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Abstract 

Human genome sequencing studies have identified numerous loci associated with complex 

diseases. However, translating human genetic and genomic findings to disease pathobiology and 

therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, 

we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein 

InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific 

interfaces for all known protein interactions in humans and seven other common model organisms, 

generating comprehensive structurally-informed protein interactomes. We demonstrate that 

PIONEER outperforms existing state-of-the-art methods. We further systematically validated 

PIONEER predictions experimentally through generating 2,395 mutations and testing their impact 

on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER 

predictions. We show that disease-associated mutations are enriched in PIONEER-predicted 

protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 

somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with 

PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of 

~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted 

oncoPPIs are significantly associated with patient survival and drug responses from both cancer 

cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing 

tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic 

KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that 

PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug 

responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data 

from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium. PIONEER, 
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implemented as both a web server platform and a software package, identifies functional 

consequences of disease-associated alleles and offers a deep learning tool for precision medicine 

at multiscale interactome network levels. 

 

Introduction  

Precision medicine has sparked major initiatives focusing on whole-genome/exome sequencing 

(WGS/WES) and developing genome science tools for statistical analyses – all aspiring to identify 

actionable variants in patients1-3. At the center of the massive amount of collected DNA/RNA 

sequencing data is their functional interpretation, which largely rests on conventional statistical 

analyses and trait/phenotype observations2. Statistics is vital, since it guides the identification of 

disease-associated variants; however, traditional WGS/WES studies are commonly underpowered 

for disease risk-variant/gene and drug target discoveries as very large sample sizes are generally 

required. Furthermore, the statistics do not directly elucidate the functional consequence of the 

variants, i.e., changes in protein conformation or in molecular functions in cells; thus, traditional 

statistical approaches may not be sufficient to define accurately functional variants. Thus, 

translation of genetic and genomic findings to precision medicine is fraught with challenges using 

traditional statistical approaches.  

         Optimal information requires knowledge of the whole protein-protein interaction (PPI) 

network, or interactome, within which the mutant protein operates. Given that on average each 

protein interacts directly with 10-15 other proteins4, 5, the functional consequence of any mutation 

is not easily (if at all) predicted out of the interactome context. Previous studies3, 6-10 have 

demonstrated that most disease mutations disrupt specific PPIs rather than affecting all interactions 

in which the mutant protein is engaged. Making accurate characterizations of such disruptions is 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2023.04.24.538110doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538110
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

essential for understanding the etiology of most disease mutations. Therefore, it is fundamentally 

important for precision medicine to determine structural details, particularly the locations of 

interaction interfaces of all protein interactions at whole proteome scale. A clear limitation of this 

goal, however, is that only ~9% of protein interactions have structural models determined by 

experimental or traditional homology modeling approaches (Figs. 1a and 2a). Predicting co-

complex structures of PPIs is in the process of explosive growth resulting from the advent of 

AlphaFold-based deep learning methods as embodied in AlphaFold-Multimer11 or AF2Complex12, 

but these methods are all time-consuming, and does not scale to solve whole interactomes with 

hundreds of thousands of PPIs. 

In this study, we presented a deep-learning-based ensemble learning pipeline, PIONEER 

(Protein-protein InteractiOn iNtErfacE pRediction) to generate the next-generation partner-

specific interaction interface predictions for all experimentally-determined human PPIs in the 

literature, providing key structural information for these interactions. Taking as input a pair of 

interacting proteins, PIONEER effectively identifies the residues that conform the interface of the 

interaction. By leveraging the available atomic-resolution co-crystal structures along with 

homology models, we established a comprehensive multiscale structurally-informed human 

interactome, which consists of 282,095 interactions from humans and seven other commonly 

studied organisms, including all 146,138 experimentally-determined PPIs for 16,232 human 

proteins (Figs. 1a and 2a). Through this resource, we investigated the network effects of disease-

associated mutations at amino acid resolution within the macromolecular interactome of PPI 

interfaces. We further explored the widespread perturbations of PPIs in human diseases and their 

significant impact on disease prognosis and drug responses. This newly constructed structurally-

informed interactome database is then combined with disease-associated mutations and functional 
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annotations to create an interactive, dynamic web server (https://pioneer.yulab.org) for genome-

wide functional genomics studies. It also allows the users to submit a list of interactions and 

retrieve the predicted interfaces of the respective interactions using the PIONEER framework. 

Furthermore, we have converted the PIONEER framework into a software package that is 

available to the wider community to further help accelerate biological research. 

 

Results 

A hybrid deep-learning architecture for protein-protein interface prediction 

To date, taking into account the structural models of protein interactions—both experimentally-

determined and homologically-predicted--we find that an overwhelming majority of interactions 

(~91%) still do not have reliable structural information (Fig. 1a). With this key limitation in mind, 

we built the PIONEER pipeline to generate accurate partner-specific protein-protein interface 

predictions for protein interactions that currently lack structural information. We carefully 

constructed our labeled dataset for training, validating, and testing of our classifiers 

(Supplementary Data 1). When building PIONEER, we especially prioritize instances where the 

same protein interacts with multiple interaction partners using distinct interfaces in our labeled 

dataset in order to create a model that better predicts partner-specific interfaces (Fig. 1b). We also 

require that there are no homologous interactions between any of the two datasets to guarantee the 

robustness and generalization of our models, and a fair performance evaluation.  

We used a comprehensive set of single-protein and interaction-partner-specific features for 

interface prediction (Fig. 1c-f), and both groups of features combine biophysical, evolutionary, 

structural, and sequence information for an in-depth feature characterization. More specifically, 

the single-protein features consist of diverse biophysical features, evolutionary sequence 
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conservation, and protein structure properties. Of these features, one of protein structure properties, 

solvent accessible surface area (SASA), is widely reported to be highly informative6, 13 since all 

interface residues, by definition, are on the surface of proteins; in addition, solvent can either 

facilitate or impede binding interactions depending upon the (net) relative hydrophobicity or 

hydrophilicity of the binding interaction residues. We also incorporate evolutionary sequence 

conservation because key protein functions often depend upon interactions with other proteins, 

and, as such, interface residues are more likely to be conserved14. 

However, although these single-protein features capture the characteristics of all possible 

interface residues, they cannot distinguish interface residues for a protein interacting with different 

partner proteins through which a protein can perform different biological functions. Previously, 

we illustrated that it is important to encompass partner-specific features for the prediction of 

partner-specific interfaces6. Here, our interaction-partner-specific features include co-evolution of 

amino acid sequences, protein-protein docking, and pair potential. Co-evolutionary features 

capture the dependent patterns of conservation in two interacting proteins, since interface residues 

that are critical to maintaining the interaction often co-evolve to maintain binding 

complementarity15. Through modeling of bound conformations of protein interactions using 

protein-protein docking16, we incorporate the docking results to extract a summary of preferred 

orientations for individual structures of interacting proteins. In addition, we also create another 

feature—pair potential—to characterize the interface propensity for the target protein with respect 

to a specific partner. Moreover, we incorporate AlphaFold2-predicted single protein structures into 

our PIONEER models to significantly increase the coverage of structure-based features for 

proteins currently lacking experimentally-determined structures. 
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In order to address the non-random missing feature problem, which cannot be adequately 

resolved by commonly used imputation methods6, PIONEER’s framework is structured as an 

ensemble of four deep learning architectures, including Structure-Structure, Structure-Sequence, 

Sequence-Structure, and Sequence-Sequence models (Fig. 1c-f and Supplementary Figs. 1 and 2). 

The Structure-Structure model is used for interactions in which both proteins have structural 

information while the Sequence-Sequence model is used for proteins without solved structural 

information. Otherwise, the Structure-Sequence or Sequence-Structure model is used, depending 

on which protein in the interaction has structural information. This comprehensive framework 

ensures that we use the maximum amount of information available for each interaction to yield the 

best possible interface predictions while avoiding potential ascertainment biases that can lead to 

overfitting. 

More specifically, for a protein with available structures, the PIONEER deep learning 

model uses a hybrid architecture to integrate both structural information embedded through Graph 

Convolutional Networks (GCNs) with Auto-Regressive Moving Average (ARMA) filters17 and 

sequence information embedded through bidirectional Recurrent Neural Networks (RNNs) with 

Gated Recurrent Units (GRUs)18. For proteins without high-quality structure models, only 

sequence information is embedded via RNNs with GRUs. Using transfer learning19, the pre-trained 

GCNs-RNNs in Structure-Structure model and RNNs in Sequence-Sequence model are deployed 

in Structure-Sequence model and Sequence-Structure model for the processing of proteins with 

and without structural information, respectively. Furthermore, for each residue in a target protein, 

our unique architecture integrates the residue embeddings, overall protein embeddings, and overall 

partner protein embeddings to utilize both local and global (‘glocal’) information of both proteins 

to make the most accurate interface predictions. 
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Benchmark evaluation of PIONEER 

We then built and evaluated PIONEER using the new labeled dataset and new model designs. The 

results show that PIONEER outperforms all other available methods for predicting interactions of 

both proteins with and without structural information (Fig. 2b,c and Supplementary Figs. 3 and 4 

and Supplementary Tables 1-5). It is worth noting that our Sequence-Sequence model, which 

solely relies on sequence information, has better prediction performance than all recent state-of-

the-art structure-based methods that we evaluated, such as PeSTo20, ScanNet21, BIPSPI+22, 

MaSIF-site23, DeepPPISP24, SASNet25, and PIPGCN26. Most of these methods already use cutting-

edge deep learning models, which illustrates the power of utilizing a comprehensive set of single-

protein and partner-specific features; it also confirms the validity of our design choice to include 

RNNs with GRUs in a hybrid architecture, even for proteins with known structures (Fig. 2b and 

Supplementary Tables 2 and 3). Interestingly, we also found that even our previous ECLAIR with 

structural information is still significantly better than the above structure-based methods, and 

achieves the second best performance (Fig. 2c and Supplementary Table 2). 

We next evaluated the effectiveness of our new model designs on the benchmark testing 

dataset by assessing the overall performance of PIONEER and ECLAIR. We found that PIONEER 

models with ECLAIR features substantially outperform our previous ECLAIR models 

(Supplementary Fig. 5a), confirming that our unique hybrid-architecture deep learning models, 

indeed, capture more information in the features than the previous random forest-based models. 

Moreover, incorporating new features to PIONEER models further significantly improves the 

prediction performance (Supplementary Fig. 5a), indicating the outstanding representation ability 

of our new features for the prediction of protein interfaces. Both improvements distinctly 
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demonstrate that our new deep learning architectures and new features make significant 

contributions to PIONEER’s strong ability to provide accurate PPI interface predictions. We also 

found that the inclusion of AlphaFold2-predicted single protein structures for the proteins without 

experimentally-determined structures improved the performance of PIONEER interface 

predictions (Supplementary Fig. 5b). 

We further applied PIONEER on a widely used decoy set, score_set27, to test CAPRI 

(Critical Assessment of Prediction of Interactions) models. This dataset contains docking models 

predicted by 47 different groups for proteins from bacteria, yeast, vertebrates, and artificial design. 

After removing the targets which are duplicated and without corresponding UniProt sequences, 

we considered 11 targets which, overall, have 15,003 corresponding decoys, including 12,986 

incorrect, 732 acceptable, 799 medium and 486 high quality docking predictions based on CAPRI-

defined criteria, respectively. Figure 2d plots the percentage of all models that have a given average 

PIONEER interface probability score (x-axis) in each category across targets. This figure shows a 

clear distinction between any two different category decoys, demonstrating that PIONEER 

interface residue predictions also provide a clear signal as to model quality. 

 

Proteome-wide protein-protein interface prediction by PIONEER 

Next, we compiled a comprehensive set of experimentally validated binary PPIs for humans and 

seven model organisms by integrating information from 7 commonly-used databases28, including 

BioGRID29, DIP30, IntAct31, MINT32, iRefWeb33, HPRD34, and MIPS35. Here we focus on binary 

interactions because if two proteins do not bind to each other directly, the concept of interface does 

not apply. We then used the fully-optimized PIONEER pipeline to predict interfaces for all 

collected 256,946 binary interactions without any experimental structures or homologous models 
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(see Methods), including 132,875 human interactions (Fig. 2a). Because we make partner-specific 

interface predictions for every residue of every protein, and there are on average >10 interactions 

per protein, we made probabilistic interaction predictions for >275 million residue-interaction 

pairs. By combining our PIONEER interface predictions with 25,149 interactions (~9%) with 

experimental or homology models, we generate a comprehensive multiscale structural human 

interactome, in which all interactions have partner-specific interface information at the residue 

level, together with atomic-resolution three-dimensional (3D) models whenever possible. 

To comprehensively evaluate the quality of our predicted interfaces and their biological 

implications, we first carried out large-scale mutagenesis experiments to measure the fraction of 

disrupted interactions by mutations in our predicted interfaces at varying confidence levels, in 

comparison to that of known interface and non-interface residues from co-crystal structures in the 

PDB36. Using our Clone-seq pipeline37, we generated 2,395 mutations on 1,141 proteins and 

examined their impact on 6,754 mutation-interaction pairs through a high-throughput yeast-two-

hybrid (Y2H) assay, an unprecedented large-scale experimental validation. We observed that 

mutations at PIONEER-predicted interfaces disrupt protein-protein interactions at a very similar 

rate to the mutations at known structurally characterized interfaces, and both of their disruption 

rates are significantly higher than that of known non-interfaces (Fig. 2e). Therefore, our large-

scale experiments confirm the high quality of our interface predictions and the validity of our 

overall PIONEER pipeline. Furthermore, because interaction disruption is key to understanding 

the molecular mechanisms of disease mutations9, 37, our experimental results indicate that our 

PIONEER-predicted interfaces will be instrumental in prioritizing disease-associated variants and 

generating concrete mechanistic hypotheses. 
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PIONEER-generated structurally-informed human interactome enriched with disease 

mutations 

Since disruption of specific interactions is essential for the pathogenicity of many disease 

mutations, and since previous studies have shown that disease mutations are significantly enriched 

at protein-protein interfaces7, 8, 38, we next measured the enrichment of known disease-associated 

mutations from the Human Gene Mutation Database (HGMD)39 at the predicted interfaces, and 

compared it to known interfaces from co-crystal structures. We found that the residues predicted 

by PIONEER with a high interface confidence show a very similar rate of disease mutation 

enrichment to those of known interfaces (Fig. 3a). Furthermore, we observed that 251,368 (~98%) 

out of all 256,946 binary interactions have at least one or more predicted interface residues that 

fall into high or very high confidence categories (Supplementary Fig. 6), indicating that PIONEER 

provides meaningful structural information for the vast majority of protein interactions. In fact, 

each bin with a higher confidence of predicted interfaces is more likely to contain disease-

associated mutations than the previous bin, which demonstrates the strong correlation between 

PIONEER prediction scores and the true function of each residue (Fig. 3a). We further analyzed 

the distribution of population genetic variants and found that their enrichment in PIONEER-

predicted interfaces and non-interfaces also matches well with that of known interfaces and non-

interfaces, respectively (Fig. 3b). The results also show that there is a depletion of common variants 

(i.e., not deleterious) in both known and predicted interfaces, which strongly suggests that there 

exists a strong negative selection at these interface residues, indicating that PIONEER is able to 

predict functionally important interface variants effectively. We also found that, compared to 

variants identified in individuals from the 1000 Genomes project (1KGP)40 and the Exome 

Aggregation Consortium (ExAC)41, disease-associated mutations from HGMD are more 
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significantly enriched at PPI interfaces of the respective proteins8 (Fig. 3c). Moreover, as predicted 

by CADD42 and FoldX43, the population variants in PIONEER-predicted interfaces are more likely 

to adversely affect protein functions than those in PIONEER-predicted non-interfaces 

(Supplementary Fig. 7), which confirms that deleterious variants preferentially occur at the 

protein-protein interfaces7, 9. 

        To further evaluate whether the disease-associated mutations were enriched in the PIONEER-

predicted PPI interfaces (Fig. 3c), we next categorized the disease-associated germline mutations 

from HGMD into six major disease groups, including autoimmune, cancer, cardiovascular, 

metabolic, neurological, and pulmonary as described in a recent study44, as well as an additional 

“other” category. We identified a total of 10,753 PPIs among 5,684 proteins that had at least one 

disease-associated interface germline mutation (Fig. 3d and Supplementary Table 6), among which 

9,795 (~91%) PPIs have such interface mutations on one protein (the other protein colored as 

“neighbor”), and 958 (~9%) on both proteins of the binding pair. Overall, this network analysis 

shows that PIONEER-predicted PPI interfaces are altered by broad disease-associated mutations 

across multiple disease categories. To highlight the power of PIONEER-predicted interfaces, we 

examined three PPI interfaces with germline alleles. Germline mutation p.Lys542Gln of LMNA 

(Lamin A/C) buried in the interface of LMNA and BAF (Fig. 3e) was associated with progeroid 

disease45. One loss-of-function PPIA mutation p.Ala53Glu in the interface of PPIA-SYUA (Fig. 

3e) was identified in patients with early-onset Parkinson disease46. A germline mutation 

p.Gly537Arg of HIF-2α associated with polycythemia vera47 is located in the PIONEER-predicted 

VHL-HIF-2α interface (Fig. 3e) and disrupts VHL binding via impairing ubiquitination and 

proteasomal degradation of HIF-2α48, 49. Taken together, PIONEER-predicted protein-protein 
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interface mutations convey crucial structural information in delineating the functional 

consequences for disease mechanisms at the atomic and allele levels. 

 

PIONEER-predicted oncoPPIs across 33 cancer types 

We next investigated the somatic mutations from cancer patients in the context of PPI interfaces 

inferred by PIONEER. In total, we collected ~1.7 million missense somatic mutations from the 

analysis of ~11,000 tumors across 33 cancer types from The Cancer Genome Atlas (TCGA)50. We 

found significant enrichment of somatic missense mutations in the PIONEER-predicted PPI 

interfaces compared to non-interface regions (Fig. 4a and Supplementary Data 2). Specifically, 

this significant enrichment was observed in 31 out of the total 33 cancer types regardless of the 

overall mutation burden. In lung squamous cell carcinoma (LUSC), one of the cancer types that 

have the highest mutation load per exome, we observed 29 variants per 1 million amino acid 

residues affecting PPI interfaces, while the rate for the non-PPI interface region is 23 (P = 

1.3×10−11). For thyroid cancer (THCA), with the lowest mutation load, the difference is 27 for PPI 

interfaces vs. 9 for the remainder of the protein sequences (P < 10−16). To account for the potential 

bias in this analysis due to data sources, we divided our whole structural human interactome into 

three categories: those with experimental structures (PDB, 6.2%), with homology models (HM, 

2.8%), and predicted by PIONEER (90.9%), and performed the enrichment analysis for each 

category separately. The results showed that the same enrichment pattern we observed is 

independent of the data source, suggesting the robustness of PIONEER interface predictions 

(Supplementary Fig. 8). 

       We next sought to identify the oncoPPIs that were significantly enriched by somatic mutations 

in the interfaces in both individual cancer types and pan-cancer analyses. Specifically, the average 
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number of PPIs affected by interface mutations is 10,741. Finally, our analysis yielded total 586 

statistically significant oncoPPIs across 33 cancer types (Fig. 4b and Supplementary Data 3), 

including KRAS-BRAF, TP53-EGLN1, and TP53-TP53BP2 across 10 cancer types. 

          We next turned to analyze the clinical sequencing data from MSK-MET, a pan-cancer cohort 

of over 25,000 patients spanning 50 different tumor types51. Of the 157,979 missense mutations 

we investigated, 40,526 (~26%) were identified to affect 15,523 unique PPI interfaces. Focusing 

on the PPIs that were disturbed in at least 10 samples in a specific cancer type, we performed 

survival analysis to identify clinically actionable oncoPPIs whose disruption is significantly 

associated with patient survival. KRAS has been reported to co-mutate with NF1 (neurofibromin 

protein) in response to GTP hydrolysis52. We identified that the mutations of KRAS-NF1 interface 

residues, such as Asp30 and Glu31 on KRAS (Fig. 5a), are significantly associated with poor 

survival rate compared to the wild-type (WT) group in pancreatic cancer (P = 2.7×10-18; Fig. 5b). 

SPOP plays a multifaceted role in oncogenesis and progression by mediating degradation of 

PTEN53, BRD354 , TP53BP155, PDX156, and MACROH2A157. The SPOP MATH domain binds 

to PTEN via a PIONEER-predicted interface mutation of p.Phe133Val on SPOP58, which is 

significantly associated with survival rate in prostate cancer (P = 0.0021; Fig. 5b). Patients with 

several PIONEER-predicted interface mutations (Thr231, Pro191 and Arg181 on TP53; Fig. 5a) 

between TP53 (a key tumor suppressor gene) and KDM4D (a histone demethylase) are 

significantly associated with poor survival in soft tissue sarcoma (P = 0.031; Fig. 5b). OncoPPI 

analysis revealed that PIONEER-predicted interface mutations in ARIH2-TP53, kinase-substrate 

(e.g., KIT-BLK), kinase-E3 ligase (e.g., MAPKAPK3-FBXW7), and cyclin-E3 ligase (e.g., 

CCND1-FBXO31), are significantly associated with survival rate in breast cancer (P = 1 x 10-4), 

gastrointestinal stromal tumor (P = 0.011), non-small cell lung cancer (P = 0.012), and endometrial 
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cancer (P = 0.024), respectively (Fig. 5b and Supplementary Fig. 9). Accumulated evidence 

suggested the mutations of CCND1 are associated with multiple cancer types59. By analyzing 

PIONEER-predicted oncoPPIs, we found PIONEER-predicted interface mutations of CCND1 are 

significantly enriched at the CCND1-CDK4 interfaces in uterine cancer (P = 0.012) and low-grade 

glioma (P = 0.048). We identified that CCND1 not only interacts with CDK4 but also TSC2 from 

PIONEER-predicted interfaces. Specifically, we identified that CCND1 interacts with CDK4 and 

TSC2 via two unique sets of interfaces (Fig. 5c). Next, we experimentally confirmed this result 

using co-immunoprecipitation with 293T cells. Fig. 5d shows that a mutation of p.Lys114Arg on 

CCND1 specifically disrupts the interaction between CCND1 and CDK4, without disrupting its 

interaction with TSC2. Interestingly, mutation p.Glu162Lys on CCND1 does not disrupt its 

interaction with CDK4, but does disrupt its interaction with TSC2. Both p.Lys114Arg and 

p.Glu162Lys on CCND1 are associated with myeloma60 and lung cancer61, respectively. These 

results further demonstrate that PIONEER-generated structural human interactome can uncover 

tumorigenesis with distinctive functions corresponding to distinct interfaces, even for those on the 

same proteins. 

 

PIONEER-predicted PPI-perturbing tumor alleles alter ubiquitination by E3 ligases 

E3 ubiquitin ligases (E3s) are involved in cellular transformation and tumorigenesis by targeted 

protein degradation62, 63. Identifying how somatic mutations alter PPIs of E3 ligases may offer 

novel targets for development of targeted protein degradation therapies64. We investigated 4,614 

PIONEER-predicted oncoPPIs connecting 355 E3 ligases annotated from E3net65 and Ubinet2.066 

databases. We next focused on the 204 putative oncoPPIs connecting E3 ligases using subject 

matter expertise based on a combination of factors: i) strong prediction from oncoPPI mutations 
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on E3 ligases or their substrates; ii) significant association with patient survival rates; and iii) 

significant association with drug responses measured in tumor cell lines or patient-derived tumor 

xenograft (PDX) mouse models (Supplementary Table 7).  

          Fig. 6a illustrates the selected examples of the most significant PIONEER-predicted 

oncoPPIs of E3 ligases (Supplementary Table 8). Among 204 putative oncoPPIs of E3 ligases, 

FBXW7 (F-box with 7 tandem WD40) has the greatest number of oncoPPIs (47/204; 

Supplementary Fig. 10 and Supplementary Table 9). FBXL17 (F-box/LRR-repeat protein 17) is a 

multiple-RING E3 ligase that specifically recognizes and ubiquitinates the BTB proteins67. We 

found that PIONEER-predicted PPI-perturbing mutations of FBXL17-KEAP1, such as 

p.Ser102Leu on KEAP1, were significantly associated with poor survival in non-small cell lung 

cancer (P = 1.6 x 10-13; Fig. 6b). A multiple-RING E3 ligase complex ANAPC1-ANAPC2 (Fig. 

6a) is positively regulated by the PTEN/PI3K/AKT pathway and modulates ubiquitin-dependent 

cell cycle progression68. We found that PIONEER-predicted PPI-perturbing mutations on 

ANAPC1-ANAPC2 is associated with resistance to a PI3K inhibitor BKM120 (P = 0.0043; 

Supplementary Fig. 11a). ITCH, a HECT-type E3 ubiquitin ligase, has been reported to mediate 

BRAF kinase poly-ubiquitination and promote proliferation in melanoma cells69. We found that 

PIONEER-predicted PPI-perturbing mutations of BRAF-ITCH, such as p.Val600Glu and 

p.Lys601Glu on BRAF, are significantly associated with sensitivity to dabrafenib (an ATP-

competitive inhibitor; P = 1.7 x 10-21; Supplementary Fig. 11b). STUB1, a U-box-dependent E3 

ubiquitin ligase, has been reported to degrade SMAD4, an intracellular signaling mediator of the 

TGF-β pathway70. Multiple PIONEER-predicted PPI-perturbing mutations of STUB1-SMAD4, 

including p.Gly419Arg (Trp, Val) and p.Leu540Pro (Arg) on SMAD4, are significantly associated 

with poor survival rate in colorectal cancer (P = 0.025; Supplementary Fig. 11c). A single-RING 
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E3 ligase TRIM24 is an oncogenic transcription cofactor overexpressed in breast cancer71. We 

found that PIONEER-predicted PPI-perturbing mutations of TRIM24-H3C1 (Fig. 6a) are 

significantly associated with resistance to GDC0941 (an EGFR signaling inhibitor; P = 0.028; 

Supplementary Fig. 11d). Treatment with an EGFR inhibitor suppresses TRIM24 expression and 

H3K23 acetylation and thereby inhibits EGFR-driven tumor growth72 , supporting the PIONEER-

predicted oncoPPI findings.  

           KEAP1 is an adapter of E3 ligase that senses oxidative stress by mediating degradation of 

NFE2L2/NRF2, a key transcription factor in multiple cancer types73 . Patients with non-small cell 

lung cancer harboring PIONEER-predicted oncoPPI mutations on NRF2 have significantly worse 

survival than the WT (P = 0.029; Fig. 6c). KEAP1 recognizes NRF2 structurally through its 

conserved ETGE (aa 79-82) and DLG (aa 29-31) motifs74, 75. We experimentally confirmed the 

association of NRF2 mutations and WT KEAP1 by Co-immunoprecipitation. As shown in Fig. 6d, 

p.Glu79Lys and p.Thr80Lys mutations on the NRF2 ETGE motif (Fig. 6a) reduce the binding of 

NRF2 to KEAP1, whereas the p.Leu30Phe mutation on the NRF2 DLG motif partially sustains 

the binding of NRF2 to KEAP1. The mutation of p.Thr80Lys releases NRF2 from association with 

KEAP1 and protects NRF2 from ubiquitination and subsequent degradation. We next tested 

whether p.Thr80Lys on NRF2 contributes to the proliferation of non-small cell lung cancer cells. 

A pro-proliferative effect of p.Thr80Lys was observed in a colony formation assay (Fig. 6e,f). 

Overexpression of WT and p.Thr80Lys NRF2 promoted the growth of the non-small cell lung 

cancer H1975 cell line harboring WT KEAP1 (Fig. 6g). In summary, PIONEER-predicted 

oncoPPI-perturbing tumor alleles that alter ubiquitination by E3 ligases are significantly associated 

with patient survival, drug responses, and in vitro tumor growth. 
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Pharmacogenomic landscape of the PIONEER-predicted oncoPPIs 

We next turned to inspect correlation between potential oncoPPIs and drug responses using high-

throughput drug screening data (Fig. 7a). The datasets we used include the drug pharmacogenomic 

profiles of >1,000 cancer cell lines and ~250 FDA-approved or clinical investigational agents from 

the Genomics of Drug Sensitivity in Cancer (GDSC) database and in vivo compound screens using 

∼1,000 PDX models to assess patient responses to 62 anticancer agents76 . For each pair of 

oncoPPI and compound, the drug response characterization IC50 vector was correlated with the 

mutation status of the oncoPPIs using a linear ANOVA model. Fig. 7b shows the landscape of the 

correlations between PPIs and 56 clinically investigational or approved anti-cancer drugs. In total, 

we identified 4,473 interface mutations that have significant correlations with drug 

sensitivity/resistance. Among the most significant correlations from PDX models, we found that 

PIONEER-predicted CDK6-BECN1 interface mutations was associated with resistance to 

treatment using a BYL719 plus encorafenib drug combination, while the mutations in PIONEER-

predicted BRAF-MAP2K3 interfaces (e.g., interface mutations p.Val600Glu on BRAF and 

p.Arg152Gln on MAP2K3, both found in bladder urothelial carcinoma and glioblastoma) 

conferred significant drug sensitivity to encorafenib plus binimetinib treatment (Fig. 7c). In 

addition, we found significant drug resistance to trastuzumab and BYL719 among those cases 

harboring mutations in PIONEER-predicted STK4-DDIT4L (e.g., p.Arg181Gln on STK4) and 

ORC4-MTUS1 (e.g., p.His166Tyr on ORC4) interfaces, respectively (Fig. 7c). Taken together, 

PIONEER-predicted PPI interface mutations can significantly affect drug sensitivity/resistance in 

antitumor treatment using both cancer cell lines and PDX models (Supplementary Table 9). 

 

Proteogenomic perturbation by PIONEER-predicted interface mutations 
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Recent proteogenomic study showed that somatic mutations altered protein or phosphoprotein 

abundance and further correlated with drug responses or cancer patient survival rate77. We next 

inspected whether PIONEER-predicted interface mutations more likely influence protein 

abundances in colon adenocarcinoma (COAD) and Uterine Corpus Endometrial Carcinoma 

(UCEC). The abundance of phosphoproteins was quantified using the tandem mass tag (TMT) 

assays by The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium. We 

found that PIONEER-predicted interface mutations significantly reduced phosphoprotein 

abundances in both COAD (P = 0.018) and UCEC (P = 0.001) (Fig. 8a). 

       We next turned to inspect how the phosphorylation-associated PPI mutations identified by 

PIONEER perturb EGFR-RAS-RAF-MEK-ERK signaling networks in COAD (Fig. 8b and 

Supplementary Table 10). The mutations involved in this signaling cascade have been suggested 

to regulate oncogenesis in colon and other cancers78, 79. EGFR dimerization was activated by EGF 

in the extracellular domain (PDB IDs: 3NJP and 2M20; Fig. 8b)80, 81. Binding of EGF triggers 

conformational changes in the C-terminal domain (PDB: 2GS6)82 and results in 

autophosphorylation of specific tyrosine residues, such as Tyr106883. The C-terminal domain of 

EGFR is essential for adapter protein binding to initiate signal transduction, such as by mediating 

GRB2/SOS184. Via PIONEER, we identified that two mutations, p.Thr1021Ile and p.Thr1074Ile 

on EGFR C-terminal domain, may alter the phosphorylated PPI interaction with downstream 

adapter protein of SOS1 (Fig. 8b). SOS1, a RAS activator by loading GTP, which was reported to 

allosterically interact with the Ras/Ras p.Gly12Cys mutant (PDB: 6EPO)85. SOS1 deficiency 

attenuates KRAS-induced leukemia in mouse model86. A selective SOS1–KRAS PPI inhibitor, BI 

1701963, has been developed for advanced KRAS-mutated solid tumors in a Phase 1 clinical 

trial87 . Using PIONEER, we identified two SOS1-KRAS PPI perturbation mutations, including 
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p.Tyr884His on SOS1 and p.Gln61His on KRAS (Fig. 8b). Specifically, Tyr884 and Gln61 have 

strong hydrogen bond and cation-p interaction between KRAS and SOS1. We pinpointed that 

PIONEER-predicted SOS1–KRAS interface mutations are significantly related to trametinib 

resistance compared to WT group (P = 7.6×10-12; Fig. 8c), offering potential pharmacogenomic 

biomarkers for trametinib (a MEK inhibitor) in KRAS-mutant colorectal cancer88 . Binimetinib, 

another MEK-selective inhibitor89, is significantly associated with resistance in PDX models 

harboring PIONEER-predicted SOS1–KRAS interface mutations (P = 0.0044; Fig. 8c).  

    GTP-bound active RAS recruits RAF proteins (e.g., RAF1 and BRAF) to the plasma 

membrane to orchestrate MAPK signaling90. Fig. 8b shows PPIs of both KRAS-RAF1 and KRAS-

BRAF constructed in one structure complex. Oncogenic mutations on KRAS, such as p.Gly12Val, 

p.Gly13Asp, and p.Gln61Leu, are the most frequent mutations in common tumors91. PIONEER-

predicted interface mutations of KRAS-RAF1 N-terminal, such as p.Arg59Ala and p.Asn64Ala 

on RAF1, are associated with a significantly reduced binding affinity of the PPI92, but not 

oncogenic mutations p.Gly12Val and p.Gly13Asp on KRAS (PDB ID: 6VJJ; Fig. 8b). In addition, 

we identified PIONEER-predicted KRAS-BRAF interface mutations are significantly associated 

with resistance of a MEK inhibitor refametinib93  (P= 4.7 x 10-27; Fig. 8c).  

    The key step for triggering the signaling cascade is that RAS-induced RAF dimerization 

subsequently phosphorylates MEK1/2 protein kinases78. Of RAF family members, BRAF shows 

the most potent activity91 and the BRAF p.Val600Glu mutation confers a poor survival and 

prognosis in colorectal cancer94, 95. Via PIONEER, we identified two PPI interface mutations, 

p.Gly466Val and p.Asn581Ser on BRAF, may mediate how BRAF coordinates MEK1 by its C-

lobes in the kinase domain (Fig. 8b), consistent with a previous study96. Considering that the E3 

ligase ITCH is also involved in BRAF regulation and binding to the kinase domain (Fig. 6a), we 
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identified that PIONEER-predicted interface residue of Val600 on BRAF may perturb interaction 

between BRAF and ITCH (Fig. 8b). Phosphorylated MEK1 acts as upstream activators to 

phosphorylate ERK1/2 kinase activities in the MAPK cascade97. PIONEER-predicted interface 

mutation of p.Asp179Asn on ERK1 alter MEK1-ERK1 signaling network (Fig. 8b)98. In summary, 

we showed that PIONEER-predicted oncoPPIs could characterize proteogenomic alterations in the 

EGFR-RAS-RAF-MEK-ERK signaling pathways in colon cancer and other cancer signaling 

pathways if broadly applied.  

 

Construction of the structurally-informed interactome web server 

In total, our structurally-informed interactomes cover all 282,095 experimentally-determined 

binary interactions in the literature for humans and seven other commonly studied organisms, 

including all 146,138 experimentally-determined human interactions (Figs. 1a and 2a). The web 

server is a user-friendly tool for genome-wide protein functional exploration through which users 

can identify functionally enriched areas of protein interactomes and browse multi-scale 

structurally-informed interactome networks (Supplementary Fig. 12). It utilizes the PIONEER 

framework to provide seamlessly rapid on-demand predictions for user-submitted interactions. 

The web tool also contains 161,244 disease-associated mutations across 10,564 disorders in 

HGMD and ClinVar99 with their per-disease enrichment pre-computed on protein interaction 

interfaces with 3D spatial clustering at atomic resolution for interacting protein pairs with structure 

models, and at the residue and domain levels for those without structures. By providing a user-

friendly tool to visualize each protein and its given interactors with all available domain 

information, co-crystal structures, homology models, and PIONEER-predicted interfaces coupled 

with all known disease mutation information, PIONEER seamlessly allows users to explore the 
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effect of mutations on 3D structures. We believe that the PIONEER web server will be 

instrumental in uncovering novel discoveries in relationships among these mutations with regards 

to the study of disease mechanisms and corresponding personalized treatment in cancer or other 

diseases if broadly applied. 

 

Discussion 

The systematic characterization of structural protein-protein interactome network models from 

individual protein sequences and structures remains a major challenge in network medicine and is 

of the utmost practical and theoretical importance2, 100. The structural models of protein 

interactions can be experimentally-determined through resource-intensive and time-consuming X-

ray crystallography, NMR, and more recently, cryo-EM experiments. Computational methods, 

such as docking and homology modeling, have been developed to predict PPI interfaces. Although 

docking methods can achieve atomic resolution, they do not generally behave well especially in 

cases where proteins undergo large conformational changes101, 102. Homology modeling, which 

covers only another ~3% of interactions, infers protein interfaces from templates of homologous 

complexes13. To date, ~91% of PPIs still do not have structural information. Hence, most network 

studies model proteins as graph-theoretical nodes, which ignores the structural details of the 

individual proteins as well as the spatial constraints of their interactions. 

We previously developed the innovative ensemble random forest-based pipeline, ECLAIR, 

which was among the first to generate the full-proteome structural human interactome network. 

Over the last several years, deep learning techniques have shown exceptional representation 

learning abilities and much improved performance, especially in processing 3D protein 

structures103, compared to traditional machine learning algorithms, including random forest. A 
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number of methods21, 25, 26, therefore, have been proposed that have gained considerable traction 

for protein interface prediction. However, a major limitation of these methods is that they do not 

leverage the notable combination of feature representations indicated in both structures and 

sequences well nor do they effectively integrate embeddings from both the local regions of target 

residues and the whole proteins, thereby leaving much room for improvement in prediction quality. 

Recently, RoseTTAFold104 and AlphaFold2105 have made a significant breakthrough in generating 

single protein structural models from solely protein sequences, which is extremely helpful for 

protein interactome studies. Even more recently, AlphaFold-based methods, such as AlphaFold-

Multimer and AF2Complex, have been developed to generated structural models for multi-chain 

protein complexes. AlphaFold Multimer requires joint multiple sequence alignments paired by 

species while AF2Complex does not, but they are both very computationally intensive, and, thus, 

cannot be scaled to generate models for the hundreds of thousands of interactions in whole 

interactomes. Furthermore, a recent study has shown that AlphaFold2 can successfully generate 

high-quality models for only ~2% of human interactions without known homologous structures106.  

Here, we present a comprehensive, multiscale structurally-informed interactome 

framework and web server, which we named PIONEER, to combine seamlessly genomic-scale 

data with structural proteomic analyses. This resource is based on our deep-learning-based 

ensemble framework, which accurately predicts partner-specific interaction interfaces for all 

protein-protein interactions in humans and seven other common model organisms. We found 

PIONEER outperforms other existing state-of-the-art methods, including our previously 

developed method, ECLAIR. Moreover, large-scale statistical analysis and mutagenesis 

experiments show that PIONEER-predicted interfaces reveal similar biological significance as 

those of known interfaces in the PDB. Further analysis shows that interactome PIONEER plays a 
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pivotal role in dissecting the pathobiology of diseases. Our work is implemented as both a web 

server platform and a software package to help facilitate systematic structural analysis in genomic 

studies, thereby allowing the wider scientific community to adopt and further develop upon our 

PIONEER framework. 

With the rapid advances in sequencing technologies, multiple whole genome/exome 

sequencing projects are currently being carried out, including TCGA, cardiovascular medicine (i.e., 

National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program107), and 

Alzheimer’s disease sequencing project108, to identify trait/disease-associated genes and mutations. 

Although the 3D structure of each protein fundamentally determines its function, systematic 

structural analysis is currently not part of any major genomic study pipeline. One of the main 

reasons for this disconnection is the poor coverage of atomic-resolution structural models of 

proteins and their interactions. We expect our comprehensive structurally-informed interactomes 

generated by PIONEER, which provides high-quality partner-specific interfaces on the scale of 

the whole interactome, will help bridge the gap between genome-scale data and structural 

proteomic analyses. With the high-quality and comprehensive map of protein interfaces, there are 

numerous valuable extensions considering the biophysical effects induced by mutations at protein 

interfaces, such as the investigation of disease etiology and the corresponding drug prioritization, 

and prediction of specific disease pathobiology. The partner-specific property of PIONEER-

generated structurally-informed interactomes also allows us to study the pleiotropic effects of 

genes. Therefore, the powerful and comprehensive PIONEER framework will make such 

extensive research possible, and, more importantly, provide potentially unforeseen avenues for 

drug design and therapeutics. 
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The current experimentally-determined binary human interactome in the literature is far 

from complete. The scientific community has dedicated extensive efforts both experimentally 

(such as HuRI109, BioPlex110, and OpenCell111) and computationally (such as PrePPI112 and HIGH-

PPI113), to ascertaining which pairs of human proteins interact. As more protein interactions are 

detected for human proteins, our PIONEER resource will be regularly updated to make interface 

predictions for newly-released human PPIs. Specifically, PrePPI is a very interesting method that 

uses structural homology to make accurate PPI predictions. Although PrePPI does not make 

interface predictions (thus not comparable to PIONEER), the structural information obtained by 

PrePPI can be incorporated into our PIONEER pipeline as an additional feature to potentially 

improve our interface prediction performance in the future. 

We have implemented PIONEER and the resulting multiscale structurally-informed 

interactomes into a user-friendly web server platform, and also constructed the PIONEER 

framework as a flexible software package, which benefits users and developers as well. We 

demonstrated PIONEER’s utility in discovering new biological insights into multiple genome 

medicine studies. We combined PIONEER predictions along with co-crystal structures and 

homology models to reconstruct a subnetwork in the human interactome that is enriched with 

disease mutations. Specifically, we demonstrated the PIONEER-predicted interface mutations 

significantly enriched in both somatic cancer and germline mutations. Moreover, PIONEER-

predicted interface mutations highly correlated with cancer patient survival rate and anti-cancer 

responses in both tumor cell lines and PDX models. In addition, we experimentally validated 

PIONEER-predicted PPI interface mutations using CCND1-CDK4 and KEAP1-NRF2 as two 

examples. In particular, PIONEER-predicted PPI interface mutation altering E3 ligase between 

significantly promoted non-small cell lung cancer cell growth. In summary, these comprehensive 
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observations illustrated high clinical utility of the PIONEER-predicted structurally-informed 

interactome networks in genome research and precision medicine studies. 

The web server platform allows for a broad range of investigations related to protein 

interfaces on a genome-wide scale while also carrying out on-demand interface predictions for 

user-uploaded interactions. Furthermore, the software package increases the utilization, 

maintenance, and further development of PIONEER by the wider scientific community. The 

accompanying web portal, containing all relevant PDB structures and homology models, as well 

as predicted interface residues and domains, significantly reduces the barrier-to-entry to perform 

systematic structural analysis for most genetics/genomics researchers, and allows for 

implementing such analyses (e.g., looking for enrichment of mutations on protein structures and 

interfaces at various resolutions, distinguishing mutations in different interfaces of the same 

protein) in genome/exome sequencing projects. Additionally, the continually updated and 

extendable software package bears great potential for stimulating the adoption and development 

of our PIONEER framework for related genome medicine research. 

 

Methods 

PPI interface data construction 

We compiled 282,095 binary interactions for H. sapiens, A. thaliana, S. cerevisiae, D. 

melanogaster, C. elegans, M. musculus, S. pombe and E. coli in total, including 9,123 full 

experimentally-determined binary interactions in humans. The interactions with known co-crystal 

structures in the PDB were used to form the training, validation, and testing datasets to build 

PIONEER models, which then predicted the interfaces for all the other interactions without known 
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co-crystal or homologous structures. The homologous structures are collected from 

Interactome3D114. 

We calculated the partner-specific interface residues for those interactions with known co-

crystal structures in the PDB. SIFTS115 was then used to map the UniProt-indexed residues to the 

PDB-indexed residues. To determine the interface residues, we used NACCESS116 to assess the 

change in solvent-accessible surface area of the protein in complex and in isolation. Specifically, 

an interface residue is defined as a residue that is a surface residue (≥15% exposed surface) with 

its SASA decreasing by ≥1.0Å2 in the complex. We reviewed all available structures in the PDB 

for an interaction, and considered a residue to be in the interface of that interaction if it had been 

calculated to be an interface residue in at least one of the corresponding co-crystal structures. By 

only considering interactions for which aggregated co-crystal structures have been combined to 

cover at least 30% of the UniProt residues for both interacting proteins, the training, validation, 

and independent benchmark testing datasets were built, which included a random selection of 

2,615, 400, and 400 interactions with known co-crystal structures, which include 1,191,036; 

174,739; and 186,326 residues for sufficient model training, validation, and testing, respectively. 

The number of positive residues (interface residues) compared to negative residues (non-interface 

residues) in this dataset is 175,911/1,015,125 (17.3%), 25,641/149,098 (17.2%), and 

27,744/158,582 (17.5%), respectively. It is important to note that a single residue may be labelled 

as positive for a specific interaction, and labelled negative for other interactions. Additionally, we 

ensured that no homologous interactions or repeated proteins existed between any of the two 

datasets to guarantee the robustness and generalizability of our models, and a fair performance 

evaluation. We define homologous interactions as a pair of interactions where both proteins in one 
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interaction are homologs of both proteins in the other interaction. Three iterations of PSI-

BLAST117 at an E-value cutoff 0.001 were carried out to determine the protein homologs. 

 

Feature characterization 

Our previous pipeline ECLAIR employed a set of representative feature groups to describe the 

residues, including biophysical residue properties, evolutionary sequence conservation, co-

evolution, SASA, and docking-based metrics. While retaining all features from ECLAIR here, we 

also implemented two new feature groups to seek a more comprehensive and in-depth feature 

characterization. From each feature group, we synthesized a variation of features using scaling, by 

which we mean that each feature used its raw calculated values and normalized values against the 

average of all positions per protein. 

1. Predicted protein structural properties: Here, in addition to SASA used in ECLAIR, we 

also used RaptorX118 to predict the solvent accessibility state (buried, medium, and exposed) 

and the secondary structure state (helix, strand, and coil), which are especially useful for 

proteins without structural information. The predicted solvent accessibility and secondary 

structure were represented by their predicted probabilities. 

2. Pair potential: In our previous ECLAIR, we used co-evolution and docking-based features 

to describe this partner-specific issue, which, however, is not available for the interactions 

not having co-evolution and structural information, respectively. Although our deep 

learning architectures solve this problem by considering the partner protein embedding 

derived from the inputs, here, inspired by the pairing preferences at protein-protein 

interfaces proposed by Glaser et al.119, we also proposed a novel feature, pair potential, to 

specifically characterize the interface propensity for the target protein with respect to its 
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respective partner. Pair potential was developed solely based on sequence information so 

it can be applied to all the binary protein interactions. To calculate pair potential, we need 

first to calculate the propensity matrix G of contacting residue pairs: 

𝐺!" = 𝑙𝑜𝑔(𝑄!"/(𝑊! ∗ 𝑊")), 

𝑄!" = 𝐶!" ∗ 𝑉! ∗ 𝑉"/𝛴!,"(!%")(𝐶!" ∗ 𝑉! ∗ 𝑉"), 

𝑊! = 𝑁!/𝛴𝑁! 	, 

where 𝑄!" is the normalized number of contacting residue pairs between residues i in the 

target protein and j in the partner protein, Cij is the number of contacting residue pairs 

observed between residues i and j, Vi is the volume of residue i, 𝑊!  is the normalized 

frequency of interfaces, and Ni is the number of interface residues i from both target and 

partner proteins. The propensity matrix G was calculated using only interface residues in 

our training dataset. The pair potential for each residue in the target protein can, thus, be 

calculated as: 

	𝑃! = 𝛴"(𝐺!" ∗ 𝐹"), 

where Fj is the frequency of residue j in the partner protein. 

 

Model building 

In order to ensure that every residue is meticulously predicted through the maximal amount of 

available information from both proteins in an interaction pair, we built four deep learning models 

in which each model takes different interactions as input based on the availability of structures.  

1. Structure-Structure model (Fig. 1c and Supplementary Figs. 1a and 2): For interactions 

where both proteins have structural information available, the structure and sequence 

information were embedded through GCNs with ARMA filters and bidirectional RNNs 
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with GRUs, respectively. Specifically, GCN utilizes the structural information from graph 

representations of protein structures where each node represents a residue, and each edge 

signifies that two residues are adjacent. For each node, GCN incorporates its spatial 

neighborhood information to generate a more comprehensive residue representation 

whereas RNN explores amino acid sequences to include the sequential neighborhood 

information of each residue. The RNN extracts the upstream and downstream sequence 

information from each residue. Through the concatenation and mean aggregation, the 

residue embeddings of both target protein and partner protein were then converted to 

protein embeddings, respectively. Finally, the residue embeddings, target protein 

embedding, and partner protein embedding were concatenated and fed into the fully 

connected layers to make prediction for each residue in the target protein. 

2. Sequence-Sequence model (Fig. 1d and Supplementary Figs. 1b and 2b): For interactions 

where neither protein has structural information, the sequence information of both proteins 

was fed into the RNNs. Next, in a manner similar to that described in the Structure-

Structure model, the residue embeddings, target protein embedding, and partner protein 

embedding were concatenated and fed into the fully connected layers to make prediction 

for each residue in the target protein. 

3. Structure-Sequence and Sequence-Structure models (Fig. 1e,f and Supplementary Figs. 

1c,d and 2): The use of Structure-Sequence or Sequence-Structure model depends on 

whether target protein or partner protein has structural information, respectively. The 

transfer learning was used in these two models, which means the pre-trained GCNs-RNNs 

in the above Structure-Structure model and RNNs in the above Sequence-Sequence model 

were deployed in the Structure-Sequence model and the Sequence-Structure model for the 
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processing of proteins with and without structural information, respectively. Subsequently, 

in a manner similar to that described in the Structure-Structure model and Sequence-

Sequence model, the residue embeddings, target protein embedding, and partner protein 

embedding were concatenated, and fed into the fully connected layers to make prediction 

for each residue in the target protein.  

        We compiled a set of representative protein structures from the PDB and ModBase120 for each 

protein. For ModBase models, we only consider the models with a ModPipe Quality Score (MPSQ) 

≥1.1. The structures were sorted by the coverage of UniProt residues based on SIFTS, excluding 

any homologous PDB structures of interacting protein pairs. Each residue in a target protein was 

then reviewed if it has structural information; if so, it was predicted using that protein’s first 

corresponding structure which contains the structural information of that residue; otherwise, it was 

predicted using the sequence information. For the partner protein which has structural information, 

we only used the corresponding structure with the highest UniProt coverage. To make our tool 

more practically useful and to avoid the memorization of known interfaces, we use the single 

protein structure which is not from co-crystal or homologous co-complex structures to train the 

model. 

Our PIONEER framework was implemented using PyTorch. To maximize model 

performance, we carried out comprehensive hyperparameter optimization for the neural network 

architectures, and the optimal set of hyperparameters were determined by maximizing area under 

the receiver operating characteristic (AUROC) on the validation set. All four models were trained 

with cross entropy loss and the Adam optimizer; the kernel activation function121 was used in 

GCNs and fully connected layers. The hyperparameters used for these four models can be found 
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in our accompanying PIONEER software package. To solve the variable length inputs, we trained 

all four models in a mini-batch mode with only a single protein pair.  

 

Performance evaluation 

After identifying the best hyperparameters for each model, a thorough examination was performed 

using the benchmark testing set. Models were ordered based on their AUROCs on the validation 

set, which means the priorities of models are Structure-Structure, Structure-Sequence, Sequence-

Structure, and Sequence-Sequence, respectively. For the overall performance, the raw prediction 

score of each residue was taken from the results of the model with highest priority according to 

the availability of structures of the target protein containing that residue and its partner protein. 

We further compared PIONEER with a number of existing state-of-the-art methods, including 

ECLAIR, PeSTo, ScanNet, BIPSPI+, MaSIF-site, DeepPPISP, SASNet, PIPGCN, DELPHI122, 

SCRIBER123, and DLPred124. We also reported performance metrics at various discrete and 

comparable levels of confidence, which consist of Very low, Low, Medium, High, and Very high 

prediction categories, by evenly separating into fifths our raw prediction scores. 

 

Interface prediction 

By further incorporating AlphaFold2-predicted structures, we predicted interface residues for the 

remaining 256,946 interactions not resolved by either PDB structures or homology models. Each 

residue was then predicted by the model of the ensemble with the highest priority according to the 

availability of structures of the target protein containing that residue and its partner protein. 

 

Mutagenesis validation experiments 
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We performed mutagenesis experiments where we introduced random human population variants 

from the Exome Sequencing Project125 into predicted interfaces, known interfaces, and non-

interfaces. We randomly selected mutations of predicted interfaces in each of the PIONEER 

prediction categories (very low-very high). We also selected random mutations of known 

interfaces and non-interfaces in co-crystal structures in the PDB as positive and negative controls. 

The selected mutations were introduced into the proteins according to our Clone-seq pipeline37. 

We generated 2,395 mutations on 1,141 proteins and examined their impact on 6,754 mutation-

interaction pairs (either disrupting or maintaining the interactions) using our high-throughput Y2H 

assay.  

 

Y2H assay 

Y2H was performed as previously described6. Gateway LR reactions were used to transfer all wild-

type/mutant clones into our Y2H pDEST-AD and pDEST-DB vectors. All DB-X and AD-Y 

plasmids were transformed into the Y2H strains MATα Y8930 and MATa Y8800, respectively. 

Thereafter, each of the DB-X MATα transformants (wild-type and mutants) were mated with 

corresponding AD-Y MATa transformants (wild-type and mutants) individually through 

automated 96-well procedures, including inoculation of AD-Y and DB-X yeast cultures, mating 

on YEPD media (incubated overnight at 30 °C), and replica-plating onto selective Synthetic 

Complete media lacking histidine, leucine, and tryptophan, and supplemented with 1 mM of 3-

amino-1,2,4-triazole (SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg/l 

cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) plates, and SC-Leu-

Ade+CHX plates to test for CHX-sensitive expression of the LYS2::GAL1-HIS3 and GAL2-

ADE2 reporter genes. The plates containing cycloheximide were used to select for cells that do 
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not have the AD plasmid due to plasmid shuffling. Spontaneous auto-activators126, therefore, were 

identified by growth on these control plates. These plates were incubated overnight at 30 °C and 

“replica-cleaned” the following day. Subsequently, plates were incubated for three more days, after 

which positive colonies were scored as those that grow on SC-Leu-Trp-His+3AT and/or on SC-

Leu-Trp-Ade, but not on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. Disruption of an 

interaction by a mutation was defined as at least 50% reduction of growth consistently across both 

reporter genes when compared to Y2H phenotypes of the corresponding wild-type allele as 

benchmarked by 2-fold serial dilution experiments. All Y2H experiments were repeated 3 times. 

 

Co-immunoprecipitation 

The first co-immunoprecipitation assay was conducted to validate the PIONEER partner-specific 

interface prediction. Specially, HEK293T cells were maintained in DMEM medium supplemented 

10% Fetal Bovine Serum. Cells were seeded onto 10 cm dishes and incubated until 40-50% 

confluency, and were transfected with a mixed solution of 3 μg of bait construct (CCND1), 3 μg 

of prey construct (CDK4 or TSC2), 30 μl of 1 mg/ml PEI (Polysciences, 23966), and 1.2 ml 

OptiMEM (Gibco, 31085-062). After 48 hrs incubation, transfected cells were washed three times 

in 10 ml DPBS (VWR, 14190144), resuspended in 500 μl NP-40 lysis buffer (50 mM Tris pH 7.5, 

150 mM NaCl, 5 mM EDTA, 1.0% NP-40) and incubated on the ice for 30 min. Whole lysate is 

sonicated on a sonifier cell disruptor (BRANSON, 500-220-180) for 120 sec at 40% amplitude. 

Extracts were cleared by centrifugation for 15 min at 16,100 g at 4 °C. For co-immunoprecipitation, 

500 μl cell lysate per sample reaction was incubated with 15 μl of EZ view Red Anti-FLAG M2 

Affinity Gel (Sigma, F2426) overnight 4 °C with a nutator. After incubation, bound proteins were 

washed three times in NP-40 lysis buffer and then eluted in 200 μl of elution buffer (10 mM Tris-
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Cl pH 8.0, 1% SDS) at 65 °C for 15 min. FLAG-co-purified samples were run on 8% SDS-PAGE 

gel and the proteins were transferred to PVDF membranes. Anti-FLAG (Sigma, F1804), and Anti-

MYC (Invitrogen, 132500) at both 1:5,000 dilutions were used for immunoblotting analysis.  

We also validated mutation effects for KEAP1-NRF2 by co-immunoprecipitation assay, in 

which HEK293T cells were co-transfected with WT KEP1 expressing vector and either WT NRF2, 

p.Thr80Lys, p.Glu79Lys, or p.Leu30Phe expressing vectors for 48 hours. Cells were lysed with 

NP-40 lysis buffer on ice, and supernatants were incubated with anti-HA antibody coupled with 

protein A/G beads (Santa Cruz,) overnight. Immunoprecipitated complexes were washed with NP-

40 lysis buffer for 3 times, and were then eluted and subjected to Western blotting. 

 

Collection and preparation of genome sequencing data 

We collected variant data across multiple sources including TCGA, MSK-MET, 1KGP, ExAC, 

HGMD, Cancer Cell Line Encyclopedia and genomic profiling of PDXs from previous study76. 

For unannotated datasets, we used VEP127 to annotate these variants in order to identify the 

corresponding amino acid changes. We regard one PPI as mutated if one variant affects the amino 

acid residue in the interface of either protein involved in the interaction. 

 

Significance determination of PPI interface mutations 

The significance of PPI interface mutations were tested using the method as described in our 

previous study8. A PPI in which there is significant enrichment in interface mutations in one or the 

other of the two protein-binding partners across individuals will be defined as an oncoPPI. For 

each gene 𝑔! and its PPI interfaces, we assume that the observed number of mutations for a given 

interface follows a binomial distribution, binomial (𝑇, 𝑝'!), in which T is the total number of 
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mutations observed in one gene, and 𝑝'! is the estimated mutation rate for the region of interest 

under the null hypothesis that the region was not recurrently mutated. Using length(𝑔!)  to 

represent the length of the protein product of gene 𝑔!, for each interface, we computed the P value 

- the probability of observing >k mutations around this interface out of T total mutations observed 

in this gene - using the following equations: 

𝑃(𝑋 ≥ 𝑘) = 1 − 𝑃(𝑋 < 𝑘) = 1 −=>
𝑇
𝑥@𝑝'!

(
)*+

(,-

(1 −	𝑝'!)
.*( 

𝑝'! =	
𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ(𝑔!)
 

Finally, we set the minimal P value across all the interfaces in a specific protein as the 

representative P value of its coding gene 𝑔!, denoted 𝑃(𝑔!). The significance of each PPI is defined 

as the product of P values of the two proteins (gene products). All P values were adjusted for 

multiple testing using the Bonferroni correction. 

 

PPI system construction of E3 ligases 

355 E3 ubiquitin ligases were retrieved and merged from E3net and Ubinet2.0. 4,613 E3s-

associated oncoPPIs were analyzed after removing PPIs with homodimers or without gene name. 

These oncoPPIs include 198 oncoPPIs from the PDB database, 197 from Homology Models, and 

4,218 from PIONEER. The correlations between mutations in E3 oncoPPIs and anticancer drug 

responses in TCGA cell lines, PDX models, and cancer survival rates from TCGA and MSK 

MetTropism datasets were then calculated (Supplementary Table 9). 

Complex crystal structures (PDBs: 3HQH, 3O37, 4O1V, 5G05, 5LNB, 5VZU, 6F8F, 6I68, 

6M90, 6WCQ, 7K2M and 7LIO) were accessed from the RCSB PDB protein data bank. The 

structures in the complex without co-crystal structures were retrieved from the AlphaFold2 portal 
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(https://alphafold.ebi.ac.uk). PIONEER predicted PPI models were constructed using 

HADDOCK128. The names, mutations and PDB ID were also shown in Supplementary Table 8. 

 

The linear ANOVA model 

We used the drug response data of human cancer cell line from GDSC datasets and to investigate 

the association of PPI interface mutation with drug response. For each drug, a drug-response vector 

consisting of IC50 values was modeled using the status of a genomic feature (whether a PPI 

interface is mutated), the tissue of origin of the cell lines, screening medium, and growth properties 

by fitting a linear model. A genomic feature-drug pair was tested only if the final IC50 vector 

contained at least 10 positive cell lines. The effect size was quantified through Cohen’s d statistic 

using the difference between two means divided by a pooled standard deviation for the data. The 

resulting P-values were corrected by the Benjamini-Hochberg method129. Similar to cell line drug 

response analysis, we also used the drug response data from high-throughput screening using PDX 

models to study the association of PPI interface mutation with drug response using linear model. 

All statistical analyses were performed using the R package (v4.2.0, http://www.r-project.org/). 

 

System structural construction of EGFR-RAS-RAF-MEK-ERK signaling network 

EGR-EGFR complex were constructed by three crystal structures (PDB: 3NJP, 2M20, 2GS6). 

Membrane models were built by CHARMM-GUI130. SOS1-KRAS complex (PDB: 6EPO), 

KRAS-RAF1 complex (PDB: 6VJJ), MEK1-BRAF complex (PDB: 6Q0J), MEK1 (PDB: 3WIG), 

and ERK1 (PDB: 4QTB) were accessed from the RCSB PDB protein data bank. Two subunits of 

RAF proteins are represented by RAF1 and BRAF, separately. The ITCH-BRAF complex model 
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was generated using HADDOCK. All images were processed using PyMOL. The complex names, 

mutations and PDB ID were also shown in Supplementary Table 10. 

 

Cell viability assay 

H1975 cells were transfected with NRF2 T80K/WT-expressing vectors or empty vectors using 

Lipofectamine 3000 (Thermofisher). For growth curve measurement, 3,000 cells were planted into 

96-well plates, and viability was measured using CellTiter 96 AQueous MTS Reagent (Promega,) 

at days 0, 2 and 4.  

 

Colony formation assay 

For the colony formation assay, 2,000 cells were plated into 6-well plates. After 2 weeks, cells 

were fixed with 4% paraformaldehyde and stained with crystal violet. Relative growth index was 

analyzed using ImageJ software131. 

 

Web server development 

The PIONEER web server is written in Python using the Django framework. The web server 

displays the full human interactome using co-crystal structures from PDB, homology models from 

Interactome3D114, and PIONEER-predicted interfaces. These data, along with auxiliary data about 

each protein, are stored on a Postgres database. The front-end displays this data using jQuery in 

two different web pages. The first page displays all information associated with a single protein-

protein interaction. We display the protein-protein interaction interface information, show where 

the interface residues lie on the PFAM domains for each protein, and depict where the disease 

mutations are enriched on the interaction interface. The disease mutation information is obtained 
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from HGMD. We display a number of 3D structures to help visualize the interaction interface. 

These includes the high-quality 3D structures from PDB and ModBase associated with each 

protein as well as any available high-quality PDB co-crystal structures. Furthermore, we display 

all AlphaFold structures associated with each protein. These structures are displayed using the 

MichelaNGLo viewer132. The second webpage displays a subset of the human interactome 

associated with a particular protein or a particular disease, depending on the user’s input on the 

homepage. We use the springy.js network visualization library here. 

The web server also hosts interaction data for eight species: H. sapiens, A. thaliana, S. 

cerevisiae, D. melanogaster, C. elegans, M. musculus, S. pombe and E. coli. Most importantly, the 

PIONEER web server also consists of an on-demand prediction pipeline that allows users to 

predict the interaction interface between any two proteins given their UniProt IDs. The on-demand 

prediction pipeline returns the raw predictions made by PIONEER and shows the two-dimensional 

protein structure visualizing which regions of the protein are more likely to lie on the interaction 

interface. The prediction pipeline utilizes the SLURM job scheduler to serve these requests. 

 

Data availability 

Mutation data from the TCGA study were downloaded from NCI genomic data commons 

(https://portal.gdc.cancer.gov). MSK MetTropism dataset was downloaded from cBioPortal 

(https://www.cbioportal.org/study/summary?id=msk_met_2021). Variant data from 1000 

Genomes Project were downloaded from NCBI FTP Site (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp). The ExAC data set was downloaded from gnomAD 

(https://gnomad.broadinstitute.org/downloads#exac-variants). Variants collected by HGMD were 

downloaded from (https://www.hgmd.cf.ac.uk/ac/index.php). Genomic variants and drug response 
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data of human cancer cell lines were downloaded from GDSC datasets 

(https://www.cancerrxgene.org/downloads/bulk_download). Genomic profiling of PDXs and drug 

response curve metrics of PCTs were downloaded from the Supplementary Table 1 of the 

corresponding paper (https://www.nature.com/articles/nm.3954#Sec28). All other data supporting 

the results in this study are available in supplementary materials, and at https://pioneer.yulab.org.  

 

Code availability 

The source code of PIONEER is available at https://github.com/hyulab/PIONEER.  
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Fig. 1 | Overview of the PIONEER framework. a, The current size of protein-protein 
interactions from the eight common model organisms with the coverage of experimentally 
determined co-crystal structures, homology models, and the unresolved interactions. b, The 
partner-specific interactions are prioritized in our training dataset for solving partner-specific 
interface prediction. c-f, PIONEER architecture consists of an ensemble of four deep learning 
models that ensures every residue in the interactomes can be predicted with the maximal amount 
of available information, and uses a comprehensive set of biophysical, evolutionary, structural,
and sequence features for in-depth feature characterization. The c and d models represent 
interactions in which both proteins and neither protein has structural information available, 
respectively. The GCNs and RNNs are used for structure and sequence information embeddings, 
respectively. The e and f models represent interactions in which only one protein has structure 
information available. The transfer learning was used in e and f, specifically, the pre-trained 
GCNs-RNNs in a and RNNs in b are deployed in c and d.
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Fig. 2 | PIONEER provides high-quality interfaces for the whole proteome. a, Workflow for 
compiling interactome PIONEER. The interfaces calculated from experimentally determined co-
crystal structures or homology models are primarily used, the remaining unresolved interactions 
are predicted by PIONEER. b, Comparison of receiver operating characteristic (ROC) curves of 
PIONEER Structure-Structure model with other state-of-the-art structure-based methods. c, 
Comparison of ROC curves of PIONEER Sequence-Sequence model with other state-of-the-art 
sequence-based methods. d, Percentage of CAPRI decoys having a given average PIONEER 
prediction score at interfaces. e, Fraction of interactions disrupted by random population variants 
in PIONEER-predicted and known interfaces.
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Fig. 3 | PIONEER-predicted PPI alleles are enriched in disease-associated mutations. a, 
Enrichment of disease mutations in PIONEER-predicted and known interfaces. Significance was 
determined by two-tailed Z-test. b, Enrichment of population variants in PIONEER-predicted and 
known interfaces. Predicted deleteriousness of population variants in PIONEER-predicted and 
known interfaces using PolyPhen-2. c, Distribution of mutation burden at protein–protein 
interfaces for disease-associated germline mutations from HGMD in comparison with mutations 
from the 1KGP and ExAC. Significance was determined by two-proportion Z-test. d, PPI network 
with disease-associated interface mutations. Disease associations of the interface mutations were 
extracted from the HGMD database. Using the PIONEER-predicted high-confidence interface 
information, PPIs that have at least one disease-associated interface mutation from either one of 
the two interacting proteins were included in the network. Node colors were determined by the 
disease categories of their disease-associated interface mutations. Interacting proteins with no 
known disease-associated interface mutations were colored as “Neighbor”. The final network 
contains 10,753 PPIs among 5,684 proteins. The figure shows the largest connected component of 
the network that has 10,706 edges and 5,605 nodes. e, Selected structural complex pairs showing 
germline mutations in the PPI interface. Three disease associated PPIs with mutations are shown: 
LMNA-BAF (PDB: 6GHD), PPIA-SYUA (PDB: 6I42), and VHL-HIF-2α (PDB: 6BVB). The 
surface of proteins in complex are shown in blue and wheat. Mutations are shown in green.
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Fig. 4 | A landscape of oncoPPIs identified by PIONEER across 33 cancer types (~11,000 
cancer genomes). a, Distribution of missense somatic mutations in protein–protein interfaces 
versus non-interfaces across 33 cancer types/subtypes from TCGA. The data are represented as 
violin plots with underlaid boxplots, where the middle line is the median, the lower and upper 
edges of the rectangle are the first and third quartiles, and the lower and upper whiskers of the 
violin plot represent the interquartile range (IQR) × 1.5. Significance was determined by two-
tailed Wilcoxon rank-sum test. b, Circos plot displaying significant putative oncoPPIs harboring a 
statistically significant excess number of missense somatic mutations at PPI interfaces across 33 
cancer types. Putative oncoPPIs with various significance levels are plotted in the three inner 
layers. The links (edges, orange) connecting two oncoPPIs indicate two cancer types sharing the 
same oncoPPIs. Selected significant oncoPPIs and their related mutations are plotted on the outer 
surface. The length of each line is proportional to –log10(P).
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Fig. 5 | PIONEER-predicted oncoPPIs are associated with patient survival. a, Selected 
structural complex pairs showing somatic mutations in the oncoPPI interface. b, Survival analysis 
of six exemplary PPI perturbing mutations in diverse cancer types. Significance was determined 
by log-rank test. c, Example of PIONEER partner-specific interface prediction. The mutations 
CCND1 p.Lys114Arg and CCND1 p.Glu162Lys are shown in green and pink, respectively. d, 
Experimental validation of the partner-specific interface prediction in c by co-
immunoprecipitation using HEK293T cells.
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Fig. 6 | PIONEER-predicted PPI-perturbing tumor alleles in ubiquitination by E3 ligases. a, 
A landscape of six E3 complexes with PPI perturbing mutations. The complex or single protein 
models from PDB or PIONEER modeling are shown. The protein in wheat denotes the E3 ligase, 
while the protein in blue denotes the specific substrate of E3 ligase. Interface mutations are 
denoted in green. b and c, Interface mutations of KEAP1-FBXL17 (b) and KEAP1-NRF2 (c) are 
significantly correlated with survival rate in non-small cell lung cancer. Significance was 
determined by log-rank test. d, Experimental validation of mutation effects of p.Thr80Lys and 
p.Glu79Lys on the NRF2 ETGE motif, and p.Leu30Phe on the NRF2 DLG motif on the 
interactions between KEAP1 and WT NRF2 were determined by co-immunoprecipitation with 
HEK293T cells. e and f, Colony formation assay of H1975 cells transfected with NRF2 
p.Thr80Lys, NRF2 WT expressing vectors, and empty vectors. g, Growth curves of H1975 cells 
transfected with NRF2 p.Thr80Lys, NRF2 WT expressing vectors, and empty vectors, at day 4.
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Fig. 7 | Pharmacogenomic landscape identified by the PIONEER-predicted interactome 
network. a, Drug responses evaluated by oncoPPIs in the PDX models. Effect size was quantified 
by Cohen’s d statistic using the difference between two means divided by a pooled s.d. for the 
data. b, Circos plot displaying drug responses evaluated by putative PIONEER-predicted 
oncoPPIs harboring a statistically significant excess number of missense mutations at PPI 
interfaces, following a binomial distribution across selected anticancer therapeutic agents in 
cancer cell lines. Each node denotes a specific oncoPPI. Node size denotes significance 
determined by ANOVA. Effect size was quantified by Cohen’s d statistic using the difference 
between two means divided by a pooled s.d. for the data. Node color denotes three different types 
of PPIs: (1) Experimental: Red; (2) HM: Blue; and (3) PIONEER: Green. c, Highlighted examples 
of drug responses. Values were calculated using ANOVA. Data are represented as a boxplot with 
an underlaid violin plot in which the middle line is the median, the lower and upper edges of the 
box are the first and third quartiles, the whiskers represent IQR × 1.5, and beyond the whiskers 
are outlier points. Significance was determined by ANOVA.
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Fig. 8 | Proteogenomics of the PIONEER-predicted interactome network. a, Phosphorylation-
associated PPI perturbing mutations altered the proteomic changes in COAD and UCEC. The 
abundance of proteins was quantified using the TMT technique. Significance was determined by 
two-tailed Wilcoxon rank-sum test. b, Phosphorylation-associated PPI perturbing mutations in the 
EGFR-RAS-RAF-MEK-ERK cascade signaling pathway. The whole transmembrane EGFR 
structures were constructed by three crystal structures (PDB: 3NJP, 2M20, 2GS6). The membrane 
model is shown in green. The phosphorylation sites are indicated by the “P” symbol. The detailed 
interface structure of SOS1-KRAS is also shown in the inset. The key mutated residue Gln61 on 
KRAS forms a hydrogen bond (purple dashed line) with residue Thr935 on SOS1, and Tyr884 on 
SOS1 is involved in a cation-π interaction (red dash line) with residue Arg73 on KRAS. Two 
subunits of RAF protein structure models were built by RAF1 and BRAF, separately (PDB: 6VJJ 
and 6Q0J). The two subunits are connected by a disordered loop indicated by blue cartoon lines. 
Two heterodimers of KRAS-RAF1 and BRAF-MEK1 constitutes the KRAS-RAF-MEK1 
complex. PDB ID of each complex structure model is provided. c, Highlighted examples of 
responses to the MEK inhibitor drugs trametinib for KRAS-SOS1 mutations (n = 103 mutated cell 
lines, n = 827 WT cell lines), refametinib for KRAS-BRAF mutations (n = 179 mutated cell lines, 
n = 1,610 WT cell lines), and binimetinib for KRAS-SOS1 mutations in the PDX models (n = 62 
mutated samples, n = 166 WT samples). Significance was determined by ANOVA.


