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ABSTRACT 

Substance craving and maladaptive choices are intertwined across addictive disorders. However, the 

computational mechanisms connecting craving and decision-making remain elusive. Here, we tested a 

hypothesis that momentary craving and value-based decision-making influence each other during 

substance-related reinforcement learning. We measured momentary craving as two groups of human 

participants (alcohol drinkers and cannabis users; total n=132) performed a reinforcement learning task in 

which they received group-specific addictive cue or monetary rewards. Using computational modeling, we 

found that, across both groups, momentary craving biased learning rate related to substance-associated 

prediction errors (RPEs), but not monetary RPEs. Additionally, expected values and RPEs jointly 

influenced elicited craving across reward types and participant groups. Alcohol and cannabis users also 

differed in the extent to which their craving and decision-making influenced each other, suggesting 

important computational divergence between the two groups. Finally, regressions incorporating model-

derived parameters best predicted substance use severity in the alcohol, but not cannabis group, supporting 

the utility of using these model-based parameters in making clinical predictions for selective substance 

groups. Together, these findings provide a computational mechanism for the interaction between substance 

craving and maladaptive choices that is generalizable across addictive domains. 
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INTRODUCTION 

Humans can become addicted to a variety of substances, including a wide range of drugs and alcohol. Two 

elements are essential across all types of addictions: craving, the strong subjective desire for a substance; 

and decision-making, the objective choices made by affected individuals. While it is universally 

acknowledged that craving and decision-making are tightly intertwined in addiction, the computational 

mechanism underlying this interaction is not clear. Historically, the cue-reactivity literature – one of the 

most influential characterizations of craving – emphasizes the elicitation of craving in response to learned 

addictive cues that serve as secondary drug rewards1–7. Cue reactivity paradigms have been widely used to 

identify the neural correlates of craving (e.g., midbrain, insula, and cingulate) across a number of addictive 

disorders and sensory modalities8–11. Yet, they do not provide a mechanistic explaination for how craving 

arises in or interacts with drug-related choice behaviors. For example, forced abstinence and associated 

removal of drug cues paradoxically leads to increased craving and drug-seeking behaviors in substance 

dependent rodents12,13 and humans14,15, a phenomenon termed incubation of craving. Furthermore, it has 

been shown that drug-related beliefs and expectations also affect craving, an effect independent from the 

availability of drug rewards and cues16–18. As such, despite a rich empirical literature on craving, the 

computational mechanisms of craving remain elusive. 

 

Computationally, reinforcement learning (RL) has been a primary framework used to account for 

maladaptive choices in addiction, with a central tenet that choices are reinforced by reward prediction errors 

(RPEs). Preliminary computational models hypothesized that addictive stimuli produce an irreducible RPE 

signal, subserved by excessive dopamine, that continuously reinforces substance-related choices19, which 

then subsequently shift one’s homeostatic setpoints20. While views on heterogeneity of dopaminergic 

encoding of information have become more nuanced21–23, and modern accounts have provided compelling 

evidence for RL-based behavior in animal models of addiction, these theories have yet to be tested 

empirically in humans with substance dependence. Critically, they also still do not account for how drug-

related choices and craving may mutually influence each other. Recent efforts in computational psychiatry 
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have started to shed light into the interaction between value-based decision-making and subjective states 

such as mood24–29. For example, monetary RPEs were found to predict mood ratings, providing initial 

evidence that internal subjective states could be influenced by RL signals in a systematic fashion28. 

Conversely, mood may increase the ‘momentum’ of value updating, providing a plausible mechanism for 

how mood drives dynamic changes in learning24. Momentary craving is likely entangled with addictive 

decision-making in similar ways, yet only a handful of empirical studies have examined this important 

relationship16,30, and a computational mechanism linking these two constructs remains noticeably missing 

despite well-established theoretical and empirical accounts of addiction that connect the two19,31–33. 

 

In this study, we tested the hypothesis that momentary substance craving and value-based decision-making 

shape each other in a bidirectional fashion in humans. To test this hypothesis, we developed a paradigm in 

which substance-using individuals made choices to obtain either monetary or addictive cue (i.e., alcohol or 

cannabis) outcomes, and intermittently self-reported their craving (i.e., for alcohol or cannabis) during both 

blocks. To test the generalizability of our hypothesis, we examined two groups of participants (total n=132; 

see Table 1 for participant characteristics): alcohol drinkers (n=68), and cannabis users (n=65). The task 

consisted of a modified two-armed bandit (Fig. 1a), where participants selected one of two machines (80% 

reward rate), and saw the outcome of either a coin (in the money condition) or their pre-selected addictive 

cue of either alcohol or cannabis (in the addictive condition). Momentary craving and mood were both 

sampled during the task (33% and 20% of the trials, respectively), and a novel computational modeling 

approach was used to fit both choice and craving data per session. We found that, across both groups, 

momentary craving biased learning rate in the addictive context, but biased reward perception in the 

monetary context. Conversely, in both substance and monetary contexts, elicited craving was driven by 

prediction errors (RPEs) and expected values (EVs), as opposed to either alone. Finally, we found that 

computational parameters derived from our models provided greater power than model-agnostic metrics 

for predicting clinical severity scores for the alcohol group, whereas demographics better predicted 
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cannabis use severity. Together, these results validate a generalizable computational mechanism linking 

momentary craving with value-based decision-making in addictive disorders. 

	

RESULTS 

Participants learned to maximize outcomes and reported fluctuating levels of craving  

First, we examined model-agnostic behaviors that reflected how participants performed the task. In typical 

monetary bandit tasks, it is well established that humans learn to choose the option that maximizes monetary 

outcomes34–36; yet it remains unclear if individuals with moderate to heavy substance use behave similarly 

in the addictive stimulus condition. As in standard monetary tasks, here we defined choice optimality as the 

percentage of choosing the correct option (i.e. choosing the machine with the higher reward rate of 80%). 

Overall, participant choices were highly similar to the true reversal structure of the task (Fig. 1b), and 

choice optimality was significantly higher than chance (50%) regardless of condition (Fig. 1c; 

alcohol/money: 71±9%, alcohol/addictive: 70±8%, cannabis/money: 69±8%, cannabis/addictive: 70±8%, 

all P<0.001), confirming that participants successfully learned to exploit the machines for both addictive 

and monetary rewards. Choice optimality did not differ across participant groups (t=1.01, P=0.31), task 

conditions (t=0.38, P=0.71), or show an interaction effect (F=0.44, P=0.51), ensuring that findings related 

to craving-choice computation would not be attributable to distinct task performance alone. 

 

Next, we verified that that participants experienced dynamic changes in their substance craving during the 

task, by calculating the mean and variability in self-reported cravings during the task across groups and 

conditions. As predicted, substance craving was greater in the addictive than the monetary condition in both 

groups (Fig. 1d; alcohol: t=3.141, P=0.002; cannabis: t=2.465, P=0.016), suggesting that addictive cues 

increased craving in this task, replicating cue-induced effects on craving. We also observed substantial 

variability in craving ratings within-subjects (Fig. 1e) such that craving variances were greater than zero 

for across groups and conditions (all groups and conditions; t>7, P<0.001), validating engagement during 
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self-report of craving and dynamic changes in perceived craving in response to outcomes. Variances did 

not differ by group (F=0.26, P=0.61), condition (F=1.07, P=0.30), or their interaction (F=0.17, P=0.68). 

Finally, we also examined whether participants’ craving ratings might be inherantly correlated with mood, 

as negative affect has been found to be associated with increased drug craving37,38. To assess this, participant 

mood ratings were measured intermitently ("what is your mood right now?”) for 20% of the trials. Within-

participant craving and mood ratings were not significantly correlated in the money condition (Supp. Fig. 

1; mean correlations; alcohol: r=-0.06, P=0.31; cannabis:r=-0.002, P=0.96), or in the addictive cue 

condition (alcohol: r=-0.02, P=0.70; cannabis:r=0.06, P=0.31), indicating that craving ratings contained 

distinct information from mood ratings.  

 

A generalizable computational mechanism linking momentary craving and decision-making  

Next, we constructed computational models that represent the bidirectional relationship between 

momentary craving and choice behavior (see Methods; Table 2 for details). First, we composed five 

candidate model classes to account for choice behavior, with a modulation parameter (φ) defining the 

degree to which momentary craving modulated different components of the decision process (TDRL 

(temporal difference reinforcement learning, no bias)), Reward bias (r-bias), Learning rate  bias (a-bias), 

Temperature bias (b-bias), and Momentum-based TDLR (m-TDRL)). The first four models were derived 

from classic TDRL models39,40 from the RL literature. In the r-bias model, momentary craving modulated 

the perceived magnitude of the reward signal41,42, while it instead modulated the learning rate and softmax 

temperature parameters in the a-bias and b-bias respectively. Finally, the m-TDRL model conceptualized 

craving as “momentum”, similar to recent efforts in modeling mood dynamics24,43.  

 

Next, we constructed models where different components of decision variables and their combinations 

contributed to future craving ratings. These models were inspired by 1)  a recently proposed theoretical 

framework that craving arises as a posterior inference stemming from both prior expectations and prediction 
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errors generated by outcomes44; and 2) computational models of other types of subjective states such as 

mood28. Three model classes were constructed and compared: RPE-elicited models (where only prediction 

errors influced craving), EV-elicited models (where only expected values influenced craving) and a full 

model with both RPE- and expectation-elicited craving (jointly-elicited craving). Note that in our 

specification, RPE-elicited craving essentially represents classic cue-induced craving because outcomes 

and RPEs are highly correlated (Supp. Fig. 2), while EV-elicted craving represents a testable alternative 

that prior beliefs are important in eliciting craving, a hypothesis that has gained increasing empirical 

validation in recent years16,30,45. 

 

Momentary craving biases drug-related learning across cannabis and alcohol groups  

Of our candidate models linking craving and valuation, which best explains the choices made by 

participants? Following model comparison (Fig. 2a, b), we found that the a-bias model performed best in 

the addictive-cue condition across both alcohol- and cannabis-using groups. To assess the fidelity of fit by 

this model, we generated 2,000 simulations of choice behavior and calculated the degree of alignment 

between simulations and true behavior. We found that simulated behavior matched true behavior 

significantly better than chance (Supp. Fig. 3, both conditions: t>10, P<0.001) and close to optimal (Supp. 

Fig. 4), and parameter recovery was excellent (Fig. 2c, d). Examination of the parameter values for this 

model (Fig. 2e, f) revealed that φ was positive in alcohol users (M=0.209, SD=0.798, P=0.034) and negative 

in cannabis users (M=-0.995, SD=1.435, P<0.001), suggesting that higher craving accelerated alcohol-

related learning for alcohol drinkers but slowed down cannabis-related learning for cannabis users. In other 

words, alcohol craving increases one’s sensitivity towards alcohol-related prediction errors, whereas 

cannabis craving shows the opposite effect. 

 

In the monetary condition, in contrast, the r-bias model performed best across groups (Supp. Fig. 5a, b) 

and parameter recovery for this model was, again, excellent (Supp. Fig. 5c, d). Examination of parameter 

values (Supp. Fig. 5e, f) revealed that both groups showed significantly positive φ (alcohol: M=0.118, 
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SD=0.099, P<0.001; cannabis: M=0.190, SD=0.097, P<0.001), indicating that, across groups, higher 

craving levels increased the perceived magnitudes of monetary rewards. 

 

These findings highlight an important role for craving in modulating learning across alcohol and cannabis 

groups. First, momentary craving biases learning rate in response to addictive cues, yet influences reward 

perception in response to non-addictive cues across both groups. Second, alcohol craving and cannabis 

craving have opposing effects on drug-related learning; alcohol craving accelerates alcohol-related 

prediction error encoding, while cannabis craving reduces learning based on cannabis-related prediction 

errors. These models provide overlapping yet distinct computational mechanisms mediating the relationship 

between craving and decision-making in alcohol and cannabis users. 

 

Trial-wise expectations and prediction errors combine to drive perceived craving across groups and 

decision contexts 

Though our results corroborate a directional effect of craving on learning, the nature of the reverse 

interaction remains unclear, i.e., do how do prior expectations and outcomes influence perceived craving? 

Systematic model comparison revealed that, across both alcohol and cannabis groups, momentary craving 

was best explained by a combination of expected values and prediction errors in response to outcomes in 

both addictive and monetary conditions (Fig. 3a, b), rather than either individually. Predicted cravings 

generated by this model were also significantly correlated with true cravings (Fig. 3c-f; t>11.0, P<0.001). 

Overall, these results build on several recent findings substantiating the importance of both cue-induced 

and belief-induced influences on momentary craving16,30. 

 

Next, we extracted the parameters from the best performing model to interpret the processes underlying 

elicitation of craving during the task. In the addictive cue condition, EV weight was significantly positive 

in alcohol users (Fig. 3g; M=0.173, SD=0.358, P<0.001) but not cannabis users (Fig. 3h; M=0.108, 
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SD=0.496, P=0.083. RPE weight was also significantly positive only in the alcohol users (M=0.664, 

SD=1.108, P<0.001), but not cannabis users (M=0.071, SD=1.680, P=0.733).  

 

In the monetary condition, the combined EV+RPE model was again found to be best performing (Supp. 

Fig. 6a, b) and predicted cravings were highly correlated with true cravings (Supp. Fig. 6c-f). Analysis of 

parameter estimates (Supp. Fig. 6e-f) showed that EV weight was significantly positive in the cannabis 

users (M=0.162, SD=0.347, P<0.001), but not in alcohol users (M=0.010, SD=0.497, P=0.873), while RPE 

weight was non-significant for both groups (alcohol: M=0.219, SD=1.754, P=0.306; cannabis: M=0.317, 

SD=1.935, P=0.191).  

 

In sum, the models constructed here provide a means for disentangling two important components of 

momentary perceived craving: effects of prior expectations (EVs) and effects of prediction errors (RPEs). 

Here, we again find highly divergent computational signatures for alcohol and cannabis users that are 

context-dependent. In the addictive cue condition, momentary craving is dynamically driven by increases 

in both EV and RPE for alcohol users, but not cannabis users. In the monetary condition, momentary craving 

is primarily driven by increases in EV for cannabis users but not alcohol users. 

 

Model-derived computational parameters have substance-dependent predictive utility 

Thus far, our results provided a computational account for the bidirectional relationship between substance 

craving and decision-making. Next, we sought to examine if these computational estimates had utility in 

predicting clinical severity above and beyond simple demographics or model-agnostic metrics. Five classes 

of regressions were constructed: (1) Demographic regression (Demo-only), in which only basic 

demographics (age, sex, race, income, education level) were used to to predict severity, (2) Computational 

model-derived regression (Comp-only), in which only computational parameters from the addictive 

condition were used, (3) Model-agnostic regression (Agnostic-only), in which only task performance 

summary metrics (mean and s.d. of craving and choice optimality in the addictive condition) were used, (4) 
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Demo+comp, where both demographic and computational predictors were included, and (5) 

Demo+agnostic, where both demographic and model-agnostic predictors were included. 

 

For each group, models were compared and ranked by expected log pointwise predictive density Widely 

Applicable Information Criteria (elpd_waic) scores, and normalized true and predicted severity were plotted 

against each other (Fig. 4a-d). We found that the Comp-only model performed best in alcohol users 

(elpd_waic = -93.747; r=0.553, P<0.001), while Demo-only performed best in the cannabis users 

(elpd_waic = -94.188; r=0.373, P=0.002). We also sought to interpret the significantly predictive variables 

from the best-performing regression model in relationship to drug use severity scores (Fig. 4e-f). Alcohol 

use severity was positively associated with learning rate and baseline craving, and negatively associated 

with inverse temperature and EV weight. Cannabis use severity, however, was negatively associated only 

with age, education, and income.   

 
In sum, our comparative regression analysis unexpectedly found that computational parameters from our 

models were substance-dependent in their predictive utility. This may indicate that the direct utility of 

computational fingerprints of decision-making and craving in addictive disorders may be highly 

dependent on the addictive target and/or clinical group, or on a the particular set of computational latent 

parameters interrogated during the task. 

 

DISCUSSION 

In the present study, we identified a computational mechanism subserving the dynamic relationship 

between momentary craving and decision-making generalizable across moderate-to-heavy alcohol drinkers 

and cannabis users. Our findings support the notion that craving and decision-making are two 

computationally intertwined processes across addictive domains. Additionally, we built on, and empirically 

tested, recent computational theories that prior expectations and prediction errors both play a role in 

perceived craving. Substantiating our hypotheses, we found that substance users converged on a 
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generalizable algorithm in which momentary craving dynamically biased learning specifically in response 

to addictive cues, and both prediction errors and expected values influenced subsequent perceived craving. 

Notably, however, substance use groups diverged with respect to the patterns of parameters associated with 

decision-making and craving, providing distinct substance-specific computational fingerprints of these 

interacting mental processes in addiction. 

 

There is compelling evidence supporting the view that computational mechanisms involved in addiction 

may be shared across substance use disorders, including alcohol and cannabis use. For instance, previous 

studies have highlighted several mechanisms for impaired goal-directed planning, belief-updating, and 

habit formation across substance use groups41,42,46,47. Network analytic approaches show craving plays a 

central role across substance use disorders48–50, and individuals who co-use alcohol and cannabis exhibit 

heightened cue-induced craving and altered decision-making for both substances51–53. Neurobiologically, 

several connectome-based predictive approaches have identified a transdiagnostic "craving network" 

involving regions of the salience, subcortical, and default mode networks54–56, suggesting a common neural 

signature for craving across addictive disorders, including alcohol and cannabis use disorders. Building on 

these prior results, our models provide first evidence that both alcohol and cannabis users converge on the 

same computational algorithm that explicitly links craving and decision-making. 

 

Importantly, however, alcohol and cannabis users diverge in, and thus are uniquely identifiable by, their 

cognitive parameter patterns. In alcohol drinkers, we found that increased craving led to faster learning 

from alcohol-related prediction errors, suggesting that alcohol-associated outcomes that follow a state of 

high craving may lead to stronger valuation by the brain of a drinker. Several previous studies have 

identified similar learning dysfunctions in alcohol use disorder, including premature switching57, 

accelerated valuation of negative outcomes58, and high impulsivity59 that may be reflective of faster craving-

induced learning. In contrast, in cannabis users, high craving led to slower learning from prediction errors 

about cannabis related outcomes. This result conforms with previous findings of diminished learning in 
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cannabis users60, particularly as relating to memory61,62 and social context63 of cannabis cues. Additionally, 

while direct comparisons are lacking, several studies have also described clear dissimilarities in 

computational factors64,65 between alcohol and cannabis users (e.g., impaired delay discounting but 

unaffected reversal learning in cannabis users, but significant reversal learning impairment in alcohol 

users). Differences in computational signatures may also reflect the the disparities in clinical 

phenomenology between alcohol and cannabis consumption; for example, alcohol is often consumed in 

shorter, concentrated time periods, and its intoxicating effects take longer than those of cannabis, which is 

often consumed more gradually throughout longer periods of time and takes only minutes for its effects to 

be felt. Overall, our findings propose drastically diverging alterations in the craving-learning associations 

present in these two substance use disorders that, in turn, might guide development of substance-specific 

clinical interventions. Further exploration and characterization will be necessary to validate these findings 

prospectively, explore brain substrates, and compare/contrast them to the computational signatures of other 

substance use disorders (e.g., opioid, cocaine). 

 

We also found that, across groups, both expected value and prediction error signals – regardless of the 

decision context – dynamically drove changes in cravings. Importantly, this finding realigns the classic cue-

induced craving phenomenon9,66 with well-known neural67,68 (dopaminergic) and computational (prediction 

error)16,32,44 effects. In this view, cue-reactivity can be deconstructed as being composed of both momentary 

prediction errors and expected values that each independently drive increased craving; i.e., cues elicit 

craving through two distinct mechanisms: (1) prior beliefs about their value (EV-driven effect), and (2) 

epistemological surprise (RPE-driven effect). This result explains recent findings that both values and 

prediction errors are important components of perceived craving in addiction at behavioral69–72, 

computational41,73,74 and neural16,75,76 levels. 

 

Finally, we found that, among alcohol users, computational parameters can reflect latent information that 

is predictive of clinical severity above and beyond model-agnostic metrics or demographics, suggesting 
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that these latent computational parameters may contain unique information related to individual differences 

in alcohol use severity. To our knowledge, this provides the first empirical evidence that computationally-

derived parameters may capture features core to addiction that are not provided by model-agnostic 

measures. These findings provide compelling evidence for the value of computational modeling in 

uncovering latent information that may be highly valuable translationally. Nevertheless, further work will 

be required to refine the sets of latent computational parameters that may be most salient to the predictions 

of clinical severity in other addictive disorders. 

 

Our finding of an algorithmic link between craving and decision-making has direct clinical implications: 

specifically, by reducing or managing cravings, individuals may be able to break the vicious cycle of 

addiction-associated decision-making that leads to poor clinical outcomes. Though interventions regarding 

craving have been proposed, tested, and examined widely77–79, our models provide the first mechanistic 

explaination for their success. Further exploration may reveal a novel line of therapeutic interventions 

focusing on the interplay between craving and addiction-associated decision-making that target both 

components simultaneously. Though recent psychological research has hinted at similar results71,80,81, this 

finding certainly merits further clinical investigation, as the majority of current interventions typically 

involve focusing on negative aspects of addiction directly72,82,83, or mindfulness strategies84–86.  

 

Our results here are limited by an absence of direct evidence supporting the neurobiological substrates that 

facilitate this mental computations proposed in this model. Though numerous efforts have identified the 

effect of decision-making on subjective states, such as happiness28 or craving16,75, there are, as of yet, no 

neuroimaging studies investigating a bidirectional interaction between the two. A next logical step would 

be to collect neural data (e.g., using neuroimaging) in conjunction with our experimental design, and utilize 

machine learning or statistical approaches to find the neural patterns encoding the computational 

mechanisms outlined here. Additionally, these findings would need to be replicated in a sample of 

individuals with confirmed substance use disorders to ensure the applicability of the model to true clinical 
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populations, and allow for a more robust understanding of how the proposed mechanisms operate under 

pathological conditions. 

 

CONCLUSION 

Overall, this study highlights a reciprocal, dynamic link between decision-making and craving in addictive 

disorders. Our results demonstrate that momentary craving leads to biased learning in drug-salient 

contingencies, and support an updated and refined craving framework, with both prior beliefs and prediction 

error effects being key drivers of momentary perceived craving.  
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METHODS 

Task design - instructions 

We utilized a modified two-armed bandit task that incorporated reversals to encourage continuous 

learning during the experiment. At the start of the task, participants were presented with the instructions 

about how to play the game. Participants were presented with two slot machines and were encouraged to 

do their best to maximize their rewards from the machines, with the incentive of being rewarded with a 

greater bonus payment at the end of the game based on their final score.  

 

In the money condition, participants received a monetary reward, presented as an image of a coin. In the 

addictive reward condition, they received a reward corresponding to an addictive cue, selected based on 

the addictive group to which they belonged (e.g., in the alcohol-using group, participants were rewarded 

with an image of alcohol). Additionally, during the start of the experiment, participants were able to select 

one of three possible addictive cues that were most tempting to Participants in the alcohol-using group 

were able to select from either a beer, wine, or liquor reward, while cannabis users were able to select 

from either a blunt, bong, or bowl. 

 

Participants were then also informed that they would intermittently be asked to assess and report their 

craving and mood. They were given specific definitions for craving (“An intense, conscious desire or 

wanting for something”) and mood (“A non-specific, persistent general feeling about your current mental 

state, distinct from emotions, which are shorter-lived and specific to a particular thing”), in order to 

provide them with a deeper understanding of the concepts being measured, and to provide a concrete 

basis upon which their self-reports could be compared. Baseline craving and mood ratings were then 

assessed prior to presentation of the slot machine task.  

 

Finally, participants were informed that one of the slot machines would be more rewarding than the other 

at all times, but the more rewarding slot machine might change over the course of the experiment. The 
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true experimental structure (delineated below), including the probabilities of reward, the reversal timings, 

and number of trials, was not revealed to the participants beyond the information listed above.  

 

Task design - experimental structure 

There were 60 trials per condition, and 5 practice trials at the start of the experiment for a total of 125 

trials. The 5 practice trials were discarded during the computational modeling. Presentation of conditions 

was randomized over the cohort, such that half of the participants received the money condition first and 

the other half received the addictive cue condition first. The more rewarding slot machine presented a 

reward 80% of the time, while the less rewarding machine presented a reward 20% of the time. The more 

rewarding machine switched four times over the course of the experiment (“reversals”). First selection of 

the best machine (either right or left), was pseudorandomized and reversal timings were also 

pseudorandomized as either 12-12-11 or 13-12-10.  Craving ratings were assessed approximately every 

three trials for a total of 20 craving ratings per condition. Mood ratings were assessed approximately ever 

5 trials for a total of 12 mood ratings. Ratings were collected on a linear scale from 0-50, where 

participants used the arrow keys to move a cursor from left to right to select their answers, where the left 

end of the bar was labeled as ‘Low’ and the right end was labeled as ‘High’. 

 

Data collection 

We first performed a high-throughput screening for 1,000 participants on Prolific, an online data 

collection platform for recruiting participants across the world. We restricted our recruitment to 

participants with the following characteristics: USA residents, fluent English speakers, high approval 

rating on Prolific, no previous completion of any of our group’s experiments. Furthermore, we recruited a 

balanced sample of male and female participants. Participants completed two screening surveys 

implemented on Redcap. The first was the World Health Organization’s Alcohol, Smoking and Substance 

Involvement Screening Test (ASSIST)87, which was developed as a screening tool to help primary health 

professionals detect and manage substance use and related problems. ASSIST allows for screening of use 
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of substances such as alcohol, cannabis, tobacco, stimulants, inhalants, and others. Second, we used a lab-

standard demographics survey to assess basic demographic features such as age, sex, level of education, 

income, and race. 

 

From the screening surveys, we recruited cohorts for moderate to high alcohol use and cannabis use. 

Potential participants were identified with the following criteria: (1) The alcohol use cohort reported 

moderate to heavy use of alcohol weekly as identified by ASSIST, with no comorbid usage of any other 

substances. (2) The cannabis use cohort reported moderate to heavy use of cannabis weekly, with low to 

no use of alcohol, and no other substance usage. 

 

From the full eligible cohort for each group, we collected a total of 40 participants’ data for the slot 

machine game. Participants with substance use were additionally asked to complete further group-specific 

questionnaires. Alcohol users completed an Alcohol Dependence Scale88,89, and an Alcohol Use Disorder 

Identification Test90. Cannabis users completed a Cannabis Severity of Dependence Scale91, and a 

Cannabis Abuse Screening Test92.  

 

We followed the exact protocol listed above for a second sample, starting with 1,000 screened 

participants, filtering of participants into potential cohorts for data collection, collection of 40 samples 

from each group of interest, and collection of auxiliary clinical questionnaires for the substance use 

groups. The data from the two samples was combined into our final analysis sample reported in the 

manuscript. 

 

Quality control 

Before analysis, participant data from each group underwent a series of quality control checks. First, we 

included one attention check during the experiment, with instructions about halfway through the task to 

select the highest option if the participant was paying attention. Participants that did not pass this attention 
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check were excluded. Second, since the optimal machines and reversal timings are known, it is possible to 

construct the vector of optimal choices during the experiment. A participant’s raw choice behaviors were 

compared to the optimal choice vectors for each condition, and only participants with greater than 50% 

optimality were selected, ensuring that they learned to play the game well, and were not simply randomly 

responding in the task, with a relatively low bar of exclusion reducing the chance that randomness of 

reward structure did not unnecessarily exclude well-performing participants. Finally, we z-scored the 

reported craving ratings during the task and excluded the participant if the standard deviation of the 

ratings did not exceed 1, suggesting that there was very low variability in the rating scores. Moreover, we 

found that most participants with extremely low craving variability seemed to exclusively report a craving 

of 25/50, which was the default value in the rating scale, suggesting that they were not properly 

responding to the prompts. 

 

Model-agnostic analysis 

1. Calculation of mean/SD of craving and mood: We calculated the means and variances of 

reported cravings for each individual across groups and conditions. These were used to assess 

whether simple summary statistics of overall trends of craving were associated with clinical 

measures. The same process was repeated for reported moods. Individual distributions of cravings 

and moods were aggregated and reported across groups and conditions. 

2. Survey scoring: We scored the Redcap surveys for each group according to a questionnaire-

specific scoring. For the alcohol group, we utilized 3 surveys: ASSIST, AUDIT, and ADS. 

ASSIST scores ranged from 0-40 (<3 – low severity, 4-26 – medium severity, >26 high severity). 

AUDIT scores ranged from 0-34 (<7 – low severity, 8-14 – medium severity, >14 high severity). 

ADS scores ranged from 0-54 (0 – No risk, 1-13 – low risk, 14-21 – moderate risk, 22-30 – 

substantial risk, >30 – severe risk). For the cannabis group, utilized 3 surveys: ASSIST, CAST, 

and SDS. ASSIST-Cannabis scores ranged from 0-36. CAST scores ranged from -6-20 (<3 – low 

risk, 3-6 – moderate risk, >6 high risk). SDS scores ranged from -5-13 (<=3 – low risk, >4 – high 
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risk). The distributions of all these surveys were visualized across groups. Additionally, we 

calculated the difference between clinical severity scores before the task (during screening 

surveys) and after the task to assess the stability of these clinical measures. 

3. Choice optimality: We qualitatively assessed the performance of participants to ensure that they 

were able to learn the structure of the task well. To do this, we compared the choice of machine 

for all participants in a group to the optimal choice that could be made at that time, where the 

optimal choice was defined as the machine with higher probability of reward. Participants with 

lower than 50% optimality were excluded from further analysis because they were unable to learn 

the task structure. Finally, we plotted the distributions of optimality of remaining participants to 

demonstrate that participant optimality was well above chance. 

4. Qualitative performance checks: We averaged the choice of machine across participants by 

group, controlled for randomization of the order of the best machine presented first (either left or 

right) to qualitatively assess group-level tracking of reversals across the task. We then visualized 

the overall distributions of craving and mood during the task within individuals and across groups 

to ensure that there was a realistic distribution of cravings and moods reported during the task. 

5. Low-level sanity check correlations: We correlated group-specific clinical scores (ASSIST for 

alcohol and cannabis, EDEQ for binge-eating, and usage survey for social media) with percent 

optimality, total score, and baseline and mean craving/mood ratings. We also performed a 

Spearman correlation between reported mood and craving ratings within participant to check the 

covariance of the two.  

 

Modeling analysis 

Decision-making and craving modeling was done sequentially. There were five classes of decision-

making balanced on model complexity (i.e., number of parameters utilized by the model). 
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1. Asymmetric temporal difference learning – Values were computed using a standard temporal 

difference reinforcement learning (TDRL) rule with asymmetric learning from positive and 

negative prediction errors39,93. Decisions were made with a softmax rule. 

 

𝑉! = 𝑉!"# + 𝛼$%&(𝑟! − 𝑉!"#)	𝑖𝑓	𝑅𝑃𝐸 > 0 

𝑉! = 𝑉!"# + 𝛼'()(𝑟! − 𝑉!"#)	𝑖𝑓	𝑅𝑃𝐸 ≤ 0 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛!	~	𝑝𝑜𝑙𝑖𝑐𝑦(𝛽, 𝑉!) 

 

2. Reward modulation models – Values were computed with TDRL but reward magnitude was 

modulated by a bias parametrized by momentary craving and a modulation factor 𝜑41,42. 

Decisions were made with a softmax rule. 

 

𝑟′! = 𝑟! × 𝜑 ∗ 𝑐𝑟𝑎𝑣𝑖𝑛𝑔! 

𝑉! = 𝑉!"# + 𝛼!(𝑟*! − 𝑉!"#) 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛!	~	𝑝𝑜𝑙𝑖𝑐𝑦(𝛽, 𝑉!) 

 

3. Learning bias models (𝛼	𝑏𝑖𝑎𝑠) – Values were computed with TDRL but learning rate 𝛼 was 

modulated by a bias parametrized by momentary craving and a modulation factor 𝜑. Decisions 

were made with a softmax rule. 

 

𝛼! = 𝛼&!+!,- + 𝜑 × 𝑐𝑟𝑎𝑣𝑖𝑛𝑔! 

𝑉! = 𝑉!"# + 𝛼!(𝑟! − 𝑉!"#) 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛!	~	𝑝𝑜𝑙𝑖𝑐𝑦(𝛽, 𝑉!) 
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4. Temperature bias (𝛽	𝑏𝑖𝑎𝑠) – Values were computed with standard TDRL but inverse temperature 

𝛽	was modulated by a bias parametrized by momentary craving and a modulation factor 𝜑. 

Decisions were made with a softmax rule. 

 

𝑉! = 𝑉!"# + 𝛼(𝑟! − 𝑉!"#) 

𝛽! = 𝛽&!+!,- + 𝜑 ∗ 𝑐𝑟𝑎𝑣𝑖𝑛𝑔! 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛!	~	𝑝𝑜𝑙𝑖𝑐𝑦(𝛽! , 𝑉!) 

 

5. Momentum-based model (m-TDRL) – Values were computed with TDRL but reward was 

modulated by a momentum term parameterized by nonlinear effects of past prediction errors24,43. 

Decisions were made with a softmax rule. 

 

ℎ! = 𝛼.%.('!/. ∗ (𝑟! − 𝑉!"# − ℎ!"#) 

𝑟′! = 𝑟! × 𝜑0123	(6) 

𝑉! = 𝑉!"# + 𝛼!(𝑟′! − 𝑉!"#) 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛!	~	𝑝𝑜𝑙𝑖𝑐𝑦(𝛽, 𝑉!) 

 

Following decision modeling, momentary craving was modeled as a non-linear combination of prior 

beliefs (i.e., expected values) and momentary surprise (i.e., prediction errors). There were three variants 

of craving models:  

1. Prediction-error-elicited craving (RPE) - In this class, momentary craving was modeled as the 

geometrically decaying effect of momentary prediction errors, along with a static baseline 

craving. 
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𝑐𝑟𝑎𝑣𝑖𝑛𝑔! = 𝑐𝑟𝑎𝑣𝑖𝑛𝑔8+&(9,'( +𝑤:;H𝑅𝑃𝐸!"<

!

<=>

∗ 𝛾!"< 

 

2. Expectation-elicited craving (EV) - In this class, momentary craving was modeled as the 

geometrically decaying effect of momentary expected values, along with a static baseline craving. 

 

𝑐𝑟𝑎𝑣𝑖𝑛𝑔! = 𝑐𝑟𝑎𝑣𝑖𝑛𝑔8+&(9,'( +𝑤;?H𝐸𝑉!"<

!

<=>

∗ 𝛾!"< 

 

3. Jointly elicited craving (EV+RPE) - In this class, momentary craving was modeled as the 

geometrically decaying effect of both momentary expected values and momentary prediction 

errors, along with a static baseline craving. 

 

𝑐𝑟𝑎𝑣𝑖𝑛𝑔! = 𝑐𝑟𝑎𝑣𝑖𝑛𝑔8+&(9,'( +𝑤:;H𝑅𝑃𝐸!"<

!

<=>

∗ 𝛾!"< +𝑤;?H𝐸𝑉!"<

!

<=>

∗ 𝛾!"< 

 

Model implementation 

Decision and craving models were implemented using pyEM94–96, a Python library for parameter 

estimation with iterative expectation maximization. Choices and craving ratings were modeled 

independently in two stages. During the expectation step, the maximum likelihood probability (PMLE) of 

task choices for each participant i was defined as the conditional probabilities of each choice at trial t 

given the expected values (EVt) for both slot machines at that trial and the participant’s parameter vector 

θi (i.e. ∑ log	(𝑝(choice0|EV0, θ,))). The prior probability (Pprior) was defined as the log-likelihood of the 

participant’s θi, given the current group–level Gaussian prior distributions of the parameters (θ) across 

participants, with a mean vector μ and standard deviation σ2. The maximum a posteriori (MAP) estimate 

was calculated by maximizing the sum of log PMLE + log Pprior across participants. Subsequently, during 
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the maximization step, the group-level Gaussian prior distributions (parametrized by μ and σ2) were 

recomputed given the θ vectors computed in the prior expectation step. These steps were repeated until 

convergence, where MAP changed by <0.001 in consecutive iterations, or a maximum of 800 steps. The 

geometric decay parameter γ was estimated freely in the first iteration, and then fixed to the mean of the 

estimates in the second iteration of model fitting in order to aid with model convergence. The group level 

priors were initialized at μ=0.1 and σ2=100 in order to allow for uninformative data-driven priors. 

Decision model parameters were transformed from the Gaussian parameter space to the decision-model 

space by applying the appropriate link functions. A sigmoid function was applied to the learning rate (α). 

Inverse temperature was defined as 𝛽!@+'&A%@. = 10 1 + 𝑒"B⁄ . The exact same procedure was applied to 

the craving ratings, except that trial-wise log-likelihood value was defined as conditional probability of 

the observed craving rating from a Gaussian centered at the predicted model value at that trial. 

 

Model fit metrics 

Posterior samples of parameter sets were used to simulate choices for each participant following 

parameter fitting. The model ran a simulation for each parameter set for a total of 4,000 datasets of 

simulated choices. The following checks were performed on the simulated data. 

1. Means of these simulations, were visualized against true actions to qualitatively assess 

congruence. 

2. Each choice simulation was given an accuracy score representing the number of simulated actions 

that matched true actions, where 50% was chance accuracy. 

 

Model comparison 

Models were compared using the integrated Bayesian information criterion (iBIC) score96,97. Briefly, the 

iBIC score was calculated with the following steps. k=2000 samples were drawn from the final group-

level Gaussian estimates for parameters θ(μ, σ2) for each participant i. The log-likelihood of each sample 

(LLi,k) was computed as the sum of the conditional probabilities of the participant’s choices (choicesi) 
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given the sample parameter vector θk. This value was calculated for each sample, and across participants. 

LLi,k were then summed across all participants and samples with the following equation: 𝑖𝐿𝑜𝑔 =

∑ log	(∑ 𝑒CC!,#/2000), , and iBIC was defined as 𝑖𝐵𝐼𝐶 = −2 × 𝑖𝐿𝑜𝑔 + 𝑛$+@+. × log	(𝑛!@,+9&). This 

procedure was applied to each model independently. The model with the lowest score was defined as the 

reference model, and ΔBIC scores were calculated for each model as the difference from reference model 

iBIC. 

 

Parameter estimate distributions 

Across groups, and within each condition (money or addictive cue) and model type (decision or craving), 

we identified the best performing model by the ΔBIC score. For this model, we plotted the distributions 

of parameter estimates across participants for all parameters utilized in the model. We visualized 

decision-making parameters and craving parameters in separate sub-figures for easier summarization and 

interpretation. For each parameter, we tested the directionality of the estimated effect by calculating 

statistical significance from zero. All significance testing was performed with parametric t-test (either 

independent or relative, depending on suitability of the samples) and confirmed with non-parametric 

Mann-Whitney U-tests. 

 

Clinical score prediction 

We used a multiple linear regression model to test the hypothesis that joint parameter estimates from best 

performing models can successfully predict clinical severity scores. For clinical severity scores, we 

decided to use ASSIST, a group-specific survey that had high variability across participants. The best 

performing decision-making and craving models identified by the model comparison procedure, restricted 

to the more salient addictive cue condition, was tested in five classes of regression analysis. In the 

demographic regression (Demo only), the participant-specific demographic information (i.e., age, sex, 

education level, self-reported race, and income) were used as regressors. In computational regression 

(Comp only), decision- and craving-model parameter estimates were used as regressors. In model-
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agnostic regression (Agnostic only), simple means and variances of craving and choice optimality were 

used to predict clinical severity. In the last two models, demographic regressors were combined with 

computational regressors (Demo + Comp) and agnostic regressors (Demo + Agnostic) respectively. 

Models were implemented using ‘bambi’, a Bayesian linear modeling Python library98. Final reported 

models represent the best-performing (by AIC and ELPD-WAIC) models. Variables not contributing 

significantly to prediction, demonstrated by large variation is weight estimates, were omitted (e.g., race 

and sex in the cannabis group). 
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Table	1.	Participant	characteristics.		

Variable	 Alcohol	group	
(n=68)	

Cannabis	group	
(n=64)	

Age	(s.d.)	 40.9	(13.4)	 38.7	(14.1)	

Sex	(%)	
	 	

						Male	 45	(66.1%)	 37	(57.8%)	

						Female	 22	(32.4%)	 27	(42.2%)	

						Other	 1	(1.5%)	 0	(0%)	

Education	level	(%)	
	 	

						≤	High	school	 10	(14.7%)	 7	(10.9%)	

						College	 42	(61.8%)	 44	(68.8%)	

						≥ 	Graduate	 16	(23.5%)	 13	(20.3%)	

Race	(%)	
	 	

						American	Indian	or	Alaska	Native	 2	(2.9%)	 2	(3.1%)	

						Asian	 7	(10.3%)	 7	(10.9%)	

						Black/African	American	 5	(7.4%)	 2	(3.1%)	

						Hispanic	or	Latino	 1	(1.5%)	 4	(6.3%)	

						White	 53	(77.9%)	 49	(76.6%)	

ASSIST	(s.d.)	 17.1	(8.4)	 14.0	(7.9)	

AUDIT	(s.d.)	 6.8	(6.6)	 -	

CAST	(s.d.)	 -	 7.7	(3.6)	

	
ASSIST	–	Alcohol,	Smoking	and	Substance	Involvement	Screening	Test87	
AUDIT	–	Alcohol	Use	Disorders	Identification	Test90	
CAST	–	Cannabis	Abuse	Screening	Test92	
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Fig. 1. Experimental paradigm and model-agnostic task behavior. 
(a) Participants played a modified two-armed bandit task. Each session started with instructions and a choice of three 
reward options, of which the participant selected the one most tempting to them. Following five practice trials, two 
blocks of sixty trials were presented, in which the participant selected one of two machines. In the money block, the 
reward presented was an image of a coin. In the addictive cue block, the reward presented was the option selected by 
the participant at the start. Craving and mood were intermittently assessed throughout the block (20 craving ratings, 12 
mood ratings), scored from 1 to 50. The more rewarding machine in each trial rewarded with 80% probability while the 
less rewarding machine rewarded at 20% probability. The optimal machine switched a total of 4 times (4 reversals) over 
the course of each block. The order and timings of the reversals was pseudorandomized over the cohort. Choice 
optimality was measured by calculating the proportion of participant choices that matched the optimal choice at each 
trial (i.e., the machine that rewarded 80% of the time at that trial). (b) Choice optimality was assessed visually by 
averaging participant choices across the experiment. Blue lines represent the left machine, purples lines represent the 
right machine, and vertical gray lines represent the timings of reversals in reward structure. In both groups, participants 
were able to successfully learn the reversal structure, reflected in the periodic switches of left/right machine choices 
over the experiment. (c) Choice optimality was calculated for each participant and stratified by group and condition. In 
both groups, choice optimality was significantly higher than chance (50%) (alcohol: t=18.9, P<0.001; cannabis: t=18.2, 
P<0.001). (d) Average craving ratings were significantly higher in the addictive cue condition compared to money 
condition in both groups (alcohol: t=3.14, P=0.002; cannabis: t=2.47, P=0.016). (e) Variances in craving ratings were 
not significantly different between conditions for either group (alcohol: t=0.793, P=0.431; cannabis: t=0.841, P=0.403). 
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Table	2.	Decision	and	craving	models.	 	 	

Decision	Model	Class	 Description	 Value	update	scheme	 Decision	policy	

Asymmetric	TDRL	 Craving	does	not	modulate	the	value	update	
or	action	policy	

TDRL	with	separate	learning	
rates	for	positive	and	
negative	RPEs	

Softmax	with	static	
temperature	

Reward	bias	 Craving	modulates	perceived	reward	 TDRL	with	static	learning	
rates	

Softmax	with	static	
temperature	

Learning	rate	bias	
(𝛼	𝑏𝑖𝑎𝑠)	

Craving	modulates	the	learning	rate	at	each	
trial.		

TDRL	with	dynamic	learning	
rates	

Softmax	with	static	
temperature	

Temperature	bias	
(𝛽	𝑏𝑖𝑎𝑠)	 Craving	modulates	the	inverse	temperature	 TDRL	with	static	learning	

rates	
Softmax	with	dynamic	
temperature	

Momentum-based	
TDRL	(m-TDRL)	

RPE-derived	momentum	modulates	the	
learning	rate	

TDRL	with	dynamic	learning	
rates	

Softmax	with	static	
temperature	

	 	 	

Craving	Model	Class			 Description	 Components	of	craving	
computation	

RPE-elicited	craving	(𝑅𝑃𝐸)	 Only	prediction	errors	contribute	to	perceived	craving	 Prediction	error	only	

Expectation-elicited	craving	(𝐸𝑉)	 Only	expected	values	contribute	to	perceived	craving	 Expected	value	only	

Jointly-elicited	craving	(𝐸𝑉 + 𝑅𝑃𝐸)	 Values	and	prediction	errors	both	contribute	to	
perceived	craving	 Expected	value	and	prediction	error	
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Fig. 2. Decision-making model comparison and parameter distribution: addictive condition. 
TDRL: temporal difference reinforcement learning, α-bias: learning rate bias, β-bias: inverse temperature bias, m-TDRL: 
momentum-based TDRL, r-bias: reward bias.  (a, b) For all models, ΔBIC was defined as the difference between each 
model’s BIC and the best performing BIC. The α-bias model performed best across groups. (c, d) For the best performing 
α-bias model, we performed parameter recovery by simulating data from parameter estimate, and refitting the simulated 
data. All parameters (α, β, φ) displayed excellent parameter recovery across groups (P<0.01 across parameters and 
groups). (e, f) Distributions of parameters were extracted from the α-bias model. The left panel displays the joint 
distributions of α (learning rate) and φ (modulation factor), as these interact directly in the model, while β (inverse 
temperature), is visualized separately. In the alcohol group, φ was found to be significantly positive (t=2.159, P=0.034), 
while in the cannabis group, it was found to be significantly negative (t=-5.590, P<0.001). 
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  Fig. 3. Craving model comparison and parameter distribution: addictive condition. 
EV: Expected-value-only craving model, RPE: reward-prediction-error-only craving model, EV+RPE: combined EV 
and RPE craving model. (a, b) As with decision models, ΔBIC was defined as the difference between each model’s BIC 
and the best performing BIC. The joint EV+RPE model performed best across groups. (c-f) In each group, for the best 
performing craving model, we calculated the correlations between model-predicted craving and true craving ratings. An 
example participant’s true vs. predicted craving are displayed in panels c and e. There was a high degree of correlation 
across participants (panels d and f; alcohol: mean r=0.438; cannabis: mean r=0.487), indicating strong model efficacy. 
(g, h) Distributions of parameters were extracted from the EV+RPE model. The left panel displays the joint distributions 
of 𝑤!" (EV weight) and 𝑤#$! (RPE weight), while Craving baseline is visualized separately. In the alcohol group, both 
𝑤!" (t=3.983, P<0.001) and 𝑤#$! (t=4.940, P<0.001) were found to be significantly positive, while in the cannabis 
group, neither reached significance (𝑤!": t=1.759, P=0.083; 𝑤#$!: t=0.343, P=0.733). 
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Fig. 4. Clinical severity regression analysis. 
Regression analyses were conducted to determine the efficacy of computational parameters (‘Comp only’), model-
agnostic metrics (‘Agnostic only’), demographics (‘Demo only’), and their combinations (‘Demo+Comp’ and 
‘Demo+Agnostic’) in predicting clinical severity. Note that ASSIST scores were normalized prior to regression. (a) In 
the alcohol group, Comp only outperformed all alternatives (elpd_waic=-93.557). (b) In cannabis users, Demo only was 
the best performing model (elpd_waic=-94.032). (c, d) The best performing models in both groups generated predictions 
that were highly correlated with true ASSIST scores (alcohol: r=0.553, P<0.001; cannabis: r=0.373, P=0.002). (e, f) 
Parameters were extracted from the samples from the posterior distribution, and the 89% highest density intervals are 
plotted for each significant variable. Weight distributions for race and sex were eliminated due to high degree of variance 
and low contribution to prediction. In alcohol users, α (learning rate) and craving baseline were found to be significantly 
positively associated, while β (inverse temperature) and 𝑤!" were found to be significantly negatively associated. In 
the cannabis group, income was negatively associated, and there was a marginally negative association for age and 
education as well. 
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Supp. Fig. 1. Correlations between craving ratings and mood ratings. 
Within each group, there was no significant relationship between craving and mood ratings within or across conditions. 
For the alcohol group, mean correlation was r=-0.063 (P=0.305) for the money condition, r=0.021 (P=0.703) for the 
addictive condition, and the difference between conditions was not significant (t=1.098, P=0.276). For the cannabis 
group, mean correlation was r=-0.002 (P=0.968) for the money condition, r=0.065 (P=0.308) for the addictive condition, 
and the difference between conditions was not significant (t=0.972, P=0.334).  
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Supp. Fig. 2. Correlation between RPE/EV and outcomes. 
To validate the use of reward prediction error (RPE) based craving models as a proxy for cue-induced craving, 
we calculated the correlations between trialwise RPE and outcomes. Intuitively, note that every positive outcome 
(‘win’, presentation of cue) will result in a positive RPE, while every negative outcome (‘loss’, absence of cue) 
will result in a negative RPE. This relationship would not necessarily be present for the association between 
expected value (EV) and outcome. (a) On average, participant-wise correlation between RPE and outcome was 
M=0.742, SD=0.062, while correlation between EV and outcome was M=0.174, SD=0.116. (b) For all 
participants, the line of best fit is shown between EV vs. outcome (left, gray), and RPE vs. outcome (right, 
orange). 
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Supp. Fig. 3. Decision-making model simulation. 
Simulated choices were generated from candidate models after model fitting. 4000 simulated datasets were generated 
and compared to true choice behavior on a session-by-session basis. (a, b) 50 sets of decisions for a sample participant 
in the addictive condition are plotted as black circles, and qualitatively have a high similarity to true choices (red 
diamonds). (c, d) We quantified the percent of matches in true and simulated choices, and statistically compared to 
chance (50%). Simulations matched true behaviors significantly better than chance (alcohol: t=12.405, P<0.001; 
cannabis: t=13.932, P<0.001). (e-h) We repeated the same procedure in the money condition with similar qualitative 
and quantitative findings (alcohol: t=10.198, P<0.001; cannabis: t=11.589, P<0.001) 
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Supp. Fig. 4. True vs. optimal parameter distributions. 
To confirm our simulation findings that participants behaved close to optimally, we performed a baseline simulation, 
randomly sampling (untransformed) α (learning rate) and β (inverse temperature) to discover the range of parameters 
leading to optimal outcomes (measured as percent correspondence with true task structure). Note that φ (modulation 
factor) is not included for this simulation. For each group-condition pairing, the joint parameter space is shown in (a-d) 
with red signifying highest optimality. Participant parameter estimates derived from the best performing models are 
overlaid as black dots. As expected, the large majority of participant estimate lie within the optimal range of parameters. 
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Supp. Fig. 5. Decision-making model comparison and parameter distribution: money condition. 
(a, b) As with the addictive condition, ΔBIC was defined as the difference between each model’s BIC and the best 
performing BIC. The r-bias (reward bias) model performed best across groups. (c, d) All parameters (α, β, φ) displayed 
excellent parameter recovery across groups (P<0.01 across parameters and groups). (e, f) Distributions of parameters 
were extracted from the r-bias model. The left panel displays the joint distributions of α (learning rate) and φ (modulation 
factor), as these interact directly in the model, while β (inverse temperature), is visualized separately. In both the alcohol 
group and the cannabis group, φ was found to be significantly positive (alcohol: t=9.812, P<0.001; cannabis: t=15.831, 
P<0.001) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.04.24.538109doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538109
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
  

Supp. Fig. 6. Craving model comparison and parameter distribution: money condition. 
(a, b) Again, ΔBIC was defined as the difference between each model’s BIC and the best performing BIC. The joint 
EV+RPE model performed best across groups. (c-f) In each group, for the best performing craving model, we calculated 
the correlations between model-predicted craving and true craving ratings. An example participant’s true vs. predicted 
craving are displayed in panels c and e. There was a high degree of correlation across participants (panels d and f; 
alcohol: mean r=0.489; cannabis: mean r=0.446), indicating strong model efficacy. (g, h) Distributions of parameters 
were extracted from the EV+RPE model. The left panel displays the joint distributions of 𝑤!" (EV weight) and 𝑤#$! 
(RPE weight), while Craving baseline is visualized separately. In the alcohol group, neither 𝑤!" (t=0.160, P=0.873) 
nor 𝑤#$! (t=1.031, P=0.306) reached significance, while in the cannabis group, 𝑤!" was positively associated (t=3.765, 
P<0.001), but 𝑤#$! was not (t=1.321, P=0.191). 
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Supp. Fig. 7. Correlations between model agnostic task performance, craving ratings and mood ratings. 
We correlated mean and initial (base) craving and mood, as well as choice optimality and task score with clinical severity 
scores directly. We also discovered an expected positive relationship between alcohol/cannabis use severity and both 
mean and initial craving ratings (r>0.319, P<0.008), but no relationship existed between mood and severity scores 
(r<0.096, P>0.448). There was also a negative correlation between clinical severity score and accuracy in the money 
condition for alcohol users (r=-0.207, P=0.011).  
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