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ABSTRACT

Substance craving and maladaptive choices are intertwined across addictive disorders. However, the
computational mechanisms connecting craving and decision-making remain elusive. Here, we tested a
hypothesis that momentary craving and value-based decision-making influence each other during
substance-related reinforcement learning. We measured momentary craving as two groups of human
participants (alcohol drinkers and cannabis users; total n=132) performed a reinforcement learning task in
which they received group-specific addictive cue or monetary rewards. Using computational modeling, we
found that, across both groups, momentary craving biased learning rate related to substance-associated
prediction errors (RPEs), but not monetary RPEs. Additionally, expected values and RPEs jointly
influenced elicited craving across reward types and participant groups. Alcohol and cannabis users also
differed in the extent to which their craving and decision-making influenced each other, suggesting
important computational divergence between the two groups. Finally, regressions incorporating model-
derived parameters best predicted substance use severity in the alcohol, but not cannabis group, supporting
the utility of using these model-based parameters in making clinical predictions for selective substance
groups. Together, these findings provide a computational mechanism for the interaction between substance

craving and maladaptive choices that is generalizable across addictive domains.
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INTRODUCTION

Humans can become addicted to a variety of substances, including a wide range of drugs and alcohol. Two
elements are essential across all types of addictions: craving, the strong subjective desire for a substance;
and decision-making, the objective choices made by affected individuals. While it is universally
acknowledged that craving and decision-making are tightly intertwined in addiction, the computational
mechanism underlying this interaction is not clear. Historically, the cue-reactivity literature — one of the
most influential characterizations of craving — emphasizes the elicitation of craving in response to learned
addictive cues that serve as secondary drug rewards'’. Cue reactivity paradigms have been widely used to
identify the neural correlates of craving (e.g., midbrain, insula, and cingulate) across a number of addictive
disorders and sensory modalities®*'!. Yet, they do not provide a mechanistic explaination for how craving
arises in or interacts with drug-related choice behaviors. For example, forced abstinence and associated

removal of drug cues paradoxically leads to increased craving and drug-seeking behaviors in substance

12,13 14,15

dependent rodents ' and humans ™ °, a phenomenon termed incubation of craving. Furthermore, it has
been shown that drug-related beliefs and expectations also affect craving, an effect independent from the
availability of drug rewards and cues'®'®. As such, despite a rich empirical literature on craving, the

computational mechanisms of craving remain elusive.

Computationally, reinforcement learning (RL) has been a primary framework used to account for
maladaptive choices in addiction, with a central tenet that choices are reinforced by reward prediction errors
(RPEs). Preliminary computational models hypothesized that addictive stimuli produce an irreducible RPE
signal, subserved by excessive dopamine, that continuously reinforces substance-related choices'®, which
then subsequently shift one’s homeostatic setpoints®®. While views on heterogeneity of dopaminergic

encoding of information have become more nuanced*'

, and modern accounts have provided compelling
evidence for RL-based behavior in animal models of addiction, these theories have yet to be tested

empirically in humans with substance dependence. Critically, they also still do not account for how drug-

related choices and craving may mutually influence each other. Recent efforts in computational psychiatry
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have started to shed light into the interaction between value-based decision-making and subjective states
such as mood**?’. For example, monetary RPEs were found to predict mood ratings, providing initial
evidence that internal subjective states could be influenced by RL signals in a systematic fashion®®.
Conversely, mood may increase the ‘momentum’ of value updating, providing a plausible mechanism for
how mood drives dynamic changes in learning?*. Momentary craving is likely entangled with addictive
decision-making in similar ways, yet only a handful of empirical studies have examined this important

16,30

relationship ™", and a computational mechanism linking these two constructs remains noticeably missing

despite well-established theoretical and empirical accounts of addiction that connect the two'?*'™,

In this study, we tested the hypothesis that momentary substance craving and value-based decision-making
shape each other in a bidirectional fashion in humans. To test this hypothesis, we developed a paradigm in
which substance-using individuals made choices to obtain either monetary or addictive cue (i.e., alcohol or
cannabis) outcomes, and intermittently self-reported their craving (i.e., for alcohol or cannabis) during both
blocks. To test the generalizability of our hypothesis, we examined two groups of participants (total n=132;
see Table 1 for participant characteristics): alcohol drinkers (n=68), and cannabis users (n=65). The task
consisted of a modified two-armed bandit (Fig. 1a), where participants selected one of two machines (80%
reward rate), and saw the outcome of either a coin (in the money condition) or their pre-selected addictive
cue of either alcohol or cannabis (in the addictive condition). Momentary craving and mood were both
sampled during the task (33% and 20% of the trials, respectively), and a novel computational modeling
approach was used to fit both choice and craving data per session. We found that, across both groups,
momentary craving biased learning rate in the addictive context, but biased reward perception in the
monetary context. Conversely, in both substance and monetary contexts, elicited craving was driven by
prediction errors (RPEs) and expected values (EVs), as opposed to either alone. Finally, we found that
computational parameters derived from our models provided greater power than model-agnostic metrics

for predicting clinical severity scores for the alcohol group, whereas demographics better predicted
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cannabis use severity. Together, these results validate a generalizable computational mechanism linking

momentary craving with value-based decision-making in addictive disorders.

RESULTS

Participants learned to maximize outcomes and reported fluctuating levels of craving

First, we examined model-agnostic behaviors that reflected how participants performed the task. In typical
monetary bandit tasks, it is well established that humans learn to choose the option that maximizes monetary
outcomes®*°; yet it remains unclear if individuals with moderate to heavy substance use behave similarly
in the addictive stimulus condition. As in standard monetary tasks, here we defined choice optimality as the
percentage of choosing the correct option (i.e. choosing the machine with the higher reward rate of 80%).
Overall, participant choices were highly similar to the true reversal structure of the task (Fig. 1b), and
choice optimality was significantly higher than chance (50%) regardless of condition (Fig. 1c;
alcohol/money: 71£9%, alcohol/addictive: 70+£8%, cannabis/money: 69+8%, cannabis/addictive: 70+8%,
all P<0.001), confirming that participants successfully learned to exploit the machines for both addictive
and monetary rewards. Choice optimality did not differ across participant groups (=1.01, P=0.31), task

conditions (#=0.38, P=0.71), or show an interaction effect (F=0.44, P=0.51), ensuring that findings related

to craving-choice computation would not be attributable to distinct task performance alone.

Next, we verified that that participants experienced dynamic changes in their substance craving during the
task, by calculating the mean and variability in self-reported cravings during the task across groups and
conditions. As predicted, substance craving was greater in the addictive than the monetary condition in both
groups (Fig. 1d; alcohol: =3.141, P=0.002; cannabis: =2.465, P=0.016), suggesting that addictive cues
increased craving in this task, replicating cue-induced effects on craving. We also observed substantial
variability in craving ratings within-subjects (Fig. 1e) such that craving variances were greater than zero

for across groups and conditions (all groups and conditions; £7, P<0.001), validating engagement during
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self-report of craving and dynamic changes in perceived craving in response to outcomes. Variances did
not differ by group (£=0.26, P=0.61), condition (F=1.07, P=0.30), or their interaction (#=0.17, P=0.68).

Finally, we also examined whether participants’ craving ratings might be inherantly correlated with mood,
as negative affect has been found to be associated with increased drug craving®’*®. To assess this, participant
mood ratings were measured intermitently ("what is your mood right now?”) for 20% of the trials. Within-
participant craving and mood ratings were not significantly correlated in the money condition (Supp. Fig.
1; mean correlations; alcohol: =-0.06, P=0.31; cannabis:»=-0.002, P=0.96), or in the addictive cue
condition (alcohol: 7=-0.02, P=0.70; cannabis:7=0.06, P=0.31), indicating that craving ratings contained

distinct information from mood ratings.

A generalizable computational mechanism linking momentary craving and decision-making

Next, we constructed computational models that represent the bidirectional relationship between
momentary craving and choice behavior (see Methods; Table 2 for details). First, we composed five
candidate model classes to account for choice behavior, with a modulation parameter (¢) defining the
degree to which momentary craving modulated different components of the decision process (TDRL
(temporal difference reinforcement learning, no bias)), Reward bias (r-bias), Learning rate bias (c-bias),
Temperature bias (p-bias), and Momentum-based TDLR (m-TDRL)). The first four models were derived
from classic TDRL models***’ from the RL literature. In the r-bias model, momentary craving modulated

14 1,42

the perceived magnitude of the reward signal™", while it instead modulated the learning rate and softmax

temperature parameters in the a-bias and B-bias respectively. Finally, the m-TDRL model conceptualized

craving as “momentum”, similar to recent efforts in modeling mood dynamics®**.

Next, we constructed models where different components of decision variables and their combinations
contributed to future craving ratings. These models were inspired by 1) a recently proposed theoretical

framework that craving arises as a posterior inference stemming from both prior expectations and prediction
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errors generated by outcomes*; and 2) computational models of other types of subjective states such as
mood?®. Three model classes were constructed and compared: RPE-elicited models (where only prediction
errors influced craving), EV-elicited models (where only expected values influenced craving) and a full
model with both RPE- and expectation-elicited craving (jointly-elicited craving). Note that in our
specification, RPE-elicited craving essentially represents classic cue-induced craving because outcomes
and RPEs are highly correlated (Supp. Fig. 2), while EV-elicted craving represents a testable alternative
that prior beliefs are important in eliciting craving, a hypothesis that has gained increasing empirical

validation in recent years'®*"%,

Momentary craving biases drug-related learning across cannabis and alcohol groups

Of our candidate models linking craving and valuation, which best explains the choices made by
participants? Following model comparison (Fig. 2a, b), we found that the a-bias model performed best in
the addictive-cue condition across both alcohol- and cannabis-using groups. To assess the fidelity of fit by
this model, we generated 2,000 simulations of choice behavior and calculated the degree of alignment
between simulations and true behavior. We found that simulated behavior matched true behavior
significantly better than chance (Supp. Fig. 3, both conditions: t>10, P<0.001) and close to optimal (Supp.
Fig. 4), and parameter recovery was excellent (Fig. 2¢, d). Examination of the parameter values for this
model (Fig. 2e, f) revealed that ¢ was positive in alcohol users (M=0.209, SD=0.798, P=0.034) and negative
in cannabis users (M=-0.995, SD=1.435, P<0.001), suggesting that higher craving accelerated alcohol-
related learning for alcohol drinkers but slowed down cannabis-related learning for cannabis users. In other
words, alcohol craving increases one’s sensitivity towards alcohol-related prediction errors, whereas

cannabis craving shows the opposite effect.

In the monetary condition, in contrast, the r-bias model performed best across groups (Supp. Fig. 5a, b)
and parameter recovery for this model was, again, excellent (Supp. Fig. 5S¢, d). Examination of parameter

values (Supp. Fig. Se, f) revealed that both groups showed significantly positive ¢ (alcohol: M=0.118,
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SD=0.099, P<0.001; cannabis: M=0.190, SD=0.097, P<0.001), indicating that, across groups, higher

craving levels increased the perceived magnitudes of monetary rewards.

These findings highlight an important role for craving in modulating learning across alcohol and cannabis
groups. First, momentary craving biases learning rate in response to addictive cues, yet influences reward
perception in response to non-addictive cues across both groups. Second, alcohol craving and cannabis
craving have opposing effects on drug-related learning; alcohol craving accelerates alcohol-related
prediction error encoding, while cannabis craving reduces learning based on cannabis-related prediction
errors. These models provide overlapping yet distinct computational mechanisms mediating the relationship

between craving and decision-making in alcohol and cannabis users.

Trial-wise expectations and prediction errors combine to drive perceived craving across groups and
decision contexts

Though our results corroborate a directional effect of craving on learning, the nature of the reverse
interaction remains unclear, i.e., do how do prior expectations and outcomes influence perceived craving?
Systematic model comparison revealed that, across both alcohol and cannabis groups, momentary craving
was best explained by a combination of expected values and prediction errors in response to outcomes in
both addictive and monetary conditions (Fig. 3a, b), rather than either individually. Predicted cravings
generated by this model were also significantly correlated with true cravings (Fig. 3c-f; t>11.0, P<0.001).
Overall, these results build on several recent findings substantiating the importance of both cue-induced

and belief-induced influences on momentary craving'®*,

Next, we extracted the parameters from the best performing model to interpret the processes underlying
elicitation of craving during the task. In the addictive cue condition, EV weight was significantly positive

in alcohol users (Fig. 3g; M=0.173, SD=0.358, P<0.001) but not cannabis users (Fig. 3h; M=0.108,
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SD=0.496, P=0.083. RPE weight was also significantly positive only in the alcohol users (M=0.664,

SD=1.108, P<0.001), but not cannabis users (M=0.071, SD=1.680, P=0.733).

In the monetary condition, the combined EV+RPE model was again found to be best performing (Supp.
Fig. 6a, b) and predicted cravings were highly correlated with true cravings (Supp. Fig. 6¢c-f). Analysis of
parameter estimates (Supp. Fig. 6e-f) showed that EV weight was significantly positive in the cannabis
users (M=0.162, SD=0.347, P<0.001), but not in alcohol users (M=0.010, SD=0.497, P=0.873), while RPE
weight was non-significant for both groups (alcohol: M=0.219, SD=1.754, P=0.306; cannabis: M=0.317,

SD=1.935, P=0.191).

In sum, the models constructed here provide a means for disentangling two important components of
momentary perceived craving: effects of prior expectations (EVs) and effects of prediction errors (RPEs).
Here, we again find highly divergent computational signatures for alcohol and cannabis users that are
context-dependent. In the addictive cue condition, momentary craving is dynamically driven by increases
in both EV and RPE for alcohol users, but not cannabis users. In the monetary condition, momentary craving

is primarily driven by increases in EV for cannabis users but not alcohol users.

Model-derived computational parameters have substance-dependent predictive utility

Thus far, our results provided a computational account for the bidirectional relationship between substance
craving and decision-making. Next, we sought to examine if these computational estimates had utility in
predicting clinical severity above and beyond simple demographics or model-agnostic metrics. Five classes
of regressions were constructed: (1) Demographic regression (Demo-only), in which only basic
demographics (age, sex, race, income, education level) were used to to predict severity, (2) Computational
model-derived regression (Comp-only), in which only computational parameters from the addictive
condition were used, (3) Model-agnostic regression (Agnostic-only), in which only task performance

summary metrics (mean and s.d. of craving and choice optimality in the addictive condition) were used, (4)
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Demo~+comp, where both demographic and computational predictors were included, and (5)

Demo+agnostic, where both demographic and model-agnostic predictors were included.

For each group, models were compared and ranked by expected log pointwise predictive density Widely
Applicable Information Criteria (elpd_waic) scores, and normalized true and predicted severity were plotted
against each other (Fig. 4a-d). We found that the Comp-only model performed best in alcohol users
(elpd waic = -93.747; r=0.553, P<0.001), while Demo-only performed best in the cannabis users
(elpd_waic = -94.188; r=0.373, P=0.002). We also sought to interpret the significantly predictive variables
from the best-performing regression model in relationship to drug use severity scores (Fig. 4e-f). Alcohol
use severity was positively associated with learning rate and baseline craving, and negatively associated
with inverse temperature and EV weight. Cannabis use severity, however, was negatively associated only

with age, education, and income.

In sum, our comparative regression analysis unexpectedly found that computational parameters from our
models were substance-dependent in their predictive utility. This may indicate that the direct utility of
computational fingerprints of decision-making and craving in addictive disorders may be highly
dependent on the addictive target and/or clinical group, or on a the particular set of computational latent

parameters interrogated during the task.

DISCUSSION

In the present study, we identified a computational mechanism subserving the dynamic relationship
between momentary craving and decision-making generalizable across moderate-to-heavy alcohol drinkers
and cannabis users. Our findings support the notion that craving and decision-making are two
computationally intertwined processes across addictive domains. Additionally, we built on, and empirically
tested, recent computational theories that prior expectations and prediction errors both play a role in

perceived craving. Substantiating our hypotheses, we found that substance users converged on a
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generalizable algorithm in which momentary craving dynamically biased learning specifically in response
to addictive cues, and both prediction errors and expected values influenced subsequent perceived craving.
Notably, however, substance use groups diverged with respect to the patterns of parameters associated with
decision-making and craving, providing distinct substance-specific computational fingerprints of these

interacting mental processes in addiction.

There is compelling evidence supporting the view that computational mechanisms involved in addiction
may be shared across substance use disorders, including alcohol and cannabis use. For instance, previous
studies have highlighted several mechanisms for impaired goal-directed planning, belief-updating, and
habit formation across substance use groups*'*****’. Network analytic approaches show craving plays a

#-50 and individuals who co-use alcohol and cannabis exhibit

central role across substance use disorders
heightened cue-induced craving and altered decision-making for both substances' . Neurobiologically,
several connectome-based predictive approaches have identified a transdiagnostic "craving network"

involving regions of the salience, subcortical, and default mode networks>*>¢

, suggesting a common neural
signature for craving across addictive disorders, including alcohol and cannabis use disorders. Building on

these prior results, our models provide first evidence that both alcohol and cannabis users converge on the

same computational algorithm that explicitly links craving and decision-making.

Importantly, however, alcohol and cannabis users diverge in, and thus are uniquely identifiable by, their
cognitive parameter patterns. In alcohol drinkers, we found that increased craving led to faster learning
from alcohol-related prediction errors, suggesting that alcohol-associated outcomes that follow a state of
high craving may lead to stronger valuation by the brain of a drinker. Several previous studies have
identified similar learning dysfunctions in alcohol use disorder, including premature switching®’,
accelerated valuation of negative outcomes®, and high impulsivity>® that may be reflective of faster craving-
induced learning. In contrast, in cannabis users, high craving led to slower learning from prediction errors

about cannabis related outcomes. This result conforms with previous findings of diminished learning in
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6162 and social context® of cannabis cues. Additionally,

cannabis users®, particularly as relating to memory’
while direct comparisons are lacking, several studies have also described clear dissimilarities in
computational factors®*® between alcohol and cannabis users (e.g., impaired delay discounting but
unaffected reversal learning in cannabis users, but significant reversal learning impairment in alcohol
users). Differences in computational signatures may also reflect the the disparities in clinical
phenomenology between alcohol and cannabis consumption; for example, alcohol is often consumed in
shorter, concentrated time periods, and its intoxicating effects take longer than those of cannabis, which is
often consumed more gradually throughout longer periods of time and takes only minutes for its effects to
be felt. Overall, our findings propose drastically diverging alterations in the craving-learning associations
present in these two substance use disorders that, in turn, might guide development of substance-specific
clinical interventions. Further exploration and characterization will be necessary to validate these findings

prospectively, explore brain substrates, and compare/contrast them to the computational signatures of other

substance use disorders (e.g., opioid, cocaine).

We also found that, across groups, both expected value and prediction error signals — regardless of the
decision context — dynamically drove changes in cravings. Importantly, this finding realigns the classic cue-
induced craving phenomenon’ with well-known neural®’*® (dopaminergic) and computational (prediction

error)16’32’44

effects. In this view, cue-reactivity can be deconstructed as being composed of both momentary
prediction errors and expected values that each independently drive increased craving; i.e., cues elicit
craving through two distinct mechanisms: (1) prior beliefs about their value (EV-driven effect), and (2)
epistemological surprise (RPE-driven effect). This result explains recent findings that both values and
16972,

prediction errors are important components of perceived craving in addiction at behaviora

computational*""*™ and neural'®”>" levels.

Finally, we found that, among alcohol users, computational parameters can reflect latent information that

is predictive of clinical severity above and beyond model-agnostic metrics or demographics, suggesting
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that these latent computational parameters may contain unique information related to individual differences
in alcohol use severity. To our knowledge, this provides the first empirical evidence that computationally-
derived parameters may capture features core to addiction that are not provided by model-agnostic
measures. These findings provide compelling evidence for the value of computational modeling in
uncovering latent information that may be highly valuable translationally. Nevertheless, further work will
be required to refine the sets of latent computational parameters that may be most salient to the predictions

of clinical severity in other addictive disorders.

Our finding of an algorithmic link between craving and decision-making has direct clinical implications:
specifically, by reducing or managing cravings, individuals may be able to break the vicious cycle of
addiction-associated decision-making that leads to poor clinical outcomes. Though interventions regarding

craving have been proposed, tested, and examined widely”” "

, our models provide the first mechanistic
explaination for their success. Further exploration may reveal a novel line of therapeutic interventions
focusing on the interplay between craving and addiction-associated decision-making that target both

components simultaneously. Though recent psychological research has hinted at similar results”**%!, this

finding certainly merits further clinical investigation, as the majority of current interventions typically

72,82,83 84-86

involve focusing on negative aspects of addiction directly , or mindfulness strategies
Our results here are limited by an absence of direct evidence supporting the neurobiological substrates that
facilitate this mental computations proposed in this model. Though numerous efforts have identified the
effect of decision-making on subjective states, such as happiness®™ or craving'®’, there are, as of yet, no
neuroimaging studies investigating a bidirectional interaction between the two. A next logical step would
be to collect neural data (e.g., using neuroimaging) in conjunction with our experimental design, and utilize
machine learning or statistical approaches to find the neural patterns encoding the computational
mechanisms outlined here. Additionally, these findings would need to be replicated in a sample of

individuals with confirmed substance use disorders to ensure the applicability of the model to true clinical
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populations, and allow for a more robust understanding of how the proposed mechanisms operate under

pathological conditions.

CONCLUSION

Overall, this study highlights a reciprocal, dynamic link between decision-making and craving in addictive
disorders. Our results demonstrate that momentary craving leads to biased learning in drug-salient
contingencies, and support an updated and refined craving framework, with both prior beliefs and prediction

error effects being key drivers of momentary perceived craving.
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METHODS

Task design - instructions

We utilized a modified two-armed bandit task that incorporated reversals to encourage continuous
learning during the experiment. At the start of the task, participants were presented with the instructions
about how to play the game. Participants were presented with two slot machines and were encouraged to
do their best to maximize their rewards from the machines, with the incentive of being rewarded with a

greater bonus payment at the end of the game based on their final score.

In the money condition, participants received a monetary reward, presented as an image of a coin. In the
addictive reward condition, they received a reward corresponding to an addictive cue, selected based on
the addictive group to which they belonged (e.g., in the alcohol-using group, participants were rewarded
with an image of alcohol). Additionally, during the start of the experiment, participants were able to select
one of three possible addictive cues that were most tempting to Participants in the alcohol-using group
were able to select from either a beer, wine, or liquor reward, while cannabis users were able to select

from either a blunt, bong, or bowl.

Participants were then also informed that they would intermittently be asked to assess and report their
craving and mood. They were given specific definitions for craving (“An intense, conscious desire or
wanting for something”) and mood (“4 non-specific, persistent general feeling about your current mental
state, distinct from emotions, which are shorter-lived and specific to a particular thing”), in order to
provide them with a deeper understanding of the concepts being measured, and to provide a concrete
basis upon which their self-reports could be compared. Baseline craving and mood ratings were then

assessed prior to presentation of the slot machine task.

Finally, participants were informed that one of the slot machines would be more rewarding than the other

at all times, but the more rewarding slot machine might change over the course of the experiment. The
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true experimental structure (delineated below), including the probabilities of reward, the reversal timings,

and number of trials, was not revealed to the participants beyond the information listed above.

Task design - experimental structure

There were 60 trials per condition, and 5 practice trials at the start of the experiment for a total of 125
trials. The 5 practice trials were discarded during the computational modeling. Presentation of conditions
was randomized over the cohort, such that half of the participants received the money condition first and
the other half received the addictive cue condition first. The more rewarding slot machine presented a
reward 80% of the time, while the less rewarding machine presented a reward 20% of the time. The more
rewarding machine switched four times over the course of the experiment (“reversals™). First selection of
the best machine (either right or left), was pseudorandomized and reversal timings were also
pseudorandomized as either 12-12-11 or 13-12-10. Craving ratings were assessed approximately every
three trials for a total of 20 craving ratings per condition. Mood ratings were assessed approximately ever
5 trials for a total of 12 mood ratings. Ratings were collected on a linear scale from 0-50, where
participants used the arrow keys to move a cursor from left to right to select their answers, where the left

end of the bar was labeled as ‘Low’ and the right end was labeled as ‘High’.

Data collection

We first performed a high-throughput screening for 1,000 participants on Prolific, an online data
collection platform for recruiting participants across the world. We restricted our recruitment to
participants with the following characteristics: USA residents, fluent English speakers, high approval
rating on Prolific, no previous completion of any of our group’s experiments. Furthermore, we recruited a
balanced sample of male and female participants. Participants completed two screening surveys
implemented on Redcap. The first was the World Health Organization’s Alcohol, Smoking and Substance
Involvement Screening Test (ASSIST)*’, which was developed as a screening tool to help primary health

professionals detect and manage substance use and related problems. ASSIST allows for screening of use
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of substances such as alcohol, cannabis, tobacco, stimulants, inhalants, and others. Second, we used a lab-
standard demographics survey to assess basic demographic features such as age, sex, level of education,

income, and race.

From the screening surveys, we recruited cohorts for moderate to high alcohol use and cannabis use.
Potential participants were identified with the following criteria: (1) The alcohol use cohort reported
moderate to heavy use of alcohol weekly as identified by ASSIST, with no comorbid usage of any other
substances. (2) The cannabis use cohort reported moderate to heavy use of cannabis weekly, with low to

no use of alcohol, and no other substance usage.

From the full eligible cohort for each group, we collected a total of 40 participants’ data for the slot
machine game. Participants with substance use were additionally asked to complete further group-specific
questionnaires. Alcohol users completed an Alcohol Dependence Scale®*, and an Alcohol Use Disorder
Identification Test”. Cannabis users completed a Cannabis Severity of Dependence Scale’!, and a

Cannabis Abuse Screening Test’.

We followed the exact protocol listed above for a second sample, starting with 1,000 screened
participants, filtering of participants into potential cohorts for data collection, collection of 40 samples
from each group of interest, and collection of auxiliary clinical questionnaires for the substance use
groups. The data from the two samples was combined into our final analysis sample reported in the

manuscript.

Quality control
Before analysis, participant data from each group underwent a series of quality control checks. First, we
included one attention check during the experiment, with instructions about halfway through the task to

select the highest option if the participant was paying attention. Participants that did not pass this attention
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check were excluded. Second, since the optimal machines and reversal timings are known, it is possible to
construct the vector of optimal choices during the experiment. A participant’s raw choice behaviors were
compared to the optimal choice vectors for each condition, and only participants with greater than 50%
optimality were selected, ensuring that they learned to play the game well, and were not simply randomly
responding in the task, with a relatively low bar of exclusion reducing the chance that randomness of
reward structure did not unnecessarily exclude well-performing participants. Finally, we z-scored the
reported craving ratings during the task and excluded the participant if the standard deviation of the
ratings did not exceed 1, suggesting that there was very low variability in the rating scores. Moreover, we
found that most participants with extremely low craving variability seemed to exclusively report a craving
of 25/50, which was the default value in the rating scale, suggesting that they were not properly

responding to the prompts.

Model-agnostic analysis

1. Calculation of mean/SD of craving and mood: We calculated the means and variances of
reported cravings for each individual across groups and conditions. These were used to assess
whether simple summary statistics of overall trends of craving were associated with clinical
measures. The same process was repeated for reported moods. Individual distributions of cravings
and moods were aggregated and reported across groups and conditions.

2. Survey scoring: We scored the Redcap surveys for each group according to a questionnaire-
specific scoring. For the alcohol group, we utilized 3 surveys: ASSIST, AUDIT, and ADS.
ASSIST scores ranged from 0-40 (<3 — low severity, 4-26 — medium severity, >26 high severity).
AUDIT scores ranged from 0-34 (<7 — low severity, 8-14 — medium severity, >14 high severity).
ADS scores ranged from 0-54 (0 — No risk, 1-13 — low risk, 14-21 — moderate risk, 22-30 —
substantial risk, >30 — severe risk). For the cannabis group, utilized 3 surveys: ASSIST, CAST,
and SDS. ASSIST-Cannabis scores ranged from 0-36. CAST scores ranged from -6-20 (<3 — low

risk, 3-6 — moderate risk, >6 high risk). SDS scores ranged from -5-13 (<=3 — low risk, >4 — high
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risk). The distributions of all these surveys were visualized across groups. Additionally, we
calculated the difference between clinical severity scores before the task (during screening
surveys) and after the task to assess the stability of these clinical measures.

3. Choice optimality: We qualitatively assessed the performance of participants to ensure that they
were able to learn the structure of the task well. To do this, we compared the choice of machine
for all participants in a group to the optimal choice that could be made at that time, where the
optimal choice was defined as the machine with higher probability of reward. Participants with
lower than 50% optimality were excluded from further analysis because they were unable to learn
the task structure. Finally, we plotted the distributions of optimality of remaining participants to
demonstrate that participant optimality was well above chance.

4. Qualitative performance checks: We averaged the choice of machine across participants by
group, controlled for randomization of the order of the best machine presented first (either left or
right) to qualitatively assess group-level tracking of reversals across the task. We then visualized
the overall distributions of craving and mood during the task within individuals and across groups
to ensure that there was a realistic distribution of cravings and moods reported during the task.

5. Low-level sanity check correlations: We correlated group-specific clinical scores (ASSIST for
alcohol and cannabis, EDEQ for binge-eating, and usage survey for social media) with percent
optimality, total score, and baseline and mean craving/mood ratings. We also performed a
Spearman correlation between reported mood and craving ratings within participant to check the

covariance of the two.

Modeling analysis
Decision-making and craving modeling was done sequentially. There were five classes of decision-

making balanced on model complexity (i.e., number of parameters utilized by the model).
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1. Asymmetric temporal difference learning — Values were computed using a standard temporal
difference reinforcement learning (TDRL) rule with asymmetric learning from positive and

negative prediction errors***. Decisions were made with a softmax rule.

Vt = Vt—l + apos(rt - Vt—l) lf RPE > 0
Ve =Vieg + Qneg(re —Ve—1) if RPE <0

decision; ~ policy(S,V;)

2. Reward modulation models — Values were computed with TDRL but reward magnitude was
modulated by a bias parametrized by momentary craving and a modulation factor ¢**,

Decisions were made with a softmax rule.

r'e =1, X @ * craving,
Vi=Via +a(r's = Veoq)

decision; ~ policy(B,V;)

3. Learning bias models (@ bias) — Values were computed with TDRL but learning rate a was
modulated by a bias parametrized by momentary craving and a modulation factor ¢. Decisions

were made with a softmax rule.

Ay = Ugpqtic + @ X craving
Vi=Viog +a (e —Veoq)

decision; ~ policy(S,V;)
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4. Temperature bias (8 bias) — Values were computed with standard TDRL but inverse temperature
[ was modulated by a bias parametrized by momentary craving and a modulation factor ¢.

Decisions were made with a softmax rule.

Vi=Viog +aly — Vi)

Bt = Bstatic + @ * craving,

decision; ~ policy (B¢, Vi)

5. Momentum-based model (m-TDRL) — Values were computed with TDRL but reward was
modulated by a momentum term parameterized by nonlinear effects of past prediction errors***.

Decisions were made with a softmax rule.

ht = @momentum * (rt Vi1 — ht—l)
r’t =17, % (ptanh (h)

Ve=Via +a (e = Veoy)

decision; ~ policy(B,V;)

Following decision modeling, momentary craving was modeled as a non-linear combination of prior
beliefs (i.e., expected values) and momentary surprise (i.e., prediction errors). There were three variants
of craving models:
1. Prediction-error-elicited craving (RPE) - In this class, momentary craving was modeled as the
geometrically decaying effect of momentary prediction errors, along with a static baseline

craving.
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t
craving, = cravingpgsetine + Wee 2 RPE;_j * yt
Jj=0

2. Expectation-elicited craving (EV) - In this class, momentary craving was modeled as the

geometrically decaying effect of momentary expected values, along with a static baseline craving.

t

craving, = Ccravingpgsetine + Wev 2 EVi_j * ytJ
Jj=0

3. Jointly elicited craving (EV+RPE) - In this class, momentary craving was modeled as the
geometrically decaying effect of both momentary expected values and momentary prediction

errors, along with a static baseline craving.

t t
craving; = cravingpgsetine + Weg 2 RPE,_;j xy"™ + wgy 2 EVe_jxyt
j=0 j=0

Model implementation

Decision and craving models were implemented using pyEM**%, a Python library for parameter
estimation with iterative expectation maximization. Choices and craving ratings were modeled
independently in two stages. During the expectation step, the maximum likelihood probability (Pmig) of
task choices for each participant i was defined as the conditional probabilities of each choice at trial ¢
given the expected values (EV) for both slot machines at that trial and the participant’s parameter vector
0i(i.e. ), log (p(choice|EVy, 6;))). The prior probability (Pprior) Was defined as the log-likelihood of the
participant’s 6;, given the current group—level Gaussian prior distributions of the parameters (0) across
participants, with a mean vector p and standard deviation ¢*. The maximum a posteriori (MAP) estimate

was calculated by maximizing the sum of log Pmie + log Pprior across participants. Subsequently, during
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the maximization step, the group-level Gaussian prior distributions (parametrized by p and ¢%) were
recomputed given the 0 vectors computed in the prior expectation step. These steps were repeated until
convergence, where MAP changed by <0.001 in consecutive iterations, or a maximum of 800 steps. The
geometric decay parameter y was estimated freely in the first iteration, and then fixed to the mean of the
estimates in the second iteration of model fitting in order to aid with model convergence. The group level
priors were initialized at p=0.1 and =100 in order to allow for uninformative data-driven priors.
Decision model parameters were transformed from the Gaussian parameter space to the decision-model
space by applying the appropriate link functions. A sigmoid function was applied to the learning rate (o).

Inverse temperature was defined as fransform = 10/1 + e™# . The exact same procedure was applied to

the craving ratings, except that trial-wise log-likelihood value was defined as conditional probability of

the observed craving rating from a Gaussian centered at the predicted model value at that trial.

Model fit metrics
Posterior samples of parameter sets were used to simulate choices for each participant following
parameter fitting. The model ran a simulation for each parameter set for a total of 4,000 datasets of
simulated choices. The following checks were performed on the simulated data.
1. Means of these simulations, were visualized against true actions to qualitatively assess
congruence.
2. Each choice simulation was given an accuracy score representing the number of simulated actions

that matched true actions, where 50% was chance accuracy.

Model comparison

Models were compared using the integrated Bayesian information criterion (iBIC) score’®’’. Briefly, the
iBIC score was calculated with the following steps. A~=2000 samples were drawn from the final group-
level Gaussian estimates for parameters 0(p, 6°) for each participant i. The log-likelihood of each sample

(LL;x) was computed as the sum of the conditional probabilities of the participant’s choices (choices;)
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given the sample parameter vector Ok. This value was calculated for each sample, and across participants.
LLix were then summed across all participants and samples with the following equation: iLog =

Y.ilog (¥ etk /2000), and iBIC was defined as iBIC = —2 X iLog + Npgram X 108 (Neriqs). This
procedure was applied to each model independently. The model with the lowest score was defined as the
reference model, and ABIC scores were calculated for each model as the difference from reference model

iBIC.

Parameter estimate distributions

Across groups, and within each condition (money or addictive cue) and model type (decision or craving),
we identified the best performing model by the ABIC score. For this model, we plotted the distributions
of parameter estimates across participants for all parameters utilized in the model. We visualized
decision-making parameters and craving parameters in separate sub-figures for easier summarization and
interpretation. For each parameter, we tested the directionality of the estimated effect by calculating
statistical significance from zero. All significance testing was performed with parametric t-test (either
independent or relative, depending on suitability of the samples) and confirmed with non-parametric

Mann-Whitney U-tests.

Clinical score prediction

We used a multiple linear regression model to test the hypothesis that joint parameter estimates from best
performing models can successfully predict clinical severity scores. For clinical severity scores, we
decided to use ASSIST, a group-specific survey that had high variability across participants. The best
performing decision-making and craving models identified by the model comparison procedure, restricted
to the more salient addictive cue condition, was tested in five classes of regression analysis. In the
demographic regression (Demo only), the participant-specific demographic information (i.e., age, sex,
education level, self-reported race, and income) were used as regressors. In computational regression

(Comp only), decision- and craving-model parameter estimates were used as regressors. In model-
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agnostic regression (Agnostic only), simple means and variances of craving and choice optimality were
used to predict clinical severity. In the last two models, demographic regressors were combined with
computational regressors (Demo + Comp) and agnostic regressors (Demo + Agnostic) respectively.
Models were implemented using ‘bambi’, a Bayesian linear modeling Python library®®. Final reported
models represent the best-performing (by AIC and ELPD-WAIC) models. Variables not contributing
significantly to prediction, demonstrated by large variation is weight estimates, were omitted (e.g., race

and sex in the cannabis group).
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Table 1. Participant characteristics.

Variable

Alcohol group

(n=68)

Cannabis group

(n=64)

Age (s.d.)
Sex (%)
Male
Female
Other
Education level (%)
< High school
College
> Graduate
Race (%)
American Indian or Alaska Native
Asian
Black/African American
Hispanic or Latino
White
ASSIST (s.d.)
AUDIT (s.d.)
CAST (s.d.)

40.9 (13.4)

45 (66.1%)
22 (32.4%)
1(1.5%)

10 (14.7%)
42 (61.8%)
16 (23.5%)

2 (2.9%)

7 (10.3%)
5 (7.4%)
1(1.5%)
53 (77.9%)
17.1 (8.4)
6.8 (6.6)

38.7 (14.1)

37 (57.8%)
27 (42.2%)
0 (0%)

7 (10.9%)
44 (68.8%)
13 (20.3%)

2 (3.1%)

7 (10.9%)
2 (3.1%)

4 (6.3%)
49 (76.6%)
14.0 (7.9)

7.7 (3.6)

ASSIST - Alcohol, Smoking and Substance Involvement Screening Test87
AUDIT - Alcohol Use Disorders Identification Test%°

CAST - Cannabis Abuse Screening Test?2
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Fig. 1. Experimental paradigm and model-agnostic task behavior.

(a) Participants played a modified two-armed bandit task. Each session started with instructions and a choice of three
reward options, of which the participant selected the one most tempting to them. Following five practice trials, two
blocks of sixty trials were presented, in which the participant selected one of two machines. In the money block, the
reward presented was an image of a coin. In the addictive cue block, the reward presented was the option selected by
the participant at the start. Craving and mood were intermittently assessed throughout the block (20 craving ratings, 12
mood ratings), scored from 1 to 50. The more rewarding machine in each trial rewarded with 80% probability while the
less rewarding machine rewarded at 20% probability. The optimal machine switched a total of 4 times (4 reversals) over
the course of each block. The order and timings of the reversals was pseudorandomized over the cohort. Choice
optimality was measured by calculating the proportion of participant choices that matched the optimal choice at each
trial (i.e., the machine that rewarded 80% of the time at that trial). (b) Choice optimality was assessed visually by
averaging participant choices across the experiment. Blue lines represent the left machine, purples lines represent the
right machine, and vertical gray lines represent the timings of reversals in reward structure. In both groups, participants
were able to successfully learn the reversal structure, reflected in the periodic switches of left/right machine choices
over the experiment. (¢) Choice optimality was calculated for each participant and stratified by group and condition. In
both groups, choice optimality was significantly higher than chance (50%) (alcohol: ~=18.9, P<0.001; cannabis: =18.2,
P<0.001). (d) Average craving ratings were significantly higher in the addictive cue condition compared to money
condition in both groups (alcohol: =3.14, P=0.002; cannabis: =2.47, P=0.016). (¢) Variances in craving ratings were
not significantly different between conditions for either group (alcohol: =0.793, P=0.431; cannabis: =0.841, P=0.403).
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Table 2. Decision and craving models.

Decision Model Class

Description

Value update scheme

Decision policy

Asymmetric TDRL

Reward bias

Learning rate bias
(a bias)

Temperature bias
(B bias)

Momentum-based
TDRL (m-TDRL)

Craving does not modulate the value update
or action policy

Craving modulates perceived reward

Craving modulates the learning rate at each
trial.

Craving modulates the inverse temperature

RPE-derived momentum modulates the
learning rate

TDRL with separate learning
rates for positive and
negative RPEs

TDRL with static learning
rates

TDRL with dynamic learning
rates

TDRL with static learning
rates

TDRL with dynamic learning
rates

Softmax with static
temperature

Softmax with static
temperature

Softmax with static
temperature

Softmax with dynamic
temperature

Softmax with static
temperature

Craving Model Class

Description

Components of craving
computation

RPE-elicited craving (RPE)

Expectation-elicited craving (EV)

Jointly-elicited craving (EV + RPE)

perceived craving

Only prediction errors contribute to perceived craving

Only expected values contribute to perceived craving

Values and prediction errors both contribute to

Prediction error only

Expected value only

Expected value and prediction error
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Fig. 2. Decision-making model comparison and parameter distribution: addictive condition.

TDRL: temporal difference reinforcement learning, a-bias: learning rate bias, -bias: inverse temperature bias, m-TDRL:
momentum-based TDRL, r-bias: reward bias. (a, b) For all models, ABIC was defined as the difference between each
model’s BIC and the best performing BIC. The a-bias model performed best across groups. (¢, d) For the best performing
a-bias model, we performed parameter recovery by simulating data from parameter estimate, and refitting the simulated
data. All parameters (a, B, @) displayed excellent parameter recovery across groups (P<0.01 across parameters and
groups). (e, f) Distributions of parameters were extracted from the o-bias model. The left panel displays the joint
distributions of o (learning rate) and ¢ (modulation factor), as these interact directly in the model, while B (inverse
temperature), is visualized separately. In the alcohol group, ¢ was found to be significantly positive (=2.159, P=0.034),
while in the cannabis group, it was found to be significantly negative (==-5.590, P<0.001).
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Fig. 3. Craving model comparison and parameter distribution: addictive condition.

EV: Expected-value-only craving model, RPE: reward-prediction-error-only craving model, EV+RPE: combined EV
and RPE craving model. (a, b) As with decision models, ABIC was defined as the difference between each model’s BIC
and the best performing BIC. The joint EV+RPE model performed best across groups. (¢-f) In each group, for the best
performing craving model, we calculated the correlations between model-predicted craving and true craving ratings. An
example participant’s true vs. predicted craving are displayed in panels ¢ and e. There was a high degree of correlation
across participants (panels d and f; alcohol: mean 7=0.438; cannabis: mean r=0.487), indicating strong model efficacy.
(g, h) Distributions of parameters were extracted from the EV+RPE model. The left panel displays the joint distributions
of wgy (EV weight) and wgpp (RPE weight), while Craving baseline is visualized separately. In the alcohol group, both
Wgy (1=3.983, P<0.001) and wypy (=4.940, P<0.001) were found to be significantly positive, while in the cannabis
group. neither reached significance (Wev: =1.759. P=0.083: wopor: 1=0.343, P=0.733).
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Fig. 4. Clinical severity regression analysis.
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Regression analyses were conducted to determine the efficacy of computational parameters (‘Comp only’), model-
agnostic metrics (‘Agnostic only’), demographics (‘Demo only’), and their combinations (‘Demo+Comp’ and
‘Demo+Agnostic’) in predicting clinical severity. Note that ASSIST scores were normalized prior to regression. (a) In
the alcohol group, Comp only outperformed all alternatives (elpd waic=-93.557). (b) In cannabis users, Demo only was
the best performing model (elpd waic=-94.032). (¢, d) The best performing models in both groups generated predictions
that were highly correlated with true ASSIST scores (alcohol: r=0.553, P<0.001; cannabis: r=0.373, P=0.002). (e, f)
Parameters were extracted from the samples from the posterior distribution, and the 89% highest density intervals are
plotted for each significant variable. Weight distributions for race and sex were eliminated due to high degree of variance
and low contribution to prediction. In alcohol users, o (learning rate) and craving baseline were found to be significantly
positively associated, while B (inverse temperature) and wg,, were found to be significantly negatively associated. In
the cannabis group, income was negatively associated, and there was a marginally negative association for age and

education as well.
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Supp. Fig. 1. Correlations between craving ratings and mood ratings.

Within each group, there was no significant relationship between craving and mood ratings within or across conditions.
For the alcohol group, mean correlation was r=-0.063 (P=0.305) for the money condition, r=0.021 (P=0.703) for the
addictive condition, and the difference between conditions was not significant (+=1.098, P=0.276). For the cannabis
group, mean correlation was r=-0.002 (P=0.968) for the money condition, r=0.065 (P=0.308) for the addictive condition,
and the difference between conditions was not significant (+=0.972, P=0.334).
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Supp. Fig. 2. Correlation between RPE/EV and outcomes.

To validate the use of reward prediction error (RPE) based craving models as a proxy for cue-induced craving,
we calculated the correlations between trialwise RPE and outcomes. Intuitively, note that every positive outcome
(‘win’, presentation of cue) will result in a positive RPE, while every negative outcome (‘loss’, absence of cue)
will result in a negative RPE. This relationship would not necessarily be present for the association between
expected value (EV) and outcome. (a) On average, participant-wise correlation between RPE and outcome was
M=0.742, SD=0.062, while correlation between EV and outcome was M=0.174, SD=0.116. (b) For all
participants, the line of best fit is shown between EV vs. outcome (left, gray), and RPE vs. outcome (right,
orange).
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Supp. Fig. 3. Decision-making model simulation.

Simulated choices were generated from candidate models after model fitting. 4000 simulated datasets were generated
and compared to true choice behavior on a session-by-session basis. (a, b) 50 sets of decisions for a sample participant
in the addictive condition are plotted as black circles, and qualitatively have a high similarity to true choices (red
diamonds). (¢, d) We quantified the percent of matches in true and simulated choices, and statistically compared to
chance (50%). Simulations matched true behaviors significantly better than chance (alcohol: ~=12.405, P<0.001;
cannabis: =13.932, P<0.001). (e-h) We repeated the same procedure in the money condition with similar qualitative
and quantitative findings (alcohol: /=10.198, P<0.001; cannabis: ~=11.589, P<0.001)
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Supp. Fig. 4. True vs. optimal parameter distributions.

To confirm our simulation findings that participants behaved close to optimally, we performed a baseline simulation,
randomly sampling (untransformed) o (learning rate) and P (inverse temperature) to discover the range of parameters
leading to optimal outcomes (measured as percent correspondence with true task structure). Note that ¢ (modulation
factor) is not included for this simulation. For each group-condition pairing, the joint parameter space is shown in (a-d)
with red signifying highest optimality. Participant parameter estimates derived from the best performing models are
overlaid as black dots. As expected, the large majority of participant estimate lie within the optimal range of parameters.
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Supp. Fig. 5. Decision-making model comparison and parameter distribution: money condition.

(a, b) As with the addictive condition, ABIC was defined as the difference between each model’s BIC and the best
performing BIC. The r-bias (reward bias) model performed best across groups. (¢, d) All parameters (a, B, @) displayed
excellent parameter recovery across groups (P<0.01 across parameters and groups). (e, f) Distributions of parameters
were extracted from the r-bias model. The left panel displays the joint distributions of a (learning rate) and ¢ (modulation
factor), as these interact directly in the model, while 8 (inverse temperature), is visualized separately. In both the alcohol
group and the cannabis group, ¢ was found to be significantly positive (alcohol: =9.812, P<0.001; cannabis: /=15.831,
P<0.001)
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Supp. Fig. 6. Craving model comparison and parameter distribution: money condition.

(a, b) Again, ABIC was defined as the difference between each model’s BIC and the best performing BIC. The joint
EV+RPE model performed best across groups. (c-f) In each group, for the best performing craving model, we calculated
the correlations between model-predicted craving and true craving ratings. An example participant’s true vs. predicted
craving are displayed in panels ¢ and e. There was a high degree of correlation across participants (panels d and f;
alcohol: mean r=0.489; cannabis: mean r=0.446), indicating strong model efficacy. (g, h) Distributions of parameters
were extracted from the EV+RPE model. The left panel displays the joint distributions of wg,, (EV weight) and wgpg
(RPE weight), while Craving baseline is visualized separately. In the alcohol group, neither wg,, (#=0.160, P=0.873)
nor Wgpg (#=1.031, P=0.306) reached significance, while in the cannabis group, wg,, was positively associated (=3.765,
P<0.001), but wgpg was not (=1.321, P=0.191).
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Supp. Fig. 7. Correlations between model agnostic task performance, craving ratings and mood ratings.

We correlated mean and initial (base) craving and mood, as well as choice optimality and task score with clinical severity
scores directly. We also discovered an expected positive relationship between alcohol/cannabis use severity and both
mean and initial craving ratings (r>0.319, P<0.008), but no relationship existed between mood and severity scores
(r<0.096, P>0.448). There was also a negative correlation between clinical severity score and accuracy in the money
condition for alcohol users (r=-0.207, P=0.011).
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