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Abstract 13 

 14 
Ancient DNA (aDNA) has been a revolutionary technology in understanding human 15 

history but has not been used extensively to study natural selection as large sample sizes to study 16 
allele frequency changes over time have thus far not been available. Here, we examined a time 17 
transect of 708 published samples over the past 7,000 years of European history using multi-18 
locus genotype-based selection scans. As aDNA data is affected by high missingness, 19 
ascertainment bias, DNA damage, random allele calling, and is unphased, we first validated our 20 
selection scan, G12ancient, on simulated data resembling aDNA under a demographic model that 21 
captures broad features of the allele frequency spectrum of European genomes as well as positive 22 
controls that have been previously identified and functionally validated in modern European 23 
datasets on data from ancient individuals from time periods very close to the present time. We 24 
then applied our statistic to the aDNA time transect to detect and resolve the timing of natural 25 
selection occurring genome wide and found several candidates of selection across the different 26 
time periods that had not been picked up by selection scans using single SNP allele frequency 27 
approaches. In addition, enrichment analysis discovered multiple categories of complex traits 28 
that might be under adaptation across these periods. Our results demonstrate the utility of 29 
applying different types of selection scans to aDNA to uncover putative selection signals at loci 30 
in the ancient past that might have been masked in modern samples. 31 

Introduction 32 

With the emergence of large sample size sequencing data, numerous population genetic studies 33 
have attempted to identify targets of natural selection in the human genome1. However, the 34 
majority of studies carried out on modern human populations have largely been restricted to 35 
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detecting selection events that have happened in the most recent periods of human history 36 
because selective sweeps decay due to processes including recombination and mutation 1 and can 37 
be obscured by demographic events such as admixture1,2. By directly tracking genomic changes 38 
over time using aDNA, it may be possible to observe sweeps that otherwise are undetectable 39 
from modern data. However, until recently, the large sample sizes required for such analyses 40 
were unavailable and, as a result, many aDNA based studies to examine natural selection were 41 
largely confined to specific alleles3–7. 42 
 43 

Recently, increased sample sizes have enabled genome-wide selection scans on aDNA  44 
4,5,8–13. However, most current approaches have focused on single site statistics that leverage 45 
temporal data to detect allele frequency changes over time. An alternative strategy is to use 46 
haplotype-based approaches, which are sensitive to footprints of selection left behind by 47 
hitchhiking of linked alleles with adaptive alleles. Haplotype scans do not require temporal 48 
samples and instead only require samples from a single population group from one specific time 49 
to infer recent selective events14–18 and might provide complementary information to approaches 50 
that detect allele frequency changes over time. However, most haplotype-based methods require 51 
phased genomes that are particularly challenging to obtain from ancient samples for several 52 
reasons. First, aDNA read lengths are incredibly short (30-50bp) and read-based phasing has 53 
reduced efficiency at these lengths19. Second, reference panels constructed from modern 54 
haplotypes may introduce bias in calling alleles from aDNA due to divergence that has arisen 55 
between ancient and modern genomes. By using trio or family data, where the phasing and 56 
imputation can be assessed directly and precisely by examining transmission of alleles, 57 
biological information can be used to obtain a ground truth dataset. However, due to the nature 58 
of sampling in aDNA studies, there are relatively few trios or families that have been sequenced 59 
of sufficient quality that may help with assessing the quality of phasing and imputation methods. 60 

 61 
Recently, statistics that leverage multi-locus genotypes, which represent strings of 62 

unphased genotypes from diploid individuals, were proposed to circumvent the need for phased 63 
haplotypes20–22. However, a major challenge in applying these statistics to aDNA is its low 64 
coverage (largely between 0.5-2x coverage), which results in, on average, only one of the two 65 
diploid alleles being called. Moreover, the reference allele in modern genomes may bias which 66 
of the two diploid alleles is mapped. In this study, we modified a multi-locus genotype-based 67 
scan22 for adaptation to be suitable for low-coverage aDNA data using a pseudo-haploidization 68 
scheme, in which one allele per site is randomly selected to represent the genotype of the 69 
individual at that position. We evaluated the performance of this method, which we call 70 
G12ancient, on aDNA using simulations and well characterized functionally validated variants. We 71 
then applied it to different epochs from an aDNA time transect to examine the timing of selection 72 
of well-characterized candidate sweeps. Finally, we examined novel targets of selection to see if 73 
our new method could complement other studies of natural selection carried out using allele 74 
frequency-based methods13. 75 
 76 

We carried out this analysis on a dataset of ancient individuals from Holocene Europe 77 
representing a period of significant cultural change, beginning with the transition from hunting 78 
and gathering to farming, which resulted in people living in much closer proximity to animals, as 79 
well as major dietary changes. This was also a period that covered the transition to state-level 80 
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societies, which led to large population densities and division of labor23. Notably, several papers 81 
document the first evidence of bacterial and viral pathogens in the aDNA record during the 82 
Holocene, and it is of interest to understand if and how humans adapted to these new cultural 83 
changes, environments, and diseases that affected us in our evolutionary past10,24,25. Given the 84 
large sample sizes spanning this time transect that provide a nearly gapless record of human 85 
populations in Europe, we attempted to estimate the timing of selection and generate hypotheses 86 
about its correspondence with major demographic and cultural changes. 87 

Results 88 

A time transect through Holocene Europe 89 
 90 

In our analysis we examined a collection of 708 recently published samples from Europe 91 
ranging from 6572 BP to 353 BP (Supplementary Data)26–38. To minimize reference bias or 92 
batch effects associated with data processing issues across the set of samples, we chose to 93 
include only samples for which hybridization capture was performed on 1.2 million positions39 94 
and that had at least 15,000 SNPs for which we could perform high-quality population genetic 95 
analysis. We only included samples that did not appear to have significant contamination on the 96 
mtDNA or the X chromosome (in males) and were unrelated (up to the third degree). We also 97 
chose to only include samples that were uniformly treated with the same Uracil-DNA 98 
Glycosylase (UDG) process during library preparation and trimmed the last two bases from each 99 
read to reduce the impact of aDNA damage on our computed statistics (Methods: aDNA data 100 
curation). 101 

 102 
To homogenize the sample size of our analysis across time periods, we used 177 103 

individuals for each epoch which we determined based on f4-statistics, time period (based on 104 
direct radiocarbon dates or precisely dated archaeological contexts), and geographic location 105 
(Fig. 1). Samples from each of these assigned population groups were genetically homogenous 106 
and had little to no ancestry from additional sources known to enter Europe and contributed in 107 
small proportions to a minority of European populations, including the Scythians and 108 
Sarmatians, the Uralic-related migrations into Hungary and Fennoscandia, and Iranian farmer 109 
related ancestry along the Mediterranean in Southern Europe. The groups of individuals were:  110 
  111 
N First farmers of Europe from the Middle to Late Neolithic (abbreviated as the first letter 112 
of Neolithic). These individuals were from across Europe, are dated to between 6572 and 5091 113 
BP and are mixtures of European Hunter-Gatherer and Anatolian farmer ancestry. 114 
  115 
BA Bronze Age Europeans (abbreviated as the first letters of Bronze Age). These individuals 116 
are from the Bell Beaker cultures of Western and Central Europe dated between 5940 to 3780 117 
BP. 118 
 119 
IA Iron Age Europeans (abbreviated as the first letters of Iron Age). We used samples from 120 
Iron Age Britain and other countries in Western Europe dated between 3465 to 2130 BP. 121 
 122 
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H Finally, to represent Historical samples from Europe, we included samples from the 123 
Roman and late antique periods, primarily from Britain, dated from 1973 to 353 BP. 124 
 125 

 126 
Fig. 1: aDNA samples included in this study. a Distribution of archeological or radiocarbon 127 
dates for sites (vertical columns) from each time period over the past 7,000 years. Each colored 128 
bar represents single samples from a site that has been dated to a particular time. Multiple 129 
samples from the same site are annotated along the same column. b Locations of ancient 130 
individuals that passed our analysis thresholds, forming a sample size of 708 individuals.  131 
c PCA analysis of ancient individuals projected onto a basis of modern samples. 132 

A modified multi-locus genotype statistic for detecting selection on aDNA 133 
 134 

For application to unphased data, several multi-locus genotype methods have been 135 
recently developed that are similar to extended haplotype-based statistics21,22. Evidence based on 136 
simulation studies have suggested that these approaches using unphased information might be as 137 
powerful as approaches that use phased information21,22. However, the low coverage (mean: 138 
1.5×) of aDNA data means that we are unable to call heterozygotes effectively and are therefore 139 
unable to use these statistics directly. Due to this low coverage, aDNA samples are processed as 140 
‘pseudo-haploid’ data where one read mapping to a position is chosen at random and the allele of 141 
that read is used as the genotype (pseudo-haploidization) (Supplementary Fig. 1 and Methods: 142 
Generation of modern human data mimicking ancient data). 143 

 144 
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To examine selection on this type of data, we adapted an approach that has been 145 
previously shown to be useful in application to unphased population genomic data, G12.  G12 is 146 
capable of detecting selective sweep signatures associated with hard sweeps, expected when 147 
adaptation is gradual, and soft sweeps, expected when adaptation is rapid40,41. We modified G12 148 
to work on pseudo-haploidized aDNA data. This modified statistic which we call G12ancient is 149 
computed in windows comprising a fixed number of SNPs and is defined as:  150 

 151 
G12ancient = (q1k+q2k)2 + q3k2 + …… . . . + qnk,2 152 

 153 
Where q1k, q2k, q3k, ……., qnk , denote the frequencies of the unique n, pseudo haploidized 154 
multisite genotypes, ranked from most common to most rare. The intuition behind this statistic is 155 
that haplotypes that have risen to high frequency are likely to have a large number of individuals 156 
with homozygous genotypes (thereby biologically phased as the two haplotypes are identical) 157 
and that these homozygous haplotypes provide a similar signal to those from phased data. 158 

To validate our modified statistic and its applicability to aDNA data, we took several 159 
approaches. As a first line of analysis, we examined the correlation between G12 computed on 160 
diploid low-coverage data from the 1,000 genomes project42 with that of G12ancient computed on 161 
the same samples using a pseudo-haploid genotyping scheme along with introducing missingness 162 
and ancient DNA damage at typical rates in our dataset (Methods: Running selection scans on 163 
ancient datasets and Supplementary Fig. 3). The correlation between G12 and G12ancient across 164 
all windows in the genome was 0.95 suggesting that our modified version of the selection 165 
statistic G12ancient is almost equivalent to running G12, a selection statistic that has already been 166 
examined previously and applied to various other datasets. (Methods: Running selection scans on 167 
ancient datasets and Supplementary Fig. 3). Second, we tested the ability of G12ancient in 168 
simulated data to demonstrate its performance on a range of theoretical settings. Third, we 169 
demonstrate the ability of G12ancient to identify well-characterized and functionally validated 170 
variants that have previously been found to be under selection by multiple modern and ancient 171 
genomic studies8,43 (Supplementary Table 2). 172 

Evaluating G12ancient on simulated data 173 
 174 
To evaluate the performance of G12ancient in simulated aDNA data, we used the forward 175 

in time simulator SLiM 344 to generate genotypes incorporating missingness, ascertainment bias, 176 
random allele calling, and genotyping error (Methods: Generation of simulated data) that are 177 
typical of the aDNA data used in our study. We simulated hard and soft sweeps in a population 178 
under the Tennessen et al. model45, a demographic model that captures broad features of the 179 
allele frequency spectrum of modern European genomes. We varied the time of the onset of 180 
selection, the selection coefficient (s), and the time period of the sample. We obtained three 181 
samples of 177 individuals, matching the sample size of our dataset, spanning the past ~7,000 182 
years (250, 100 and 40 generations before present).  183 
 184 
 We first showed that our pseudo-haploidization approach does not reduce the ability of 185 
G12ancient to detect selection, and that the distribution of G12ancient values of pseudo-haploidized 186 
simulated data is comparable to that of running the haplotype-based statistic H12 on phased data 187 
(Supplementary Fig. 4). When incorporating missingness and data sparsity at levels typically 188 
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observed in aDNA to our simulated datasets (Methods: Running selection scans on simulated 189 
data) the G12ancient signal is attenuated but can still be differentiated from neutrality. (Fig. 2 and 190 
Supplementary Fig. 5). Additionally, we observe that G12ancient increases with stronger selection 191 
(Fig. 2 with the exception of Fig. 2. bottom row). In all selection scenarios analyzed, with the 192 
exception of young sweeps with weak selection, selection can be easily distinguished from 193 
neutrality (s = 0). 194 

 195 
In addition, we assessed the ability of G12ancient to detect sweeps of varying degrees of 196 

softness. To do so, we introduced K beneficial mutations at the time of the onset of selection for 197 
K=5, 10, 25 and 50 (Supplementary Fig. 6). For K = 5 the majority of the resulting sweeps 198 
were hard, whereas for higher values of K the probability of a sweep being soft increased 199 
(Supplementary Fig. 7). Again, G12ancient was able to distinguish selection from neutrality for 200 
varying degrees of softness except for sweeps that were very young (Supplementary Fig. 6 first 201 
row, sample from 250 generations ago). Additionally, we observed that as sweeps became softer, 202 
the G12ancient signal decreased, making it harder to detect sweeps that are old and very soft 203 
(Supplementary Fig. 6 bottom row, K = 50). 204 

 205 

 206 
Fig. 2: G12ancient values for hard (red) and soft sweeps (blue) in simulated aDNA data. 207 
G12ancient values were obtained for varying selection coefficients (s) and onset of selection 208 
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 7 

(rows). We sampled the population at 3 different time points (columns). For the soft sweep 209 
simulations K=25 independent adaptive mutations were introduced to the population at the time 210 
of the onset of selection. We ran a total of 100 simulations for each combination of parameters 211 
with mutation rate µ = 1.25×10-8 /bp, chromosome length L=5×105 and recombination  212 
r = 1×10-8  events/bp. Selection s = 0 represents neutrality. 213 

Application of G12ancient to functionally validated variants from real data 214 
 215 
To test the ability of G12ancient to detect selection signals on real data, we modified modern 216 
genomic data from European individuals from the 1000 genomes project42, by introducing 217 
missingness, ascertainment bias, sample size and random allele calling to mimic aDNA 218 
(Methods: Generation of modern human data mimicking ancient data). We then examined the 219 
ability of G12ancient to detect classic selective signals in the genes LCT, TLR1 and SLC24A5 220 
which have been identified by multiple previously conducted selection scans and are regions that 221 
are highly differentiated between Europeans and Asians (Supplementary Table 2). The causal 222 
alleles at these loci have been fine mapped in association studies and have also been functionally 223 
validated in cellular assays. These alleles are commonly used as positive controls in studies 224 
carrying out tests for natural selection in humans43. The LCT locus is responsible for conferring 225 
lactase persistence into adulthood; TLR1 is a gene involved in immune cell response and 226 
SLC24A5 is the dominant locus contributing to light skin pigmentation in Europeans3,46. 227 
 228 

Using our aDNA mimicking process on the modern data and then applying G12ancient, we 229 
were able to identify the LCT, SLC24A5 and TLR1 loci in the top 3 peaks observed chromosome-230 
wide in the European (CEU) population but not African (YRI) and South Asian (STU) 231 
populations (Fig. 3a). We also examined the effect of utilizing different parameters for window-232 
sizes and jumps (distance between analysis windows) and obtained an optimal choice of these 233 
parameters on real data (Methods: G12ancient parameter choices and peak calling and 234 
Supplementary Fig. 8). 235 

 236 
Next, to establish that our process could identify the timing of signals of natural selection 237 

from aDNA, we examined the LCT locus at different time periods of European history. This 238 
locus is particularly relevant for this analysis as the causal allele was absent in Europe prior to 239 
the arrival of Steppe Pastoralists in the Bronze Age and, therefore, could not have been under 240 
selection prior to that point3,8,12,13,43,47–51. By applying G12ancient across different periods in our 241 
time transect, we show that we were able to identify selection at the LCT locus, in the historical 242 
period (this window is the top peak genome-wide), but we do not see signals of selection for 243 
these in the Bronze Age and Iron Age populations (Fig. 3b). These results therefore are in line 244 
with the rapid increase in frequency of the causal variant rs4988235 only in the historical period 245 
(Fig. 3c), a finding that has also been replicated in other aDNA studies8,13,43. 246 
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 247 
 248 

Fig. 3: Recovery of variants well characterized to be under selection in modern Europeans 249 
(positive controls). a G12ancient values for modern population data from the 1000 genomes 250 
project42 , which was modified to mimic aDNA. G12ancient can detect several variants that have 251 
been previously found to be under selection in modern Europeans. However, G12ancient is 252 
completely absent or highly attenuated in populations of other ancestries (YRI and STU). b 253 
Using aDNA data, it is observed that the signal for the LCT allele is absent in BA and IA 254 
populations but is a top peak genome-wide in the H population. c The allele frequency reaches 255 
near fixation in the H population but is absent in N period as it was only introduced into Europe 256 
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by the arrival of pastoralists from the Pontic-Caspian Steppe13. In panel b we show that we 257 
observe high G12ancient  only in the historical period but not in previous time periods as a 258 
demonstration of our ability to localize the timing of selection to various epochs. 259 

Time stratified selection in ancient Europe 260 
 261 

Having established that our selection scan can identify signals of selection in simulated 262 
data and correctly distinguish between positive and negative controls in real data, we applied 263 
G12ancient to the  aDNA time transect. We defined a genome-wide threshold for significance as 264 
the  5th highest G12ancient value obtained by simulating neutral data under the Tennessen et al 265 
model45 (Methods: Running selection scans on simulated data, G12ancient parameter choices 266 
and peak calling) G12ancient values above this threshold were classified as putative sweeps. As 267 
windows adjacent to each other may belong to the same selective sweep, consecutive analysis 268 
windows above the G12ancient  neutral threshold were assigned to a single peak. The highest 269 
G12ancient value among all windows of a peak was chosen to represent the whole peak. To remove 270 
spurious peaks that might have arisen due to high rates of missing data or low recombination 271 
rates, we masked the peaks located in those regions (Methods: Quality control for removing 272 
false sweeps). With this approach, around 3-4 peaks per epoch were obtained that reached 273 
significance at the genome-wide level. 274 
 275 

We began by re-examining 12 loci previously established to be under selection using 276 
aDNA data8. Although the selection signals produced by the previous scan and our scan differ in 277 
their methodology and, therefore, their ability to detect selective events, we wanted to assess if 278 
we might be able to use our approach to localize when in time these signals were selected. 279 
 280 

As seen in Fig. 4a, the time period in which we observe a signal of selection at the LCT 281 
locus is limited to the historical period. In the N population, among the top peaks, we found a 282 
signal which included the gene OCA2/HERC2, variations in this gene are associated with eye, 283 
skin, and hair pigmentation variation8,26,52. This gene is the primary determinant of light eye 284 
color in Europeans and in our analysis, we time the selection signal to the Neolithic13. However, 285 
we observe a signal of selection at the HLA and at neighboring ZKSCAN3 in most of the epochs 286 
(Fig. 4a and Fig. 4c). 287 
 288 

Outside of these 4 loci, our selection scan also revealed several other candidates which 289 
we determined as being above our significance threshold. Several of these were associated with 290 
skin and eye pigmentation. In the BA and IA epochs we observed a signal of selection in the 291 
gene SCL24A5. As mentioned above, this gene is thought to be the major determining locus for 292 
light skin pigmentation in Europeans3,53. While highly differentiated between Asians and 293 
Europeans and appreciated as a major candidate of selection using modern European Genomes, 294 
single SNP allele frequency approaches examining aDNA have yet to identify this particular 295 
allele as a candidate8,13. This shows the value of employing alternate types of selection scans on 296 
similar datasets to uncover putative selective sweeps. 297 

 298 
We observed a signal at a locus associated with PPM1L as on the top peaks in N, which 299 

is an obesity related marker in Humans54. This signal for selection on obesity and body weight 300 
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related alleles during the Neolithic or the change in dietary practices from hunting and gathering 301 
to farming is also observed in single SNP based approaches13. 302 

 303 
We also observed several signals in genes that were associated with immunity or auto-304 

immunity. In the BA population, we observed a candidate in locus containing ADK, which 305 
regulates the intra and extracellular concentrations of adenosine which has widespread effects on 306 
cardiovascular and immune systems55,56. We see a signal at the ITCH gene in the BA, which is 307 
associated with immune response, and regulation of autoimmune diseases57,58. In the IA we see 308 
candidate sweep at the MAN2A1 locus - genetic variations in this gene have been shown to cause 309 
human systemic lupus erythematosus59. In Fig. 4c we report a list of all regions that appear to be 310 
under selection in each epoch along with some genes of interest that lie in those regions. 311 

 312 

 313 
Fig. 4: G12ancient applied on aDNA data. a Manhattan plot of G12ancient values genome-wide 314 
with the top signals in each epoch annotated. The gray dashed line is the genome-wide 315 
significance threshold based on simulations under the Tennessen et al. demographic scenario45. b 316 
Boxplots showing the variation of G12ancient across various functional categories. c Signals from 317 
genome wide significant top scoring loci for different epochs. The column Gene (Number) 318 
represents the number of genes mapped to the peak. For some genes, we assign a gene of interest 319 
based on fine mapping studies that have examined the results of modern selective sweeps 320 
examining the same regions. 321 
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Gene Set Enrichment Analysis 322 
 323 

In addition to examining individual SNPs, we examined mean G12ancient values across 324 
broad categories of functional SNPs. We looked at loci that were associated with changes in gene 325 
expression (eQTLs), identified as associated in Genome Wide Association Studies (GWAS), or 326 
were thought to be previously under selection in Europeans (CMS) or highly differentiated 327 
between Europeans and Asians (HiDiff) or were part of the HLA region. We found that 328 
functional categories of SNPs were seen with significantly higher G12ancient values compared to 329 
SNPs that were not annotated as being functionally relevant, with the HLA region being the most 330 
elevated of the functional categories (Fig. 4b). 331 
 332 

We next asked if we could associate biological functions to these top-scoring loci. We 333 
computed a p-value based on deviation from neutrality based on simulations (Methods: 334 
Enrichment Analysis). To determine if categories of genes associated with Genome-Wide 335 
Association Studies were significantly associated with selection signals, we carried out 336 
enrichment analysis using FUMA60, which maps SNPs to genes and performs gene set 337 
enrichment analysis for GWAS annotations incorporating LD information as well as gene 338 
matching by length and conservation scores (Methods: Enrichment Analysis). We found that 339 
many categories of GWAS related to anthropometric traits, auto-immune traits as well as disease 340 
related traits were under selection across the different time epochs. We report gene sets from the 341 
GWAS catalog using FUMA: Gene2Func60 and used a conservative significance threshold of -342 
log!" 𝑝	>= 5. We report the list of all categories for which we observed enrichment in Fig. 5. 343 
 344 

 345 

HIABAENGene sets
Autism spectrum disorder or schizophrenia
Blood protein levels
Sarcoidosis (Lofgren's syndrome vs non-Lofgren's syndrome)
Lung cancer
Squamous cell lung carcinoma
Lung cancer in ever smokers
Social communication problems
Chronic obstructive pulmonary disease or resting heart rate (pleiotropy)
Waist-to-hip ratio adjusted for BMI (age >50)
Daytime sleep phenotypes
Perceived unattractiveness to mosquitoes
Crohn's disease
Cocaine dependence
Mosquito bite size
Asthma or allergic disease (pleiotropy)
General cognitive ability
Monobrow thickness
Alcohol consumption (max-drinks)
Response to alcohol consumption (flushing response)
Alcohol dependence symptom count
Esophageal cancer
Coffee consumption
Mean arterial pressure x alcohol consumption interaction (2df test)
Systolic blood pressure x alcohol consumption interaction (2df test)
Height
Inflammatory bowel disease
Facial emotion recognition (sad faces)
Takayasu arteritis
Schizophrenia
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Fig. 5: Gene sets enriched across epochs. Colored boxes show significantly enriched gene sets 346 
for each epoch. Several gene sets are enriched across the 4 time periods. 347 

Discussion 348 

 349 
In this paper, we introduce a modified version of a previously described selection 350 

statistic16,22 and applied it to a time transect of aDNA from Europe. To date, while allele 351 
frequency-based approaches have been used extensively in the field, approaches using haplotype 352 
scans have largely been lacking. A single study61 performed a selection scan by phasing low 353 
coverage aDNA samples, and running a widely used extended haplotype statistic, XP-EHH. 354 
Here, we took an alternate approach aimed to reduce bias and artifacts from the use of modern 355 
reference panels for phasing and imputing low coverage ancient DNA, but largely maintaining 356 
power when compared to phased approaches in simulations. 357 

 358 
Our results, which take advantage of the major increases in sample size in the availability of 359 
aDNA data in the past 5-10 years demonstrate the potential of running multi-locus genotype-360 
based scans on aDNA. Our modified statistic, which we verified through simulations and gold 361 
standard variants, can potentially be employed in other settings where sequencing coverage is 362 
low and there is high missingness requiring pseudo-haploidization. Importantly, since haplotype-363 
based statistics are not as reliant on temporal data to exclude false positives, these statistics are 364 
useful for ancient datasets from geographic regions that only have a single timepoint.  365 
 366 

 Despite its potential, our approach also has several limitations. As the results from the 367 
simulation study show, our statistic is powered mostly for strong selective sweeps (s > 0.01). 368 
Moreover, the timing of onset of selection is limited by our ability to detect selection below this 369 
high threshold and therefore lack of selection at a particular time could also be due to a lack of 370 
power. Another major limitation of our approach is that our window-based method is unable to 371 
localize selection to a specific allele as it is based on detecting deviation in a surrounding region 372 
of 200 SNPs. On data from a capture array like we have, this distance can span large distances 373 
and decrease our target resolution. Here we used the closest gene to the peak SNP in a series of 374 
windows to connect genes to candidates under selection. 375 
 376 

An important future direction for this type of research is to carefully examine the 377 
accuracy of imputation and phasing on low-coverage ancient data using biological confirmation 378 
such as from trios, which could become more available as coverage increases for many samples 379 
due to lower sequencing cost and better technology. Additional directions could also be to extend 380 
these scans to other time periods or more importantly to other geographic regions in the world 381 
where aDNA data is becoming rapidly available.  382 
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Methods 383 

aDNA data curation     384 
 385 

We obtained aDNA data from Allen Ancient DNA Resource62 386 
(https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-387 
day-and-683, version 51), and selected the samples that were enriched for 1240k nuclear targets 388 
with an in-solution hybridization capture reagent. We did not include individuals if they had less 389 
than a 3% cytosine-to-thymine substitution rate in the first nucleotide for a UDG-treated library 390 
as these were indications of contamination. We also removed individuals who had indications of 391 
contamination based on polymorphism in mitochondrial DNA or the X chromosome in males, 392 
based on estimates from contamix63 and ANGSD64. For population genetic analysis to represent 393 
each individual at each SNP position, we randomly selected a single sequence (if at least one was 394 
available).  395 
 396 
  Finally, we assembled genome-wide data of various human populations from Holocene 397 
Europe dated between ~7000 BP and 500 BP. To maintain homogeneity across time periods, we 398 
sampled 177 individuals from each archeological period - the Neolithic, the Bronze Age, the Iron 399 
Age and Historical period. For populations with more than 177 individuals, we only chose 400 
samples from these periods with the highest coverage and prioritized samples from the same site 401 
whenever possible. A list of all samples analyzed is in Supplementary Data. 402 

Principal components analysis  403 
  404 

We carried out PCA using the smartpca package of EIGENSOFT 7.2.110665,66. We used 405 
default parameters and added two options (lsqproject: YES, and numoutlieriter:0) to project the 406 
ancient individuals onto the PCA space. We used 991 present-day West Eurasians as a basis for 407 
projection of the ancient31,67 We restricted these analyses to the dataset obtained by merging our 408 
aDNA data with the modern DNA data on the Human Origins array and restricted it to 597,573 409 
SNPs. We treated positions where we did not have sequence data as missing genotypes. 410 

Generation of modern human data mimicking ancient data 411 

 412 
  To examine whether the G12ancient based selection scans would be applicable to aDNA 413 
data; we developed a process of converting the modern human genomic data from the 1000 414 
Genomes project42 to mimic the statistical and physical properties of aDNA data and ran the 415 
scans on modified modern data. We utilized a pseudo-haploidization scheme in which we 416 
randomly selected (probability of selection is 0.5) one of the two alleles from the heterozygous 417 
genotype as described in Supplementary Fig. 1. 418 
 419 

To simulate ascertainment, we restricted the 1,000 genomes samples to just the 1.2 420 
million positions that were on the aDNA capture array. Finally, we incorporated missingness on 421 
a per site basis in modern data using the mean (0.55) and standard error (0.23) we observed in 422 
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our sample of 708 individuals and randomly set the genotypes of a certain proportion of 423 
individuals in the modern data to missing ( Supplementary Table 1 and Supplementary Fig. 2) 424 
 425 

 426 
Supplementary Fig. 1: Pseudo haploidization scheme showing random allele calling for the 427 
generation of multi-locus genotypes.  428 
 429 
Parameter   Modern Samples Ancient Samples 

Mean Missingness (Preprocessing) 0.0131 0.54827 

Mean Missingness (Post-processing) 0.53529 0.54827 

 430 
Supplementary Table 1: Differences between the mean fraction of missing individuals per SNP 431 
in modern samples vs. the ancient samples, pre, and post-data processing. 432 

 433 

 434 
Supplementary Fig. 2: Data processing scheme, we take modern genomic data and apply 435 
ascertainment, pseudo-haploidization and add missingness to the data to make it mimic the 436 
artefacts of aDNA data used in this study. 437 

Running selection scans on modern data mimicking aDNA processing 438 
 439 

We ran G12 on 91 GBR individuals from the 1000 Genomes42 with phased genotypes 440 
called using the standard process and G12ancient with the same individuals processed using our 441 
ancient DNA mimicking approach. We then compared the G12 values and G12ancient values at 442 
each SNP and calculated the Pearson correlation coefficient between G12 and G12ancient values 443 
and found out they are strongly positively correlated with each other with a correlation 444 
coefficient of 0.95 (Supplementary Fig. 3) suggesting that our new statistic behaved similarly to 445 
the original G12 statistic on our data. 446 

 447 

Haplotype
A A T C

A T T G

.

.

Actual Genotype A/A A/T T/T C/G

Observed Reads

Pseudo Haploid Genotype
(pick one read at random)

A, A, A T, A T, A, T, T C, G, C

A T T C

Modern 1000 Genomes 
Project data

Modern data mimicking 
aDNA data

Added Missingness

Pseudo Haploidization

Ascertainment
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 448 
Supplementary Fig. 3: Plots showing strong positive correlation between G12 and G12ancient 449 
values for GBR individuals. a Scatter plot between G12 and G12ancient values with a line of best 450 
fit showing values are highly correlated. b Scatter plot between SNP positions and G12 / 451 
G12ancient values showing that both plots overlay each other to a very higher degree. 452 

Generation of simulated data  453 
 454 

We used SLiM 3.744 to simulate hard and soft sweeps under the Tennessen et al. 455 
demographic model45 with mutation rate µ= 1.25×10-8 /bp, chromosome length L=5×105 and 456 
recombination r = 5×10-9 events/bp. In the hard sweep simulations, a single beneficial mutation 457 
was introduced to the population. The simulations were conditioned on the presence of the 458 
adaptive mutation, that is, we restarted the simulation if the adaptive mutation was lost. To 459 
model soft sweeps, we added K=5, 10, 25 and 50 distinct copies of a beneficial mutation. We 460 
varied the time at which these mutations were introduced, t= 280, 500 and 1000 generations ago, 461 
along with their selection coefficient (s) and sampled the population at three different time 462 
points: 250, 100 and 40 generations before present. 463 

 464 
Based on the missingness observed in our ancient DNA data, we added missing data to 465 

our simulated datasets following a beta distribution with mean 0.55 per SNP and standard 466 
deviation of 0.23 (Supplementary Table 1). Moreover, we followed the pseudo-haploidization 467 
scheme used in processing the data (Supplementary Fig. 2 and Supplementary Fig. 4). Finally, 468 
in order to incorporate the sparsity of aDNA data, we randomly selected 201 SNPs from our 469 
pseudo-haplotype data. That is, we obtained a 201 SNP window for our sample of 177 470 
individuals. 471 

 472 
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 Running selection scans on simulated data 473 
 474 

We computed G12ancient in simulated data using 201 SNP windows in a total of 100 475 
simulations for each combination of parameters tested. We first obtained G12ancient for hard 476 
sweeps and neutrality (s = 0) with and without applying our pseudo-haploidization scheme and 477 
with no missing data (Supplementary Fig. 4). We varied the strength of selection and the time 478 
of the onset of selection (age of mutation, in generations).  479 
 480 
 481 

 482 
Supplementary Fig. 4: G12 and G12ancient values for 177 individuals sampled 40 generations 483 
ago. No missing data was added to the simulated data. We ran a total of 100 hard sweep 484 
simulations for each combination of parameters with mutation rate µ= 1.25×10-8 /bp, 485 
chromosome length L=5×105 and recombination r = 5×10-9 events/bp. 486 
 487 
 Next, we obtained the distribution of G12ancient values in data sets containing missing 488 
data. We compared the G12ancient signal obtained from hard sweep and neutral simulations with 489 
and without missing data, obtaining a reduction of signal when missingness was included 490 
(Supplementary Fig. 4).  491 
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 492 
Supplementary Fig. 5: G12ancient values for pseudo-haploidized simulated data from   177 493 
individuals sampled 40 generations ago for a hard sweep model with mean rate of 0.55 494 
missingness per SNP and a standard deviation of 0.23. 495 
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 496 
 We tested the ability of G12ancient to detect sweeps across various degrees of softness in 497 
sparse genomic data with high missingness. We introduced K beneficial mutations at the time of 498 
the onset of selection for K=5,10,25 and 50 (Supplementary Fig. 6). To determine whether 499 
these simulations were more likely to result in hard or soft sweeps, we computed the number of 500 
distinct mutational origins at the selected site in each simulation (Supplementary Fig. 7). When 501 
K=5 most simulations have a single origin, giving rise to hard sweeps. As K increases, so does 502 
the number of origins in the simulations, increasing the probability of soft sweeps as well as the 503 
softness of the sweep. 504 

 505 
Supplementary Fig. 6: G12ancient values in a soft sweep model. We introduced K beneficial 506 
mutations at the time of the onset of selection (rows), for K=5,10,25 and 50, where the higher K 507 
the softer the sweep. We sampled the population at 3 different time points (columns). We ran a 508 
total of 100 simulations for each combination of parameters with mutation rate µ = 1.25×10-8 509 
/bp, chromosome length L = 5×105, recombination r = 5×10-9 events/bp and s = 0.1. K = 0 510 
corresponds to the scenario with no selection. 511 
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 512 
Supplementary Fig. 7: Softness of sweeps starting with K distinct mutations introduced 500 513 
generations ago and sampled 40 generations ago. a Number of distinct mutations at the time of 514 
sampling. b Proportion of hard and soft sweeps as a function of K. 515 

Running selection scans on ancient datasets 516 
 517 

After examining the application of G12ancient on simulated data, we examined our ability 518 
to identify 3 major signals of adaptation previously observed in modern Europeans43. We list 519 
them here along with their known functional impact. 520 
 521 
Gene Population Chr Position Function 
 
SLC24A5 

 
CEU 

15 Band: 15q21.1 
Start: 48,120,990 bp 
End: 48,142,672 bp 

This locus is one of the major factors 
influencing skin pigmentation in humans 

 
LCT/MCM6 

 
CEU 

2 Band 2q21.3 
Start 135,839,626 bp 
End 135,876,443 bp 

This enzyme helps to digest lactose, a sugar 
found in milk and other dairy products 

 
TLR1 

 
CEU 

4 Band 4p14 
Start 38,790,677 bp 
End 38,856,817 bp 

Toll-like receptors are a class of proteins 
that play a key role in the innate immune 
system 

 522 
Supplementary Table 2: The variants of interest that are shown to be under selection by 523 
multiple natural selection studies on European genomes. 524 

G12ancient parameter choices and peak calling 525 
 526 

To calibrate our G12ancient statistic we iterated over several parameter choices to improve 527 
performance. The most significant parameters are window and jump. Window refers to the 528 
analysis window size in terms of SNPs, and jump is the distance between centers of analysis 529 
windows (readme.pdf). To find the best combination of window and jump, we ran a grid search 530 
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and varied the window size from 50-400 SNPs with a step size of 25 SNPs and jump from 1-20 531 
with a step size of 5 SNPs. We tried to optimize our process on the three signals of well 532 
characterized adaptation in humans from the previous section on the H population which is 533 
closest in time to modern samples. Larger window sizes resulted in decrease of G12ancient values, 534 
and larger step sizes resulted in decrease of SNP density, as larger windows diminish the power 535 
of the statistic by averaging over regions that are come from different linkage blocks. As jump 536 
increases, fewer and fewer SNPs are used in the computation, as illustrated in Supplementary 537 
Fig. 8. Overall, we found that a window of 200 SNPs and a jump of 1 were optimal for our 538 
datasets and enabled us to detect the well characterized selection candidates at the genome-wide 539 
significance threshold. 540 

 541 

Window size across epochs 542 
 543 

Window sizes are also dependent on the number of segregating sites in a population as 544 
our windows are computed in units of SNPs. We chose to use a window size of 200 SNPs for all 545 
populations, after examining several population genetic parameters across different epochs 546 
(Supplementary Fig. 8). Importantly, the mean physical distance (bp) in a 200 SNP window 547 
G12ancient window across epochs and number of segregating sites across epochs were quite 548 
consistent across epochs. 549 
 550 
Epoch ND across 200 

SNP window 
Total 

number of 
sites 

Segregating 
sites 

S/BP Mean Window 
Length (bp) 

N 0.00002752173 1233013 930906 0.754984 454774 (± 386740) 

BA  0.00002817481 1233013 953594 0.773385 454507 (± 386870) 

IA  0.00004058848 1233013 962723 0.780789 455005 (± 386849) 

H 0.00004152787 1233013 943001 0.764794 454605 (± 386845) 
Supplementary Table 3: A table showing the nucleotide diversity calculated for each epoch on 551 
a 200 SNP window. We used the vcftools --window-pi option which measures the nucleotide 552 
diversity in windows, with the number provided as the window size. We also show the number 553 
of segregating sites per base pair. 554 

 555 
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 556 
Supplementary Fig. 8: The performance of G12ancient selection scans on different window size 557 
and step size values. a Variation of window size parameter while keeping step size fixed at 1, we 558 
observe window size of 200 as smaller window size resulted in inflated G12ancient values and 559 
larger window size resulted in smaller G12ancient values. b Variation of step size while keeping 560 
window size of 200, we observe that as we increase the step size, we lose a greater number of 561 
SNPs considered for calculation G12ancient statistic and it results in loss of SNP density, so we 562 
fixed the step size as 1. 563 

Quality control for removing false sweeps 564 
 565 
After running the selection scans and computing G12ancient at each focal SNP, we performed quality 566 
control to remove spurious peaks that could have occurred due to artifacts or issues with the data. 567 
One reason a certain genomic position might have artificially high G12ancient values is if the focal 568 
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SNP and the SNPs within its window range overlap with regions of low recombination rate in the 569 
genome. The first step in post-processing/ quality control in our pipeline was to remove all 570 
windows with mean per-window recombination rates in the lowest fifth percentile genome-wide. 571 
Second, we also removed windows where the mean fraction of missing individuals (i.e., the mean 572 
of the fraction of missing individuals per SNP for all the SNPs in that window) was greater than the 573 
70th percentile of the mean fraction of missing individuals for all windows. Third, our 574 
ascertainment scheme on the aDNA array results in each window having variable physical distance. 575 
While most windows are of similar length, some windows are in sites where the distance between 576 
positions is considerably lower or higher than the average. In order to show that our post-filtered 577 
data is largely unaffected by these issues, we regressed G12ancient values against window size 578 
(measured in the physical distance), missingness, and recombination rate after the percentile-based 579 
removal process. We saw that the overall variability in the data explained by these three variables 580 
combined was less than 5%, suggesting that we had effectively removed their association with 581 
G12ancient values (Supplementary Table 4). A final issue could be that there are windows where 582 
neighboring SNP positions are not captured well by the probes in our ascertainment scheme, and 583 
missingness rates are clustered even though the overall missingness rate is similar to other 584 
windows. To deal with these issues, we also removed windows that were consistently in the top 20 585 
peaks genome-wide across a set of modern (the CEU, YRI, and STU populations) and the four 586 
ancient European populations we analyzed. The rationale for this is that it is quite unlikely that we 587 
see the same selective sweep across populations of such different ancestry, and across such a broad 588 
range of time and signals of that nature are highly likely to be due to data processing issues. 589 
 590 

                Variable                         G12ancient   
 R2 Score Correlation Coefficient 

Window Size 0.013 0.1030 
Recombination Rate 0.001 -0.0261 

Missingness 0.027 0.1634 
 591 
Supplementary Table 4: Relationship between parameter choice and G12ancient value suggests 592 
that overall G12ancient statistics are unaffected by our choice of parameters. 593 
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Peak calling and gene annotation 594 

 595 
  As our main statistic is a multi-locus genotype-based scan, loci thought to be under 596 
selection lie in windows around top-scoring SNPs where the score (G12ancient statistic value) is 597 
high compared to the rest of the genome. One issue with directly using the G12ancient statistic 598 
value at each position to identify SNPs that appear to be selected significantly genome-wide is 599 
that many signals of selection at the SNP level are correlated due to LD. We wished to avoid 600 
identifying multiple high-scoring SNPs that are in linkage, as they might represent the same 601 
adaptive event. In order to account for this, we utilized a greedy clumping algorithm that looks 602 
for immediate positions upstream and downstream of a target SNP above a given threshold ( 603 
https://github.com/ngarud/SelectionHapStats) as possible candidates. We assigned peaks to 604 
genes by taking the focal SNP in each peak and running Ensembl Variant Effect Predictor (VEP) 605 
68 and annotated all protein-coding genes within 265kb distance upstream/ downstream of the 606 
target SNP and assigned the closest protein-coding gene for target SNP while annotating the 607 
G12ancient  peaks. The results of our analysis per epoch are shown in Fig. 4a. 608 
 609 

On the 1.2 million positions captured on our array, we also annotated 47,384 as ‘potentially 610 
functional’ sites8 that lie in categories that overlap for certain SNPs. 1,290 SNPs were identified as 611 
targets of selection in Europeans by the Composite of Multiple Signals (CMS) test69; 21,723 SNPs 612 
identified as significant hits by genome-wide association studies, or with known phenotypic effect 613 
(GWAS); 1,289 SNPs with extremely differentiated frequencies between HapMap populations 614 
(HiDiff), 5,387 SNPs which tag HLA haplotypes and 13,672 expression quantitative trait loci 615 
(eQTLs). We then examined the distribution of G12ancient statistic value across these categories of 616 
positions (Fig. 4b). 617 

Enrichment Analysis 618 
 619 

We used the Functional Mapping and Annotation of Genome-Wide Association Studies tool 620 
to obtain significant gene sets for each epoch. The gene sets were produced by comparing the genes 621 
of interest against sets of genes from MsigDB using hypergeometric tests. We performed this 622 
analysis for gene sets from the GWAS and GO functional categories using FUMA60. 623 
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