations with
490 and without missing data, obtaining a reduction of signal when missingness was included
491 (**Supplementary Fig. 4**).

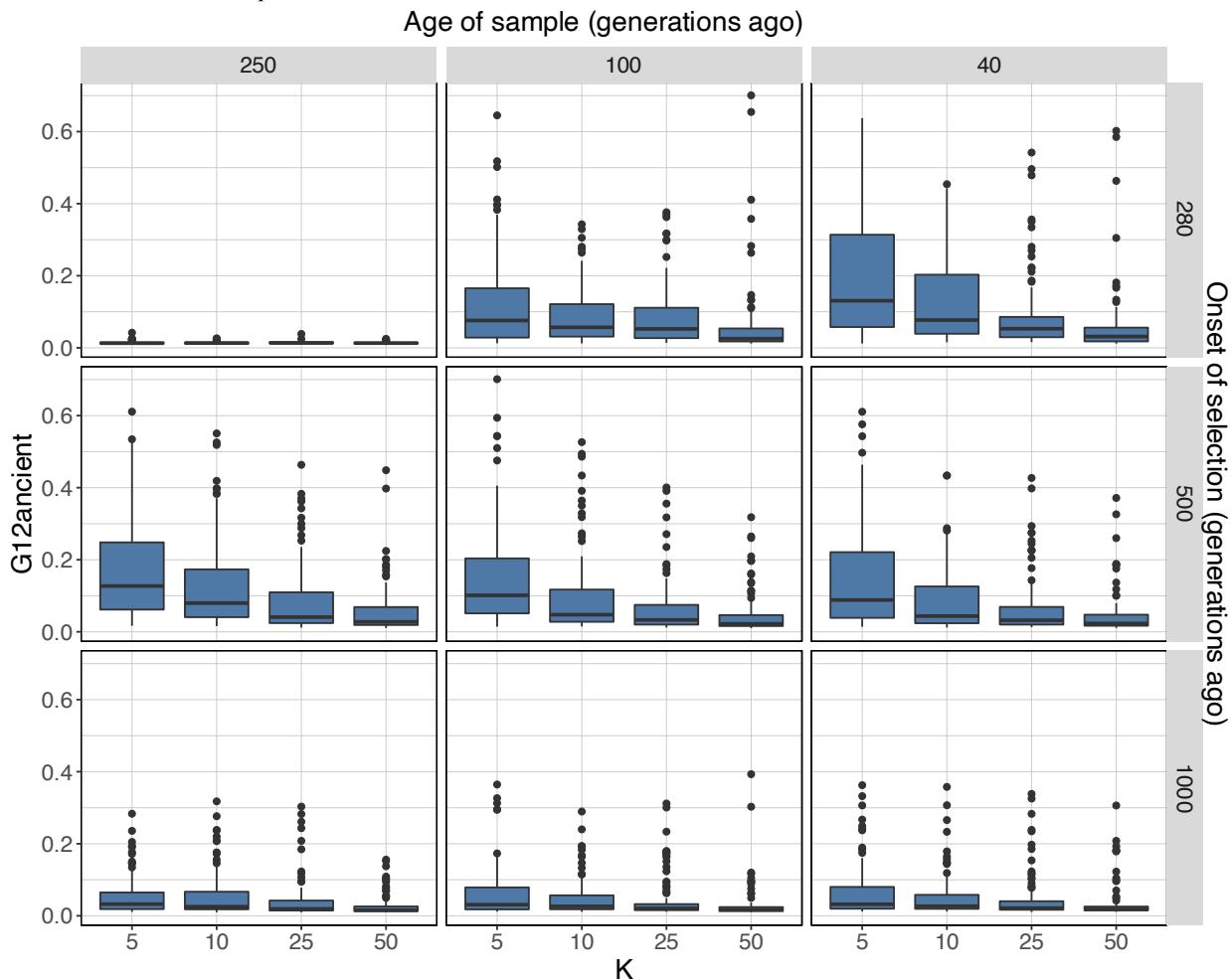


492

493 **Supplementary Fig. 5:** $G12_{ancient}$ values for pseudo-haploidized simulated data from 177
494 individuals sampled 40 generations ago for a hard sweep model with mean rate of 0.55
495 missingness per SNP and a standard deviation of 0.23.

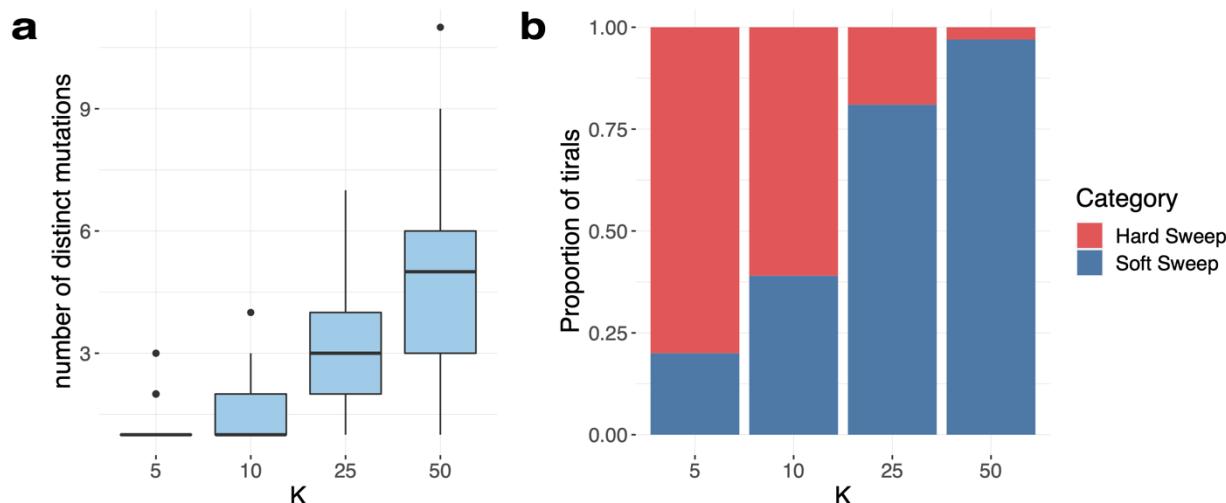
496
497
498
499
500
501
502
503
504

We tested the ability of $G12_{ancient}$ to detect sweeps across various degrees of softness in sparse genomic data with high missingness. We introduced K beneficial mutations at the time of the onset of selection for $K=5, 10, 25$ and 50 (**Supplementary Fig. 6**). To determine whether these simulations were more likely to result in hard or soft sweeps, we computed the number of distinct mutational origins at the selected site in each simulation (**Supplementary Fig. 7**). When $K=5$ most simulations have a single origin, giving rise to hard sweeps. As K increases, so does the number of origins in the simulations, increasing the probability of soft sweeps as well as the softness of the sweep.



505
506
507
508
509
510
511

Supplementary Fig. 6: $G12_{ancient}$ values in a soft sweep model. We introduced K beneficial mutations at the time of the onset of selection (rows), for $K=5, 10, 25$ and 50 , where the higher K the softer the sweep. We sampled the population at 3 different time points (columns). We ran a total of 100 simulations for each combination of parameters with mutation rate $\mu = 1.25 \times 10^{-8}$ /bp, chromosome length $L = 5 \times 10^5$, recombination $r = 5 \times 10^{-9}$ events/bp and $s = 0.1$. $K = 0$ corresponds to the scenario with no selection.



512
513 **Supplementary Fig. 7:** Softness of sweeps starting with K distinct mutations introduced 500
514 generations ago and sampled 40 generations ago. **a** Number of distinct mutations at the time of
515 sampling. **b** Proportion of hard and soft sweeps as a function of K .

516 *Running selection scans on ancient datasets*

517
518 After examining the application of $G12_{ancient}$ on simulated data, we examined our ability
519 to identify 3 major signals of adaptation previously observed in modern Europeans⁴³. We list
520 them here along with their known functional impact.
521

Gene	Population	Chr	Position	Function
<i>SLC24A5</i>	CEU	15	Band: 15q21.1 Start: 48,120,990 bp End: 48,142,672 bp	This locus is one of the major factors influencing skin pigmentation in humans
<i>LCT/MCM6</i>	CEU	2	Band 2q21.3 Start 135,839,626 bp End 135,876,443 bp	This enzyme helps to digest lactose, a sugar found in milk and other dairy products
<i>TLR1</i>	CEU	4	Band 4p14 Start 38,790,677 bp End 38,856,817 bp	Toll-like receptors are a class of proteins that play a key role in the innate immune system

522
523 **Supplementary Table 2:** The variants of interest that are shown to be under selection by
524 multiple natural selection studies on European genomes.

525 *$G12_{ancient}$ parameter choices and peak calling*

526
527 To calibrate our $G12_{ancient}$ statistic we iterated over several parameter choices to improve
528 performance. The most significant parameters are window and jump. Window refers to the
529 analysis window size in terms of SNPs, and jump is the distance between centers of analysis
530 windows ([readme.pdf](#)). To find the best combination of window and jump, we ran a grid search

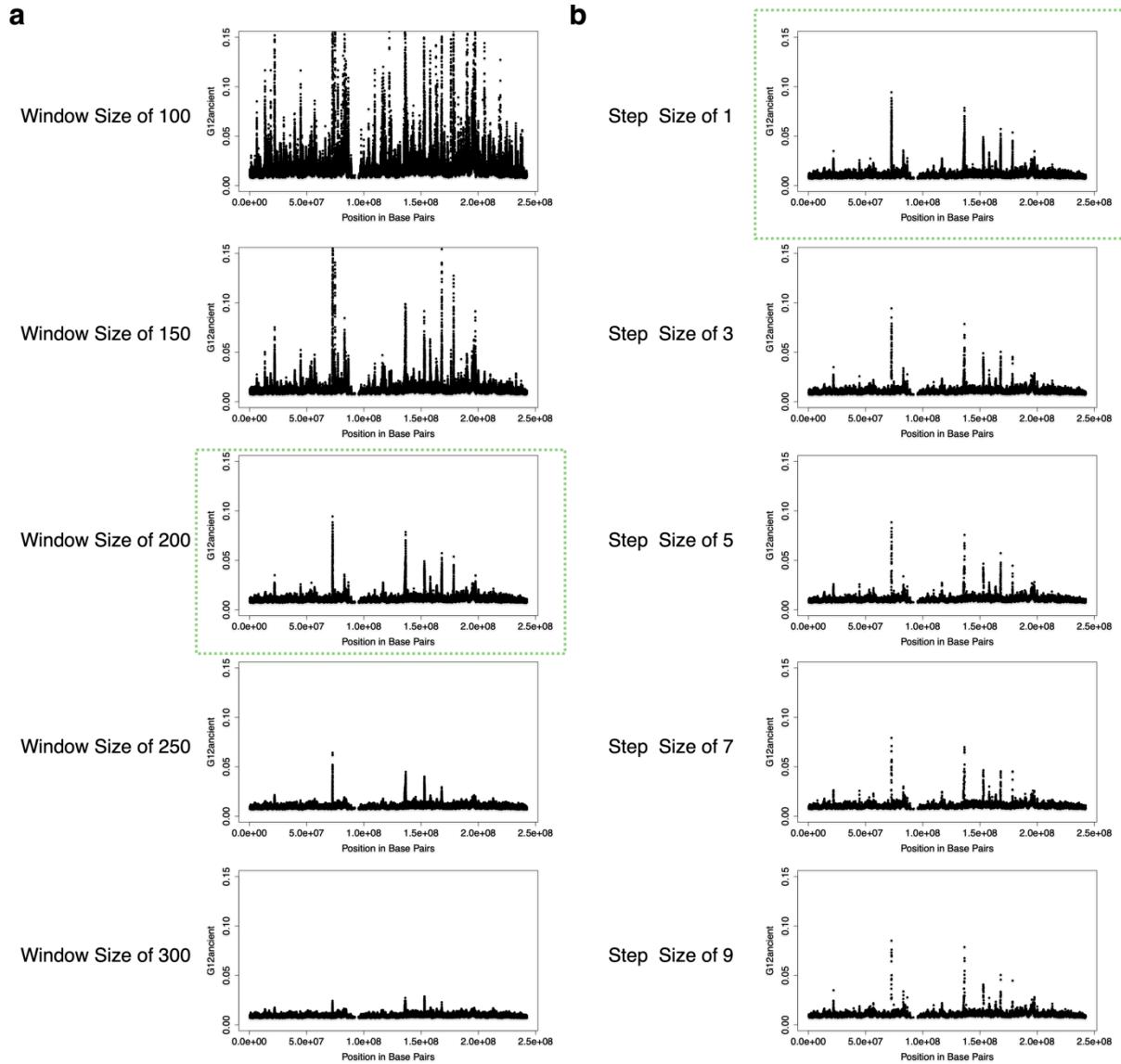
531 and varied the window size from 50-400 SNPs with a step size of 25 SNPs and jump from 1-20
532 with a step size of 5 SNPs. We tried to optimize our process on the three signals of well
533 characterized adaptation in humans from the previous section on the H population which is
534 closest in time to modern samples. Larger window sizes resulted in decrease of $G12_{ancient}$ values,
535 and larger step sizes resulted in decrease of SNP density, as larger windows diminish the power
536 of the statistic by averaging over regions that are come from different linkage blocks. As jump
537 increases, fewer and fewer SNPs are used in the computation, as illustrated in **Supplementary**
538 **Fig. 8**. Overall, we found that a window of 200 SNPs and a jump of 1 were optimal for our
539 datasets and enabled us to detect the well characterized selection candidates at the genome-wide
540 significance threshold.
541

542 *Window size across epochs*

543
544 Window sizes are also dependent on the number of segregating sites in a population as
545 our windows are computed in units of SNPs. We chose to use a window size of 200 SNPs for all
546 populations, after examining several population genetic parameters across different epochs
547 (**Supplementary Fig. 8**). Importantly, the mean physical distance (bp) in a 200 SNP window
548 $G12_{ancient}$ window across epochs and number of segregating sites across epochs were quite
549 consistent across epochs.
550

Epoch	ND across 200 SNP window	Total number of sites	Segregating sites	S/BP	Mean Window Length (bp)
N	0.00002752173	1233013	930906	0.754984	454774 (± 386740)
BA	0.00002817481	1233013	953594	0.773385	454507 (± 386870)
IA	0.00004058848	1233013	962723	0.780789	455005 (± 386849)
H	0.00004152787	1233013	943001	0.764794	454605 (± 386845)

551 **Supplementary Table 3:** A table showing the nucleotide diversity calculated for each epoch on
552 a 200 SNP window. We used the vcftools --window-pi option which measures the nucleotide
553 diversity in windows, with the number provided as the window size. We also show the number
554 of segregating sites per base pair.
555



556
557
558
559
560
561
562
563

Fixed Step Size of 1
Supplementary Fig. 8: The performance of $G12_{ancient}$ selection scans on different window size and step size values. **a** Variation of window size parameter while keeping step size fixed at 1, we observe window size of 200 as smaller window size resulted in inflated $G12_{ancient}$ values and larger window size resulted in smaller $G12_{ancient}$ values. **b** Variation of step size while keeping window size of 200, we observe that as we increase the step size, we lose a greater number of SNPs considered for calculation $G12_{ancient}$ statistic and it results in loss of SNP density, so we fixed the step size as 1.

564
565
566
567
568

Quality control for removing false sweeps

Fixed Window Size of 200

After running the selection scans and computing $G12_{ancient}$ at each focal SNP, we performed quality control to remove spurious peaks that could have occurred due to artifacts or issues with the data. One reason a certain genomic position might have artificially high $G12_{ancient}$ values is if the focal

569 SNP and the SNPs within its window range overlap with regions of low recombination rate in the
570 genome. The first step in post-processing/ quality control in our pipeline was to remove all
571 windows with mean per-window recombination rates in the lowest fifth percentile genome-wide.
572 Second, we also removed windows where the mean fraction of missing individuals (i.e., the mean
573 of the fraction of missing individuals per SNP for all the SNPs in that window) was greater than the
574 70th percentile of the mean fraction of missing individuals for all windows. Third, our
575 ascertainment scheme on the aDNA array results in each window having variable physical distance.
576 While most windows are of similar length, some windows are in sites where the distance between
577 positions is considerably lower or higher than the average. In order to show that our post-filtered
578 data is largely unaffected by these issues, we regressed $G12_{ancient}$ values against window size
579 (measured in the physical distance), missingness, and recombination rate after the percentile-based
580 removal process. We saw that the overall variability in the data explained by these three variables
581 combined was less than 5%, suggesting that we had effectively removed their association with
582 $G12_{ancient}$ values (**Supplementary Table 4**). A final issue could be that there are windows where
583 neighboring SNP positions are not captured well by the probes in our ascertainment scheme, and
584 missingness rates are clustered even though the overall missingness rate is similar to other
585 windows. To deal with these issues, we also removed windows that were consistently in the top 20
586 peaks genome-wide across a set of modern (the CEU, YRI, and STU populations) and the four
587 ancient European populations we analyzed. The rationale for this is that it is quite unlikely that we
588 see the same selective sweep across populations of such different ancestry, and across such a broad
589 range of time and signals of that nature are highly likely to be due to data processing issues.
590

Variable	$G12_{ancient}$	
	R^2 Score	Correlation Coefficient
Window Size	0.013	0.1030
Recombination Rate	0.001	-0.0261
Missingness	0.027	0.1634

591
592 **Supplementary Table 4:** Relationship between parameter choice and $G12_{ancient}$ value suggests
593 that overall $G12_{ancient}$ statistics are unaffected by our choice of parameters.

594 *Peak calling and gene annotation*

595

596 As our main statistic is a multi-locus genotype-based scan, loci thought to be under
597 selection lie in windows around top-scoring SNPs where the score ($G12_{ancient}$ statistic value) is
598 high compared to the rest of the genome. One issue with directly using the $G12_{ancient}$ statistic
599 value at each position to identify SNPs that appear to be selected significantly genome-wide is
600 that many signals of selection at the SNP level are correlated due to LD. We wished to avoid
601 identifying multiple high-scoring SNPs that are in linkage, as they might represent the same
602 adaptive event. In order to account for this, we utilized a greedy clumping algorithm that looks
603 for immediate positions upstream and downstream of a target SNP above a given threshold (<https://github.com/ngarud/SelectionHapStats>) as possible candidates. We assigned peaks to
604 genes by taking the focal SNP in each peak and running Ensembl Variant Effect Predictor (VEP)
605 ⁶⁸ and annotated all protein-coding genes within 265kb distance upstream/ downstream of the
606 target SNP and assigned the closest protein-coding gene for target SNP while annotating the
607 $G12_{ancient}$ peaks. The results of our analysis per epoch are shown in **Fig. 4a**.
608

609

610 On the 1.2 million positions captured on our array, we also annotated 47,384 as ‘potentially
611 functional’ sites⁸ that lie in categories that overlap for certain SNPs. 1,290 SNPs were identified as
612 targets of selection in Europeans by the Composite of Multiple Signals (CMS) test⁶⁹; 21,723 SNPs
613 identified as significant hits by genome-wide association studies, or with known phenotypic effect
614 (GWAS); 1,289 SNPs with extremely differentiated frequencies between HapMap populations
615 (HiDiff), 5,387 SNPs which tag HLA haplotypes and 13,672 expression quantitative trait loci
616 (eQTLs). We then examined the distribution of $G12_{ancient}$ statistic value across these categories of
617 positions (**Fig. 4b**).

618 *Enrichment Analysis*

619

620 We used the Functional Mapping and Annotation of Genome-Wide Association Studies tool
621 to obtain significant gene sets for each epoch. The gene sets were produced by comparing the genes
622 of interest against sets of genes from MsigDB using hypergeometric tests. We performed this
623 analysis for gene sets from the GWAS and GO functional categories using FUMA⁶⁰.

624 **Acknowledgments**

625

626 We thank Arbel Harpak for useful discussions. Computing support for the project was
627 supported on Director’s discretionary fund at the Texas Advanced Computing Cluster.

628

629 *Funding:* V.M.N. was supported on a grant for human brain evolution by the Allen Discovery
630 Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family
631 Foundation as well as a fellowship from the Good Systems Fellowship for Ethical AI at The
632 University of Texas at Austin. N.R.G was supported in part by the Paul G. Allen Foundation,
633 Research Corporation for Science Advancement, and the University of California Hellman
634 Fellowship. M.H. was supported by the Systems and Integrative Biology Training Grant (NIH-

635 NIGMS 5T32GM008185-33) and the Training Grant in Genomic Analysis and Interpretation
636 (NIH T32HG002536).

637

638 *Author contributions:* D.P, M.H, N.R.G. and V. M. N. wrote the paper. D.P, M.H, N.R.G. and
639 V.M.N. performed analysis.

640

641 *Competing interests:* The authors declare no competing interests.

642 *Data and materials availability:* Code used for running $G12_{ancient}$ selection scans can be found
643 here: <https://github.com/ngarud/SelectionHapStats>, Code for running simulations can be found
644 here: https://github.com/mariharris/Ancient_DNA_simulations. The ancient genomes used in
645 this work can be accessed at Allen Ancient DNA Resource (AADR), version 51:
646 [https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-
647 day-and-ancient-dna-data](https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data).

648 References

649

650 1. Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data.
651 Annu Rev Genet **47**, 97–120 (2013).

652 2. Souilmi, Y. *et al.* Admixture has obscured signals of historical hard sweeps in humans.
653 Nature Ecology & Evolution **2022** *6*:12 **6**, 2003–2015 (2022).

654 3. Ju, D. & Mathieson, I. The evolution of skin pigmentation-associated variation in West
655 Eurasia. Proc Natl Acad Sci U S A **118**, e2009227118 (2020).

656 4. Allentoft, M. E. *et al.* Population genomics of Bronze Age Eurasia. *Nature* **2015** *522*:7555
657, 167–172 (2015).

658 5. Mathieson, I. & Terhorst, J. Direct detection of natural selection in Bronze Age Britain.
659 bioRxiv **2022.03.14.484330** (2022) doi:10.1101/2022.03.14.484330.

660 6. Gamba, C. *et al.* Genome flux and stasis in a five millennium transect of European
661 prehistory. Nature Communications **2014** *5*:1 **5**, 1–9 (2014).

662 7. Lazaridis, I. *et al.* Ancient human genomes suggest three ancestral populations for
663 present-day Europeans. Nature **2014** *513*:7518 **513**, 409–413 (2014).

664 8. Mathieson, I. *et al.* Genome-wide patterns of selection in 230 ancient Eurasians. *Nature*
665 **2015** *528*:7583 **528**, 499–503 (2015).

666 9. Mathieson, I. *et al.* The genomic history of southeastern Europe. *Nature* **2018** *555*:7695
667, 197–203 (2018).

668 10. Sikora, M. *et al.* The population history of northeastern Siberia since the Pleistocene.
669 Nature **2019** *570*:7760 **570**, 182–188 (2019).

670 11. Margaryan, A. *et al.* Population genomics of the Viking world. *Nature* **2020** *585*:7825
671, 390–396 (2020).

672 12. Mathieson, S. & Mathieson, I. FADS1 and the Timing of Human Adaptation to
673 Agriculture. Mol Biol Evol **35**, 2957–2970 (2018).

674 13. Le, M. K. *et al.* 1,000 ancient genomes uncover 10,000 years of natural selection in
675 Europe. bioRxiv **2022.08.24.505188** (2022) doi:10.1101/2022.08.24.505188.

676 14. Sabeti, P. C. *et al.* Detecting recent positive selection in the human genome from
677 haplotype structure. Nature **419**, 832–837 (2002).

678 15. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A Map of Recent Positive
679 Selection in the Human Genome. PLoS Biol **4**, e72 (2006).

680 16. Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent Selective Sweeps in
681 North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genet
682, e1005004 (2015).

683 17. Garud, N. R. & Rosenberg, N. A. Enhancing the mathematical properties of new
684 haplotype homozygosity statistics for the detection of selective sweeps. Theor Popul Biol
685, 94–101 (2015).

686 18. Ferrer-Admetlla, A., Liang, M., Korneliussen, T. & Nielsen, R. On Detecting Incomplete
687 Soft or Hard Selective Sweeps Using Haplotype Structure. Mol Biol Evol **31**, 1275–1291
688 (2014).

689 19. Martin, M. *et al.* WhatsHap: fast and accurate read-based phasing. *bioRxiv* **085050** (2016)
690 doi:10.1101/085050.

691 20. Szpiech, Z. A. selscan 2.0: scanning for sweeps in unphased data. *bioRxiv*
692 **2021.10.22.465497** (2022) doi:10.1101/2021.10.22.465497.

693 21. Kern, A. D. & Schrider, D. R. diploS/HIC: An Updated Approach to Classifying Selective
694 Sweeps. *G3 (Bethesda)* **8**, 1959–1970 (2018).

695 22. Harris, A. M., Garud, N. R. & Degiorgio, M. Detection and Classification of Hard and
696 Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity. *Genetics* **210**,
697 1429–1452 (2018).

698 23. Smith, A. J. Century-scale Holocene processes as a source of natural selection pressure in
699 human evolution: Holocene climate and the Human Genome Project.
700 <http://dx.doi.org/10.1177/0959683607079003> **17**, 689–695 (2016).

701 24. Spyrou, M. A. *et al.* The source of the Black Death in fourteenth-century central Eurasia.
702 *Nature* **2022** *606*:7915 **606**, 718–724 (2022).

703 25. Souilmi, Y. *et al.* An ancient viral epidemic involving host coronavirus interacting genes
704 more than 20,000 years ago in East Asia. *Curr Biol* **31**, 3504–3514.e9 (2021).

705 26. Brace, S. *et al.* Ancient genomes indicate population replacement in Early Neolithic
706 Britain. *Nature Ecology & Evolution* **2019** *3*:5 **3**, 765–771 (2019).

707 27. Fernandes, D. M. *et al.* The spread of steppe and Iranian-related ancestry in the islands of
708 the western Mediterranean. *Nature Ecology & Evolution* **2020** *4*:3 **4**, 334–345 (2020).

709 28. Harney, É. *et al.* A minimally destructive protocol for DNA extraction from ancient teeth.
710 *Genome Res* **31**, 472–483 (2021).

711 29. Lipson, M. *et al.* Parallel palaeogenomic transects reveal complex genetic history of early
712 European farmers. *Nature* **2017** *551*:7680 **551**, 368–372 (2017).

713 30. Mathieson, I. *et al.* Genome-wide patterns of selection in 230 ancient Eurasians. *Nature*
714 **2015** *528*:7583 **528**, 499–503 (2015).

715 31. Narasimhan, V. M. *et al.* The formation of human populations in South and Central Asia.
716 *Science (1979)* **365**, (2019).

717 32. Novak, M. *et al.* Genome-wide analysis of nearly all the victims of a 6200 year old
718 massacre. *PLoS One* **16**, e0247332 (2021).

719 33. Olalde, I. *et al.* The genomic history of the Iberian Peninsula over the past 8000 years.
720 *Science (1979)* **363**, 1230–1234 (2019).

721 34. Olalde, I. *et al.* The Beaker phenomenon and the genomic transformation of northwest
722 Europe. *Nature* **2018** *555*:7695 **555**, 190–196 (2018).

723 35. Papac, L. *et al.* Dynamic changes in genomic and social structures in third millennium
724 BCE central Europe. *Sci Adv* **7**, 6941–6966 (2021).

725 36. Patterson, N. *et al.* Large-scale migration into Britain during the Middle to Late Bronze
726 Age. *Nature* **2021** *601*:7894 **601**, 588–594 (2021).

727 37. O’Sullivan, N. *et al.* Ancient genome-wide analyses infer kinship structure in an Early
728 Medieval Alemannic graveyard. *Sci Adv* **4**, (2018).

729 38. Villalba-Mouco, V. *et al.* Survival of Late Pleistocene Hunter-Gatherer Ancestry in the
730 Iberian Peninsula. (2019) doi:10.1016/j.cub.2019.02.006.

731 39. Fu, Q. *et al.* An early modern human from Romania with a recent Neanderthal ancestor.
732 *Nature* **524**, 216 (2015).

733 40. Pennings, P. S. & Hermisson, J. Soft sweeps II--molecular population genetics of
734 adaptation from recurrent mutation or migration. *Mol Biol Evol* **23**, 1076–1084 (2006).

735 41. Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation
736 from standing genetic variation. *Genetics* **169**, 2335–2352 (2005).

737 42. Auton, A. *et al.* A global reference for human genetic variation. *Nature* **2015** *526*:7571
738 **526**, 68–74 (2015).

739 43. Akbari, A. *et al.* Identifying the Favored Mutation in a Positive Selective Sweep. *Nat Methods* **15**, 279 (2018).

740 44. Haller, B. C. & Messer, P. W. SLiM 3: Forward Genetic Simulations Beyond the Wright–
741 Fisher Model. *Mol Biol Evol* **36**, 632–637 (2019).

742 45. Tennessen, J. A. *et al.* Evolution and functional impact of rare coding variation from deep
743 sequencing of human exomes. *Science* **337**, 64–69 (2012).

744 46. Beleza, S. *et al.* The Timing of Pigmentation Lightening in Europeans. *Mol Biol Evol* **30**,
745 24 (2013).

746 47. Gerbault, P. *et al.* Evolution of lactase persistence: an example of human niche
747 construction. *Philosophical Transactions of the Royal Society B: Biological Sciences* **366**,
748 863 (2011).

749 48. Segurel, L. *et al.* Why and when was lactase persistence selected for? Insights from
750 Central Asian herders and ancient DNA. *PLoS Biol* **18**, e3000742 (2020).

751 49. Evershed, R. P. *et al.* Dairying, diseases and the evolution of lactase persistence in
752 Europe. *Nature* **2022** *608*:7922 **608**, 336–345 (2022).

753 50. Mathieson, I. & Terhorst, J. Direct detection of natural selection in Bronze Age Britain.
754 *bioRxiv* **2022.03.14.484330** (2022) doi:10.1101/2022.03.14.484330.

755 51. Ju, D. & Mathieson, I. The evolution of skin pigmentation-associated variation in West
756 Eurasia. *Proc Natl Acad Sci U S A* **118**, e2009227118 (2020).

757 52. Donnelly, M. P. *et al.* A global view of the OCA2-HERC2 region and pigmentation. *Hum
758 Genet* **131**, 683 (2012).

759 53. Wilde, S. *et al.* Direct evidence for positive selection of skin, hair, and eye pigmentation
760 in Europeans during the last 5,000 y. *Proc Natl Acad Sci U S A* **111**, 4832–4837 (2014).

761 54. Chen, Y. *et al.* Variations in DNA elucidate molecular networks that cause disease.
762 *Nature* **452**, 429–435 (2008).

763 55. Becker, P. H. *et al.* Adenosine kinase deficiency: Three new cases and diagnostic value of
764 hypermethioninemia. *Mol Genet Metab* **132**, 38–43 (2021).

765 56. Li, H. *et al.* Hepatocyte Adenosine Kinase Promotes Excessive Fat Deposition and Liver
766 Inflammation. *Gastroenterology* **164**, 134–146 (2023).

767 57. Moser, E. K. & Oliver, P. M. Regulation of autoimmune disease by the E3 ubiquitin ligase
768 Itch. *Cell Immunol* **340**, (2019).

769 58. Yin, Q., Wyatt, C. J., Han, T., Smalley, K. S. M. & Wan, L. ITCH as a potential
770 therapeutic target in human cancers. *Semin Cancer Biol* **67**, 117–130 (2020).

771 59. Miyagawa, H. *et al.* Association of polymorphisms in complement component C3 gene
772 with susceptibility to systemic lupus erythematosus. *Rheumatology* **47**, 158–164 (2008).

773 60. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and
774 annotation of genetic associations with FUMA. *Nature Communications* **2017** *8*:1 **8**, 1–11
775 (2017).

776 61. Childebayeva, A. *et al.* Population Genetics and Signatures of Selection in Early Neolithic
777 European Farmers. *Mol Biol Evol* **39**, (2022).

778 62. Mallick, S. *et al.* The Allen Ancient DNA Resource (AADR): A curated compendium of
779 ancient human genomes. (2023) doi:10.1101/2023.04.06.535797.

780 63. Fu, Q. *et al.* A revised timescale for human evolution based on ancient mitochondrial
781 genomes. *Curr Biol* **23**, 553–559 (2013).

782 64. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation
783 Sequencing Data. *BMC Bioinformatics* **15**, 1–13 (2014).

784

785 65. Price, A. L. *et al.* Principal components analysis corrects for stratification in genome-wide
786 association studies. *Nature Genetics* 2006 38:8 **38**, 904–909 (2006).

787 66. Patterson, N., Price, A. L. & Reich, D. Population Structure and Eigenanalysis. *PLoS*
788 *Genet* **2**, e190 (2006).

789 67. Furtwängler, A. *et al.* Ancient genomes reveal social and genetic structure of Late
790 Neolithic Switzerland. *Nature Communications* 2020 11:1 **11**, 1–11 (2020).

791 68. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol* **17**, 1–14 (2016).

792 69. Grossman, S. R. *et al.* Identifying Recent Adaptations in Large-scale Genomic Data. *Cell*
793 **152**, 703 (2013).

794