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Abstract 

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is 
still a major clinical hurdle. Specific subtypes like Claudin-low (CL) and metaplastic breast 
cancers (MpBC) have been associated with high non-genetic plasticity, which can facilitate 
resistance. The overlaps and differences between these orthogonal subtypes, respectively 
identified by molecular and histopathological analyses, are however still insufficiently 
characterised. Adequate methods to identify high-plasticity tumours to better anticipate 
resistance are furthermore still lacking. Here we analysed 11 triple negative breast tumours, 
including 3 CL and 4 MpBC samples, via high-resolution spatial transcriptomics. We 
combined pathological annotations and deconvolution approaches to precisely identify tumour 
spots, on which we performed signature enrichment, differential expression and copy-number 
analyses. We used the TCGA and CCLE public databases for external validation of 
expression markers. By levying spatial transcriptomics to focus analyses only to tumour cells 
in MpBC samples, and therefore bypassing the negative impact of stromal contamination, we 
could identify specific markers that are not expressed in other subtypes nor stromal cells. 
Three markers (BMPER, POPDC3 and SH3RF3) could furthermore be validated in external 
expression databases encompassing bulk tumour material and stroma-free cell lines. We find 
that existing bulk expression signatures of high-plasticity breast cancers are relevant in 
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mesenchymal transdifferentiated compartments but can be hindered by stromal cell 
prevalence in tumour samples, negatively impacting their clinical applicability. Spatial 
transcriptomics analyses can however help identify more specific expression markers, and 
could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers. 

 

 

Introduction 

Breast cancer is one of the most prominent types of cancers, with 2.3 million women 
diagnosed in 2020 (Globocan, 2020 IARC). Patient stratification relies on the presence of 
specific targetable alterations in the oestrogen receptor (ER), progesterone receptor (PR), and 
HER2 genes. These genetic properties are generally well recapitulated by the broad PAM50 
transcriptomic signatures: luminal A, luminal B, HER2-enriched, basal-like and normal-like1. 
Clinical approaches typically rely on the immunohistochemical expression of those three 
markers, done routinely during the pathological examination of breast cancer specimens. 
Triple negative breast cancers (TNBC) patients however lack any of the targetable ER, PR 
and HER2 alterations, leading to scarce therapeutic options and low survival rates despite 
promising results with antibody-drug conjugates2. Rarer subtypes such as claudin-low (CL) 
tumours or metaplastic breast carcinoma (MpBC) have furthermore been associated with high 
plasticity, a cellular property facilitating dynamic phenotypic changes and the subsequent 
emergence of non-genetic therapeutic resistance3. Anticipating breast cancer cells’ ability to 
adapt via plasticity is thus of paramount importance for effective therapeutic targeting. 
However, the driving mechanisms of tumour plasticity remain poorly understood, and no 
standard method exists to accurately detect nor quantify it for patient stratification. 

High-plasticity breast cancer subtype identification typically relies on either molecular or 
histopathological analyses. Claudin-low tumours were originally defined by transcriptomic 
analyses, with a phenotype similar to basal cells lacking expression of claudins 3, 4, and 7, 
and other cell-cell adhesion markers4. They represent 3-5% of all breast cancers5,6, and are 
generally associated with strong stemness features. The evolutionary trajectories explaining 
their malignant progression are however still debated. CLs typically display high expression 
of epithelial-mesenchymal transition (EMT) factors 4, known to foster phenotypic plasticity 
and stemness7,8, but also enhanced tolerance to oncogenic stress, thereby mitigating genomic 
instability9. Recent work further suggests the existence of different claudin-low classes: CL1, 
CL2 and CL35.  CL1 tumours are believed to arise directly from malignantly transformed 
mammary stem cells (MaSC). These tumours were also the most similar to previous 
observations of EMT-driven plasticity and genomic stability, displaying the highest intrinsic 
expression of EMT markers and the lowest fraction of genome altered (FGA). 

Metaplastic breast carcinomas (MpBC) are a heterogeneous group histopathologically-defined 
by the presence of a non-epithelial tumour component, believed to occur through 
transdifferentiation10. MpBCs account for 0.2-2% of all invasive breast carcinomas are 
usually triple negative and often associated with poorer survival rates11. Different sub-types 
exist according to the transdifferentiated component11, including but not restricted to spindle, 
chondroid and osseous cells11,12. MpBC can present one or more metaplastic component, 
which are often admixed with a component of invasive breast carcinoma of no special type 
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(IBC-NST). MpBC diagnosis remains challenging and adequate markers are still lacking to 
correctly classify specific subtypes within this highly heterogeneous disease13. Similarly to 
CLs, many of these sub-types display high EMT marker expression and resemble mammary 
tumour–initiating stem cell–like cells, based on transcriptomic data14. Although CL tumours 
frequently involve metaplastic differentiation4, the full extent of the overlaps and divergences 
between these subtypes defined by different approaches is still unclear. 

Here, we aimed to further characterise these plasticity-associated breast cancer subtypes, 
defined either molecularly or histopathologically, via spatial transcriptomics (SpaT). Based on 
previously described5,6 genomic instability and CL-associated bulk gene signatures, we 
identified 3 putative CL tumours (CL-like) and 4 non-CL, genomically unstable TNBC 
samples as controls. We also selected 4 MpBCs through histopathology (2 spindle cell, 1 
chondroid, 1 IBC-NST compartment from a mixed spindle cell tumour), and performed SpaT 
analyses on all 11 samples. We report that, unlike in unstable TNBC samples, the tumour 
compartment of CL-like tumours did not recapitulate expression patterns expected from bulk 
analyses. We find that existing CL expression signatures are significantly upregulated in 
MpBCs with mesenchymal trandifferentiation, but that the prevalence of stromal cells can 
hinder clinical applicability and lead to false positive diagnoses. This pitfall highlights the 
need to integrate histopathological approaches into transcriptomics analyses to define more 
robust signatures that are specific to high-plasticity tumour cells only.  

By levying SpaT to focus expression analyses only to tumour cells in MpBC samples, we 
could identify specific expression markers that are not expressed in other subtypes nor in 
stromal cells. SpaT-derived markers could thus enhance the diagnosis and clinical care of rare 
high-plasticity breast cancers in the future. 

 

 

Material and Methods 

Low and high genomic instability sample identification 

From a larger cohort of 379 samples with RNA-seq data assembled as part of the MyPROBE 
project (17-RHUS-0008), we analysed 87 fresh frozen TNBC samples with paired whole-
exome sequencing (WES) data collected at Centre Léon Bérard. Only samples with more than 
30% tumour purity (estimated percentage of tumour cells), as estimated by FACETS15, had 
been included in this cohort. We used the already processed RNA-seq and WES data available 
for all samples. Using the pre-calculated fractions of genome altered (FGA), we identified 3 
samples with low genomic instability (FGA <10%) and 6 samples with high instability 
(FGA>75%). Samples CLB-17, CLB-52 and CLB-74 were considered CL-like, samples 
CLB-14, CLB-23, CLB-37, and CLB-51 were considered unstable TNBC (Supplementary 
Table 1).  An additional CL-like sample (CLB-11, CL-like 4) was discarded after in-depth 
investigation identified an erroneously low FGA (actual FGA > 10%). A tumour-free slide 
from this discarded tumour was however included in the controls. 

Spatial transcriptomics analyses 

10x Genomics Visium (Spatial 3' v1 for fresh frozen samples) slides were processed 
according to the manufacturer’s guidelines and sequenced in two batches on a NovaSeq 6000 
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Illumina sequencer, targeting 50,000 reads/spot: A first batch included samples M1 to M11 
(Cl-like, unstable TNBC, normal controls), a second batch included samples M13 to M16 
(metaplastic TNBCs). The spaceranger software was used to process the raw data. 
Stereoscope16 was used for deconvolution analyses using only the TNBC data from a single-
cell breast cancer atlas17, and excluding plasmablasts that were initially found to be over-
represented in deconvolution results (included cell types: cancer epithelial, normal epithelial, 
endothelial, CAF, T-cell, B-cell, myeloid, PVL).  

Signature enrichment analyses were performed using the AUCell tool, designed for UMI-
based single-cell data that present similar biases to those of our SpaT data. To maximise the 
capture of lowly-expressed genes in all signatures, we used the maximum threshold advised 
by AUCell developpers (0.2). This provided higher minimal scores compared to lower 
thresholds (0.5, 0.1, 0.15), without altering the overall observations (Supplementary Fig. 1). 

Combining histopathological annotations and spatial transcriptomics on fresh frozen 
tissue 

We analysed a total of 15 Visium capture areas, including 3 controls extracted from tumour 
samples with epithelial compartments but no tumour identifiable on the slide. All slides were 
annotated by a breast pathologist, to separate tumour/non-tumour and epithelial/non-epithelial 
compartments, as well as eliminate spots corresponding to folded tissue and artefacts. The 
SpaT data and paired annotations have been publicly deposited as a series on the Gene 
Expression Omnibus (GSE213688). 

Tumour spots were first annotated by the pathologist. To later investigate expression markers 
that would not be biased by the prevalence of mesenchymal stromal cells, we restricted the 
stromal spots definition to the following pathologist annotations, exclusively: Fibrosis, 
Fibrosis (peritumoral), Fibrous stroma, Tumour Stroma, Tumour stroma fibrous, the last two 
separated on visual appreciation of the cellular density and collagen abundance in the stroma. 
Tumour and stromal spots were further refined using scores obtained by deconvolution, to 
keep only the spots most enriched in the population of interest. Tumour spots with a cancer 
epithelial score < 0.1 were discarded. In addition, tumour spots in the MpBC_chondroid 
sample with unusual B-cell scores > 0.1 were also discarded. For stromal spots, those with 
either normal epithelial or cancer epithelial scores > 0.1 were discarded. 

CNA profiles 

Three slides that were devoid of tumour cells upon histopathological examination, were 
included as normal references: M1 and M9 (CL-like3) and M7 (CL-like4). The expression 
profiles of epithelial spots present on these slides provided a more relevant reference than 
those of other cells, in which cell-type-specific expression patterns local to genome segments 
could hamper CNA identification. Individual spot copy number (CN) profiles were produced 
with the infercnvPlus tool (https://github.com/CharleneZ95/infercnvPlus, based on inferCNV 
of the Trinity CTAT Project: https://github.com/broadinstitute/inferCNV). All spots annotated 
as either tumoral or epithelial from every slide were pooled together, using the epithelial ones 
as references. 

This produced a relative CN measure per gene per spot, which we summarised into a major 
cytoband per spot matrix, by computing the average CN per cytoband. Sample-specific 
profiles were then obtained by averaging the relative CN measures per cytoband across all 
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spots of each given sample. Comparable profiles were obtained for bulk samples, by 
averaging per cytoband the segmented logR values reported by FACETS15 analysis, from the 
whole exome sequencing data of CL-like and unstable samples. 

Gain/loss profiles were calculated for each bulk sample by attributing values of 1 (gain), 0 
(normal) or -1 (loss) to each cytoband, according to whether their mean logR exceeded the 
median logR of the sample ± 0.6, as implemented in 18. A threshold was used to calculate 
similar gains/loss profiles in Visium samples, according to whether the cytoband CNA scores 
exceeded the threshold. Its value was optimised to minimise the pairwise distance across all 
cytobands between the bulk-derived and SpaT-derived gain/loss profiles for the 4 unstable 
tumours, which provided the most reliable and informative data. 

Differential expression analyses on SpaT data 

All tumour samples were first individually normalised using the SCTransform function from 
the Seurat R package19. All 11 samples were then merged together and re-normalised using 
the SCTransform function, resulting in a matrix of 22,058 genes by 14,905 spots. The MAST 
R package20 was used to performed differential expression analyses on SpaT data. Fold 
changes (FC) were defined as the mean expression in the population of interest divided by the 
mean expression in the control population. 

The CL, unstable control and normal samples (M1 to M11) were distributed over 3 Visium 
slides and were sequenced together in a first batch. All 4 MpBC samples (M13 to M16) were 
on the same Visium slide and were sequenced in a second separate batch. We thus adapted 
our design to remove potential biases stemming from batch effects and different sequencing 
depths. The UMAP projection of all MpBC tumour spots was obtained without spots from 
other samples, to prevent batch effects, then normalised using the harmony software21 to 
account for technical effects between capture areas. For the same reasons, we initially defined 
differentially expressed (DE) genes only among the metastatic samples. We used the tumour 
spots from the MpBC_NST sample as a non-metastatic reference, and the spots annotated as 
fibrosis and tumour stroma from the MpBC_spindle2 sample as a stromal reference. To 
account for the imbalance in number of tumour spots between the two spindle MpBC 
samples, we first performed DE analysis between them, and retained all genes whose 
expression was not significantly different (p > 0.05 and absolute log2 FC < 2). We then 
performed DE analyses between the union of tumour spots from both spindle samples against 
the tumour spots from the NST sample and the stromal references, separately. Genes 
upregulated in the spindle tumour spots were defined as those having a log2 FC > 1.5 and a 
corrected p-value < 0.001 (Benjamini-Hochberg). Genes overexpressed in MpBC tumour 
spots in both analyses (vs non-MpBC tumour and stroma) were considered as candidate 
MpBC markers. We further validated their relevance in the tumour and stromal spots from the 
CL-like and unstable samples, using the same method but with a higher log2 FC threshold 
(>2) in this bigger dataset. Only genes significantly overexpressed in MpBC samples in both 
analyses (non-MpBC tumour and stroma) were considered as internally validated markers. 
For the external validation, we used the clinical information, including sample metaplastic 
status, and mRNA expression (z-normalised RNA-seq log RSEM) data  from the TCGA 
breast cancer Firehose Legacy cohort, retrieved through cBioPortal22,23. CCLE data, z-
normalised relative to diploid samples, was similarly obtained from cBioPortal. CL 
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classification of the CCLE breast cancer cell lines was retrieved from 5,24. Differential 
expression was assessed using Wilcoxon rank-sum tests for each gene of interest. 

 

 

Results 

Identification of CL-like, unstable and metaplastic breast tumours 

We decided to focus on identifying CL tumours displaying high intrinsic plasticity and low 
genomic instability, as described by the CL1 sub-classification. We analysed 379 TNBC 
samples from Centre Léon Bérard for which RNA-seq data was available, 87 of which also 
had paired whole-exome data. To first identify potential CL1 tumours based on genomic 
stability, we selected 3 tumours with FGA < 10%. For control TNBC samples, we decided to 
focus on those least resembling CL1 tumours and identified 6 genomically unstable tumours 
with FGA > 75% (Supplementary Table 1). The low-FGA tumours displayed RNA 
expression patterns highly concordant with CL, and particularly CL1, phenotypes: high ZEB1, 
ZEB2, and MSRB3; low POLQ9,24 (Fig. 1A). We thus considered these 3 samples as highly 
relevant CL-like candidates. Out of the 6 high-FGA samples, to be used as controls, we 
selected the 4 high-FGA samples displaying the most contrasting patterns regarding these 
genes (Supplementary Fig. 2). We performed PAM50 centroid classification on the 379 
samples from our cohort merged with the TCGA BRCA dataset. This revealed that the 3 CL-
like samples were considered as Luminal A, and the 4 unstable control samples were 
considered as Basal. These findings were furthermore consistent with gene-set enrichment 
analyses of established CL and Basal-like gene signatures from 4, and the CL1 and MaSC 
signatures from 5 (Figure 1B-C, Supplementary Fig. 3-5). These tumours were histologically 
reviewed to confirm their histotype, all were classified as triple negative breast carcinoma of 
no special type (NST) according to the WHO Classification of Breast Tumours, 5th ed. 
criteria, and no metaplastic component was identified in these samples.  

To broaden the analysis focusing on high-plasticity breast tumour types, we further selected 4 
MpBC, of different subtypes: 2 spindle cell carcinomas (MpBC_spindle), 1 carcinoma with 
pure chondroid differentiation (MpBC_chondroid) and 1 IBC-NST compartment from a 
tumour diagnosed as a mixed spindle cell and IBC-NST (MpBC_NST). Subtypes were 
initially determined during routine histopathological evaluation for clinical diagnosis on FFPE 
samples, and were reviewed afterward by a breast pathologist. Only tumours for which fresh 
frozen material was available were selected, in order to use the same spatial transcriptomics 
technology as for CL and control TNBCs. Frozen specimens were also reviewed on 
hematoxylin and eosin stained (H&E) slides, to assess the sampled components and select 
optimal samples to be used for spatial transcriptomic techniques.  
  
Spatial transcriptomics data deconvolution reflects histopathological annotations 

We performed spatial transcriptomics (SpaT) analyses on a total of 14 slides comprising: 3 
CL-like tumours; 4 unstable TNBCs; 4 MpBCs; and 3 adjacent normal tissue with no 
detectable tumour cells. We report medians of 85% reads under tissue, 2,398 genes per spot 
and 5,083 UMIs per spot (Supplementary Table 1). Estimation of spot cellular composition 
using the stereoscope deconvolution software confirmed that spots histopathologically 
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identified as tumour displayed more tumour-associated expression patterns (p < 0.001, t-test, 
Figure 2, Supplementary Fig. 6-10), and that adjacent normal slides were tumour-free 
(Supplementary Fig. 9). This confirms that the RNA profiles from tumour-labelled spots 
reflected pathological annotations.  

Automated deconvolution was based on individual RNA profiles of cells extracted from 
tumours of epithelial origin17, but could identify cancer cells in all but one of the 4 MpBC 
slides: the MpBC_spindle1 sample is the only exception (Supplementary Fig. 8), in which the 
strong mesenchymal nature of metaplastic tumour cells led to spots being predicted to mostly 
contain cancer-associated fibroblasts. In later analyses, we furthermore used both pathological 
annotations and thresholds on deconvolution scores to more rigorously identify genuine 
tumour and non-tumour spots (see Methods). Of note, all SpaT analyses were performed on 
tumour sections that were distinct from the ones initially used for bulk analyses, which can 
lead to sampling bias. Importantly, we report that the tumour slides from the CL-like2 and 
CL-like3 analysed by SpaT were annotated as non-invasive in situ carcinoma, while both 
patients were diagnosed with invasive TNBC. This may imply phenotypic differences 
compared to the sections included in bulk analyses initially performed on these samples. 

Spatialisation sheds light on the micro-environmental impact on molecular plasticity 
signatures 

To assess how SpaT recapitulate the bulk signal used to classify the CL-like and unstable 
control samples, we generated pseudo-bulk data by individually pooling all spots together for 
each slide. In addition, histopathological annotations of tumour spots allowed us to investigate 
the prominence of CL, Basal, CL1 and MaSC signatures on the entire surface of slides, but 
also specifically in tumour spots. When including all spots per slide, correlations between the 
bulk and pseudo-bulk (all spots) data were statistically significant for the Basal and CL1 
signatures (rho=0.93, p=0.007; rho=0.82, p=0.034, respectively), but not for the CL and 
MaSC signatures (Fig. 3A). However, no correlations were found to be significant when 
focusing solely on tumour spots (Figure 3B). This suggests that focusing on tumour spots 
only provides a worse recollection of the signal initially used to determine CL status in bulk 
analyses. 

We further analysed each signature specifically, using either all spots or only tumour ones in 
all samples (Figure 3C). The original CL signature was significantly higher in spindle cell 
MpBC samples, particularly in tumour spots only (Figure 3C, p=0.036, Wilcoxon rank-sum 
tests). The CL1 signature was also enriched in spindle cell MpBC tumour spots (p=0.036).  
The 3 spindle cell and chondroid MpBC samples also displayed significantly lower 
enrichment for the Basal signature, when grouped together (Figure 3C, p=0.012, both cases). 
This suggests that these existing signatures are suited to the identification of breast cancer 
transdifferentiation, particularly to a mesenchymal phenotype. 

The restriction of signature enrichment analyses to tumour spots had little impact on unstable 
control samples. In CL-like samples however, CL and CL1 signatures decreased in this case, 
while the Basal one increased, albeit only with borderline significance due to the few data 
points (p=0.169, p=0.020 and p=0.254, respectively, t-tests). This further indicates that the 
bulk-based signal used to identify CL-like samples was not reflected by the specific 
transcriptomic profiles of tumour cells in these samples.  
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CL-like samples poorly recapitulate bulk copy number alterations 

We determined relative copy number (CN) profiles per major cytoband for each SpaT tumour 
spot, using the InferCnvPlus software (Fig. 4A). Spot-specific profiles were then averaged to 
obtain per-sample CN profiles (Supplementary Fig. 11A). These profiles derived from 
measured RNA quantities are only relevant as relative values within each sample and thus 
cannot be used to determine absolute copy numbers. We however defined a threshold to 
identify regions of chromosomal loss and gain based on the unstable control samples, which 
offered more reliable expectations in terms of number CNA per sample and signal quality 
(Supplementary Fig. 11B-C, Supplementary Fig. 12-14, see Methods). This allowed us to 
calculate relative fractions of genome altered (rFGA), and to investigate distances and 
correlations between bulk and SpaT CN profiles (Fig. 4B-C). Contrarily to expectations from 
bulk data, CL-like samples did not appear genomically stable and their SpaT-derived rFGAs 
was not significantly different from those of unstable control samples (p=0.88, t-test). We 
however found that CL-like CN profiles appeared less correlated with their bulk counterparts 
than unstable profiles, both on the entire genome (Supplementary Fig. 15) and exclusively on 
regions of chromosomal gain or loss (p=0.064 and p=0.074, respectively, t-test). Analyses of 
differences in rFGA and average pairwise distances between bulk and SpaT profiles (see 
Methods) furthermore confirmed that the bulk CNA information was much better 
recapitulated by SpaT data in unstable control samples than in CL-like samples (Fig.  4C-D, 
both p<0.001, t-test). 

Higher stromal content in CL-like samples 

We report that the SpaT slides from CL-like tumours contained a significantly smaller 
fraction of tumour spots (Fig. 5E, p=0.02, Wilcoxon rank-sum test), and a lower fraction of 
cancer epithelial cells per spot than the other tumours, as estimated by stereoscope, even 
including transdifferentiated MpBC samples (p < 0.001, Wilcoxon rank-sum test). Given that 
tumour spots in CL-like samples did not display strong signal for the highly mesenchymal CL 
expression signatures, this strongly suggests that an insufficient percentage of tumour cells in 
CL-like bulk samples could have both artificially increased enrichment scores for claudin low 
expression signatures, and hampered the detection of genuine CNAs. 

SpaT can identify tumour-specific markers that are robust to stromal content 

Clustering analyses on the tumour spots from MpBC samples revealed that both spindle cell 
samples clustered together, highlighting that they shared common, spindle-cell specific 
expression patterns (Fig. 5A). We thus harnessed SpaT data to identify genes overexpressed 
in MpBC tumour cells compared to both tumour cells of no special type and healthy stromal 
cells. 

With 1,983 spots per slide on average (range: 1,055 - 3,037), our SpaT data can provide a 
very powerful basis for differential expression analyses, even with few samples. We however 
aimed to mitigate the impact of the low number of samples and maximise reproducibility (see 
Methods). We first took advantage of the high number of spots available, and split our cohort 
into internal discovery (MpBC samples) and validation (CL-like and unstable samples) sets to 
prevent overfitting (Table 1). We identified genes significantly overexpressed in spindle cell 
or chondroid spots compared to both NST and stroma spots from MpBC samples, combining 
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two separate differential expression analyses. We then selected only those also overexpressed 
compared to both tumour spots and stromal spots from CL-like and unstable control samples. 

Using this design, we could identify subtype-specific genes with low-expression in non-
metaplastic tumour cells and stromal cells.  9 genes were overexpressed in the two spindle 
cell MpBC samples: BMPER, DIPK1A, DSEL, EPDR1, JPH2, PIEZO2, POPDC3, MSC-AS1 
and SH3RF3 (Fig. 5B). We also investigated known EMT markers4–6, none of which came up 
as significant in our analyses, and whose expression patterns were less specific to spindle cell 
MpBC tumour cells. The same analysis conducted on the MpBC_chondroid samples 
identified 8 genes whose overexpression was specific to chondroid MpBC cells: HSPB6, 
VGLL3, PTX3, GFRA1, MT1G, MT1E, CHI3L2 and SAA1 (Supplementary Fig. 16). 

These genes are however identified from a small number of samples (n=2 for spindle cell, n=1 
for chondroid). To assess their relevance in larger cohorts, we investigated their expression in 
two complementary external datasets: the TCGA breast cancer expression dataset comprising 
1108 samples25, including 14 metaplastic ones; and the 51 stroma-free breast cancer cell lines 
from the CCLE26, including 9 samples classified as Claudin-low. Long non-coding RNA 
MSC-AS1 was the only gene for which expression data was unavailable, in both sets. In the 
TCGA dataset, samples were classified as non-CL (n=940), CL1 (n=69), CL2 (n=42) or CL3 
(n=57) according to previous work based on expression signatures24. BMPER, EPDR1, JPH2, 
POPDC3 and SH3RF3 were significantly overexpressed in metaplastic samples (all p<0.05, 
Wilcoxon rank sum tests; Fig. 5C, Supplementary Fig. 17). In the CCLE dataset, BMPER, 
DIPK1A, DSEL, POPDC3 and SH3RF3 were significantly overexpressed in CL cell lines 
(Fig. 5D, Supplementary Fig. 18). All significant p-values held after Benjamini-Hochberg 
correction in each dataset.  

These results validate that 3 out of the 8 analysable stroma-independent spindle cell MpBC 
markers (BMPER, POPDC3 and SH3RF3) are highly relevant in metaplastic tumours and CL 
cell lines from two independent external cohorts. Four more genes could furthermore be 
validated in one external cohort (EPDR1 and JPH2 in the TCGA data; DIPK1A and DSEL in 
the CCLE data), but not the other. These results suggest that leveraging SpaT data to focus 
solely on tumour cells can yield powerful expression markers that are less likely to be biased 
by stromal cell prevalence. This can help identify high-plasticity tumours more reliably, and 
improve molecular classification. 

In addition, all genes except PIEZO2 furthermore displayed significant overexpression in CL 
subtypes (Supplementary Fig. 19) in the TCGA data, confirming the similarities between CL 
and MpBC tumours. The overlap between the two subtypes showed significant enrichment, as 
57% of TCGA (8 / 14) metaplastic breast cancers were classified as CL (4 CL1, 1 CL2 and 3 
CL3), which represent only 15% of tumours (p<0.001, Fisher’s exact test). As for chondroid 
markers, genes VGLL3 and PTX3 could both be validated in metaplastic breast cancer 
samples in the TCGA data, due to their significant overexpression after multiple testing 
(Supplementary Fig. 20). 

 

 

Discussion 
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Rare breast cancer subtypes associated with cellular plasticity features are still difficult to 
both diagnose and treat. In particular, there appears to be an overlap between molecularly-
defined claudin-low (CL) tumours and metaplastic breast cancers (MpBC) typically defined 
by histopathology. Here we harnessed the novel possibilities offered by recent advances in 
spatial transcriptomics (SpaT) to shed light on the commonalities and discrepancies between 
these plasticity-associated breast cancer subtypes, and assess the opportunities and pitfalls 
their routine classification presents. We identified 3 putative CL samples and 4 unstable 
TNBCs using gene expression and copy number data, as well as 4 MpBCs reviewed by a 
breast pathologist. We analysed a single slide of each of the 11 samples by spatial 
transcriptomics, along with 3 slides from adjacent normal breast tissue with no detectable 
tumour material as controls. 

We investigated 4 previously reported signatures (Claudin-low vs Basal from 4, Claudin-low 
type 1 and Mammary stem cells from 5) and found they were highly relevant in MpBC, 
particularly for the spindle cell sub-classification. We however found that the CL-like 
samples, defined by molecular analyses, were heavily impacted by stromal cell prevalence. 
This can hamper the detection of genuine CNAs and bias RNA signal towards mesenchymal 
gene overexpression, which is a feature of CL tumours. Restricting our SpaT analyses to the 
spots harbouring tumour cells revealed that these cells did not recapitulate the low-FGA, high 
CL expression features that prompted our initial assessment of these samples as putative CL, 
based on bulk analyses. 

Overall, these findings illustrate the difficulties hindering molecular-based identification of 
high-plasticity subtypes, as over-representation of stromal cells in a sample can lead to false 
positives. This is likely the case for the 3 tumours we identified as putative CL tumours. It is 
clear that at least a subset of tumours molecularly classified as CL would also be 
histologically defined as spindle-cell MpBCs. The nature of CL tumours that are not spindle-
cell MpBCs remains however insufficiently characterised. It will be important to determine 
whether these samples merely display strong stromal prevalence, or whether they reflect an 
additional specific tumoral phenotype. If indeed such cells displaying CL transcriptomics 
features but without being histologically identified as metaplasia exist, our results here 
highlight that SpaT analyses could both validate their existence and identify more specific 
markers. This would help refine the classification of rare breast cancers, and more clearly 
define non-overlapping bona fide subtypes with specific clinical outcomes. 

Here we could furthermore harness the spatial information to analyse differential expression 
between the different compartments of tumour samples at near single-cell resolution. Using 
internal and external validation procedures, we could identify BMPER, POPDC3 and 
SH3RF3 as robust spindle-cell MpBC markers, whose detection is unlikely to be affected by 
the stromal content of samples. Of note, BMPER has been reported to promote invasive 
phenotypes and angiogenesis in cancer27, and SH3RF3 has been reported to promote stem-like 
properties in breast cancer28. We furthermore identified MSC-AS1, a long non-coding RNA 
that has been linked to both osteogenic differentiation29 and oncogenesis30, as an additional 
potential spindle-cell MpBC markers. We could however not fully validate its relevance due 
to its absence in the external dataset. 

Our SpaT analyses revealed that although breast tumour cells displaying CL-like 
mesenchymal properties could be detected in spindle cell MpBC samples, their classification 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538061doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538061
http://creativecommons.org/licenses/by-nc/4.0/


11 

using existing molecular signatures in bulk samples remains error-prone. However, even 
given our limited sample size, SpaT proved extremely powerful for the identification of genes 
that are highly specific to transdifferentiated tumour cells. This is of particular interest for 
translational research on rare subtypes, as large cohorts are difficult to obtain. Larger SpaT 
studies than ours could furthermore provide yet more specific expression signatures for 
MpBC and CL tumour cells. This can prove useful to help diagnose such complex cases, for 
which integrative histological and molecular approaches are required to overcome their 
respective limitations. 
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Tables 
Table 1: Number of spots used 
in each design for differential 
expression analyses.  
 

 

 

 

 

 

 

 

Metaplastic breast cancer spots were compared to both non-metaplastic breast cancer spots 
and stroma spots separately, first in the discovery cohort, then in the validation cohort. 

Number of spots in cohort 

Type of spots 
Discovery 

(spindle) 

Discovery 

(chondroid) 
Validation 

Metaplastic 

breast cancer 
1977 1984 NA 

Non-metaplastic 

breast cancer 
1492 1492 2719 

Stroma 181 181 875 
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Figure Legends 
Figure 1: Identification of CL-like and unstable samples.  
Expression of CL1 markers ZEB1, ZEB2, POLQ and MSRB3 in the 87 MyPROBE TNBC 
samples with paired WES and RNA-seq data for (A) 3 low-FGA samples considered as CL-
like and (B) 4 high-FGA samples considered as unstable. 
Scores for gene-set enrichment analyses across the 87 samples for (C) the Claudin-low (CL) 
and Basal expression signatures and D) the Claudin-low type 1 (CL1) and Mammary Stem 
Cell (MaSC) expression signatures. 
 
Figure 2: Overlaying pathology annotations and in-silico deconvolution in SpaT data.  
Hematoxylin & eosin staining (left), pathologist annotations (centre) and per-spot 
deconvolution-based cancer epithelial score (right) for samples (A) CL-like1 (B) Unstable3 
and (C) MpBC_spindle1. Unlabelled grey spots were either considered artefacts or could not 
be annotated with confidence by the pathologist. 
 
Figure 3: Spatialised enrichment analyses of existing plasticity-associated expression 
signatures.  
(A) Correlation for gene-set enrichment scores between bulk and SpaT-derived pseudo-bulk 
data for the CL, Basal, CL1 and MaSC expression signatures, using all annotated spots. 
(B) Correlation for gene-set enrichment scores between bulk and SpaT-derived pseudo-bulk 
data for the CL, Basal, CL1 and MaSC expression signatures, focusing on tumour spots only. 
(C) Average per-spot gene-set enrichment scores for the CL, Basal, CL1 and MaSC 
expression signatures, in each individual sample of the CL-like, unstable and MpBC sample 
types. For clarity, the MpBC samples were dichotomised according to the presence or not of a 
spindle-cell transdifferentiated compartment on the captured area (“spindle” or “other”, 
respectively). * highlight groups of samples whose signature enrichment scores were 
significantly different from all other samples pooled together (p<0.05, Wilcoxon rank-sum 
tests). 
 
Figure 4: Unstable SpaT-derived copy-number profiles are less divergent from their 
bulk counterpart.  
(A) Copy-number alterations (CNA) profile calculated for each tumour spot of all cancer 11 
samples. This score represents a per-spot relative measure, with values close to -1 (blue) 
corresponding to the highest loss of genomic material, and values close to 1 to the highest 
gain. For each spot, values were averaged per major cytoband, i.e. the average of the scores 
obtained for each individual gene in the cytoband. 
(B) Pearson correlation between bulk logR and SpaT-derived average CNA scores, averaged 
per major cytoband, in CL-like and unstable samples. Only cytobands harbouring non-neutral 
CNAs in the SpaT data were included in the correlation calculation. 
(C) Normalised divergence between bulk- and SpaT-derived relative Fractions of Genome 
Altered, in CL-like and unstable samples. 
(D) Average pairwise distances between bulk- and SpaT-derived copy number profiles in CL-
like and unstable samples. CN profiles were based on a -1 (loss), 0 (neutral) or 1 (gain) 
attributed to each cytoband. Only the cytobands reported as non-neutral in the SpaT profiles 
were included in the distance calculation. 
(E) Percentage of tumour spots in each captured area, per sample type. 
(F) Cancer epithelial score, as reported by stereoscope-based deconvolution, for all tumour 
spots in each sample. 
 

Figure 5: SpaT-derived expression markers.  
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(A)  UMAP projection of all tumour spots from the 4 MpBC samples analysed by SpaT. (B) 
Expression heatmap for the newly identified spindle cell MpBC markers (top, light green) and 
known EMT and CL markers (bottom, light blue). Expression is reported in log2 number of 
UMIs per spot, ranging from white (no expression) to red (high expression), and was analysed 
in both tumour spots (left, black) and stromal spots (right, grey). (C) Expression of validated 
spindle cell MpBC genes BMPER, EPDR1, JPH2, POPDC3 and SH3RF3, respectively, in an 
external cohort of 1108 samples analysed per bulk RNA-seq, stratified by tumour metaplastic 
status (14 metaplastic tumours in total). (D) Expression of validated spindle cell MpBC genes 
BMPER, POPDC3, SH3RF3, DSEL and DIPK1A, respectively, in an external cohort of 51 
cancer cell lines analysed per RNA-seq, stratified by CL status (9 CL samples in total).  
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