

Assessing Genetic Diversity in Critically Endangered *Chieniodendron hainanense* Populations within Fragmented Habitats in Hainan

3 Li Zhang¹, Hai-Li Zhang², Yukai Chen^{3*}, Mir Muhammad Nizamani^{4*}, Tingtian Wu⁵,
4 Tingting Liu¹, Qin Zhou²

⁵ ¹ Guizhou Normal University Museum, Guizhou Normal University, Guiyang 550001,
⁶ China.

7 ² Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya
8 572025, China

⁹ ³ Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of
¹⁰ Life Sciences, Hainan Normal University, Haikou 571158, China.

11 ⁴Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang,
12 550001, China

13 ⁵Hainan Academy of Forestry, Hainan Academy of Mangrove, Haikou 570228, China.
14

16

17

10

20

21

22

23

24

25

26

27

Corresponding author: Yukai Chen, email: chenyukai@hainnu.edu.cn; Mir Muhammad Nizamani, email: mirmohammadnizamani@outlook.com

29 Li Zhang and Haili Zhang are the co-first authors of the article.

31 **Abstract:** Habitat fragmentation engenders a reduction in the geographic
32 distribution of species, thereby rendering diminutive populations susceptible to
33 extinction due to environmental, demographic, and genetic factors. *Chieniodendron*
34 *hainanense* (henceforth *C. hainanense*) exemplifies a wild plant with extremely small
35 populations (WPESP) and faces endangerment, necessitating urgent national
36 conservation efforts. Elucidating the genetic diversity of *C. hainanense* is crucial for
37 uncovering underlying mechanisms and devising protective strategies. In the present
38 study, 35 specimens from six distinct cohort groups were genotyped utilizing
39 genotyping-by-sequencing (GBS) and single nucleotide polymorphism (SNP)
40 methodologies. The results indicated that *C. hainanense* exhibits limited genetic
41 diversity. Observed heterozygosity within *C. hainanense* populations spanned from
42 10.79% to 14.55%, with an average value of 13.15%. The six *C. hainanense*
43 populations can be categorized into two distinct groups: (1) Diaoluoshan and
44 Baishaling, and (2) Wuzhishan, Huishan, Bawangling, and Jianfengling. The degree of
45 genetic differentiation among *C. hainanense* populations is relatively weak. The
46 observed loss of diversity can be attributed to the effects of natural selection.

47 **KEYWORDS:** *Chieniodendron hainanense*, Endangered plants, GBS, SNP, WPESP
48

49 **1 Introduction**

50 The conservation of biodiversity is crucial for sustaining the stability and
51 resilience of ecosystems. Genetic diversity constitutes a pivotal element in the long-
52 term persistence of species, particularly for those facing extinction risks.
53 *Chieniodendron hainanense* represents a rare and imperiled plant species characterized
54 by extremely small populations (WPESP) and is endemic to the fragmented habitats of
55 Hainan, China. Owing to the adverse consequences of habitat fragmentation, the
56 genetic diversity of *C. hainanense* populations warrants significant attention in
57 conservation initiatives. Comprehending the genetic architecture and diversity of these
58 populations enables the development of suitable management approaches and
59 facilitates species restoration efforts.

60 The genetic structure and diversity of a species play critical roles in their ability to
61 withstand adverse environments and evolve over time. Studying the genetic makeup of
62 wild plants with extremely small populations can provide insights into their
63 evolutionary history, population dynamics, and response to environmental changes,
64 enabling the development of effective conservation strategies (Yang et al., 2018; Zhang
65 et al., 2021). Such research is also essential for advancing DNA sequencing technology
66 and conservation biology (Windig et al., 2010).

67 Habitat fragmentation and overuse of resources have greatly impacted species'
68 genetic diversity, survival, adaptability, and biodiversity (Su et al., 2020). Habitat
69 fragmentation reduces genetic diversity by isolating populations and restricting gene
70 exchange, leading to an increase in genetic drift and inbreeding depression (Bijlsma et
71 al., 2012; Wang et al., 2022). The reduced genetic diversity weakens the ability of
72 species to adapt to environmental changes and increases the risk of species extinction
73 (Luquet et al., 2012). Habitat fragmentation also reduces the number of plant
74 populations, increases spatial isolation, and hinders the maintenance of population
75 genetic diversity by disrupting dispersal, gene exchange, and inter-species interactions
76 (Aguilar et al., 2008).

77 Wild plants with extremely small populations (WPESP) are endangered species
78 under national key protection and require urgent rescue efforts. Their population sizes

79 are smaller than the minimum viable and are usually distributed in a narrow area,
80 making them highly vulnerable to extinction (Zang, 2020; Jain et al., 2013). The
81 Chinese government has launched the National Project Plan for the Rescue and
82 Protection of Wild Plants in Extremely Small Populations (2011-2015) to protect 120
83 WPESP species, most of which are endemic to China and have significant ecological,
84 scientific, cultural, and economic value (Ma et al., 2013; Yang et al., 2020). The loss
85 of biological and genetic values of WPESP due to their extinction can have significant
86 adverse effects on human society and the ecosystem (Zhang et al., 2018). Therefore, it
87 is crucial to prioritize research on WPESP conservation in current biodiversity
88 conservation studies in China.

89 Chieniodendron hainanense is a second-class national key protected wild plant and
90 a unique member of the Annonaceae family Chieniodendron genus in China. The
91 species is an evergreen tree that grows up to 16 m tall with a DBH of about 50 cm, and
92 its distribution is limited to the Guangxi Zhuang Autonomous Region and some areas
93 of Hainan Province. Habitat fragmentation due to human activities such as logging has
94 drastically reduced the distribution area of *C. hainanense*, and the wild resources of its
95 population are scarce. Field surveys have shown that the existing populations of *C.*
96 *hainanense* are mainly distributed in nine primary forest areas dominated by fragmented
97 secondary rainforests in Hainan, with many original populations already disappeared
98 (Jiang et al., 2021). The species has poor self-renewal ability and is highly sensitive to
99 external disturbances, making its wild resources already endangered. Although some
100 research reports have focused on the population structure, dynamic characteristics, leaf
101 morphology, petal nodules development, and functional biochemical activities of *C.*
102 *hainanense*, very few studies have investigated its endangerment mechanisms at the
103 molecular level. To develop targeted and comprehensive conservation strategies, it is
104 necessary to understand the causes of its endangerment, including its genetic diversity,
105 and related components (Sork et al., 2006).

106 In this investigation, our objective is to evaluate the genetic diversity and
107 population structure of *C. hainanense* across its fragmented habitats in Hainan, utilizing
108 genotyping-by-sequencing (GBS) and single nucleotide polymorphism (SNP)
109 techniques. Through the analysis of 35 specimens from six discrete cohort groups, we

110 will scrutinize patterns of genetic variation, differentiation, and inbreeding both within
111 and among the populations. The outcomes of this research will yield valuable insights
112 into the conservation status and management of *C. hainanense*, promoting the
113 formulation of efficacious strategies for the preservation and restoration of this
114 critically endangered species. Additionally, our findings will augment the
115 understanding of the wider implications of habitat fragmentation on genetic diversity
116 in plant populations and inform conservation endeavors for other threatened plant
117 species inhabiting fragmented ecosystems.

118 **2 Materials and methods**

119 **2.1 Study area**

120 Hainan Island ($E108^{\circ} 37' -111^{\circ} 03'$, $N18^{\circ} 10' -20^{\circ} 10'$) is situated in the
121 southern part of China, on the northern edge of the tropics (Figure 1). It has a tropical
122 monsoon climate and a mild climate with long summers and short winters (Zhang et
123 al., 2022). The annual average temperature ranges from $22^{\circ}C$ to $27^{\circ}C$, and the island
124 has abundant water. Hainan Island is an important distribution area for China's
125 monsoon forests and tropical rainforests (Zhang et al., 2022). The main forest
126 vegetation types in Hainan Island are tropical rainforest, evergreen broad-leaved forest,
127 coniferous forest, and plantation forest. Hainan Province has the largest tropical
128 rainforest in China, with rich flora and fauna resources, covering 42.5% of the total
129 tropical area of the country (Li et al., 2022). The critical areas for biodiversity
130 conservation in my country, "National Of the 120 species of wild plants in extremely
131 small populations identified in the Plan for the Rescue and Protection of WPESP (2011-
132 2015). Hainan has 24 key protection targets. Yunnan and Hainan are critical areas for
133 the protection of WPESP (Sun et al., 2022)

134

135 **Figure 1** Distribution of *C. hainanense* on Hainan Island and sample collection
136 information map. (a) Location of Hainan Island in China, (b) Distribution of *C.*
137 *hainanense* on Hainan Island.

138 **2.2. Materials**

139 During 2019-2021, 35 *C. hainanense* samples were continuously collected from

140 Hainan Island. They were divided into six regions according to the geographical origin
141 of the samples, namely, the Bawangling population (samples BWL_1-BWL_8), the
142 Jianfengling population (JFL_1-JFL_5), the Luoshan population (DLS_1-DLS_10),
143 Huishan population (HS_1-HS_6), Wuzhishan population (WZS_1-WZS_3),
144 Baishaling population (BSL_1-BSL_3). The division of regional populations, latitude,
145 longitude, and the number of samples are shown in Table 1.

146

147 **Table 1** The list of information for *C. hainanense* sample collection on Hainan Island

Area code	Location	Longitude	Latitude	Sample	Number of samples
BWL	Bawanglin	109°07'-109°12'E	19°04'-19°07'N	BWL_1-BWL_8	8
JFL	Jianfengling	109°39'-109°48'E	18°41'-18°46'N	JFL_1-JFL_5	5
DLS	Diaoluoshan	109°19'-109°56'E	19°03'-19°04'N	DLS_1-DLS_10	10
HS	Huihan	110°08'-110°09'E	19°03'-19°04'N	HS_1-HS_6	6
WZS	Wuzhishan	108°50'	18°46'N	WZS_1-WZS_3	3
BSL	Baishalin	109°14'E	19°11'N	BSL_1-BSL_3	3

148

149 **2.3 Methods**

150 Firstly, DNA was extracted from 35 *C. hainanense* leaf samples, and the quality and
151 concentration of the extracted DNA were tested before being sent to Hangzhou
152 Lianchuan Biotechnology Co. After sequencing was completed, the SNPs of the *C.*
153 *hainanense* genome were mined. Based on these SNPs, the phylogenetic tree analysis
154 of *C. hainanense* was obtained using the neighbor-joining algorithm of MEGA software.
155 Principal component analysis (PCA) was then performed on *C. hainanense* populations
156 based on the SNPs. Additionally, the population structure of all samples was analyzed
157 using admixture software to obtain the distribution of genetic material in different
158 populations of *C. hainanense*. Finally, genetic distances among all samples were
159 calculated based on the SNPs. The detailed method is described in the paper by Chen
160 et al. (2022).

161

162 **2.3.1 Enzyme digestion protocol design**

163 Our simplified genome digestion scheme selected according to other research methods
164 is as follows, the restriction enzyme combination of HaeIII + Hpy166II was selected.
165 The 'Insert Size ' was selected as '550-600bp' (Xia et al., 2019).

166 **2.3.2 Sequencing Quality Control**

167 The Raw data (the number of reads in the original downstream data) generated by
168 sequencing is pre-processed by quality filtering to obtain CleanData. The specific
169 processing steps are as follows: 1) remove the adapter, 2) remove the reads containing
170 N (N means the information of bases cannot be determined) with a proportion of more
171 than 5%, 3) remove the low-quality reads (the number of bases with quality value
172 Q<=10 accounts for more than 20% of the whole reads), 4) count the raw sequencing
173 volume, effective sequencing volume, Q20 (the proportion of bases with quality values
174 greater than or equal to 20, sequencing error rate less than 0.01), Q30 (the proportion
175 of bases with quality values greater than or equal to 30, sequencing error rate less than
176 0.001), GC means guanine (G) and cytosine (C)content, and perform a comprehensive
177 evaluation.

178 **2.3.3 Comparison of consistency sequences**

179 We used Burrows-Wheeler aligner (BWA) software to match the sequencing data to
180 the consistent sequences obtained from reads clustering. Since the reference used is the
181 consistency sequence obtained from reads clustering, the matching rate will vary
182 somewhat between samples.

183 **2.3.4 Variation detection and SNP statistics**

184 After comparing the data with the concordant sequences, we used Genome Analysis
185 Toolkit (GATK) and SAMtools software for variant detection, retaining the SNPs that
186 were consistently output by both software as reliable loci. We further processed the
187 SNP data by filtering them based on $MAF > 0.05$ and $data\ integrity > 0.8$ and retained
188 the SNPs with polymorphisms among them. The final filtered SNPs were input to the
189 subsequent evolutionary analysis. Based on the obtained SNP data, we analyzed the
190 genetic evolution and structure of the population using the differences in genetic

191 information among the samples of *C. hainanense*, including the phylogenetic
192 relationships among the samples, population structure, principal component analysis
193 (PCA), and relatedness among the samples. The following part of the analysis involves
194 grouping samples, and the 35 samples were divided into six groups according to species
195 for analysis.

196 **3 Results**

197 **3.1 Simplified genome quality inspection of *C. hainanense***

198 A total of 49.16 GB of raw data were obtained through genotyping-by-sequencing
199 (GBS) on 35 *C. hainanense* samples (Table 2). After removing the base information
200 that could not be determined in the adapter sequence, the remaining 48.52 GB of high-
201 quality sequencing data (Clean data), the average of each sample was 1.39 GB. In the
202 simplified genome of *C. hainanense*, the average Q20 was 96.71%; the average Q30
203 was 90.97%. The average ratio (GC content) of guanine (G) and cytosine (C) is 40.60%.
204 The results indicated that the sequencing quality of Q20 and Q30 was high, the GC
205 distribution was reasonable, and the sequencing information was reliable.

206

207 **Table 2 Description of the materials used and the GBS dataset**

Sample	Raw data (bp)	Raw data	Clean data (bp)	Clean data	Effective data (%)	Q20 (%)	Q30 (%)	GC (%)
BWL_1	8889204	1.33G	8790448	1.31G	98.62	96.64	90.84	40.71
BWL_2	9549572	1.43G	9468076	1.42G	98.89	96.88	91.32	40.50
BWL_3	7803624	1.17G	7720330	1.15G	98.66	96.64	90.86	40.62
BWL_4	11810220	1.77G	11691152	1.75G	98.76	96.86	91.31	40.45
BWL_5	9345482	1.40G	9257722	1.39G	98.83	96.85	91.27	40.22
BWL_6	10039148	1.51G	9929304	1.49G	98.69	96.79	91.17	40.46
BWL_7	12080396	1.81G	11953338	1.79G	98.73	96.63	90.79	40.58
BWL_8	7625154	1.14G	7549916	1.13G	98.75	96.85	91.29	40.52
JFL_1	10316262	1.55G	10212558	1.53G	98.77	96.72	91.00	40.47
JFL_2	7804798	1.17G	7718160	1.15G	98.60	96.52	90.61	40.81
JFL_3	11219492	1.68G	11103264	1.66G	98.72	96.81	91.15	40.73
JFL_4	8774572	1.32G	8672816	1.30G	98.63	96.61	90.80	40.41

JFL_5	4550192	0.68G	4506960	0.67G	98.66	96.70	90.99	41.15
DLS_1	6437982	0.97G	6370380	0.95G	98.67	96.53	90.62	40.83
DLS_2	9621628	1.44G	9534270	1.43G	98.85	96.94	91.44	40.24
DLS_3	9154942	1.37G	9071040	1.36G	98.74	96.87	91.34	40.85
DLS_4	8780780	1.32G	8704170	1.30G	98.89	96.58	90.65	40.34
DLS_5	9331598	1.40G	9241430	1.38G	98.80	96.21	89.92	40.52
DLS_6	6398210	0.96G	6355132	0.95G	98.99	97.12	91.81	40.54
DLS_7	10561018	1.58G	10452984	1.56G	98.75	96.53	90.58	40.78
DLS_8	7790468	1.17G	7711004	1.15G	98.73	96.55	90.66	40.87
DLS_9	11100134	1.67G	10983862	1.64G	98.72	96.62	90.81	40.92
DLS_10	15223484	2.28G	15095270	2.26G	98.96	96.78	91.08	40.59
HS_1	10318662	1.55G	10230010	1.53G	98.91	96.67	90.85	40.52
HS_2	9598258	1.44G	9493420	1.42G	98.65	96.54	90.66	41.04
HS_3	8071266	1.21G	7978090	1.19G	98.51	96.40	90.39	40.76

HS_4	6031464	0.90G	5965206	0.89G	98.50	96.67	90.94	41.34
HS_5	11441984	1.72G	11325736	1.69G	98.75	96.81	91.19	40.48
HS_6	8636182	1.30G	8551474	1.28G	98.77	96.99	91.62	40.62
WZS_1	8937320	1.34G	8841150	1.32G	98.64	96.63	90.82	39.99
WZS_2	8653196	1.30G	8572226	1.28G	98.80	96.99	91.58	40.11
WZS_3	14758962	2.21G	14618492	2.19G	98.88	96.90	91.36	40.49
BSL_1	9710790	1.46G	9610614	1.44G	98.75	96.69	90.93	40.47
BSL_2	8528878	1.28G	8442784	1.26G	98.74	96.54	90.60	40.25
BSL_3	8876886	1.33G	8780592	1.31G	98.70	96.64	90.83	40.74

208

209 **3.2 *C. hainanense* SNP site mining**

210 In this study, the heterozygosity of the six populations of *C. hainanense* ranged from
211 10.79% to 14.55%, and the average heterozygosity is 13.15%, which shows the genetic
212 diversity of *C. hainanense* trees is low (Table 3).

213

214 **Table 3 SNP Statistical results**

Population code	SNP number	Heter LociNum	Homo LociNum	Hetloci-ratio
BWL	181002	25265	155737	13.93%
JFL	171854	23417	148437	13.45%
DLS	183868	25185	158683	13.59%
HS	199196	25077	174119	12.56%
WZS	190463	27590	162873	14.55%
BSL	172311	18612	153699	10.79%

215

216 **3.3 Genetic evolution and population analysis**

217 **3.3.1 Phylogenetic evolutionary tree**

218 We divided the 35 *C. hainanense* samples roughly into two general taxa, which can be
219 further subdivided into several subgroups. Group I mainly comprise resources from
220 Diaoluoshan (DLS) and Baishaling (BSL), while Wuzhishan (WZS), Huishan (HS),
221 Bawangling (BWL), and Jianfengling (JFL) are clustered into group II (see Figure 2).
222 The small subgroups clustered in group I were further divided into two smaller
223 subgroups, indicating a relatively significant genetic relationship between each other in
224 this larger group. The aggregation of samples in the second group is relatively chaotic,
225 suggesting that there is less genetic relationship among the individuals in this
226 population. From this perspective, although there is some geographical isolation
227 between *C. hainanense* resources from different areas, there is a direct and necessary
228 relationship between clustering based on genetic distance and their geographical origin.

229

230 **Figure 2** The neighbor-joining cluster of *C. hainanense* in different population

231

232 **3.3.2 Analysis of population genetic structure**

233 When $K=2$, the samples from group 1 appear almost dark blue, and the samples from
234 group 2 appear almost light purple. Upon dividing the samples into two subgroups, the
235 samples from JFL and BWL were clustered into group 1, and the remaining samples
236 were clustered into group 2 (Figure 3). In the cross-validation (CV) error plot (Figure
237 4), CV error reached its minimum value when $K=1$, indicating that the genetic
238 differences among *C. hainanense* samples were relatively small, and their genetic
239 relationships were close. Thus, it can be preliminarily inferred that the six *C.*
240 *hainanense* populations in Hainan Island originated from the same ancestor and had
241 undergone more gene exchanges. In the table of genetic differentiation coefficients
242 among populations (Table 4), the F_{st} values among the six *C. hainanense* populations
243 were between -0.09648 to 0.076729. There was a moderate degree of genetic
244 differentiation ($0.05 < F_{st} < 0.15$) between the two populations of BSL and JFL.
245 Furthermore, the genetic differentiation among other populations was low, indicating
246 that differentiation was not significant ($F_{st} < 0.05$).

247

248 **Figure 3** The population structure analysis on *C. hainanense*

249

250 **Figure 4** K Selection of Population Structure

251

252 **Table 4** Genetic differentiation coefficient (F_{st} : above diagonal)

	BWL	JFL	DLS	HS	WZS	BSL
BWL		-0.06459	-0.01902	-0.00697	-0.04823	0.025937
JFL			-0.03474	0.007746	-0.02721	0.076729
DLS				-0.05677	-0.09648	-0.05853
HS					-0.05853	0.013874
WZS						0.042864
BSL						

260 **3.4 Principal Component Analysis Results**

261 Thirty-five clusters of *C. hainanense* were formed, which resulted in four independent

262 clusters. Among these clusters, 13 samples from Jianfengling (JFL_1-JFL_5) and BWL
263 (BWL_1-BWL_8) populations with similar genetic backgrounds, gathered to form
264 cluster 1 (Figure 5). Six samples of *C. hainanense* from Huishan (HS_1-HS_6) and
265 Wuzhishan (WZS_3) populations, with similar genetic backgrounds, clustered together
266 to form cluster 2. Thirteen samples of *C. hainanense* from Diaoluoshan (DLS_1-
267 DLS_10) and Baishaling (BSL_1-BSL_3) populations, with similar genetic
268 backgrounds, clustered together to form cluster 3. The *C. hainanense* from the
269 Wuzhishan (WZS_1-WZS_2) population was distant from the other three clusters,
270 showing relatively long genetic distances, and so formed a separate cluster 4.

271

272 **Figure 5** PCA analysis diagram of *C. hainanense*

273

274 **3.5 Analysis of the genetic relationship of *C. hainanense***

275 We calculated the relatedness between pairs of all samples based on the SNPs
276 (Figure 6). Kinship analysis reveals the genetic distance between samples, aiding
277 evolutionary analysis. In the kinship heatmap, redder colors indicate closer kinship
278 between individuals on the horizontal and vertical axes. In contrast, a red heatmap
279 among multiple individuals suggests they may belong to a closely related family group.
280 Conversely, bluer colors indicate more distant kinship between individuals. In the
281 correlation heat map, the correlation coefficients of BSL_1 and BSL_2 were more
282 outstanding than 0.4, indicating that the two samples of Bawangling were very closely
283 related to each other. The correlation coefficients of Bawangling (BWL_1 and BWL_4),
284 Hangluo Mountain (DLS_6 and DLS_9; DLS_7 and DLS_9; DLS_8 and DLS_10), and
285 Huishan (HS_1-HS_6) are just between 0.2 and 0.3, indicating that some genetic
286 exchange still exists between clusters in the case of geographical isolation (Figure 6).

287

288 **Figure 6** Relatedness of the Bawangling population (samples BWL_1-BWL_8), the
289 Jianfengling population (JFL_1-JFL_5), the Luoshan population (DLS_1-DLS_10),
290 Huishan population (HS_1-HS_6), Wuzhishan population (WZS_1-WZS_3),
291 Baishaling population (BSL_1-BSL_3).

292

293 **4 Discussion**

294 **4.1 Genetic diversity in *C. hainanense***

295 The genetic diversity of plants is usually influenced by their range, longevity,
296 reproductive systems, seed dispersal mechanisms, and evolutionary history (Zhang et
297 al., 2021; Nybom et al., 2004). SNP variants are the most significant and extensive type
298 of sequence variation in plant genomes and can be easily identified by sequence
299 alignment (Fang et al., 2014). Our study yielded 477588 high-quality SNPs through
300 screening and filtering. *C. hainanense* has a wide ecological population in the natural
301 wild state, but the seeds require high germination conditions in the natural environment,
302 limiting the population. The natural wild *C. hainanense* is distributed as individuals in
303 fragments in the natural tropical forest. So far, no clusters of communities have been
304 found, so the population density of wild *C. hainanense* is very low, resulting in the
305 population's weak stress resistance and reproductive ability. Population development is
306 long, and natural recovery is slow.

307 The genetic diversity of *C. hainanense* was low. The genetic diversity of *C.*
308 *hainanense* was low. The finding that the genetic diversity of *C. hainanense* is low has
309 significant implications for the conservation and management of this species. *C.*
310 *hainanense* is a plant species native to Hainan Island in China. The low genetic diversity,
311 as indicated by the heterozygosity values ranging from 10.79% to 14.55% with an
312 average of 13.15%, suggests that this species may be at risk for several reasons. Low
313 genetic diversity can reduce a species' ability to adapt to environmental changes, such
314 as shifts in climate or the emergence of new diseases or pests. A more genetically
315 diverse population has a greater chance of possessing the necessary genetic traits to
316 survive and adapt to new challenges. With low genetic diversity, there is an increased
317 likelihood of inbreeding, which can lead to inbreeding depression. This is a reduction
318 in fitness and overall health caused by the increased expression of harmful recessive
319 genes that become more prevalent in a closely related population. Low genetic diversity
320 can make a species more vulnerable to extinction due to its reduced adaptability and
321 potential for inbreeding depression. When a species faces a new threat, it may not have
322 the genetic variation necessary to evolve and survive. Genetic diversity is essential for
323 maintaining the long-term stability and resilience of ecosystems. A species with low

324 genetic diversity might have a reduced ability to fulfill its ecological role, which can
325 negatively impact the overall health and functioning of the ecosystem.

326 WPESP in nature can lead to an increase in inbreeding due to genetic drift or
327 bottleneck effects, which can lead to a decrease in population genetic diversity, as well
328 as a decrease in population fitness, leaving populations unable to adapt to changing
329 environments and facing extinction (Theodorou, et al., 2015; Nayak, et al., 2010). Xu
330 (2022) reviewed the research on the genetic variation of 120 extremely small
331 populations of wild plants and found that only 10 of the 44 species studied had low
332 genetic diversity at the species level. They are *Abies ziyuanensis*, *thaya argyrophylla*,
333 *Firmiana danxiaensis*, *Glyptostrobus pensili*, *Nyssa yunnanensis*,
334 *Oreocaris mileensis*, *Pinus squamata*, *Sinojackia huangmeiensis* , *Taxus contorta*,
335 *Vatica guangxiensis* (Xu et al., 2022). At present, the distribution area of *C. hainanense*
336 is very narrow, and the population collapse, dividing narrowly distributed may be less
337 heritable than widely dividing plant species due to inbreeding and genetic drift
338 (Setoguchi, et al., 2011; Zhang, et al., 2021). Low levels of genetic diversity may
339 impair the population's ability to adapt to new soil and photoperiodic environments
340 during migration, thereby inhibiting the population's adaptive potential (Yang et al.,
341 2018). In addition, our field surveys showed that wild resources of *C. hainanense* were
342 affected by human activities, such as logging, which led to the fragmentation of its
343 habitat. Habitat fragmentation not only reduces the number of plant populations but
344 also increases the spatial isolation between populations, directly or indirectly affecting
345 species dispersal, gene exchange between populations, and species interactions, and
346 hinders the maintenance of population genetic diversity (Aguilar et al., 2008). The
347 findings revealed that the distribution of *C. hainanense* populations is fragmented.
348 Many native populations have been lost due to fragmentation. Most of the *C.*
349 *hainanense* populations were found in protected areas. It also shows human
350 intervention in nature has extended into protected areas. There is an urgent need to
351 prevent the degradation of the remaining high-quality forest ecosystems by protecting
352 and restoring intact forests where possible, as well as by paying attention to those forest
353 landscapes embedded in human modifications, such as those near logging fronts and
354 those near population centers.

355 **4.2 Genetic differentiation and genetic structure in *C. hainanense***

356 PCA analysis showed that PC1, PC2, and PC3 contributed 10.04%, 6.85%, and
357 5.07%, respectively. The principal component analysis's clustering results may differ
358 from those of the other group analyses. In PCA, the Wuzhishan population is
359 genetically distant from other populations and forms 1 cluster separately. In addition,
360 the cluster structure of principal component analysis, K-value selection of cluster
361 structure, and phylogenetic tree analysis of all samples resulted in the same clusters.
362 The fact that PCA showed the Wuzhishan population as genetically distant from other
363 populations, forming a separate cluster, suggests that there may be unique genetic
364 features in this population that were captured by the PCA. This could indicate that the
365 Wuzhishan population has experienced different evolutionary pressures, gene flow
366 patterns, or demographic histories compared to the other populations in the study. It is
367 also important to note that the PCA clustering results may differ from other group
368 analyses. This is because PCA is focused on capturing the maximum amount of
369 variance in the data, while other methods, such as phylogenetic tree analysis or
370 population structure analysis using Bayesian clustering approaches (e.g.,
371 STRUCTURE), might focus on different aspects of the data. These other methods may
372 consider more specific evolutionary models or genetic relationships, leading to
373 different interpretations of the population structure. Despite the differences in
374 clustering results between PCA and other group analyses, the study found that the
375 cluster structure of the PCA, K-value selection of the cluster structure, and phylogenetic
376 tree analysis all resulted in the same clusters. This consistency across different
377 analytical methods provides strong evidence for the observed population structure,
378 lending credibility to the findings. The PCA results highlight the genetic distinctiveness
379 of the Wuzhishan population, which may have important implications for the
380 conservation and management of *C. hainanense*. Understanding the factors
381 contributing to the genetic differentiation between populations can inform targeted
382 conservation efforts aimed at preserving the unique genetic diversity found in each
383 population. Further research on the specific genetic differences between the Wuzhishan
384 population and others, as well as the potential environmental or ecological factors

385 driving these differences, would provide valuable insights into the species' evolutionary
386 history and inform future conservation strategies.

387 All supported the division of 6 clusters into two clusters, so it was reasonable to
388 divide 35 *C. hainanense* samples from 6 clusters into two clusters of 1 cluster (Diaoyu
389 Mountain and Baisha Ridge) and 2 clusters (Wuzhishan, Huishan, Bawang Ridge, and
390 Tsimshatsui Ridge). This division into two primary clusters could be a result of various
391 factors, such as historical gene flow, geographical isolation, or habitat fragmentation.
392 The two clusters may have experienced different evolutionary pressures, environmental
393 conditions, or demographic histories that have shaped their genetic makeup. The
394 consistency of this clustering pattern across multiple analytical methods (PCA, K-value
395 selection, and phylogenetic tree analysis) strengthens the evidence for the observed
396 population structure. This consistent finding implies that the division of the six
397 populations into two primary clusters is a robust and meaningful representation of the
398 genetic relationships among these *C. hainanense* samples.

399 Differences in population genetic structure are an important expression of genetic
400 diversity. A species' evolutionary potential and ability to withstand adverse
401 environments depends not only on the level of genetic variation within the species but
402 also on the genetic structure of the species (McCauley et al., 2014; Hamrick et al.,
403 2011; Qu et al., 2004). Our results indicate that the six populations on Hainan Island
404 are divided into two broad taxa, consistent with the principal component analysis results.
405 A population's genetic differentiation index (Fst) is an important parameter to measure
406 the degree of genetic differentiation among populations. It can explain the factors that
407 affect the genetic differentiation of populations (Zhou et al., 2022). The genetic
408 differentiation coefficient among the populations showed that the Fst values among the
409 six *C. hainanense* populations were between -0.09648-0.076729. There is a moderate
410 degree of genetic differentiation ($0.05 < Fst < 0.15$) between the two populations of
411 Baishaling (BSL) and Jianfengling (JFL). Furthermore, the genetic differentiation
412 among other populations is low, and the differentiation is not noticeable ($Fst < 0.05$).
413 Therefore, the genetic differentiation among *C. hainanense* populations is weak. The
414 existing gene flow may originate from the genetic exchange between their common
415 ancestor populations and be brought into other populations by other factors such as

416 human factors, animal carrying, or geological factors. In addition, the topography may
417 also affect gene flow in this species. The terrain of Hainan Island is high in the middle
418 and low in the surrounding areas. It rises and descends to the periphery step by step.
419 The cascade structure is prominent, and the terraces, hills, plains, and mountains form
420 a ring-shaped layered landform (Chen et al., 2022).

421 The samples taken in this study were from Wuzhishan, Diaoluoshan, Jianfengling,
422 and their surrounding forests. Geographically, the Jianfengling and Baishaling
423 populations are far apart (>100km). However, the genetic distance between the two
424 populations is relatively small ($F_{ST} = 0.076729$), possibly due to the number of sampling
425 populations of *C. hainanense* being too small. The population distribution of *C.*
426 *hainanense* is relatively concentrated under the influence of habitat fragmentation, so
427 the evidence is not sufficient. Therefore, the next step is to expand the scope of the
428 sampling population for subsequent research and analysis. Limited sampling: As the
429 study itself points out, the number of sampled populations of *C. hainanense* may be too
430 small to accurately represent the full extent of genetic diversity and differentiation
431 within the species. Additional sampling from other populations, particularly those that
432 may be geographically intermediate between Jianfengling and Baishaling, could help
433 provide a more comprehensive understanding of the genetic relationships among
434 populations. The small genetic distance between the Jianfengling and Baishaling
435 populations may be due to historical gene flow that occurred before the populations
436 became geographically isolated. Over time, barriers such as geographical features,
437 habitat fragmentation, or human activity may have restricted the movement of
438 individuals between populations, but the genetic legacy of past gene flow could still be
439 apparent in the current populations. *C. hainanense* may be capable of long-distance
440 seed dispersal through mechanisms such as wind, water, or animal-mediated dispersal.
441 Even if the frequency of long-distance dispersal events is low, they can still contribute
442 to maintaining gene flow between geographically distant populations and reducing
443 genetic differentiation. Human activities, such as the movement of seeds or plants for
444 horticulture, agriculture, or reforestation efforts, may have inadvertently facilitated
445 gene flow between the Jianfengling and Baishaling populations. This could result in the
446 observed small genetic distance despite the large geographical separation between the

447 populations. Small or isolated populations are more susceptible to founder effects and
448 genetic drift, which can reduce genetic diversity and lead to increased genetic
449 differentiation between populations. However, these processes can sometimes produce
450 counterintuitive patterns, such as closely related populations that are geographically
451 distant, or vice versa. To better understand the factors influencing the genetic structure
452 of *C. hainanense*, further research is needed. This could include increasing the number
453 of sampled populations and individuals, examining historical patterns of gene flow, and
454 investigating potential mechanisms of seed dispersal. Ultimately, a more
455 comprehensive understanding of the species' genetic diversity and population structure
456 can inform conservation strategies and help ensure the long-term survival of *C.*
457 *hainanense*.

458

459 **4.3 Conservation and Management Strategies**

460 The findings of this study hold significant implications for the conservation and
461 management of critically endangered *C. hainanense* populations within fragmented
462 habitats in Hainan. Based on the observed patterns of genetic diversity, population
463 structure, and inbreeding, the following conservation and management strategies are
464 recommended:

465 1. Habitat protection and restoration: Prioritize the preservation of
466 existing habitats and restore degraded areas to improve habitat quality and
467 connectivity. Enhancing connectivity between fragmented habitats will
468 facilitate gene flow among *C. hainanense* populations, promoting genetic
469 diversity and reducing the risk of inbreeding.

470 2. Assisted gene flow and population augmentation: Introduce
471 individuals from genetically diverse populations into small, isolated populations
472 to increase genetic diversity and reduce inbreeding. This approach should be
473 undertaken cautiously, considering potential ecological and genetic risks, such
474 as outbreeding depression and disruption of local adaptations.

475 3. In-situ conservation: Efforts to protect the natural habitats of *C.*
476 *hainanense* should be prioritized. This includes maintaining or establishing
477 protected areas, enforcing regulations to prevent habitat destruction, and

478 promoting sustainable land use practices.

479 4. Ex situ conservation: Establish ex situ conservation programs, such
480 as seed banks and living collections in botanical gardens, to preserve the genetic
481 diversity of *C. hainanense*. These efforts can serve as a genetic reservoir for
482 potential reintroduction or population augmentation initiatives in the future.

483 5. Monitoring and adaptive management: Implement long-term
484 monitoring programs to track changes in genetic diversity, population structure,
485 and habitat conditions. Utilize the collected data to inform adaptive
486 management strategies, ensuring the conservation efforts remain effective and
487 responsive to emerging threats or changing circumstances.

488 6. Community engagement and education: Involve local communities in
489 conservation efforts by raising awareness about the importance of preserving *C.*
490 *hainanense* and its habitat. Promote sustainable land use practices and develop
491 community-based conservation initiatives to empower local stakeholders in the
492 protection and restoration of the species' habitat.

493 7. Legal protection and policy development: Strengthen the legal
494 protection status of *C. hainanense* and its habitat by incorporating the species
495 into national and regional conservation plans. Develop and enforce policies that
496 minimize habitat destruction, such as regulating land-use change, deforestation,
497 and infrastructure development within the species' range.

498 8. Collaborative research and information sharing: Foster collaboration
499 among researchers, conservation practitioners, and policymakers to facilitate
500 the exchange of knowledge, data, and best practices in the conservation of *C.*
501 *hainanense*. Encourage interdisciplinary research that integrates genetics,
502 ecology, and social science to develop comprehensive conservation strategies.

503 9. Climate change adaptation: Consider the potential impacts of climate
504 change on *C. hainanense* populations and their habitats. Develop proactive
505 conservation measures that enhance the species' resilience to climate change,
506 such as assisted migration, habitat restoration in areas with suitable future
507 climatic conditions, and incorporation of climate change projections into spatial
508 conservation planning.

509 By implementing these conservation and management strategies, we can contribute
510 to the preservation and restoration of the critically endangered *C. hainanense* and
511 its fragmented habitats in Hainan, while also informing efforts to protect other
512 endangered plant species facing similar challenges.

513

514

515 **4.4 Implications for conservation**

516 Wild plants with extremely small populations are usually highly inbred. The
517 characteristics of low transmission diversity and high frequency of genetic drift need to
518 be confirmed. Genetic rescue increases genetic diversity, improves fitness, and
519 enhances adaptation to maintain the species' long-term survival (Sun et al., 2021).
520 Instead of increasing the number of surviving individuals by collecting inbred seeds or
521 asexual cuttings of *C. hainanense*, researchers should focus on designing artificial
522 hybridization strategies to reduce inbred offspring. One of the measures to protect the
523 *C. hainanense* population is to set up multiple protection sites to protect natural
524 populations and their surrounding habitats. The second is to strengthen the gene flow
525 between populations, such as constructing artificial ex-situ protection populations that
526 should be obtained from as many different populations as possible. During ex-situ
527 conservation, the exchange of seeds and seedlings between populations should be
528 increased to create conditions for gene exchange and recombination artificially.

529 **4.5 Limitations and Future Research Directions**

530 Despite the valuable insights generated from this study, certain limitations and future
531 research directions should be acknowledged:

532 1. Sample size and representation: The limited number of samples (35) and
533 populations (six distinct cohort groups) included in this study may not entirely
534 capture the full extent of genetic diversity and population structure of *C.*
535 *hainanense*. Future studies should aim to increase sample sizes and cover a
536 broader range of fragmented habitats to provide a more comprehensive
537 understanding.

538 2. Gene flow and landscape connectivity: This study did not investigate the gene
539 flow and landscape connectivity among the fragmented habitats. Understanding

540 how landscape features influence gene flow between populations can provide
541 crucial information for developing conservation corridors and habitat
542 restoration strategies. Future research should incorporate landscape genetic
543 approaches to investigate the impact of habitat fragmentation on gene flow in
544 *C. hainanense* populations.

545 3. Functional genetic diversity: The assessment of genetic diversity in this study
546 primarily focused on neutral genetic markers (SNPs). However, functional
547 genetic diversity, which reflects the genetic variation underlying ecologically
548 important traits, is also crucial for species survival and adaptation. Future
549 studies should explore functional genetic diversity by incorporating candidate
550 genes or whole-genome sequencing approaches.

551 4. Long-term monitoring and adaptive management: The dynamics of genetic
552 diversity and population structure can change over time due to various factors,
553 such as climate change, anthropogenic disturbances, and random genetic drift.
554 Long-term monitoring of *C. hainanense* populations is essential for detecting
555 changes in genetic diversity and adjusting conservation strategies accordingly.

556

557 5. Conclusion

558 This study provides valuable insights into the genetic diversity and population
559 structure of the critically endangered *C. hainanense* within fragmented habitats in
560 Hainan. The findings contribute to our understanding of the impact of habitat
561 fragmentation on genetic diversity in plant populations and inform conservation efforts
562 for other endangered plant species within fragmented ecosystems. The genetic diversity
563 of *C. hainanense* was low, and the heterozygosity of the six populations of *C.*
564 *hainanense* ranged from 10.79% to 14.55%. The average heterozygosity was 13.15%.
565 Six *C. hainanense* population into the population (Diaoluoshan, Baishaling) and
566 population (Wuzhishan, Huishan, Bawangling, Jianfengling) the two population. In
567 addition, the genetic differentiation among *C. hainanense* populations is weak.

568

569 **Author Contributions:** Conceptualization, Y.K.C., M.M.N.; methodology, Y.K.C.,
570 H.L.Z., M.M.N.; software, L.Z., H.L.Z., Y.K.C., M.M.N., T.T.W., T.T.L and Q.Z.;

571 validation, M.M.N.; formal analysis, L.Z., H.L.Z., Y.K.C., M.M.N., T.T.W., T.T.L and
572 Q.Z.; investigation, Y.K.C., and L.Z.; resources, Y.K.C.; data curation, Y.K.C.;
573 writing—original draft preparation, L.Z., H.L.Z., Y.K.C., M.M.N., T.T.W., T.T.L and
574 Q.Z.; writing—review and editing, L.Z., H.L.Z., Y.K.C., M.M.N., T.T.W., T.T.L and
575 Q.Z.; visualization, Y.K.C.; supervision, Y.K.C.; project administration, Y.K.C.;
576 funding acquisition, Y.K.C. All authors have read and agreed to the published version
577 of the manuscript. The data presented in the study are deposited in the Dryad repository.

578

579 **Funding**

580 This study was supported by the Key Science and Technology Program of Hainan
581 Province (No. SQKY-2022-0003), the National Science Foundation of China
582 (31760119), the National Science Foundation of Hainan Province (320MS038).

583

584 **Data Availability Statement** National Science Foundation of Hainan Province

585 The data that support the findings of this study are openly available in the Science Data
586 Bank at <https://www.scidb.cn/s/6ZZNn2>.

587

588 **Conflict of interest**

589 The authors declare that the research was conducted in the absence of any commercial
590 or financial relationships that could be construed as a potential conflict of interest.

591

592 **References**

593 Aguilar, R., Quesada, M., Ashworth, L., Herreras-Diego, Y., and Lobo, J., 2008.
594 Genetic consequences of habitat fragmentation in plant populations: susceptible
595 signals in plant traits and methodological approaches. *Molecular ecology*, 17(24),
596 5177-5188. <https://doi.org/10.1111/j.1365-294X.2008.03971.x>

597 Bijlsma, R., and Loeschke, V., 2012. Genetic erosion impedes adaptive responses to
598 stressful environments. *Evolutionary Applications*, 5(2), 117-
599 129. <https://doi.org/10.1111/j.1752-4571.2011.00214.x>

600 Chen, Y., Zhang, H. L., Zhang, L., Nizamani, M. M., Zhou, T.X., Zhang, H.Y., Liu, T.,

601 2022. Genetic diversity assessment of *Hopea hainanensis* in Hainan Island.
602 *Frontiers in Plant Science*, 4992. <https://doi.org/10.3389/fpls.2022.1075102>

603 Hamrick, J. L., and Trapnell, D. W., 2011. Using population genetic analyses to
604 understand seed dispersal patterns. *Acta Oecologica*, 37(6), 641-649.
605 <https://doi.org/10.1016/j.actao.2011.05.008>

606 Jiang, X. X., Chen, Y. K., Wu, S. S., Chen, Q., 2021. Population structure and dynamics
607 of the endangered plant *C. hainanense* in Hainan. *Journal of Nanjing Forestry*
608 University (Natural Sciences Edition), 45(1) : 116 —
609 122. <https://doi.org/10.12302/j.issn.1000-2006.201907004>

610 Jain, N., and Nadgauda, R. S., 2013. *Commiphora wightii* (Arnott) Bhandari—a
611 natural source of guggulsterone: facing a high risk of extinction in its natural
612 habitat. <https://doi.org/10.4236/ajps.2013.46A009>

613 Li, T., Hong, X., Liu, S., Wu, X., Fu, S., Liang, Y., ... and Ju, X., 2022. Cropland
614 degradation and nutrient overload on Hainan Island: A review and
615 synthesis. *Environmental Pollution*, 120100.
616 <https://doi.org/10.1016/j.envpol.2022.120100>.

617 Luquet, E., Garner, T. W., Léna, J. P., Bruel, C., Joly, P., Lengagne, T., and Plénet, S.,
618 2012. Genetic erosion in wild populations makes resistance to a pathogen more
619 costly. *Evolution*, 66(6), 1942-1952.
620 <https://doi.org/10.1111/j.1558-5646.2011.01570.x>

621 Ma, Y., Chen, G., Edward Grumbine, R., Dao, Z., Sun, W., and Guo, H., 2013.
622 Conserving plant species with extremely small populations (PSESP) in China.
623 *Biodivers Conserv* 22, 803–809. <https://doi.org/10.1007/s10531-013-0434-3>

624 McCauley, D. E., 2014. What is the influence of the seed bank on the persistence and
625 genetic structure of plant populations that experience a high level of disturbance?
626 *New Phytologist*, 202(3), 734-735. <https://doi.org/10.1111/nph.12732>

627 Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating
628 intraspecific genetic diversity in plants. *Molecular ecology*, 13(5), 1143-1155.
629 <https://doi.org/10.1111/j.1365-294X.2004.02141.x>

630 Nayak K G, Davidar P., 2010. Pollinator limitation and the effect of breeding systems
631 on plant reproduction in forest fragments. *Acta Oecologica*, 36(2):191-196.

632 https://doi.org/10.1016/j.actao.2009.12.004

633 Qu, R. Z., Hou, L., Lv, H., L, H. Y., 2004. The gene flow of population genetic
634 structure. HEREDITAS, 26(3): 0-382. <https://doi.org/10.17521/cjpe.2021.0354>

635 Sun, W. B., Xu, Y. F., 2022) Conservation actions of plant species with extremely small
636 populations in China. Forest and Mankind, (5), 22–45., in Chinese).
637 <https://doi.org/10.17520/biods.2022505>

638 Sun, W. B., Liu, D. T., Zhang, P., 2021) Conservation research of plant species with
639 populations (PSESP): Progress and future direction. Guihaia, 41, 1605–1617.
640 <https://doi.org/10.11931/guihaia.gxzw202105050>

641 Sun, T. X., Chen, X. F., Yang, B. Y., Wu, H., Li, B. T. (2002. Studies on epidermal
642 micromorphology of eight genera in Annonaceae from China by SEM. Journal
643 of Electron Microscopy,21 (2) : 146 — 152. <https://doi.org/10.1007/s10000-002-0122-1>.
644 /j. issn. 1000—6281. 2002. 02. 012.

645 Shao, Y. Y., and Xu, F. X., 2015. Development and function of the strumae on the
646 adaxial sides of the inner petals of Oncodostigma hainanense. *Plant Science
647 Journal*, 33, 595-601. <https://doi.org/10.11913/PSJ.2095-0837.2015.50595>

648 Sork, V. L., Smouse, P. E., 2006) Genetic analysis of landscape connectivity in tree
649 populations. *Landscape Ecol* 21, 821–836 . <https://doi.org/10.1007/s10980-005-5415-9>

650 Setoguchi, H., Mitsui, Y., Ikeda, H., Nomura, N., and Tamura, A., 2011. Genetic
651 structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in
652 relict populations of Japan. *Conservation Genetics*, 12(2), 491-501.
653 <https://doi.org/10.1007/s10592-010-0156-y>

654 Su, J., Yan, Y., Li, C., Li, D., and Du, F. K., 2020. Informing conservation strategies
655 with genetic diversity in Wild Plant with Extremely Small Populations: A review
656 on gymnosperms. *Biodiversity Science*, 28(3), 376.
657 <https://doi.org/10.17520/biods.2019116>

658 Theodorou, K., Couvet, D., 2015. The efficiency of close inbreeding to reduce genetic
659 adaptation to captivity. *Heredity* 114, 38–47. <https://doi.org/10.1038/hdy.2014.63>

660 Windig, J. J., and Engelsma, K. A., 2010. Perspectives of genomics for genetic
661 conservation of livestock. *Conservation Genetics*, 11(2), 635-641.

663 <https://doi.org/10.1007/s10592-009-0007-x>

664 Wang, T., 2011. *Effects of traditional Chinese medicinal herbal extracts on HIV-1*
665 *replication* (Doctoral dissertation).

666 Wang, Y. Y., Hao, Z. Q., 2022. Angiosperm sexual systems-Concepts, evolution,
667 ecology, and future directions. *Biodiversity Science*, 30(7), 22065.
668 <https://doi.org/10.17520/biods.2022065>

669 Xia, W., Luo, T., Zhang, W., Mason, A. S., Huang, D., Huang, X., Xiao, Y., 2019.
670 Development of high-density SNP markers and their application in evaluating
671 genetic diversity and population structure in *Elaeis guineensis*. *Frontiers in plant*
672 *science*, 10, 130. <https://doi.org/10.3389/fpls.2019.00130>

673 Xu, Y., Zang, R. G., 2022. Theoretical and practical research on conservation of Wild
674 Plants with Extremely Small Populations in China. *Biodiversity Science*, 30,
675 22505. <http://dx.doi.org/10.7912/C2/1704>

676 Yang, J., Cai, L., Liu, D., Chen, G., Gratzfeld, J., and Sun, W., 2020. China's
677 conservation program on plant species with extremely small populations (PSESP):
678 progress and perspectives. *Biological Conservation*, 244, 108535.
679 <https://doi.org/10.1016/j.biocon.2020.108535>

680 Yang, Y., Ma, T., Wang, Z., Lu, Z., Li, Y., Fu, C., and Liu, J., 2018. Genomic effects
681 of population collapse in a critically endangered ironwood tree *Ostrya*
682 *rehderiana*. *Nature communications*, 9(1), 1-9. <https://doi.org/10.1038/s41467-018-07913-4>

684 Zhang, Z., Guo, Y., He, J. S., & and Tang, Z., 2018. Conservation status of wild plant
685 species with extremely small populations in China. *Biodiversity Science*, 26(6),
686 572. <https://doi.org/10.17520/biods.2017271>

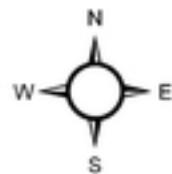
687 Zang, R., 2020. Research progress in wild plant with extremely small populations in
688 China. *Biodiversity Science*, 28(3), 263.
689 <https://doi.org/10.17520/biods.2020119>

690 Zhang, H. L., Cubino, J. P., Nizamani, M. M., Harris, A. J., Cheng, X. L., Da, L., and
691 Wang, H. F., 2022. Wealth and land use drive the distribution of urban green
692 space in the tropical coastal city of Haikou, China. *Urban Forestry and Urban*
693 *Greening*, 127554. <https://doi.org/10.1016/j.ufug.2022.127554>

694 Zhang, H. L., Nizamani, M. M., Cubino, J. P., Guo, L. Y., Zhou, J. J., and Wang, H.
695 F., 2022. Spatiotemporal Variation of Urban Plant Diversity and above Ground
696 Biomass in Haikou, China. *Biology*, 11(12), 1824.
697 <https://doi.org/10.3390/biology11121824>.

698 Zhang, L., Zhang, H. L., Nizamani, M. M., Zhou, Q., Su, X., and Chen, Y., 2022.
699 Analyses of community stability and inter-specific associations between a plant
700 species with extremely small populations (*Hopea hainanensis*) and its associated
701 species. *Frontiers in Ecology and Evolution*, 872.
702 <https://doi.org/10.3389/fevo.2022.922829>.

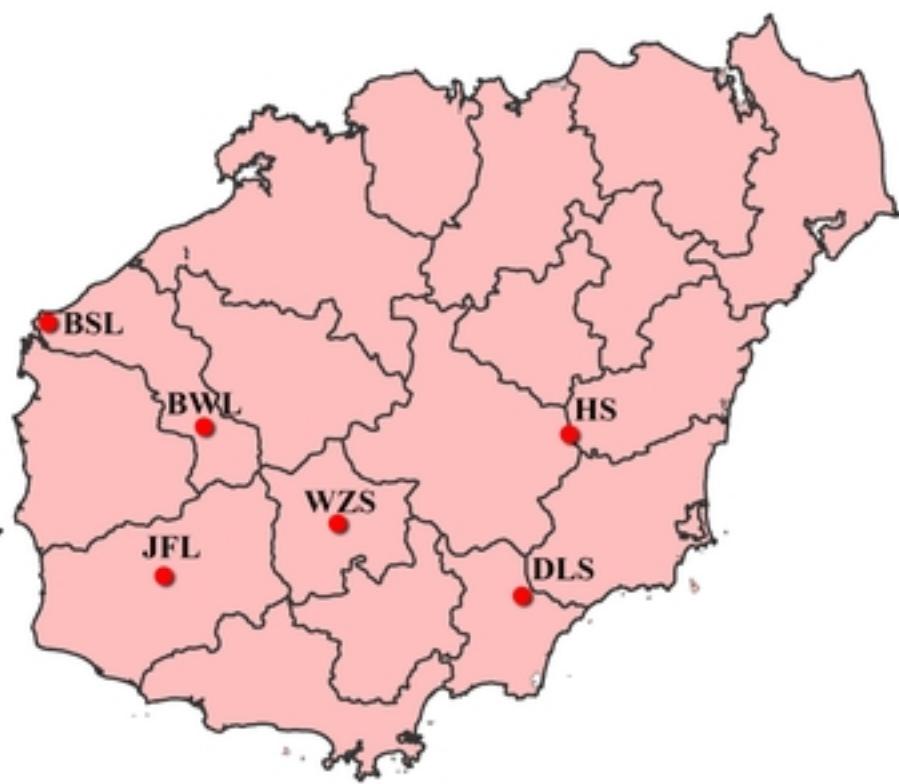
703 Zhang, X. J., Liu, X. F., Liu, D. T., Cao, Y. R., Li, Z. H., Ma, Y. P., and Ma, H., 2021.
704 Genetic diversity and structure of *Rhododendron meddianum*, a plant species with
705 extremely small populations. *Plant diversity*, 43(6), 472-479.
706 <https://doi.org/10.1016/j.pld.2021.05.005>


707 Zhou, X.N., Xu, J.Q., Lei, Y.Q., and Wang, H.Q., 2022. Development of SNP Markers
708 in *Medicago archiducis-nicolai* Based on GBS-seq . *Biotechnology Bulletin*, 38(4),
709 303. <https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-0906>

710

711

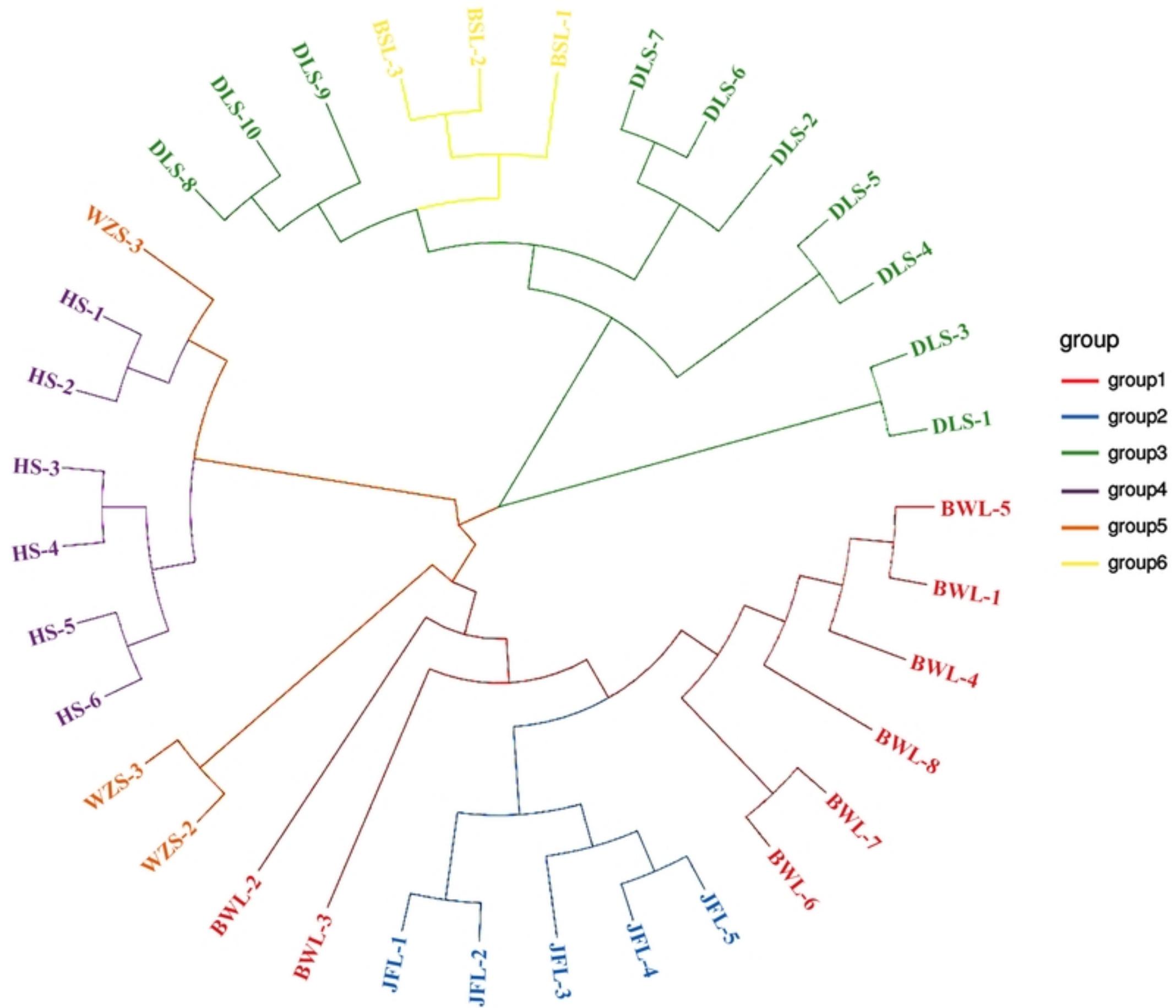
712


713

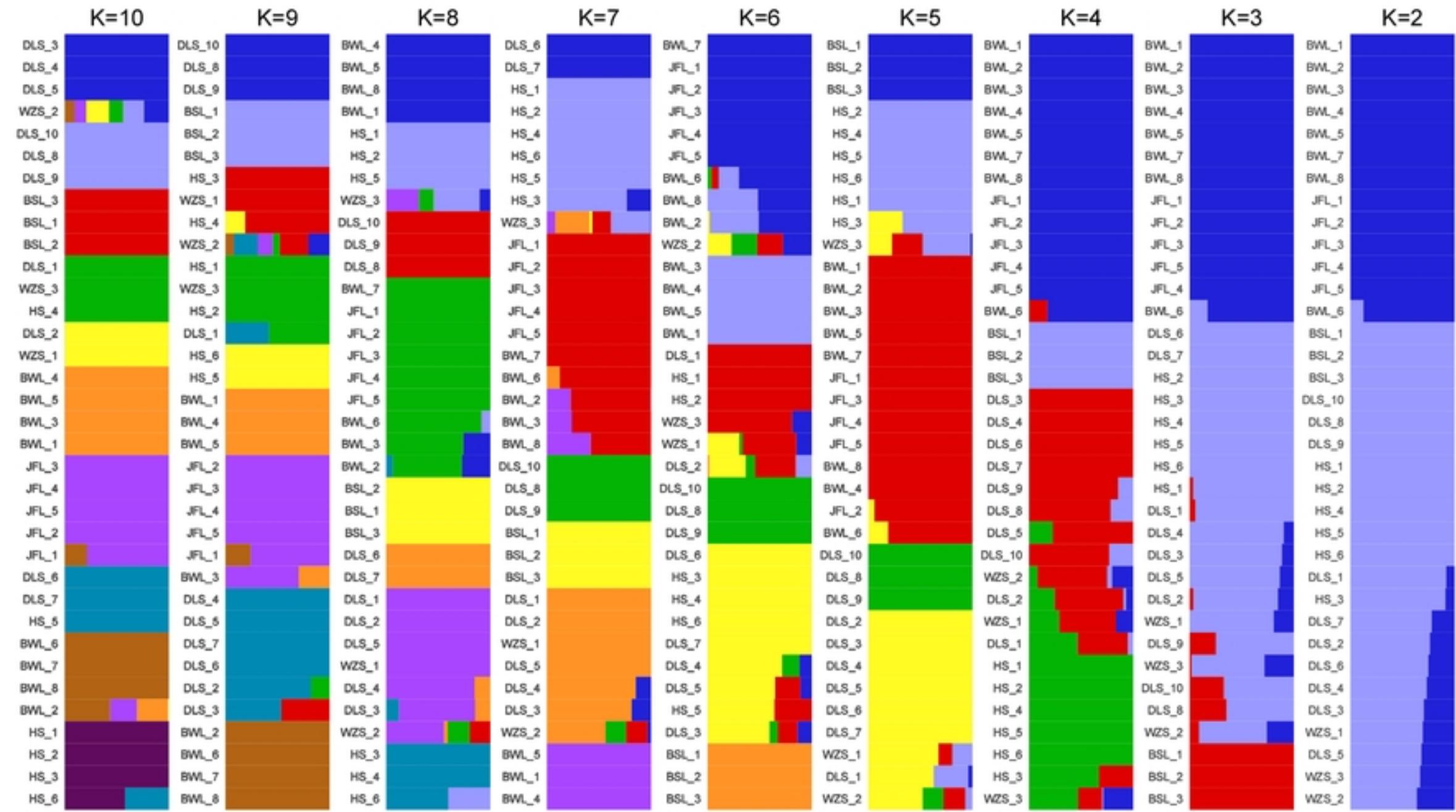
(a)
China

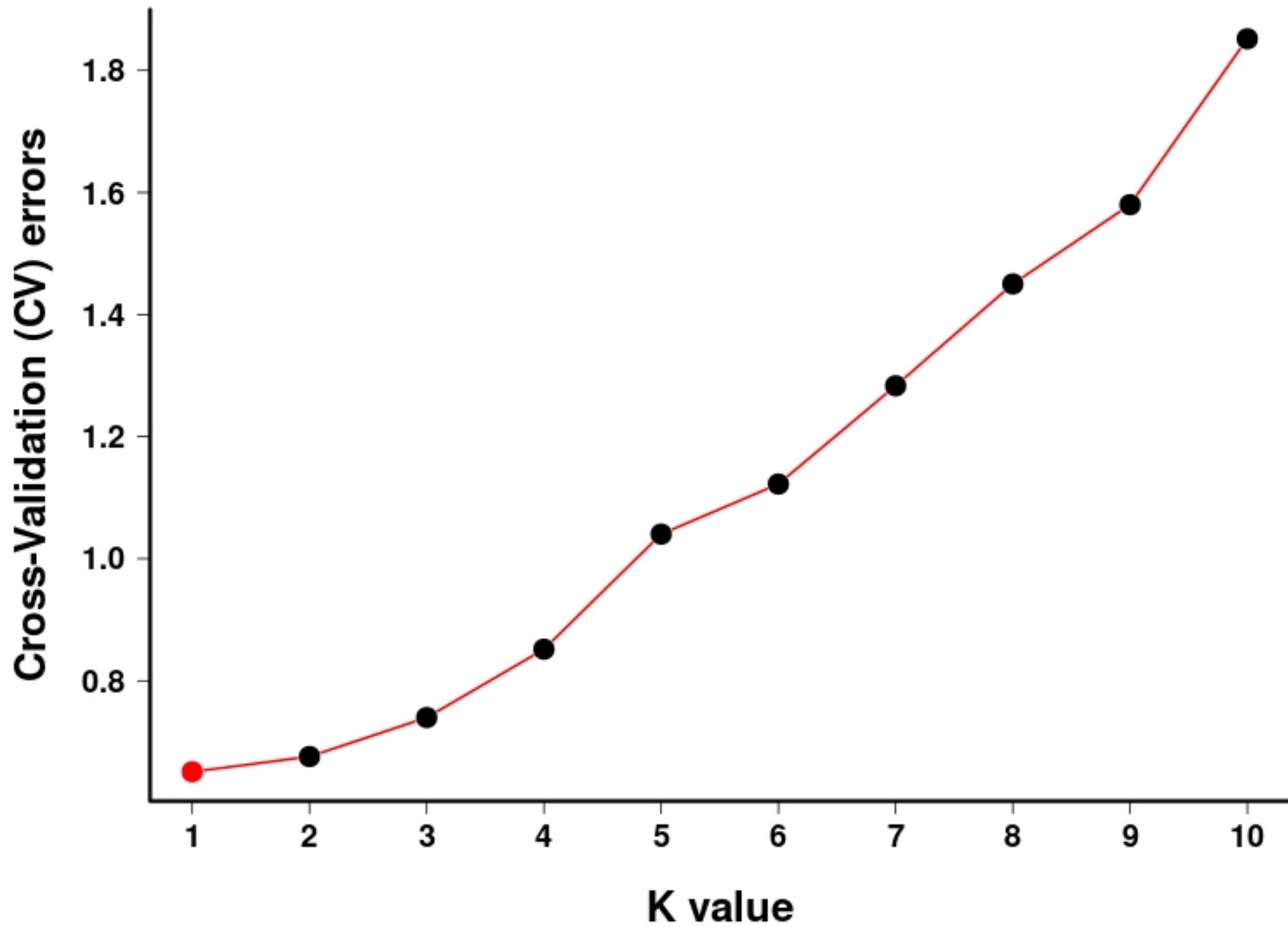
(b)
Hainan

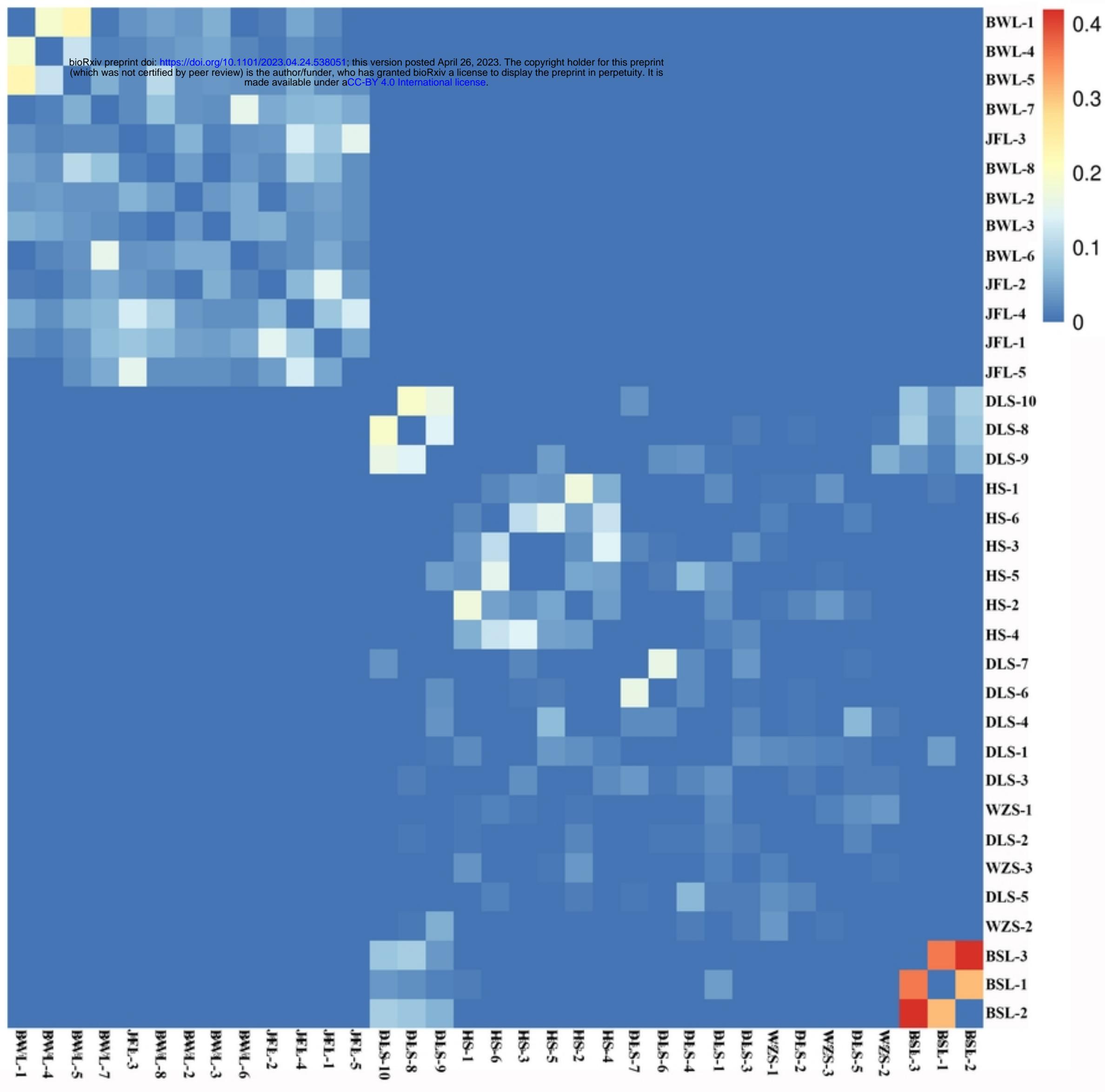
Legend

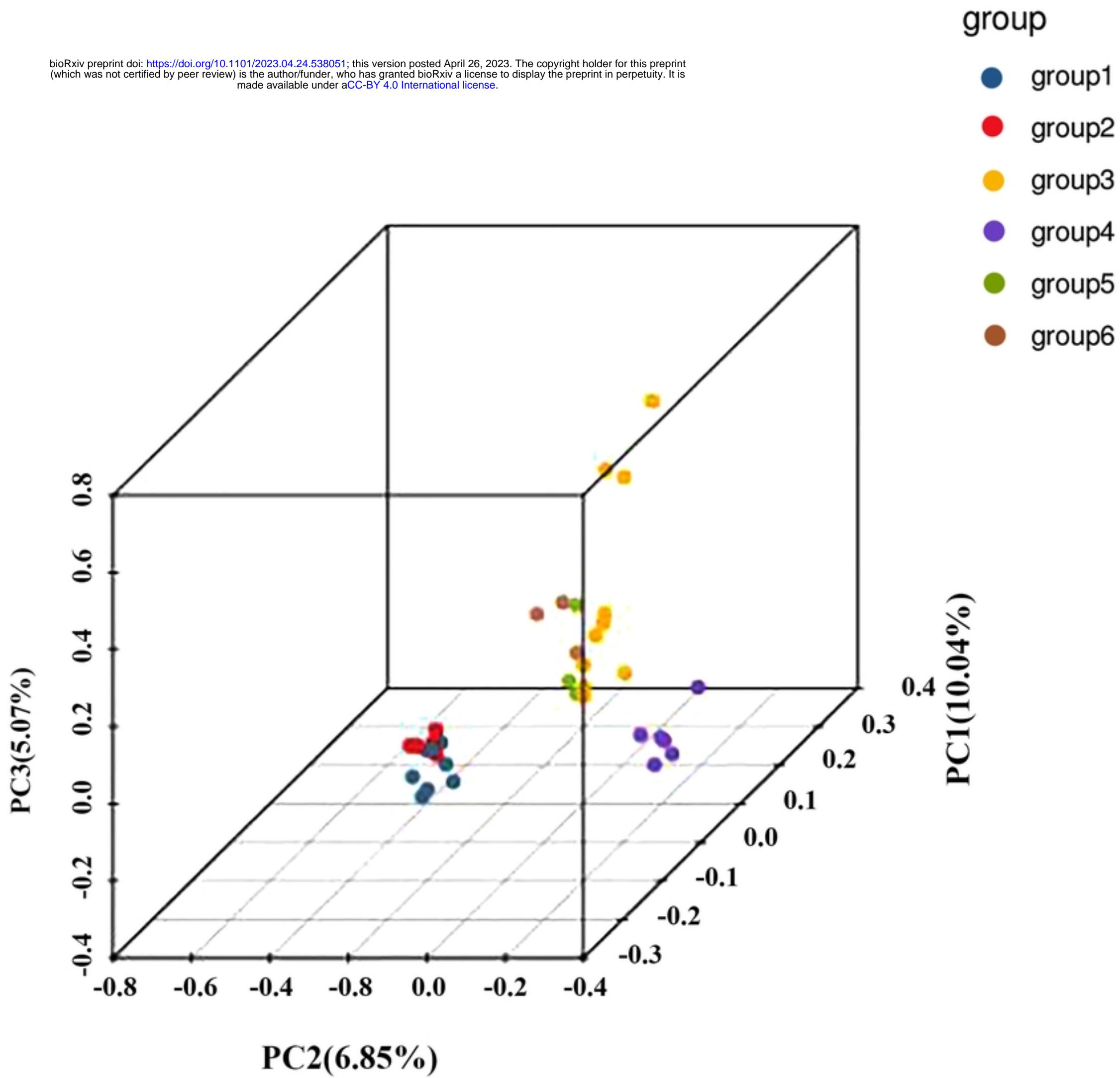

— Provincial borders

— China boundary


■ Cities of Hainan


● Sample location





Population Structure

