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Abstract

Human genome sequencing studies have identified numerous loci associated with complex
diseases. However, translating human genetic and genomic findings to disease pathobiology and
therapeutic discovery remains a major challenge at multiscale interactome network levels. Here,
we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein
InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific
interfaces for all known protein interactions in humans and seven other common model organisms,
generating comprehensive structurally-informed protein interactomes. We demonstrate that
PIONEER outperforms existing state-of-the-art methods. We further systematically validated
PIONEER predictions experimentally through generating 2,395 mutations and testing their impact
on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER
predictions. We show that disease-associated mutations are enriched in PIONEER-predicted
protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000
somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with
PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of
~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted
oncoPPIs are significantly associated with patient survival and drug responses from both cancer
cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing
tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic
KEAPI1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that
PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug
responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data

from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium. PIONEER,
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implemented as both a web server platform and a software package, identifies functional
consequences of disease-associated alleles and offers a deep learning tool for precision medicine

at multiscale interactome network levels.

Introduction

Precision medicine has sparked major initiatives focusing on whole-genome/exome sequencing
(WGS/WES) and developing genome science tools for statistical analyses — all aspiring to identify
actionable variants in patients'-3. At the center of the massive amount of collected DNA/RNA
sequencing data is their functional interpretation, which largely rests on conventional statistical
analyses and trait/phenotype observations?. Statistics is vital, since it guides the identification of
disease-associated variants; however, traditional WGS/WES studies are commonly underpowered
for disease risk-variant/gene and drug target discoveries as very large sample sizes are generally
required. Furthermore, the statistics do not directly elucidate the functional consequence of the
variants, i.e., changes in protein conformation or in molecular functions in cells; thus, traditional
statistical approaches may not be sufficient to define accurately functional variants. Thus,
translation of genetic and genomic findings to precision medicine is fraught with challenges using
traditional statistical approaches.

Optimal information requires knowledge of the whole protein-protein interaction (PPI)
network, or interactome, within which the mutant protein operates. Given that on average each
protein interacts directly with 10-15 other proteins* >, the functional consequence of any mutation
is not easily (if at all) predicted out of the interactome context. Previous studies® ®!° have
demonstrated that most disease mutations disrupt specific PPIs rather than affecting all interactions

in which the mutant protein is engaged. Making accurate characterizations of such disruptions is
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essential for understanding the etiology of most disease mutations. Therefore, it is fundamentally
important for precision medicine to determine structural details, particularly the locations of
interaction interfaces of all protein interactions at whole proteome scale. A clear limitation of this
goal, however, is that only ~9% of protein interactions have structural models determined by
experimental or traditional homology modeling approaches (Figs. 1la and 2a). Predicting co-
complex structures of PPIs is in the process of explosive growth resulting from the advent of
AlphaFold-based deep learning methods as embodied in AlphaFold-Multimer!! or AF2Complex!'?,
but these methods are all time-consuming, and does not scale to solve whole interactomes with
hundreds of thousands of PPIs.

In this study, we presented a deep-learning-based ensemble learning pipeline, PIONEER
(Protein-protein InteractiOn iNtErfacE pRediction) to generate the next-generation partner-
specific interaction interface predictions for all experimentally-determined human PPIs in the
literature, providing key structural information for these interactions. Taking as input a pair of
interacting proteins, PIONEER effectively identifies the residues that conform the interface of the
interaction. By leveraging the available atomic-resolution co-crystal structures along with
homology models, we established a comprehensive multiscale structurally-informed human
interactome, which consists of 282,095 interactions from humans and seven other commonly
studied organisms, including all 146,138 experimentally-determined PPIs for 16,232 human
proteins (Figs. 1a and 2a). Through this resource, we investigated the network effects of disease-
associated mutations at amino acid resolution within the macromolecular interactome of PPI
interfaces. We further explored the widespread perturbations of PPIs in human diseases and their
significant impact on disease prognosis and drug responses. This newly constructed structurally-

informed interactome database is then combined with disease-associated mutations and functional
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annotations to create an interactive, dynamic web server (https://pioneer.yulab.org) for genome-

wide functional genomics studies. It also allows the users to submit a list of interactions and
retrieve the predicted interfaces of the respective interactions using the PIONEER framework.
Furthermore, we have converted the PIONEER framework into a software package that is

available to the wider community to further help accelerate biological research.

Results

A hybrid deep-learning architecture for protein-protein interface prediction
To date, taking into account the structural models of protein interactions—both experimentally-
determined and homologically-predicted--we find that an overwhelming majority of interactions
(~91%) still do not have reliable structural information (Fig. 1a). With this key limitation in mind,
we built the PIONEER pipeline to generate accurate partner-specific protein-protein interface
predictions for protein interactions that currently lack structural information. We carefully
constructed our labeled dataset for training, validating, and testing of our Cclassifiers
(Supplementary Data 1). When building PIONEER, we especially prioritize instances where the
same protein interacts with multiple interaction partners using distinct interfaces in our labeled
dataset in order to create a model that better predicts partner-specific interfaces (Fig. 1b). We also
require that there are no homologous interactions between any of the two datasets to guarantee the
robustness and generalization of our models, and a fair performance evaluation.

We used a comprehensive set of single-protein and interaction-partner-specific features for
interface prediction (Fig. 1c-f), and both groups of features combine biophysical, evolutionary,
structural, and sequence information for an in-depth feature characterization. More specifically,

the single-protein features consist of diverse biophysical features, evolutionary sequence
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conservation, and protein structure properties. Of these features, one of protein structure properties,
solvent accessible surface area (SASA), is widely reported to be highly informative® ! since all
interface residues, by definition, are on the surface of proteins; in addition, solvent can either
facilitate or impede binding interactions depending upon the (net) relative hydrophobicity or
hydrophilicity of the binding interaction residues. We also incorporate evolutionary sequence
conservation because key protein functions often depend upon interactions with other proteins,
and, as such, interface residues are more likely to be conserved'?.

However, although these single-protein features capture the characteristics of all possible
interface residues, they cannot distinguish interface residues for a protein interacting with different
partner proteins through which a protein can perform different biological functions. Previously,
we illustrated that it is important to encompass partner-specific features for the prediction of
partner-specific interfaces®. Here, our interaction-partner-specific features include co-evolution of
amino acid sequences, protein-protein docking, and pair potential. Co-evolutionary features
capture the dependent patterns of conservation in two interacting proteins, since interface residues
that are critical to maintaining the interaction often co-evolve to maintain binding
complementarity!®>. Through modeling of bound conformations of protein interactions using
protein-protein docking!®, we incorporate the docking results to extract a summary of preferred
orientations for individual structures of interacting proteins. In addition, we also create another
feature—pair potential—to characterize the interface propensity for the target protein with respect
to a specific partner. Moreover, we incorporate AlphaFold2-predicted single protein structures into
our PIONEER models to significantly increase the coverage of structure-based features for

proteins currently lacking experimentally-determined structures.
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In order to address the non-random missing feature problem, which cannot be adequately
resolved by commonly used imputation methods®, PIONEER’s framework is structured as an
ensemble of four deep learning architectures, including Structure-Structure, Structure-Sequence,
Sequence-Structure, and Sequence-Sequence models (Fig. 1c-f and Supplementary Figs. 1 and 2).
The Structure-Structure model is used for interactions in which both proteins have structural
information while the Sequence-Sequence model is used for proteins without solved structural
information. Otherwise, the Structure-Sequence or Sequence-Structure model is used, depending
on which protein in the interaction has structural information. This comprehensive framework
ensures that we use the maximum amount of information available for each interaction to yield the
best possible interface predictions while avoiding potential ascertainment biases that can lead to
overfitting.

More specifically, for a protein with available structures, the PIONEER deep learning
model uses a hybrid architecture to integrate both structural information embedded through Graph
Convolutional Networks (GCNs) with Auto-Regressive Moving Average (ARMA) filters!” and
sequence information embedded through bidirectional Recurrent Neural Networks (RNNs) with
Gated Recurrent Units (GRUs)!®. For proteins without high-quality structure models, only
sequence information is embedded via RNNs with GRUs. Using transfer learning'®, the pre-trained
GCNs-RNN s in Structure-Structure model and RNNs in Sequence-Sequence model are deployed
in Structure-Sequence model and Sequence-Structure model for the processing of proteins with
and without structural information, respectively. Furthermore, for each residue in a target protein,
our unique architecture integrates the residue embeddings, overall protein embeddings, and overall
partner protein embeddings to utilize both local and global (‘glocal’) information of both proteins

to make the most accurate interface predictions.
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Benchmark evaluation of PIONEER

We then built and evaluated PIONEER using the new labeled dataset and new model designs. The
results show that PIONEER outperforms all other available methods for predicting interactions of
both proteins with and without structural information (Fig. 2b,c and Supplementary Figs. 3 and 4
and Supplementary Tables 1-5). It is worth noting that our Sequence-Sequence model, which
solely relies on sequence information, has better prediction performance than all recent state-of-
the-art structure-based methods that we evaluated, such as PeSTo?’, ScanNet?!, BIPSPI+%*,
MaSIF-site?*, DeepPPISP**, SASNet?®, and PIPGCN?2%, Most of these methods already use cutting-
edge deep learning models, which illustrates the power of utilizing a comprehensive set of single-
protein and partner-specific features; it also confirms the validity of our design choice to include
RNNs with GRUs in a hybrid architecture, even for proteins with known structures (Fig. 2b and
Supplementary Tables 2 and 3). Interestingly, we also found that even our previous ECLAIR with
structural information is still significantly better than the above structure-based methods, and
achieves the second best performance (Fig. 2¢ and Supplementary Table 2).

We next evaluated the effectiveness of our new model designs on the benchmark testing
dataset by assessing the overall performance of PIONEER and ECLAIR. We found that PIONEER
models with ECLAIR features substantially outperform our previous ECLAIR models
(Supplementary Fig. 5a), confirming that our unique hybrid-architecture deep learning models,
indeed, capture more information in the features than the previous random forest-based models.
Moreover, incorporating new features to PIONEER models further significantly improves the
prediction performance (Supplementary Fig. 5a), indicating the outstanding representation ability

of our new features for the prediction of protein interfaces. Both improvements distinctly
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demonstrate that our new deep learning architectures and new features make significant
contributions to PIONEER’s strong ability to provide accurate PPI interface predictions. We also
found that the inclusion of AlphaFold2-predicted single protein structures for the proteins without
experimentally-determined structures improved the performance of PIONEER interface
predictions (Supplementary Fig. 5b).

We further applied PIONEER on a widely used decoy set, score set’’, to test CAPRI
(Critical Assessment of Prediction of Interactions) models. This dataset contains docking models
predicted by 47 different groups for proteins from bacteria, yeast, vertebrates, and artificial design.
After removing the targets which are duplicated and without corresponding UniProt sequences,
we considered 11 targets which, overall, have 15,003 corresponding decoys, including 12,986
incorrect, 732 acceptable, 799 medium and 486 high quality docking predictions based on CAPRI-
defined criteria, respectively. Figure 2d plots the percentage of all models that have a given average
PIONEER interface probability score (x-axis) in each category across targets. This figure shows a
clear distinction between any two different category decoys, demonstrating that PIONEER

interface residue predictions also provide a clear signal as to model quality.

Proteome-wide protein-protein interface prediction by PIONEER

Next, we compiled a comprehensive set of experimentally validated binary PPIs for humans and
seven model organisms by integrating information from 7 commonly-used databases®®, including
BioGRID?, DIP*, IntAct?!, MINT*, iRefWeb?3, HPRD?*, and MIPS*. Here we focus on binary
interactions because if two proteins do not bind to each other directly, the concept of interface does
not apply. We then used the fully-optimized PIONEER pipeline to predict interfaces for all

collected 256,946 binary interactions without any experimental structures or homologous models
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(see Methods), including 132,875 human interactions (Fig. 2a). Because we make partner-specific
interface predictions for every residue of every protein, and there are on average >10 interactions
per protein, we made probabilistic interaction predictions for >275 million residue-interaction
pairs. By combining our PIONEER interface predictions with 25,149 interactions (~9%) with
experimental or homology models, we generate a comprehensive multiscale structural human
interactome, in which all interactions have partner-specific interface information at the residue
level, together with atomic-resolution three-dimensional (3D) models whenever possible.

To comprehensively evaluate the quality of our predicted interfaces and their biological
implications, we first carried out large-scale mutagenesis experiments to measure the fraction of
disrupted interactions by mutations in our predicted interfaces at varying confidence levels, in
comparison to that of known interface and non-interface residues from co-crystal structures in the
PDB*¢. Using our Clone-seq pipeline®’, we generated 2,395 mutations on 1,141 proteins and
examined their impact on 6,754 mutation-interaction pairs through a high-throughput yeast-two-
hybrid (Y2H) assay, an unprecedented large-scale experimental validation. We observed that
mutations at PIONEER-predicted interfaces disrupt protein-protein interactions at a very similar
rate to the mutations at known structurally characterized interfaces, and both of their disruption
rates are significantly higher than that of known non-interfaces (Fig. 2e). Therefore, our large-
scale experiments confirm the high quality of our interface predictions and the validity of our
overall PIONEER pipeline. Furthermore, because interaction disruption is key to understanding

the molecular mechanisms of disease mutations®: 37

, our experimental results indicate that our
PIONEER-predicted interfaces will be instrumental in prioritizing disease-associated variants and

generating concrete mechanistic hypotheses.
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PIONEER-generated structurally-informed human interactome enriched with disease
mutations

Since disruption of specific interactions is essential for the pathogenicity of many disease
mutations, and since previous studies have shown that disease mutations are significantly enriched

7,838 we next measured the enrichment of known disease-associated

at protein-protein interfaces
mutations from the Human Gene Mutation Database (HGMD)* at the predicted interfaces, and
compared it to known interfaces from co-crystal structures. We found that the residues predicted
by PIONEER with a high interface confidence show a very similar rate of disease mutation
enrichment to those of known interfaces (Fig. 3a). Furthermore, we observed that 251,368 (~98%)
out of all 256,946 binary interactions have at least one or more predicted interface residues that
fall into high or very high confidence categories (Supplementary Fig. 6), indicating that PIONEER
provides meaningful structural information for the vast majority of protein interactions. In fact,
each bin with a higher confidence of predicted interfaces is more likely to contain disease-
associated mutations than the previous bin, which demonstrates the strong correlation between
PIONEER prediction scores and the true function of each residue (Fig. 3a). We further analyzed
the distribution of population genetic variants and found that their enrichment in PIONEER-
predicted interfaces and non-interfaces also matches well with that of known interfaces and non-
interfaces, respectively (Fig. 3b). The results also show that there is a depletion of common variants
(i.e., not deleterious) in both known and predicted interfaces, which strongly suggests that there
exists a strong negative selection at these interface residues, indicating that PIONEER is able to
predict functionally important interface variants effectively. We also found that, compared to

variants identified in individuals from the 1000 Genomes project (1KGP)* and the Exome

Aggregation Consortium (ExAC)*, disease-associated mutations from HGMD are more
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significantly enriched at PPI interfaces of the respective proteins® (Fig. 3¢). Moreover, as predicted
by CADD* and FoldX*, the population variants in PIONEER-predicted interfaces are more likely
to adversely affect protein functions than those in PIONEER-predicted non-interfaces
(Supplementary Fig. 7), which confirms that deleterious variants preferentially occur at the
protein-protein interfaces’-°.

To further evaluate whether the disease-associated mutations were enriched in the PIONEER-
predicted PPI interfaces (Fig. 3c), we next categorized the disease-associated germline mutations
from HGMD into six major disease groups, including autoimmune, cancer, cardiovascular,
metabolic, neurological, and pulmonary as described in a recent study**, as well as an additional
“other” category. We identified a total of 10,753 PPIs among 5,684 proteins that had at least one
disease-associated interface germline mutation (Fig. 3d and Supplementary Table 6), among which
9,795 (~91%) PPIs have such interface mutations on one protein (the other protein colored as
“neighbor”), and 958 (~9%) on both proteins of the binding pair. Overall, this network analysis
shows that PIONEER-predicted PPI interfaces are altered by broad disease-associated mutations
across multiple disease categories. To highlight the power of PIONEER-predicted interfaces, we
examined three PPI interfaces with germline alleles. Germline mutation p.Lys542GIln of LMNA
(Lamin A/C) buried in the interface of LMNA and BAF (Fig. 3e) was associated with progeroid
disease®. One loss-of-function PPIA mutation p.Ala53Glu in the interface of PPIA-SYUA (Fig.
3e) was identified in patients with early-onset Parkinson disease?®. A germline mutation
p.Gly537Arg of HIF-20 associated with polycythemia vera*’ is located in the PIONEER-predicted
VHL-HIF-2a interface (Fig. 3e) and disrupts VHL binding via impairing ubiquitination and

proteasomal degradation of HIF-2a* %°. Taken together, PIONEER-predicted protein-protein

12
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interface mutations convey crucial structural information in delineating the functional

consequences for disease mechanisms at the atomic and allele levels.

PIONEER-predicted oncoPPIs across 33 cancer types
We next investigated the somatic mutations from cancer patients in the context of PPI interfaces
inferred by PIONEER. In total, we collected ~1.7 million missense somatic mutations from the
analysis of ~11,000 tumors across 33 cancer types from The Cancer Genome Atlas (TCGA)>°. We
found significant enrichment of somatic missense mutations in the PIONEER-predicted PPI
interfaces compared to non-interface regions (Fig. 4a and Supplementary Data 2). Specifically,
this significant enrichment was observed in 31 out of the total 33 cancer types regardless of the
overall mutation burden. In lung squamous cell carcinoma (LUSC), one of the cancer types that
have the highest mutation load per exome, we observed 29 variants per 1 million amino acid
residues affecting PPI interfaces, while the rate for the non-PPI interface region is 23 (P =
1.3x107 ). For thyroid cancer (THCA), with the lowest mutation load, the difference is 27 for PPI
interfaces vs. 9 for the remainder of the protein sequences (P < 107!%). To account for the potential
bias in this analysis due to data sources, we divided our whole structural human interactome into
three categories: those with experimental structures (PDB, 6.2%), with homology models (HM,
2.8%), and predicted by PIONEER (90.9%), and performed the enrichment analysis for each
category separately. The results showed that the same enrichment pattern we observed is
independent of the data source, suggesting the robustness of PIONEER interface predictions
(Supplementary Fig. 8).

We next sought to identify the oncoPPIs that were significantly enriched by somatic mutations

in the interfaces in both individual cancer types and pan-cancer analyses. Specifically, the average
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number of PPIs affected by interface mutations is 10,741. Finally, our analysis yielded total 586
statistically significant oncoPPIs across 33 cancer types (Fig. 4b and Supplementary Data 3),
including KRAS-BRAF, TP53-EGLN1, and TP53-TP53BP2 across 10 cancer types.

We next turned to analyze the clinical sequencing data from MSK-MET, a pan-cancer cohort
of over 25,000 patients spanning 50 different tumor types>!. Of the 157,979 missense mutations
we investigated, 40,526 (~26%) were identified to affect 15,523 unique PPI interfaces. Focusing
on the PPIs that were disturbed in at least 10 samples in a specific cancer type, we performed
survival analysis to identify clinically actionable oncoPPIs whose disruption is significantly
associated with patient survival. KRAS has been reported to co-mutate with NF1 (neurofibromin
protein) in response to GTP hydrolysis®>. We identified that the mutations of KRAS-NF1 interface
residues, such as Asp30 and Glu31 on KRAS (Fig. 5a), are significantly associated with poor
survival rate compared to the wild-type (WT) group in pancreatic cancer (P = 2.7x10'%; Fig. 5b).
SPOP plays a multifaceted role in oncogenesis and progression by mediating degradation of
PTEN>, BRD3**, TP53BP1°°, PDX1°¢, and MACROH2A1°’. The SPOP MATH domain binds
to PTEN via a PIONEER-predicted interface mutation of p.Phe133Val on SPOP>¥, which is
significantly associated with survival rate in prostate cancer (P = 0.0021; Fig. 5b). Patients with
several PIONEER-predicted interface mutations (Thr231, Pro191 and Argl81 on TP53; Fig. 5a)
between TP53 (a key tumor suppressor gene) and KDM4D (a histone demethylase) are
significantly associated with poor survival in soft tissue sarcoma (P = 0.031; Fig. 5b). OncoPPI
analysis revealed that PIONEER-predicted interface mutations in ARIH2-TP53, kinase-substrate
(e.g., KIT-BLK), kinase-E3 ligase (e.g., MAPKAPK3-FBXW7), and cyclin-E3 ligase (e.g.,
CCND1-FBXO031), are significantly associated with survival rate in breast cancer (P =1 x 10%),

gastrointestinal stromal tumor (P = 0.011), non-small cell lung cancer (P =0.012), and endometrial
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cancer (P = 0.024), respectively (Fig. 5b and Supplementary Fig. 9). Accumulated evidence
suggested the mutations of CCNDI1 are associated with multiple cancer types®®. By analyzing
PIONEER-predicted oncoPPIs, we found PIONEER-predicted interface mutations of CCNDI1 are
significantly enriched at the CCND1-CDK4 interfaces in uterine cancer (P = 0.012) and low-grade
glioma (P = 0.048). We identified that CCND1 not only interacts with CDK4 but also TSC2 from
PIONEER-predicted interfaces. Specifically, we identified that CCNDI1 interacts with CDK4 and
TSC2 via two unique sets of interfaces (Fig. 5c). Next, we experimentally confirmed this result
using co-immunoprecipitation with 293T cells. Fig. 5d shows that a mutation of p.Lys114Arg on
CCNDI1 specifically disrupts the interaction between CCND1 and CDK4, without disrupting its
interaction with TSC2. Interestingly, mutation p.Glul62Lys on CCNDI1 does not disrupt its
interaction with CDK4, but does disrupt its interaction with TSC2. Both p.Lys114Arg and
p.Glul62Lys on CCNDI are associated with myeloma®® and lung cancer®!, respectively. These
results further demonstrate that PIONEER-generated structural human interactome can uncover
tumorigenesis with distinctive functions corresponding to distinct interfaces, even for those on the

same proteins.

PIONEER-predicted PPI-perturbing tumor alleles alter ubiquitination by E3 ligases
E3 ubiquitin ligases (E3s) are involved in cellular transformation and tumorigenesis by targeted

protein degradation®? ¢

. Identifying how somatic mutations alter PPIs of E3 ligases may offer
novel targets for development of targeted protein degradation therapies®*. We investigated 4,614
PIONEER-predicted oncoPPIs connecting 355 E3 ligases annotated from E3net® and Ubinet2.0%

databases. We next focused on the 204 putative oncoPPIs connecting E3 ligases using subject

matter expertise based on a combination of factors: 1) strong prediction from oncoPPI mutations
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on E3 ligases or their substrates; ii) significant association with patient survival rates; and iii)
significant association with drug responses measured in tumor cell lines or patient-derived tumor
xenograft (PDX) mouse models (Supplementary Table 7).

Fig. 6a illustrates the selected examples of the most significant PIONEER-predicted
oncoPPIs of E3 ligases (Supplementary Table 8). Among 204 putative oncoPPIs of E3 ligases,
FBXW7 (F-box with 7 tandem WD40) has the greatest number of oncoPPls (47/204;
Supplementary Fig. 10 and Supplementary Table 9). FBXL17 (F-box/LRR-repeat protein 17) is a
multiple-RING E3 ligase that specifically recognizes and ubiquitinates the BTB proteins®’. We
found that PIONEER-predicted PPI-perturbing mutations of FBXL17-KEAPI, such as
p-Ser102Leu on KEAP1, were significantly associated with poor survival in non-small cell lung
cancer (P = 1.6 x 10713; Fig. 6b). A multiple-RING E3 ligase complex ANAPC1-ANAPC?2 (Fig.
6a) is positively regulated by the PTEN/PI3K/AKT pathway and modulates ubiquitin-dependent
cell cycle progression®®. We found that PIONEER-predicted PPI-perturbing mutations on
ANAPCI1-ANAPC?2 is associated with resistance to a PI3K inhibitor BKM120 (P = 0.0043;
Supplementary Fig. 11a). ITCH, a HECT-type E3 ubiquitin ligase, has been reported to mediate
BRAF kinase poly-ubiquitination and promote proliferation in melanoma cells®®. We found that
PIONEER-predicted PPI-perturbing mutations of BRAF-ITCH, such as p.Val600Glu and
p.Lys601Glu on BRAF, are significantly associated with sensitivity to dabrafenib (an ATP-
competitive inhibitor; P = 1.7 x 102!; Supplementary Fig. 11b). STUBI, a U-box-dependent E3
ubiquitin ligase, has been reported to degrade SMADA4, an intracellular signaling mediator of the
TGF-B pathway’®. Multiple PIONEER-predicted PPI-perturbing mutations of STUB1-SMAD4,
including p.Gly419Arg (Trp, Val) and p.Leu540Pro (Arg) on SMADA4, are significantly associated

with poor survival rate in colorectal cancer (P = 0.025; Supplementary Fig. 11c). A single-RING
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E3 ligase TRIM24 is an oncogenic transcription cofactor overexpressed in breast cancer’!. We
found that PIONEER-predicted PPI-perturbing mutations of TRIM24-H3C1 (Fig. 6a) are
significantly associated with resistance to GDC0941 (an EGFR signaling inhibitor; P = 0.028;
Supplementary Fig. 11d). Treatment with an EGFR inhibitor suppresses TRIM24 expression and
H3K23 acetylation and thereby inhibits EGFR-driven tumor growth’? , supporting the PIONEER-
predicted oncoPPI findings.

KEAPI is an adapter of E3 ligase that senses oxidative stress by mediating degradation of
NFE2L2/NRF2, a key transcription factor in multiple cancer types’® . Patients with non-small cell
lung cancer harboring PIONEER-predicted oncoPPI mutations on NRF2 have significantly worse
survival than the WT (P = 0.029; Fig. 6¢c). KEAP1 recognizes NRF2 structurally through its
conserved ETGE (aa 79-82) and DLG (aa 29-31) motifs’* 7>, We experimentally confirmed the
association of NRF2 mutations and WT KEAP1 by Co-immunoprecipitation. As shown in Fig. 6d,
p-Glu79Lys and p.Thr80Lys mutations on the NRF2 ETGE motif (Fig. 6a) reduce the binding of
NRF2 to KEAP1, whereas the p.Leu30Phe mutation on the NRF2 DLG motif partially sustains
the binding of NRF2 to KEAP1. The mutation of p. Thr80Lys releases NRF2 from association with
KEAPI1 and protects NRF2 from ubiquitination and subsequent degradation. We next tested
whether p.Thr80Lys on NRF2 contributes to the proliferation of non-small cell lung cancer cells.
A pro-proliferative effect of p. Thr80Lys was observed in a colony formation assay (Fig. 6e,f).
Overexpression of WT and p.Thr80Lys NRF2 promoted the growth of the non-small cell lung
cancer H1975 cell line harboring WT KEAP1 (Fig. 6g). In summary, PIONEER-predicted
oncoPPI-perturbing tumor alleles that alter ubiquitination by E3 ligases are significantly associated

with patient survival, drug responses, and in vitro tumor growth.
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Pharmacogenomic landscape of the PIONEER-predicted oncoPPIs

We next turned to inspect correlation between potential oncoPPIs and drug responses using high-
throughput drug screening data (Fig. 7a). The datasets we used include the drug pharmacogenomic
profiles of >1,000 cancer cell lines and ~250 FDA-approved or clinical investigational agents from
the Genomics of Drug Sensitivity in Cancer (GDSC) database and in vivo compound screens using
~1,000 PDX models to assess patient responses to 62 anticancer agents’® . For each pair of
oncoPPI and compound, the drug response characterization ICso vector was correlated with the
mutation status of the oncoPPIs using a linear ANOV A model. Fig. 7b shows the landscape of the
correlations between PPIs and 56 clinically investigational or approved anti-cancer drugs. In total,
we identified 4,473 interface mutations that have significant correlations with drug
sensitivity/resistance. Among the most significant correlations from PDX models, we found that
PIONEER-predicted CDK6-BECNI interface mutations was associated with resistance to
treatment using a BYL719 plus encorafenib drug combination, while the mutations in PIONEER-
predicted BRAF-MAP2K3 interfaces (e.g., interface mutations p.Val600Glu on BRAF and
p.Argl52GIn on MAP2K3, both found in bladder urothelial carcinoma and glioblastoma)
conferred significant drug sensitivity to encorafenib plus binimetinib treatment (Fig. 7¢). In
addition, we found significant drug resistance to trastuzumab and BYL719 among those cases
harboring mutations in PIONEER-predicted STK4-DDIT4L (e.g., p.Argl81GIln on STK4) and
ORC4-MTUSI (e.g., p.His166Tyr on ORC4) interfaces, respectively (Fig. 7¢). Taken together,
PIONEER-predicted PPI interface mutations can significantly affect drug sensitivity/resistance in

antitumor treatment using both cancer cell lines and PDX models (Supplementary Table 9).

Proteogenomic perturbation by PIONEER-predicted interface mutations
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Recent proteogenomic study showed that somatic mutations altered protein or phosphoprotein
abundance and further correlated with drug responses or cancer patient survival rate’”’. We next
inspected whether PIONEER-predicted interface mutations more likely influence protein
abundances in colon adenocarcinoma (COAD) and Uterine Corpus Endometrial Carcinoma
(UCEC). The abundance of phosphoproteins was quantified using the tandem mass tag (TMT)
assays by The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium. We
found that PIONEER-predicted interface mutations significantly reduced phosphoprotein
abundances in both COAD (P = 0.018) and UCEC (P =0.001) (Fig. 8a).

We next turned to inspect how the phosphorylation-associated PPI mutations identified by
PIONEER perturb EGFR-RAS-RAF-MEK-ERK signaling networks in COAD (Fig. 8b and
Supplementary Table 10). The mutations involved in this signaling cascade have been suggested
to regulate oncogenesis in colon and other cancers’® 7. EGFR dimerization was activated by EGF
in the extracellular domain (PDB IDs: 3NJP and 2M20; Fig. 8b)*® 8!, Binding of EGF triggers
conformational changes in the C-terminal domain (PDB: 2GS6)% and results in
autophosphorylation of specific tyrosine residues, such as Tyr1068%°. The C-terminal domain of
EGFR is essential for adapter protein binding to initiate signal transduction, such as by mediating
GRB2/SOS184. Via PIONEER, we identified that two mutations, p.Thr10211le and p.Thr1074Ile
on EGFR C-terminal domain, may alter the phosphorylated PPI interaction with downstream
adapter protein of SOS1 (Fig. 8b). SOS1, a RAS activator by loading GTP, which was reported to
allosterically interact with the Ras/Ras p.Gly12Cys mutant (PDB: 6EPO). SOS1 deficiency
attenuates KRAS-induced leukemia in mouse model®®. A selective SOS1-KRAS PPI inhibitor, BI
1701963, has been developed for advanced KRAS-mutated solid tumors in a Phase 1 clinical

trial®” . Using PIONEER, we identified two SOS1-KRAS PPI perturbation mutations, including
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p.Tyr884His on SOS1 and p.GIn61His on KRAS (Fig. 8b). Specifically, Tyr884 and Gln61 have
strong hydrogen bond and cation-rt interaction between KRAS and SOS1. We pinpointed that
PIONEER-predicted SOS1-KRAS interface mutations are significantly related to trametinib
resistance compared to WT group (P = 7.6x107'2; Fig. 8c), offering potential pharmacogenomic
biomarkers for trametinib (a MEK inhibitor) in KRAS-mutant colorectal cancer®® . Binimetinib,
another MEK-selective inhibitor®, is significantly associated with resistance in PDX models
harboring PIONEER-predicted SOS1-KRAS interface mutations (P = 0.0044; Fig. 8c).

GTP-bound active RAS recruits RAF proteins (e.g., RAF1 and BRAF) to the plasma
membrane to orchestrate MAPK signaling®®. Fig. 8b shows PPIs of both KRAS-RAF1 and KRAS-
BRAF constructed in one structure complex. Oncogenic mutations on KRAS, such as p.Gly12Val,
p.Gly13Asp, and p.GIn61Leu, are the most frequent mutations in common tumors’'. PIONEER-
predicted interface mutations of KRAS-RAF1 N-terminal, such as p.Arg59Ala and p.Asn64Ala
on RAFI1, are associated with a significantly reduced binding affinity of the PPI*?, but not
oncogenic mutations p.Gly12Val and p.Gly13Asp on KRAS (PDB ID: 6VIJJ; Fig. 8b). In addition,
we identified PIONEER-predicted KRAS-BRAF interface mutations are significantly associated
with resistance of a MEK inhibitor refametinib® (P= 4.7 x 107; Fig. 8c).

The key step for triggering the signaling cascade is that RAS-induced RAF dimerization
subsequently phosphorylates MEK 1/2 protein kinases’®. Of RAF family members, BRAF shows
the most potent activity?! and the BRAF p.Val600Glu mutation confers a poor survival and
prognosis in colorectal cancer’ °. Via PIONEER, we identified two PPI interface mutations,
p.Gly466Val and p.Asn581Ser on BRAF, may mediate how BRAF coordinates MEK1 by its C-
lobes in the kinase domain (Fig. 8b), consistent with a previous study”®. Considering that the E3

ligase ITCH is also involved in BRAF regulation and binding to the kinase domain (Fig. 6a), we
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identified that PIONEER-predicted interface residue of Val600 on BRAF may perturb interaction
between BRAF and ITCH (Fig. 8b). Phosphorylated MEK1 acts as upstream activators to
phosphorylate ERK1/2 kinase activities in the MAPK cascade’’. PIONEER-predicted interface
mutation of p.Asp179Asn on ERK1 alter MEK 1-ERK 1 signaling network (Fig. 8b)°%. In summary,
we showed that PIONEER-predicted oncoPPIs could characterize proteogenomic alterations in the
EGFR-RAS-RAF-MEK-ERK signaling pathways in colon cancer and other cancer signaling

pathways if broadly applied.

Construction of the structurally-informed interactome web server

In total, our structurally-informed interactomes cover all 282,095 experimentally-determined
binary interactions in the literature for humans and seven other commonly studied organisms,
including all 146,138 experimentally-determined human interactions (Figs. 1a and 2a). The web
server is a user-friendly tool for genome-wide protein functional exploration through which users
can identify functionally enriched areas of protein interactomes and browse multi-scale
structurally-informed interactome networks (Supplementary Fig. 12). It utilizes the PIONEER
framework to provide seamlessly rapid on-demand predictions for user-submitted interactions.
The web tool also contains 161,244 disease-associated mutations across 10,564 disorders in
HGMD and ClinVar” with their per-disease enrichment pre-computed on protein interaction
interfaces with 3D spatial clustering at atomic resolution for interacting protein pairs with structure
models, and at the residue and domain levels for those without structures. By providing a user-
friendly tool to visualize each protein and its given interactors with all available domain
information, co-crystal structures, homology models, and PIONEER-predicted interfaces coupled

with all known disease mutation information, PIONEER seamlessly allows users to explore the
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effect of mutations on 3D structures. We believe that the PIONEER web server will be
instrumental in uncovering novel discoveries in relationships among these mutations with regards
to the study of disease mechanisms and corresponding personalized treatment in cancer or other

diseases if broadly applied.

Discussion

The systematic characterization of structural protein-protein interactome network models from
individual protein sequences and structures remains a major challenge in network medicine and is

100 The structural models of protein

of the utmost practical and theoretical importance®
interactions can be experimentally-determined through resource-intensive and time-consuming X-
ray crystallography, NMR, and more recently, cryo-EM experiments. Computational methods,
such as docking and homology modeling, have been developed to predict PPI interfaces. Although
docking methods can achieve atomic resolution, they do not generally behave well especially in
cases where proteins undergo large conformational changes!’!: 12, Homology modeling, which
covers only another ~3% of interactions, infers protein interfaces from templates of homologous
complexes'3. To date, ~91% of PPIs still do not have structural information. Hence, most network
studies model proteins as graph-theoretical nodes, which ignores the structural details of the
individual proteins as well as the spatial constraints of their interactions.

We previously developed the innovative ensemble random forest-based pipeline, ECLAIR,
which was among the first to generate the full-proteome structural human interactome network.
Over the last several years, deep learning techniques have shown exceptional representation

learning abilities and much improved performance, especially in processing 3D protein

structures'®®, compared to traditional machine learning algorithms, including random forest. A
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number of methods?! 2> 26, therefore, have been proposed that have gained considerable traction
for protein interface prediction. However, a major limitation of these methods is that they do not
leverage the notable combination of feature representations indicated in both structures and
sequences well nor do they effectively integrate embeddings from both the local regions of target
residues and the whole proteins, thereby leaving much room for improvement in prediction quality.
Recently, Rose TTAFold!* and AlphaFold2!'%° have made a significant breakthrough in generating
single protein structural models from solely protein sequences, which is extremely helpful for
protein interactome studies. Even more recently, AlphaFold-based methods, such as AlphaFold-
Multimer and AF2Complex, have been developed to generated structural models for multi-chain
protein complexes. AlphaFold Multimer requires joint multiple sequence alignments paired by
species while AF2Complex does not, but they are both very computationally intensive, and, thus,
cannot be scaled to generate models for the hundreds of thousands of interactions in whole
interactomes. Furthermore, a recent study has shown that AlphaFold2 can successfully generate
high-quality models for only ~2% of human interactions without known homologous structures!%®.

Here, we present a comprehensive, multiscale structurally-informed interactome
framework and web server, which we named PIONEER, to combine seamlessly genomic-scale
data with structural proteomic analyses. This resource is based on our deep-learning-based
ensemble framework, which accurately predicts partner-specific interaction interfaces for all
protein-protein interactions in humans and seven other common model organisms. We found
PIONEER outperforms other existing state-of-the-art methods, including our previously
developed method, ECLAIR. Moreover, large-scale statistical analysis and mutagenesis
experiments show that PIONEER-predicted interfaces reveal similar biological significance as

those of known interfaces in the PDB. Further analysis shows that interactome PIONEER plays a
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pivotal role in dissecting the pathobiology of diseases. Our work is implemented as both a web
server platform and a software package to help facilitate systematic structural analysis in genomic
studies, thereby allowing the wider scientific community to adopt and further develop upon our
PIONEER framework.

With the rapid advances in sequencing technologies, multiple whole genome/exome
sequencing projects are currently being carried out, including TCGA, cardiovascular medicine (i.e.,
National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program!®7), and
Alzheimer’s disease sequencing project!®®, to identify trait/disease-associated genes and mutations.
Although the 3D structure of each protein fundamentally determines its function, systematic
structural analysis is currently not part of any major genomic study pipeline. One of the main
reasons for this disconnection is the poor coverage of atomic-resolution structural models of
proteins and their interactions. We expect our comprehensive structurally-informed interactomes
generated by PIONEER, which provides high-quality partner-specific interfaces on the scale of
the whole interactome, will help bridge the gap between genome-scale data and structural
proteomic analyses. With the high-quality and comprehensive map of protein interfaces, there are
numerous valuable extensions considering the biophysical effects induced by mutations at protein
interfaces, such as the investigation of disease etiology and the corresponding drug prioritization,
and prediction of specific disease pathobiology. The partner-specific property of PIONEER-
generated structurally-informed interactomes also allows us to study the pleiotropic effects of
genes. Therefore, the powerful and comprehensive PIONEER framework will make such
extensive research possible, and, more importantly, provide potentially unforeseen avenues for

drug design and therapeutics.
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The current experimentally-determined binary human interactome in the literature is far
from complete. The scientific community has dedicated extensive efforts both experimentally
(such as HuRI!'*, BioPlex'!?, and OpenCell''!) and computationally (such as PrePPI'!? and HIGH-
PPI'3), to ascertaining which pairs of human proteins interact. As more protein interactions are
detected for human proteins, our PIONEER resource will be regularly updated to make interface
predictions for newly-released human PPIs. Specifically, PrePPI is a very interesting method that
uses structural homology to make accurate PPI predictions. Although PrePPI does not make
interface predictions (thus not comparable to PIONEER), the structural information obtained by
PrePPI can be incorporated into our PIONEER pipeline as an additional feature to potentially
improve our interface prediction performance in the future.

We have implemented PIONEER and the resulting multiscale structurally-informed
interactomes into a user-friendly web server platform, and also constructed the PIONEER
framework as a flexible software package, which benefits users and developers as well. We
demonstrated PIONEER’s utility in discovering new biological insights into multiple genome
medicine studies. We combined PIONEER predictions along with co-crystal structures and
homology models to reconstruct a subnetwork in the human interactome that is enriched with
disease mutations. Specifically, we demonstrated the PIONEER-predicted interface mutations
significantly enriched in both somatic cancer and germline mutations. Moreover, PIONEER-
predicted interface mutations highly correlated with cancer patient survival rate and anti-cancer
responses in both tumor cell lines and PDX models. In addition, we experimentally validated
PIONEER-predicted PPI interface mutations using CCND1-CDK4 and KEAP1-NRF2 as two
examples. In particular, PFIONEER-predicted PPI interface mutation altering E3 ligase between

significantly promoted non-small cell lung cancer cell growth. In summary, these comprehensive
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observations illustrated high clinical utility of the PIONEER-predicted structurally-informed
interactome networks in genome research and precision medicine studies.

The web server platform allows for a broad range of investigations related to protein
interfaces on a genome-wide scale while also carrying out on-demand interface predictions for
user-uploaded interactions. Furthermore, the software package increases the utilization,
maintenance, and further development of PIONEER by the wider scientific community. The
accompanying web portal, containing all relevant PDB structures and homology models, as well
as predicted interface residues and domains, significantly reduces the barrier-to-entry to perform
systematic structural analysis for most genetics/genomics researchers, and allows for
implementing such analyses (e.g., looking for enrichment of mutations on protein structures and
interfaces at various resolutions, distinguishing mutations in different interfaces of the same
protein) in genome/exome sequencing projects. Additionally, the continually updated and
extendable software package bears great potential for stimulating the adoption and development

of our PIONEER framework for related genome medicine research.

Methods

PPI interface data construction

We compiled 282,095 binary interactions for H. sapiens, A. thaliana, S. cerevisiae, D.
melanogaster, C. elegans, M. musculus, S. pombe and E. coli in total, including 9,123 full
experimentally-determined binary interactions in humans. The interactions with known co-crystal
structures in the PDB were used to form the training, validation, and testing datasets to build

PIONEER models, which then predicted the interfaces for all the other interactions without known
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co-crystal or homologous structures. The homologous structures are collected from
Interactome3D!!4,

We calculated the partner-specific interface residues for those interactions with known co-
crystal structures in the PDB. SIFTS!!S was then used to map the UniProt-indexed residues to the
PDB-indexed residues. To determine the interface residues, we used NACCESS!'¢ to assess the
change in solvent-accessible surface area of the protein in complex and in isolation. Specifically,
an interface residue is defined as a residue that is a surface residue (>15% exposed surface) with
its SASA decreasing by >1.0A? in the complex. We reviewed all available structures in the PDB
for an interaction, and considered a residue to be in the interface of that interaction if it had been
calculated to be an interface residue in at least one of the corresponding co-crystal structures. By
only considering interactions for which aggregated co-crystal structures have been combined to
cover at least 30% of the UniProt residues for both interacting proteins, the training, validation,
and independent benchmark testing datasets were built, which included a random selection of
2,615, 400, and 400 interactions with known co-crystal structures, which include 1,191,036;
174,739; and 186,326 residues for sufficient model training, validation, and testing, respectively.
The number of positive residues (interface residues) compared to negative residues (non-interface
residues) in this dataset is 175,911/1,015,125 (17.3%), 25,641/149,098 (17.2%), and
27,744/158,582 (17.5%), respectively. It is important to note that a single residue may be labelled
as positive for a specific interaction, and labelled negative for other interactions. Additionally, we
ensured that no homologous interactions or repeated proteins existed between any of the two
datasets to guarantee the robustness and generalizability of our models, and a fair performance

evaluation. We define homologous interactions as a pair of interactions where both proteins in one
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interaction are homologs of both proteins in the other interaction. Three iterations of PSI-

BLAST!"!7 at an E-value cutoff 0.001 were carried out to determine the protein homologs.

Feature characterization

Our previous pipeline ECLAIR employed a set of representative feature groups to describe the
residues, including biophysical residue properties, evolutionary sequence conservation, co-
evolution, SASA, and docking-based metrics. While retaining all features from ECLAIR here, we
also implemented two new feature groups to seek a more comprehensive and in-depth feature
characterization. From each feature group, we synthesized a variation of features using scaling, by
which we mean that each feature used its raw calculated values and normalized values against the
average of all positions per protein.

1. Predicted protein structural properties: Here, in addition to SASA used in ECLAIR, we
also used RaptorX!!8 to predict the solvent accessibility state (buried, medium, and exposed)
and the secondary structure state (helix, strand, and coil), which are especially useful for
proteins without structural information. The predicted solvent accessibility and secondary
structure were represented by their predicted probabilities.

2. Pair potential: In our previous ECLAIR, we used co-evolution and docking-based features
to describe this partner-specific issue, which, however, is not available for the interactions
not having co-evolution and structural information, respectively. Although our deep
learning architectures solve this problem by considering the partner protein embedding
derived from the inputs, here, inspired by the pairing preferences at protein-protein
interfaces proposed by Glaser et al.''®, we also proposed a novel feature, pair potential, to

specifically characterize the interface propensity for the target protein with respect to its
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respective partner. Pair potential was developed solely based on sequence information so
it can be applied to all the binary protein interactions. To calculate pair potential, we need
first to calculate the propensity matrix G of contacting residue pairs:
Gij = log(Qi;/(W; = W))),
Qij = Cij * Vi x Vi /X ji<jy(Cij * Vi % V),
Wi = Ni/2N;,
where Q;; is the normalized number of contacting residue pairs between residues i in the
target protein and j in the partner protein, Cj is the number of contacting residue pairs
observed between residues i and j, V; is the volume of residue i, W; is the normalized
frequency of interfaces, and N; is the number of interface residues i from both target and
partner proteins. The propensity matrix G was calculated using only interface residues in
our training dataset. The pair potential for each residue in the target protein can, thus, be
calculated as:
Py = Zi(Gyj * Fy),

where F} is the frequency of residue j in the partner protein.

Model building
In order to ensure that every residue is meticulously predicted through the maximal amount of
available information from both proteins in an interaction pair, we built four deep learning models
in which each model takes different interactions as input based on the availability of structures.
1. Structure-Structure model (Fig. 1c and Supplementary Figs. 1a and 2): For interactions
where both proteins have structural information available, the structure and sequence

information were embedded through GCNs with ARMA filters and bidirectional RNNs
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with GRUs, respectively. Specifically, GCN utilizes the structural information from graph
representations of protein structures where each node represents a residue, and each edge
signifies that two residues are adjacent. For each node, GCN incorporates its spatial
neighborhood information to generate a more comprehensive residue representation
whereas RNN explores amino acid sequences to include the sequential neighborhood
information of each residue. The RNN extracts the upstream and downstream sequence
information from each residue. Through the concatenation and mean aggregation, the
residue embeddings of both target protein and partner protein were then converted to
protein embeddings, respectively. Finally, the residue embeddings, target protein
embedding, and partner protein embedding were concatenated and fed into the fully
connected layers to make prediction for each residue in the target protein.

2. Sequence-Sequence model (Fig. 1d and Supplementary Figs. 1b and 2b): For interactions
where neither protein has structural information, the sequence information of both proteins
was fed into the RNNs. Next, in a manner similar to that described in the Structure-
Structure model, the residue embeddings, target protein embedding, and partner protein
embedding were concatenated and fed into the fully connected layers to make prediction
for each residue in the target protein.

3. Structure-Sequence and Sequence-Structure models (Fig. le,f and Supplementary Figs.
Ic,d and 2): The use of Structure-Sequence or Sequence-Structure model depends on
whether target protein or partner protein has structural information, respectively. The
transfer learning was used in these two models, which means the pre-trained GCNs-RNNs
in the above Structure-Structure model and RNNs in the above Sequence-Sequence model

were deployed in the Structure-Sequence model and the Sequence-Structure model for the
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processing of proteins with and without structural information, respectively. Subsequently,

in a manner similar to that described in the Structure-Structure model and Sequence-

Sequence model, the residue embeddings, target protein embedding, and partner protein

embedding were concatenated, and fed into the fully connected layers to make prediction

for each residue in the target protein.

We compiled a set of representative protein structures from the PDB and ModBase!?° for each
protein. For ModBase models, we only consider the models with a ModPipe Quality Score (MPSQ)
>1.1. The structures were sorted by the coverage of UniProt residues based on SIFTS, excluding
any homologous PDB structures of interacting protein pairs. Each residue in a target protein was
then reviewed if it has structural information; if so, it was predicted using that protein’s first
corresponding structure which contains the structural information of that residue; otherwise, it was
predicted using the sequence information. For the partner protein which has structural information,
we only used the corresponding structure with the highest UniProt coverage. To make our tool
more practically useful and to avoid the memorization of known interfaces, we use the single
protein structure which is not from co-crystal or homologous co-complex structures to train the
model.

Our PIONEER framework was implemented using PyTorch. To maximize model
performance, we carried out comprehensive hyperparameter optimization for the neural network
architectures, and the optimal set of hyperparameters were determined by maximizing area under
the receiver operating characteristic (AUROC) on the validation set. All four models were trained
with cross entropy loss and the Adam optimizer; the kernel activation function'?! was used in

GCNs and fully connected layers. The hyperparameters used for these four models can be found
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in our accompanying PIONEER software package. To solve the variable length inputs, we trained

all four models in a mini-batch mode with only a single protein pair.

Performance evaluation

After identifying the best hyperparameters for each model, a thorough examination was performed
using the benchmark testing set. Models were ordered based on their AUROCSs on the validation
set, which means the priorities of models are Structure-Structure, Structure-Sequence, Sequence-
Structure, and Sequence-Sequence, respectively. For the overall performance, the raw prediction
score of each residue was taken from the results of the model with highest priority according to
the availability of structures of the target protein containing that residue and its partner protein.
We further compared PIONEER with a number of existing state-of-the-art methods, including
ECLAIR, PeSTo, ScanNet, BIPSPI+, MaSIF-site, DeepPPISP, SASNet, PIPGCN, DELPHI'??,
SCRIBER!%, and DLPred!?*. We also reported performance metrics at various discrete and
comparable levels of confidence, which consist of Very low, Low, Medium, High, and Very high

prediction categories, by evenly separating into fifths our raw prediction scores.

Interface prediction

By further incorporating AlphaFold2-predicted structures, we predicted interface residues for the
remaining 256,946 interactions not resolved by either PDB structures or homology models. Each
residue was then predicted by the model of the ensemble with the highest priority according to the

availability of structures of the target protein containing that residue and its partner protein.

Mutagenesis validation experiments
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We performed mutagenesis experiments where we introduced random human population variants
from the Exome Sequencing Project'?® into predicted interfaces, known interfaces, and non-
interfaces. We randomly selected mutations of predicted interfaces in each of the PIONEER
prediction categories (very low-very high). We also selected random mutations of known
interfaces and non-interfaces in co-crystal structures in the PDB as positive and negative controls.
The selected mutations were introduced into the proteins according to our Clone-seq pipeline?®”’.
We generated 2,395 mutations on 1,141 proteins and examined their impact on 6,754 mutation-
interaction pairs (either disrupting or maintaining the interactions) using our high-throughput Y2H

assay.

Y2H assay

Y2H was performed as previously described®. Gateway LR reactions were used to transfer all wild-
type/mutant clones into our Y2H pDEST-AD and pDEST-DB vectors. All DB-X and AD-Y
plasmids were transformed into the Y2H strains MATa Y8930 and MATa Y8800, respectively.
Thereafter, each of the DB-X MATua transformants (wild-type and mutants) were mated with
corresponding AD-Y MATa transformants (wild-type and mutants) individually through
automated 96-well procedures, including inoculation of AD-Y and DB-X yeast cultures, mating
on YEPD media (incubated overnight at 30 °C), and replica-plating onto selective Synthetic
Complete media lacking histidine, leucine, and tryptophan, and supplemented with 1 mM of 3-
amino-1,2,4-triazole (SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg/l
cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, and SC-Leu-
Ade+CHX plates to test for CHX-sensitive expression of the LYS2::GAL1-HIS3 and GAL2-

ADE?2 reporter genes. The plates containing cycloheximide were used to select for cells that do
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not have the AD plasmid due to plasmid shuffling. Spontaneous auto-activators'?®, therefore, were
identified by growth on these control plates. These plates were incubated overnight at 30 °C and
“replica-cleaned” the following day. Subsequently, plates were incubated for three more days, after
which positive colonies were scored as those that grow on SC-Leu-Trp-His+3AT and/or on SC-
Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. Disruption of an
interaction by a mutation was defined as at least 50% reduction of growth consistently across both
reporter genes when compared to Y2H phenotypes of the corresponding wild-type allele as

benchmarked by 2-fold serial dilution experiments. All Y2H experiments were repeated 3 times.

Co-immunoprecipitation

The first co-immunoprecipitation assay was conducted to validate the PIONEER partner-specific
interface prediction. Specially, HEK293T cells were maintained in DMEM medium supplemented
10% Fetal Bovine Serum. Cells were seeded onto 10 cm dishes and incubated until 40-50%
confluency, and were transfected with a mixed solution of 3 pg of bait construct (CCND1), 3 pg
of prey construct (CDK4 or TSC2), 30 ul of 1 mg/ml PEI (Polysciences, 23966), and 1.2 ml
OptiMEM (Gibco, 31085-062). After 48 hrs incubation, transfected cells were washed three times
in 10 ml DPBS (VWR, 14190144), resuspended in 500 pl NP-40 lysis buffer (50 mM Tris pH 7.5,
150 mM NaCl, 5 mM EDTA, 1.0% NP-40) and incubated on the ice for 30 min. Whole lysate is
sonicated on a sonifier cell disruptor (BRANSON, 500-220-180) for 120 sec at 40% amplitude.
Extracts were cleared by centrifugation for 15 min at 16,100 g at 4 °C. For co-immunoprecipitation,
500 pl cell lysate per sample reaction was incubated with 15 pl of EZ view Red Anti-FLAG M2
Affinity Gel (Sigma, F2426) overnight 4 °C with a nutator. After incubation, bound proteins were

washed three times in NP-40 lysis buffer and then eluted in 200 pl of elution buffer (10 mM Tris-
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Cl pH 8.0, 1% SDS) at 65 °C for 15 min. FLAG-co-purified samples were run on 8% SDS-PAGE
gel and the proteins were transferred to PVDF membranes. Anti-FLAG (Sigma, F1804), and Anti-
MYC (Invitrogen, 132500) at both 1:5,000 dilutions were used for immunoblotting analysis.

We also validated mutation effects for KEAP1-NRF2 by co-immunoprecipitation assay, in
which HEK293T cells were co-transfected with WT KEP1 expressing vector and either WT NRF2,
p.Thr80Lys, p.Glu79Lys, or p.Leu30Phe expressing vectors for 48 hours. Cells were lysed with
NP-40 lysis buffer on ice, and supernatants were incubated with anti-HA antibody coupled with
protein A/G beads (Santa Cruz,) overnight. Immunoprecipitated complexes were washed with NP-

40 lysis buffer for 3 times, and were then eluted and subjected to Western blotting.

Collection and preparation of genome sequencing data

We collected variant data across multiple sources including TCGA, MSK-MET, 1KGP, ExAC,
HGMD, Cancer Cell Line Encyclopedia and genomic profiling of PDXs from previous study’®.
For unannotated datasets, we used VEP!?’ to annotate these variants in order to identify the
corresponding amino acid changes. We regard one PPI as mutated if one variant affects the amino

acid residue in the interface of either protein involved in the interaction.

Significance determination of PPI interface mutations

The significance of PPI interface mutations were tested using the method as described in our
previous study®. A PPI in which there is significant enrichment in interface mutations in one or the
other of the two protein-binding partners across individuals will be defined as an oncoPPI. For
each gene g; and its PPI interfaces, we assume that the observed number of mutations for a given

interface follows a binomial distribution, binomial (T, pg,), in which T is the total number of
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mutations observed in one gene, and p,, is the estimated mutation rate for the region of interest
under the null hypothesis that the region was not recurrently mutated. Using length (g;) to
represent the length of the protein product of gene g;, for each interface, we computed the P value
- the probability of observing >k mutations around this interface out of 7 total mutations observed

in this gene - using the following equations:

PX=k)=1-PX<k)=1 _’§<§)p5i (1= pg)"™™

_ length of interface
Pg: = length(g;)

Finally, we set the minimal P value across all the interfaces in a specific protein as the
representative P value of its coding gene g;, denoted P(g;). The significance of each PPI is defined
as the product of P values of the two proteins (gene products). All P values were adjusted for

multiple testing using the Bonferroni correction.

PPI system construction of E3 ligases
355 E3 ubiquitin ligases were retrieved and merged from E3net and Ubinet2.0. 4,613 E3s-
associated oncoPPIs were analyzed after removing PPIs with homodimers or without gene name.
These oncoPPIs include 198 oncoPPIs from the PDB database, 197 from Homology Models, and
4,218 from PIONEER. The correlations between mutations in E3 oncoPPIs and anticancer drug
responses in TCGA cell lines, PDX models, and cancer survival rates from TCGA and MSK
MetTropism datasets were then calculated (Supplementary Table 9).

Complex crystal structures (PDBs: 3HQH, 3037,401V, 5G05, SLNB, 5VZU, 6F8F, 6168,
6M90, 6WCQ, 7K2M and 7LIO) were accessed from the RCSB PDB protein data bank. The

structures in the complex without co-crystal structures were retrieved from the AlphaFold2 portal
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(https://alphafold.ebi.ac.uk). PIONEER predicted PPI models were constructed using

HADDOCK!?. The names, mutations and PDB ID were also shown in Supplementary Table 8.

The linear ANOVA model

We used the drug response data of human cancer cell line from GDSC datasets and to investigate
the association of PPI interface mutation with drug response. For each drug, a drug-response vector
consisting of ICso values was modeled using the status of a genomic feature (whether a PPI
interface is mutated), the tissue of origin of the cell lines, screening medium, and growth properties
by fitting a linear model. A genomic feature-drug pair was tested only if the final ICso vector
contained at least 10 positive cell lines. The effect size was quantified through Cohen’s d statistic
using the difference between two means divided by a pooled standard deviation for the data. The
resulting P-values were corrected by the Benjamini-Hochberg method!?. Similar to cell line drug
response analysis, we also used the drug response data from high-throughput screening using PDX
models to study the association of PPI interface mutation with drug response using linear model.

All statistical analyses were performed using the R package (v4.2.0, http://www.r-project.org/).

System structural construction of EGFR-RAS-RAF-MEK-ERK signaling network

EGR-EGFR complex were constructed by three crystal structures (PDB: 3NJP, 2M20, 2GS6).
Membrane models were built by CHARMM-GUI'*?. SOS1-KRAS complex (PDB: 6EPO),
KRAS-RAFI1 complex (PDB: 6V1J), MEK1-BRAF complex (PDB: 6Q0J), MEK1 (PDB: 3WIG),
and ERK1 (PDB: 4QTB) were accessed from the RCSB PDB protein data bank. Two subunits of

RAF proteins are represented by RAF1 and BRAF, separately. The ITCH-BRAF complex model
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was generated using HADDOCK. All images were processed using PyMOL. The complex names,

mutations and PDB ID were also shown in Supplementary Table 10.

Cell viability assay

H1975 cells were transfected with NRF2 T80K/WT-expressing vectors or empty vectors using
Lipofectamine 3000 (Thermofisher). For growth curve measurement, 3,000 cells were planted into
96-well plates, and viability was measured using CellTiter 96 AQueous MTS Reagent (Promega,)

at days 0, 2 and 4.

Colony formation assay
For the colony formation assay, 2,000 cells were plated into 6-well plates. After 2 weeks, cells
were fixed with 4% paraformaldehyde and stained with crystal violet. Relative growth index was

analyzed using ImagelJ software!3!.

Web server development

The PIONEER web server is written in Python using the Django framework. The web server
displays the full human interactome using co-crystal structures from PDB, homology models from
Interactome3D!"'%, and PIONEER-predicted interfaces. These data, along with auxiliary data about
each protein, are stored on a Postgres database. The front-end displays this data using jQuery in
two different web pages. The first page displays all information associated with a single protein-
protein interaction. We display the protein-protein interaction interface information, show where
the interface residues lie on the PFAM domains for each protein, and depict where the disease

mutations are enriched on the interaction interface. The disease mutation information is obtained
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from HGMD. We display a number of 3D structures to help visualize the interaction interface.
These includes the high-quality 3D structures from PDB and ModBase associated with each
protein as well as any available high-quality PDB co-crystal structures. Furthermore, we display
all AlphaFold structures associated with each protein. These structures are displayed using the
MichelaNGLo viewer!*?. The second webpage displays a subset of the human interactome
associated with a particular protein or a particular disease, depending on the user’s input on the
homepage. We use the springy.js network visualization library here.

The web server also hosts interaction data for eight species: H. sapiens, A. thaliana, S.
cerevisiae, D. melanogaster, C. elegans, M. musculus, S. pombe and E. coli. Most importantly, the
PIONEER web server also consists of an on-demand prediction pipeline that allows users to
predict the interaction interface between any two proteins given their UniProt IDs. The on-demand
prediction pipeline returns the raw predictions made by PIONEER and shows the two-dimensional
protein structure visualizing which regions of the protein are more likely to lie on the interaction

interface. The prediction pipeline utilizes the SLURM job scheduler to serve these requests.

Data availability

Mutation data from the TCGA study were downloaded from NCI genomic data commons

(https://portal.gdc.cancer.gov). MSK MetTropism dataset was downloaded from cBioPortal

(https://www.cbioportal.org/study/summary?id=msk met 2021). Variant data from 1000

Genomes  Project  were  downloaded from  NCBI  FTP Site  (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp). The ExAC data set was downloaded from gnomAD

(https://gnomad.broadinstitute.org/downloads#exac-variants). Variants collected by HGMD were

downloaded from (https://www.hgmd.cf.ac.uk/ac/index.php). Genomic variants and drug response
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data of human <cancer «cell lines were downloaded from GDSC datasets

(https://www.cancerrxgene.org/downloads/bulk _download). Genomic profiling of PDXs and drug

response curve metrics of PCTs were downloaded from the Supplementary Table 1 of the

corresponding paper (https://www.nature.com/articles/nm.3954#Sec28). All other data supporting

the results in this study are available in supplementary materials, and at https://pioneer.yulab.org.

Code availability

The source code of PIONEER is available at https://github.com/hyulab/PIONEER.
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Fig. 1 | Overview of the PIONEER framework. a, The current size of protein-protein
interactions from the eight common model organisms with the coverage of experimentally
determined co-crystal structures, homology models, and the unresolved interactions. b, The
partner-specific interactions are prioritized in our training dataset for solving partner-specific
interface prediction. c-f, PIONEER architecture consists of an ensemble of four deep learning
models that ensures every residue in the interactomes can be predicted with the maximal amount
of available information, and uses a comprehensive set of biophysical, evolutionary, structural,
and sequence features for in-depth feature characterization. The ¢ and d models represent
interactions in which both proteins and neither protein has structural information available,
respectively. The GCNs and RNNs are used for structure and sequence information embeddings,
respectively. The e and f models represent interactions in which only one protein has structure
information available. The transfer learning was used in e and f, specifically, the pre-trained
GCNs-RNNs in a and RNNs in b are deployed in ¢ and d.
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Fig. 2 | PIONEER provides high-quality interfaces for the whole proteome. a, Workflow for
compiling interactome PIONEER. The interfaces calculated from experimentally determined co-
crystal structures or homology models are primarily used, the remaining unresolved interactions
are predicted by PIONEER. b, Comparison of receiver operating characteristic (ROC) curves of
PIONEER Structure-Structure model with other state-of-the-art structure-based methods. c,
Comparison of ROC curves of PIONEER Sequence-Sequence model with other state-of-the-art
sequence-based methods. d, Percentage of CAPRI decoys having a given average PIONEER
prediction score at interfaces. e, Fraction of interactions disrupted by random population variants
in PIONEER-predicted and known interfaces.



Figure 3

Q

20

1.5 P =2.04x102

L ——— |
10 P=1.46x107 P=192x10°
p=382x101 1

=

Enrichmentl(log odds ratio) &
=

S

il

i

H
i

%

Enrichment (log odds ratio)
o
o

0.0
- Common
-0.5 - 04 4 s Rare
== m== Jltra rare
1.0 0.6
Known Very low Low High Very high  Known Known Known Predicted Predicted
non-interfaces interfaces interfaces non-interfaces interfaces non-interfaces
Interface potential of mutation locus Location of population variants
c = e BAF (A,C) PPIA (A) HIF-2a (H)
< 12 P < 2x10-16 ; 2 ~
c —
° 10
= - )
g 4 P<2x107® LyS542 bt & Ala53
g Leu543p5m Ala12
5 4 ﬁvfh Gly51
S > His50
g o LMNA (F) SYUA (B) VHL (V)
L 1KGP ExAC HGMD
PDB: 6GHD PDB:6142 PDB: 6BVB

Disease-associated
PPI interface mutations
Autoimmune
Cancer
Cardiovascular
Metabolic
Neurological
Pulmonary
Other

@ 0000000

Neighbor

. UBE2I

‘@
_®° COL4A5,.
SETPC. 2 et

Degree
O Low
@

SR e
BAG3 CRYAB 0

[
@ High

seeo@
MTNR1A

o (@it ODKAS
PRKAR1A




Fig. 3 | PIONEER-predicted PPI alleles are enriched in disease-associated mutations. a,
Enrichment of disease mutations in PIONEER-predicted and known interfaces. Significance was
determined by two-tailed Z-test. b, Enrichment of population variants in PIONEER-predicted and
known interfaces. Predicted deleteriousness of population variants in PIONEER-predicted and
known interfaces using PolyPhen-2. ¢, Distribution of mutation burden at protein—protein
interfaces for disease-associated germline mutations from HGMD in comparison with mutations
from the 1KGP and ExAC. Significance was determined by two-proportion Z-test. d, PPI network
with disease-associated interface mutations. Disease associations of the interface mutations were
extracted from the HGMD database. Using the PIONEER-predicted high-confidence interface
information, PPIs that have at least one disease-associated interface mutation from either one of
the two interacting proteins were included in the network. Node colors were determined by the
disease categories of their disease-associated interface mutations. Interacting proteins with no
known disease-associated interface mutations were colored as “Neighbor”. The final network
contains 10,753 PPIs among 5,684 proteins. The figure shows the largest connected component of
the network that has 10,706 edges and 5,605 nodes. e, Selected structural complex pairs showing
germline mutations in the PPI interface. Three disease associated PPIs with mutations are shown:
LMNA-BAF (PDB: 6GHD), PPIA-SYUA (PDB: 6142), and VHL-HIF-2a (PDB: 6BVB). The
surface of proteins in complex are shown in blue and wheat. Mutations are shown in green.
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Fig. 4 | A landscape of oncoPPIs identified by PIONEER across 33 cancer types (~11,000
cancer genomes). a, Distribution of missense somatic mutations in protein—protein interfaces
versus non-interfaces across 33 cancer types/subtypes from TCGA. The data are represented as
violin plots with underlaid boxplots, where the middle line is the median, the lower and upper
edges of the rectangle are the first and third quartiles, and the lower and upper whiskers of the
violin plot represent the interquartile range (IQR) X 1.5. Significance was determined by two-
tailed Wilcoxon rank-sum test. b, Circos plot displaying significant putative oncoPPIs harboring a
statistically significant excess number of missense somatic mutations at PPI interfaces across 33
cancer types. Putative oncoPPIs with various significance levels are plotted in the three inner
layers. The links (edges, orange) connecting two oncoPPIs indicate two cancer types sharing the
same oncoPPlIs. Selected significant oncoPPIs and their related mutations are plotted on the outer
surface. The length of each line is proportional to —log;(P).
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Fig. 5 | PIONEER-predicted oncoPPIs are associated with patient survival. a, Selected
structural complex pairs showing somatic mutations in the oncoPPI interface. b, Survival analysis
of six exemplary PPI perturbing mutations in diverse cancer types. Significance was determined
by log-rank test. ¢, Example of PIONEER partner-specific interface prediction. The mutations
CCNDI p.Lysl14Arg and CCNDI p.Glul62Lys are shown in green and pink, respectively. d,
Experimental validation of the partner-specific interface prediction in ¢ by co-
immunoprecipitation using HEK293T cells.
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Fig. 6 | PIONEER-predicted PPI-perturbing tumor alleles in ubiquitination by E3 ligases. a,
A landscape of six E3 complexes with PPI perturbing mutations. The complex or single protein
models from PDB or PIONEER modeling are shown. The protein in wheat denotes the E3 ligase,
while the protein in blue denotes the specific substrate of E3 ligase. Interface mutations are
denoted in green. b and ¢, Interface mutations of KEAP1-FBXL17 (b) and KEAP1-NRF2 (¢) are
significantly correlated with survival rate in non-small cell lung cancer. Significance was
determined by log-rank test. d, Experimental validation of mutation effects of p.Thr80Lys and
p.Glu79Lys on the NRF2 ETGE motif, and p.Leu30Phe on the NRF2 DLG motif on the
interactions between KEAP1 and WT NRF2 were determined by co-immunoprecipitation with
HEK293T cells. e and f, Colony formation assay of H1975 cells transfected with NRF2
p-Thr80Lys, NRF2 WT expressing vectors, and empty vectors. g, Growth curves of H1975 cells
transfected with NRF2 p.Thr80Lys, NRF2 WT expressing vectors, and empty vectors, at day 4.
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Fig. 7 | Pharmacogenomic landscape identified by the PIONEER-predicted interactome
network. a, Drug responses evaluated by oncoPPIs in the PDX models. Effect size was quantified
by Cohen’s d statistic using the difference between two means divided by a pooled s.d. for the
data. b, Circos plot displaying drug responses evaluated by putative PIONEER-predicted
oncoPPIs harboring a statistically significant excess number of missense mutations at PPI
interfaces, following a binomial distribution across selected anticancer therapeutic agents in
cancer cell lines. Each node denotes a specific oncoPPl. Node size denotes significance
determined by ANOVA. Effect size was quantified by Cohen’s d statistic using the difference
between two means divided by a pooled s.d. for the data. Node color denotes three different types
of PPIs: (1) Experimental: Red; (2) HM: Blue; and (3) PIONEER: Green. ¢, Highlighted examples
of drug responses. Values were calculated using ANOVA. Data are represented as a boxplot with
an underlaid violin plot in which the middle line is the median, the lower and upper edges of the
box are the first and third quartiles, the whiskers represent IQR X 1.5, and beyond the whiskers
are outlier points. Significance was determined by ANOVA.
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Fig. 8 | Proteogenomics of the PIONEER-predicted interactome network. a, Phosphorylation-
associated PPI perturbing mutations altered the proteomic changes in COAD and UCEC. The
abundance of proteins was quantified using the TMT technique. Significance was determined by
two-tailed Wilcoxon rank-sum test. b, Phosphorylation-associated PPI perturbing mutations in the
EGFR-RAS-RAF-MEK-ERK cascade signaling pathway. The whole transmembrane EGFR
structures were constructed by three crystal structures (PDB: 3NJP, 2M20, 2GS6). The membrane
model is shown in green. The phosphorylation sites are indicated by the “P” symbol. The detailed
interface structure of SOS1-KRAS is also shown in the inset. The key mutated residue GIn61 on
KRAS forms a hydrogen bond (purple dashed line) with residue Thr935 on SOS1, and Tyr884 on
SOSI is involved in a cation-n interaction (red dash line) with residue Arg73 on KRAS. Two
subunits of RAF protein structure models were built by RAF1 and BRAF, separately (PDB: 6VIJ
and 6Q0J). The two subunits are connected by a disordered loop indicated by blue cartoon lines.
Two heterodimers of KRAS-RAF1 and BRAF-MEKI1 constitutes the KRAS-RAF-MEKI1
complex. PDB ID of each complex structure model is provided. ¢, Highlighted examples of
responses to the MEK inhibitor drugs trametinib for KRAS-SOS1 mutations (n = 103 mutated cell
lines, n = 827 WT cell lines), refametinib for KRAS-BRAF mutations (n = 179 mutated cell lines,
n= 1,610 WT cell lines), and binimetinib for KRAS-SOS1 mutations in the PDX models (n = 62
mutated samples, n = 166 WT samples). Significance was determined by ANOVA.



