

1 **Title:** Monoterpene glucosides accumulated in *Eustoma grandiflorum* roots promote
2 hyphal branching in arbuscular mycorrhizal fungi

3

4 Takaya Tominaga¹, Kotomi Ueno², Hikaru Saito², Mayumi Egusa², Katsushi
5 Yamaguchi³, Shuji Shigenobu³, Hironori Kaminaka^{2,4*}

6

7 ¹ Graduate School of Science and Technology, Nara Institute of Science and Technology,
8 Ikoma, Nara 630-0192, Japan.

9 ² Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.

10 ³ Functional Genomics Facility, NIBB Core Research Facilities, National Institute for
11 Basic Biology, Okazaki, Aichi 444-8585, Japan.

12 ⁴ Unused Bioresource Utilization Center, Tottori University, Tottori, 680-8550, Japan.

13

14 * Corresponding author

15

16 **Corresponding author:**

17 Hironori Kaminaka

18 Tel: +81-857-31-5378

19 E-mail: kaminaka@tottori-u.ac.jp

20

21 **Running head:** Secoiridoid glucosides in *Eustoma grandiflorum* promotes hyphal
22 branching activity

23

24 **Abstract**

25 Host plant-derived strigolactones trigger hyphal branching in arbuscular mycorrhizal
26 (AM) fungi, initiating a symbiotic interaction between land plants and AM fungi.
27 However, our previous studies revealed that gibberellin-treated *Eustoma grandiflorum*
28 (Gentianaceae) activates rhizospheric hyphal branching in AM fungi using unidentified
29 molecules other than strigolactones. In this study, we analyzed independent
30 transcriptomic data of *E. grandiflorum* and found that the gentiopicroside (GPS) and
31 swertiamarin (SWM), which are characteristic monoterpenoid glucosides in Gentianaceae,
32 were highly biosynthesized in gibberellin-treated *E. grandiflorum* roots. Moreover,
33 these metabolites considerably promoted hyphal branching in the Glomeraceae AM
34 fungi *Rhizophagus irregularis* and *R. clarus*. GPS treatment also enhanced *R.*
35 *irregularis* colonization of the monocotyledonous crop *Allium schoenoprasum*.
36 Interestingly, these metabolites did not provoke the germination of the root parasitic
37 plant *Orobanche minor*. Altogether, our study unveiled the crucial role of GPS and
38 SWM in activating the symbiotic relationship between AM fungi and *E. grandiflorum*.

39

40 **Key words:** arbuscular mycorrhizal symbiosis; *Eustoma grandiflorum*; gibberellin;
41 hyphal branching; secoiridoid glucosides

42

43 **Introduction**

44 Various microbes reside in plants' roots and influence their adaptation to environments,
45 being either beneficial or detrimental to plants' lifecycles (Bakker et al., 2018). For
46 survival under such conditions, plants utilize secondary metabolites to control microbial
47 communities and function in the narrow space around the roots, termed the rhizosphere.
48 Recent studies revealed that several defense molecules, including saponins, are secreted
49 into the rhizosphere of crop species, increasing the population of beneficial microbes
50 (Fujimatsu et al., 2020; Nakayasu et al., 2021; Zhong et al., 2022). Regarding symbiotic
51 microbes, arbuscular mycorrhizal (AM) fungi of the Glomeromycotina sub-phylum are
52 the most general fungal partners of terrestrial plants (Brundrett and Tedersoo, 2018).
53 AM fungi transfer inorganic phosphate from beyond the reach of root systems to host
54 plants, thereby promoting plant growth (Luginbuehl and Oldroyd, 2017). Host plants
55 are thus programmed to secrete strigolactones (SLs), which stimulate hyphal branching
56 in AM fungi, in response to phosphate deficiency (Akiyama et al., 2005; Yoneyama et
57 al., 2007). Furthermore, SL-deficient mutants fail to initiate and maintain AM symbiosis
58 (Kretzschmar et al., 2012; Kobae et al., 2018; Kodama et al., 2022). Therefore, SLs
59 have been considered representative signal molecules for establishing AM symbiosis in
60 land plants.

61 Recently, it was clarified that plants properly regulate AM symbiosis via
62 several phytohormones (Gutjahr, 2014). In model plants, gibberellin (GA) suppresses
63 AM fungal colonization and the formation of highly branched hyphal structures for
64 effective nutrient exchange, namely arbuscules, in a concentration-dependent manner
65 (Takeda et al., 2015; Nouri et al., 2021). The repressor DELLA activating AM
66 symbiosis, the degradation of which is triggered by GA, could be responsible for the

67 inhibitory effects of GA (Davière and Achard, 2013; Foo et al., 2013; Pimprikar et al.,
68 However, our previous studies found that GA-treated *Eustoma grandiflorum*
69 (Gentianaceae) roots promote the colonization of the model AM fungus *Rhizophagus*
70 *irregularis* by increasing extraradical hyphal branching (Tominaga et al., 2020;
71 Tominaga et al., 2021). Surprisingly, GA treatment significantly suppresses SL
72 production in *E. grandiflorum* roots, as found in other model plants (Ito et al., 2017;
73 Tominaga et al., 2021). Because *R. irregularis* exhibits no response to exogenous GA
74 (Takeda et al., 2015; Tominaga et al., 2020), our findings indicate that other metabolites
75 accumulated by or exuded from GA-treated *E. grandiflorum* roots activate *R. irregularis*
76 branching.

77 In this study, we reanalyzed two independent transcriptomic datasets of *E.*
78 *grandiflorum* roots (Tominaga et al., 2020; Tominaga et al., 2021) to identify novel
79 branching-inducing factors other than SLs. The analysis revealed that GA-treated *E.*
80 *grandiflorum* roots activated the production of gentiopicroside (GPS) and swertiamarin
81 (SWM), characteristic monoterpenes called secoiridoid glucosides that exert
82 antimicrobial and anti-inflammatory properties in Gentianaceae plants (Yu et al., 2004;
83 Šiler et al., 2010). We next quantified the hyphal branching induced by standard GPS
84 and SWM using three species of AM fungi. As a result, the Glomeraceae fungi *R.*
85 *irregularis* and *R. clarus* displayed increased hyphal branching upon GPS and SWM
86 exposure, whereas the Gigasporaceae fungus *Gigaspora margarita* did not respond to
87 these agents. Interestingly, the colonization of *G. margarita* in *E. grandiflorum* roots
88 was not promoted by GA treatment. We also found that exogenous GPS treatment
89 significantly enhanced *R. irregularis* colonization in another crop species, namely
90 *Allium schoenoprasum* (chive), without stimulating seed germination in a root parasitic

91 plant. Therefore, our findings offer new insights into the role of well-known defense
92 molecules produced by Gentianaceae plants when activating AM fungi.

93

94 **Results**

95 **Colonization by two *Rhizophagus* fungi is promoted in GA-treated *E. grandiflorum*
96 roots**

97 Our recent works illustrated that the hyphal branching of *R. irregularis* is drastically
98 promoted in GA-treated *E. grandiflorum* rhizospheres (Tominaga et al., 2020; Tominaga
99 et al., 2021). Previous studies used *Gigaspora* fungi for branching assays because of
100 their simpler hyphal structure compared to that of *R. irregularis* (Akiyama et al., 2005;
101 Besserer et al., 2006; Tsuzuki et al., 2016). Hence, we first explored a suitable AM
102 fungus for the assay to identify *E. grandiflorum*-derived branching factors. The
103 extraradical hyphal branching, colonization, and hyphopodia formation of another
104 *Rhizophagus* species, namely *R. clarus* was enhanced in GA-treated *E. grandiflorum*
105 roots (Supplemental Fig. S1A). However, *G. margarita* displayed no positive responses
106 to GA-treated *E. grandiflorum* roots (Supplemental Fig. S1B). The branch formation
107 and colonization of both AM fungi were considerably suppressed in GA-treated *Lotus*
108 *japonicus* roots (Supplemental Fig. S1, C and D). Because GA inhibited SL biosynthesis
109 in *E. grandiflorum* and *L. japonicus* (Ito et al., 2017; Tominaga et al., 2021), these data
110 support the existence of unknown molecules that stimulate *Rhizophagus* fungi in *E.*
111 *grandiflorum*. In addition, it was predicted that *G. margarita* would not respond to *E.*
112 *grandiflorum*-derived branching factors. Thereafter, we mainly used *R. irregularis* to
113 quantify the hyphal branching-inducing activity of metabolites in this study.

114

115 **Secoiridoid glucoside biosynthesis is enhanced in GA-treated *E. grandiflorum***
116 **mycorrhizae**

117 We reanalyzed two past independent RNA-seq datasets because GA-treated *E.*
118 *grandiflorum* mycorrhizal roots accumulate secondary metabolites that stimulate hyphal
119 branching in *Rhizophagus* fungi. This analysis indicated that the expression of 1513
120 genes was significantly increased in GA-treated *E. grandiflorum* mycorrhizae compared
121 to the findings in the respective controls (Supplemental Table S1, Log₂ Fold Change
122 [Log₂FC] > 1, false discovery rate [FDR] < 0.01). Gene Ontology (GO) enrichment
123 analysis revealed increases in UDP-glucosyltransferase activity and the production of
124 secologanin, a precursor of secoiridoid glucosides including GPS and SWM (Fig. 1A
125 and Supplemental Table S2) (De Luca et al., 2014; Cao et al., 2016; Rai et al., 2016;
126 Božunović et al., 2019). In addition, the GO terms included secologanin biosynthetic
127 genes annotated as *7-deoxyloganetic acid glucosyltransferase* (7DLGT) and
128 *secologanin synthase* (SLS) (De Luca et al., 2014) (Supplemental Table S3). Based on
129 these data, we further analyzed the expression patterns of homologous secoiridoid
130 biosynthetic genes in *E. grandiflorum*. A greater than 2-fold increase in expression
131 (FDR < 0.05) was found for one *geranyl diphosphate synthase*, five *geraniol*
132 *8-hydroxylase*, one *8-hydroxygeraniol oxidoreductase*, five 7DLGT, two *7-deoxyloganic*
133 *acid hydroxylase*, and four SLS genes in *E. grandiflorum* mycorrhizae (Fig. 1B and
134 Supplemental Table S3). Therefore, these results indicate that secoiridoid production is
135 enhanced in GA-treated *E. grandiflorum* mycorrhizae.

136 In Gentianaceae plants, secologanin is generally converted into GPS and SWM
137 (Cao et al., 2016; Rai et al., 2016). However, these secoiridoid glucosides have not yet
138 been detected in *E. grandiflorum*. Hence, we first investigated the accumulation of GPS

139 and SWM in axenically grown *E. grandiflorum* roots. HPLC using a reverse-phase
140 column detected two peaks from the methanol extracts of *E. grandiflorum* roots that
141 matched the retention times of standard GPS and SWM (Fig. 1C). Moreover, peaks 1
142 and 2 had unique UV spectra that matched the SWM and GPS standard spectra (99.9%
143 and 100%, respectively; Supplemental Fig. S2). These results illustrate that *E.*
144 *grandiflorum* is capable of GPS and SWM biosynthesis.

145

146 **GA treatment increased GPS and SWM accumulation in *E. grandiflorum* roots**

147 Because the ability of *E. grandiflorum* to biosynthesize GPS and SWM was confirmed,
148 we subsequently quantified the effects of GA treatment on the levels of these
149 compounds in *E. grandiflorum* roots. HPLC revealed that GPS content was significantly
150 increased in *E. grandiflorum* mycorrhizae 4 weeks after GA treatment compared to that
151 in mock-treated mycorrhizae (Fig. 2A, $P = 0.0071$). GA treatment also increased SWM
152 accumulation in 4-week-old *E. grandiflorum* mycorrhizae compared to that in
153 mock-treated roots (Fig. 2B, $P = 0.052$). These data suggest that exogenous GA
154 promotes GPS and SWM biosynthesis in *E. grandiflorum* roots, consistent with the
155 results of transcriptome analyses (Fig. 1 and Supplemental Table S2).

156 The presence of highly branched *R. irregularis* hyphae in GA-treated *E.*
157 *grandiflorum* rhizospheres (Tominaga et al., 2020) prompted us to hypothesize that *E.*
158 *grandiflorum* roots secrete some signal compounds into soil. Thus, we quantified the
159 levels of GPS and SWM in the root exudates; however, the levels of GPS and SWM in
160 the root exudates were below the detection limits (GPS, 4.4 μ M; SWM, 0.45 μ M).
161 Altogether, the branching factors promote hyphal branching in *R. irregularis* and *R.*
162 *clarus* at lower concentrations than the detection limits.

163

164 **GPS and SWM increase hyphal branching in two *Rhizophagus* species**

165 To investigate whether GPS and SWM can promote hyphal branching in *R. irregularis*
166 and *R. clarus*, we applied an *in vitro* assay system as previously described (Kameoka et
167 al., 2019). This assay enabled us to quantify the number of hyphal branches emerging
168 from straight, elongating, thick hyphae (Fig. 3A). The number of *R. irregularis* branches
169 was significantly increased by the synthetic SL *rac*-GR24 (GR24), in agreement with
170 other studies (Cohen et al., 2013; Tsuzuki et al., 2016). Exogenous GPS and SWM
171 treatment at concentrations of 1–100 nM promoted hyphal branching in *R. irregularis*
172 (Fig. 3, B and C) despite their antifungal effects on the pathogenic fungus *Fusarium*
173 *oxysporum* f. sp. *lycopersici* (Supplemental Fig. S3). The activities of GPS and SWM
174 were comparable to that of GR24 *in vitro*. Moreover, these metabolites slightly increased
175 the number of hyphal branches in *R. irregularis* at the femtomolar level (Supplemental
176 Fig. S4, $P > 0.085$). Conversely, exogenous GA did not affect hyphal branching in the
177 AM fungus at any examined concentration (Supplemental Fig. S5, $P > 0.44$) (Takeda et
178 al., 2015; Tominaga et al., 2020).

179 To determine whether *R. irregularis* specifically responded to GPS or SWM, we
180 further quantified the branching induced by other (seco)iridoid glucosides found in nature.
181 The secologanin precursor loganin most strongly promoted hyphal branching in *R.*
182 *irregularis*, and its effect was comparable to that of GR24 (Supplemental Fig. S6A, $P <$
183 0.0038). The hyphal branching-inducing activities of geniposide and oleuropein
184 identified from *Gardenia jasminoides* (Wang et al., 2004) and *Olea europaea*
185 (Soler-Rivas et al., 2000), respectively, were identical to that of mock treatment at all
186 concentrations excluding oleuropein at 10 nM (Supplemental Fig. S6A, $P = 0.0097$).

187 However, geraniol, an intermediate of these secoiridoid glucosides, did not change *R.*
188 *irregularis* branching compared to the effects of mock treatment (Supplemental Fig.
189 S6B). These data suggest that (seco)iridoid glucosides produced by Gentianaceae plants
190 stimulate *R. irregularis* hyphal branching.

191 The different responses of *R. clarus* and *G. margarita* to GA-treated *E.*
192 *grandiflorum* roots (Supplemental Fig. S1) suggested that the two AM fungi
193 differentially respond to GPS and SWM. We thus treated *R. clarus* and *G. margarita*
194 with GPS and SWM. *R. clarus* exhibited a significant but slight increase in hyphal
195 branching in the presence of GPS and SWM (Supplemental Fig. S7A). By contrast,
196 hyphal branching in *G. margarita* was not triggered by exogenous GPS and SWM at
197 any concentration (Supplemental Fig. S7B). Interestingly, the response of *G. margarita*
198 to GPS and SWM was consistent with our hypothesis that *G. margarita* is insensitive to
199 branching factors derived from *E. grandiflorum* roots (Supplemental Fig. S1B).
200 Therefore, GPS and SWM are representative compounds promoting the extraradical
201 hyphal branching of *R. irregularis* and *R. clarus* in GA-treated *E. grandiflorum* roots.

202

203 **Transcriptome analysis of *R. irregularis* treated with GPS**

204 To clarify the mechanisms underlying GPS-mediated hyphal branching in *R. irregularis*,
205 we conducted RNA-seq analysis of GPS-treated *R. irregularis*. In this analysis,
206 germinating *R. irregularis* spores were treated with 100 nM GR24 and GPS. The AM
207 fungal hyphae highly branched, and the branches became entangled (Fig. 4A).
208 Transcriptome analysis showed that 54 and 728 genes were transcriptionally
209 upregulated ($\text{Log}_2\text{FC} > 1$, $\text{FDR} < 0.05$) in *R. irregularis* by GPS and GR24 treatment,
210 respectively (Fig. 4, B and C and Supplemental Table S4). The number of genes

211 upregulated by GPS was smaller than that upregulated by GR24. Conversely, 96.3% of
212 upregulated genes and 94.4% of downregulated genes were shared between GPS-treated
213 and GR24-treated *R. irregularis* (Fig. 4C). These data indicate that *R. irregularis*
214 exhibits partially similar transcriptional changes in response to GPS and GR24.

215 We further performed GO enrichment analysis to investigate the mechanism by
216 which GPS triggers *R. irregularis* branching. As a result, 52 genes upregulated by both
217 GPS and GR24 were highly enriched with cytoskeletal functions (Supplemental Table
218 S5, $P < 0.0092$, FDR = 1). In addition, both treatments also activated protein
219 serine/threonine kinase activity (GO: 0004674; Supplemental Table S5, $P = 0.029$, FDR
220 = 1). These data reflect cytoskeletal function in the hyphal branching of filamentous
221 fungi (Lichius et al., 2011). Contrarily, GPS and GR24 significantly downregulated 178
222 and 555 *R. irregularis* genes ($\text{Log}_2\text{FC} < 1$, FDR < 0.05), respectively (Fig. 4, B and C
223 and Supplemental Table S4). Many GO terms corresponding to respiration and
224 mitochondrial activity were transcriptionally downregulated in response to GPS and
225 GR24 (Supplemental Table S5, FDR < 0.05). These results contradicted previous
226 findings showing the positive effects of GR24 on AM fungal mitochondrial activity
227 (Besserer et al., 2006; Besserer et al., 2008). The AM fungal species and growth
228 conditions applied in this study might be attributable to the negative impacts of GR24
229 on respiratory activity.

230

231 **GPS treatment enhances *R. irregularis* colonization in another crop species**

232 GPS and SWM increased hyphal branching in *R. irregularis* and *R. clarus* *in vitro*; thus,
233 we hypothesized that secoiridoid glucosides also have the ability to promote AM
234 symbiosis in other host plants lacking GPS/SWM. Indeed, GPS treatment enhanced *R.*

235 *irregularis* colonization in the monocotyledonous crop *A. schoenoprasum* (chive),
236 which does not produce GPS/SWM (Fig. 5, A and B and Supplemental Fig. S8). GPS
237 treatment did not affect the growth of chive seedlings and hyphal morphologies in chive
238 roots (Fig. 5, A and B, $P < 0.043$).

239 Meanwhile, we applied a high-throughput bioassay to determine whether GPS
240 could act as an SL using the root parasitic plant *Orobanche minor*, which germinates
241 upon exogenous SL exposure (Ueno et al., 2014). Neither GPS nor SWM provoked *O.*
242 *minor* germination (Fig. 5, C and D). These data suggest that GPS can activate the
243 development of AM symbiosis without stimulating root parasitic plants.

244

245 **Discussion**

246 Recently, it was reported that several defense molecules that taste bitter to humans
247 maintain the healthy rhizosphere microbiota (Fujimatsu et al., 2020; Nakayasu et al.,
248 2021; Zhong et al., 2022). Similarly, our findings revealed the positive effects of the
249 antifungal and bitter secoiridoid glucosides GPS and SWM in *Rhizophagus* AM fungi
250 (Kumarasamy et al., 2003; Šiler et al., 2010). When hydrolyzed by β -glucosidase, which
251 is widely conserved among plants, fungi, and insects (Ketudat Cairns and Esen, 2010),
252 secoiridoid glucosides are readily converted into toxic aglycones covalently binding to
253 nucleotides and proteins (Konno et al., 1999; Kim et al., 2000; Dobler et al., 2011).
254 Furthermore, cytosolic plant β -glucosidase is thought to hydrolyze secoiridoid
255 glucosides when plant cells are damaged (Dobler et al., 2011). However, obligate
256 biotrophic AM fungi have lost some polysaccharide hydrolases, including β -glucosidase
257 (Tisserant et al., 2013; Kobayashi et al., 2018). Together with the non-destructive
258 infection of AM fungi (Genre et al., 2008), secoiridoid glucosides accumulated in *E.*

259 *grandiflorum* roots would be stable and non-toxic during AM symbiosis. These findings
260 propose the bidirectional functions of GPS and SWM, namely the deterrence of
261 pathogens and reinforcement of the symbiotic interaction (Fig. 6). Meanwhile, this
262 study revealed no response of *G. margarita* to GPS/SWM. Because Gigasporaceae
263 (genus *Gigaspora*) fungi sometimes depress plant growth and demand more carbon than
264 Glomeraceae (genus *Rhizophagus*) fungi (Buwalda and Goh, 1982; Lendenmann et al.,
265 2011; Kaur et al., 2022), GPS and SWM might contribute to attracting more cooperative
266 AM fungi. This hypothesis should be tested in a wide range of AM fungal species
267 because our current study only used three species of AM fungi.

268 Canonical SLs are terpenoid lactones featuring a tricyclic ABC lactone and a
269 methyl butenolide connected by an enol ether (Yoneyama et al., 2018). Interestingly,
270 GPS and SWM also possess one lactone ring. Moreover, it has been revealed that the
271 lactone-forming coumarin scopoletin significantly stimulates *R. irregularis* hyphal
272 elongation and metabolic activity in a concentration-dependent manner (Cosme et al.,
273 2021). By contrast, lactone-lacking geraniol and other secoiridoid glucosides displayed
274 no or weak hyphal branching-inducing activity excluding for the iridoid glucoside
275 loganin (Supplemental Fig. S6). These findings imply that *Rhizophagus* fungi respond
276 to the lactone ring of GPS and SWM. However, the lactone ring in the C-ring of SLs is
277 dispensable for hyphal branching induction in *R. irregularis* (Cohen et al., 2013). In
278 addition, GPS and SWM do not have the methyl butenolide and enol ether bridge
279 required for root parasitic plant germination (de Saint Germain et al., 2013). This would
280 explain why *O. minor* seeds did not respond to GPS (Fig. 5, C and D). Further studies
281 are needed to determine whether the mechanisms underlying the recognition of SLs and
282 GPS/SWM by *Rhizophagus* fungi are common.

283 More than 90% of positively expressed genes upon GPS treatment were also
284 upregulated by GR24, and these genes were enriched in GO terms corresponding to
285 cytoskeletal function and kinase activity (Fig. 4C and Supplemental Table S5). These
286 functions are known to be activated during the host recognition of *R. irregularis* (Nadal
287 et al., 2017; Tominaga et al., 2021). This study also confirmed the negative effects of
288 GPS and GR24 on mitochondrial respiration activity in *R. irregularis* despite the
289 positive impact of GR24 on AM fungal mitochondrial biogenesis (Besserer et al., 2006;
290 Besserer et al., 2008). Our transcriptome analysis might have masked the responses of *R.*
291 *irregularis* hyphae to GPS and GR24 because *R. irregularis* spores containing numerous
292 nuclei feature distinct transcriptomes from hyphae (Kameoka et al., 2019). In addition,
293 this study could not confirm the secretion of GPS or SWM from *E. grandiflorum* roots
294 to the rhizosphere. The slight hyphal branching-inducing activity of GPS and SWM in
295 the femtomolar range (Supplemental Fig. S3) suggests that their levels in *E.*
296 *grandiflorum* root exudates are also too low to be detected. However, *Catharanthus*
297 *roseus* roots secrete monoterpane indole alkaloids produced via the secoiridoid pathway
298 (Nakabayashi et al., 2021), implying the possibility of GPS/SWM secretion from *E.*
299 *grandiflorum* roots.

300 In conclusion, our data revealed that the representative monoterpenes of *E.*
301 *grandiflorum*, namely GPS, and SWM, are key metabolites promoting *Rhizophagus*
302 fungal branching. This finding further provides knowledge of the bidirectional functions
303 of defense molecules in stimulating symbiotic partners. GPS-promoted AM fungal
304 colonization in chive roots suggests their utilization as biostimulants that do not
305 provoke Orobanchaceae parasitic plant germination (Fig. 5). On the contrary, the
306 observation of successful AM symbiosis in GA-treated *E. grandiflorum* implies that the

307 plant has evolved to undergo AM symbiosis when GA signaling is activated, such as
308 that occurring in shaded areas (Yang and Li, 2017). Shady conditions also suppress SL
309 biosynthesis, failing to accommodate AM fungi effectively (Nagata et al., 2015; Ge et
310 al., 2022). Therefore, investigating whether GPS and SWM are genuinely involved in
311 AM symbiosis under activated GA signaling would be interesting, considering the
312 tandem duplication of secoiridoid biosynthetic genes in the Gentianales order and
313 Gentianaceae family (Rai et al., 2021; Li et al., 2022; Zhou et al., 2022).

314

315 **Materials and methods**

316 **Chemicals**

317 GPS (>97.0%), SWM (>98.0%), loganin (>98.0%), geniposide (>95.0%), and
318 oleuropein (>98.0%) were purchased from Tokyo Chemical Industry Co. (Tokyo, Japan).
319 Methanol (HPLC grade, ≥99.7%), acetone (reagent grade, 99.5% purity), geraniol
320 (>97.0%), and GA₃ (>85.0%) were obtained from FUJIFILM Wako Pure Chemical
321 Corp. (Osaka, Japan). GPS and GA₃ dissolved in ethanol (reagent grade, 99.5% purity)
322 were used to treat the examined plants by diluting them in 1/10 Hoagland solution at the
323 indicated concentrations. In addition, we used the synthetic SL *rac*-GR24 (GR24)
324 (>98.0%), which was synthesized by StrigoLab (Torino, Italy).

325

326 **Growth conditions of plant and fungal materials**

327 The seeds of *L. japonicus* “Miyakojima” MG-20, *A. schoenoprasum* (chive), and *E.*
328 *grandiflorum* cv. Pink Thumb were sterilized and germinated as described in our
329 previous reports (Tominaga et al., 2020). The examined host plants were transplanted to
330 boxes containing 300 mL of autoclaved mixed soil (river sand/vermiculite, 1:1). The

331 plants were grown in a growth chamber under 14 h light/10 h dark cycles at 25°C for 4–
332 6 weeks in the presence of 1/10 Hoagland solution containing 100 μ M $\text{NH}_4\text{H}_2\text{PO}_4$.
333 Chive seedlings were cultured with 1/5 Hoagland solution (20 μ M $\text{NH}_4\text{H}_2\text{PO}_4$) when we
334 investigated the effects of GPS on AM symbiosis. GA_3 and GPS diluted in ethanol were
335 added to the Hoagland solutions at the indicated concentrations.

336 We inoculated the examined plants with *R. irregularis* DAOM197198 (Premier
337 Tech, Quebec, Canada) by mixing 1000 spores in the soil mixture. Concerning the other
338 AM fungal species, 50 spores of *R. clarus* and 15 spores of *G. margarita* were directly
339 inoculated onto the host roots. *R. clarus* HR1 (MAFF520076) and *G. margarita* K-1
340 (MAFF520052) were obtained from the Genebank Project, National Agriculture and
341 Food Research Organization of Japan. *R. clarus* and *G. margarita* were cultivated with
342 *Medicago sativa* L. and *Trifolium pratense*, respectively. The soil inoculants were dried
343 after 3 months and stored at 4°C until use. *R. clarus* and *G. margarita* spores were
344 collected through 106- and 250- μ m pore size sieves, respectively. Before use, the spores
345 were sterilized with 1% (v/v) NaClO and 0.04% (v/v) Tween-20 for 20 min. As described
346 previously (Tominaga et al., 2020), we evaluated AM fungal colonization rates (%) by
347 staining harvested roots with 0.05% trypan blue diluted in lactic acid.

348

349 **Quantification of the bioactivity of chemicals**

350 To quantify the hyphal branching-inducing activity of compounds against *Rhizophagus*
351 fungi, we used a previously described method (Kameoka et al., 2019) with some
352 modifications. Hyphae fragments in spore suspensions were removed via centrifugation
353 in Gastrografin (Bayer Yakuhin, Osaka, Japan) solution before use (Furlan et al., 1980).
354 Approximately eight spores of *R. irregularis* or *R. clarus* were incubated for 5 min on

355 350 μ L of 0.4% (w/v) Phytagel (Sigma-Aldrich, St Louis, MO, USA) containing M
356 medium (Hildebrandt et al., 2002) in a 24-well plate. Each aliquot of M medium was
357 gently covered with 150 μ L of liquid 0.3% (w/v) Phytagel in 3 mM MgSO₄·7H₂O
358 cooled at 40°C. The AM fungal spores were germinated at 25°C in the dark for 5 days.
359 We prepared at least three wells for each treatment in this study.

360 GPS, SWM, and three other secoiridoid glucosides diluted in distilled water
361 were filtered through 0.45- μ m PTFE filters (Shimadzu Co., Kyoto, Japan). Immediately,
362 200 μ L of the axenic solutions were directly poured onto the gels containing the
363 germinated AM fungal spores. We treated AM fungal spores with sterilized distilled
364 water and 100 nM GR24 as a mock treatment. Then, 10 μ M GR24 dissolved in acetone
365 was dried in a SpeedVac DNA130 vacuum concentrator (Thermo Fisher Scientific,
366 Waltham, MA, USA) at 35°C for 5 min. After removing acetone, GR24 was immediately
367 redissolved at 100 nM in distilled water and sterilized as previously described. AM fungi
368 treated with the chemicals were incubated at 25°C in the dark for 7–10 days. The number
369 of hyphal branches emerging from straight elongating thick hyphae was counted under an
370 SZX16 stereomicroscope (Olympus, Tokyo, Japan).

371 A single *G. margarita* spore was germinated on 0.2% (w/v) Phytagel in 3 mM
372 MgSO₄·7H₂O at 30°C in the dark for 5–7 days. GPS and SWM dissolved in methanol
373 were loaded onto 6-mm glass fiber disks at 0.1–10 μ g/disk. After the solvent was dried
374 entirely, the disks were placed near *G. margarita* hyphae as previously described⁸. The
375 hyphae treated with the examined chemicals were microscopically observed. The root
376 exudates collected from approximately 90 *T. pratense* plants were used as a positive
377 control because GR24 has lower ability to induce hyphal branching in *G. margarita*
378 than other natural SLs (Akiyama et al., 2010). *T. pratense* seedlings were

379 hydroponically grown with tap water for 20 days. The tap water medium (750 mL) was
380 partitioned three times against an equal volume of ethyl acetate. The ethyl acetate
381 extracts were dried over anhydrous Na_2SO_4 , redissolved in acetone, and stored at 4°C
382 until use.

383

384 **Germination assay of pathogenic fungal bud cells and root parasitic plant seeds**

385 *F. oxysporum* f. sp. *lycopersici* strain JCM12575 bud cells were prepared as
386 previously described (Egusa et al., 2019). *F. oxysporum* bud cells were treated with 1/2
387 potato dextrose broth containing 1–1000 nM GPS or SWM and incubated at 25°C in the
388 dark for 12 h. The germinated bud cells were counted under a BX53 light microscope
389 (Olympus). A germination assay of *Orobanche minor* seeds was conducted following
390 our previous study (Tominaga et al., 2021). For simultaneous treatment with GR24 and
391 GPS, 20 μL of 1 μM GR24 were added onto a 6-mm glass fiber disk, followed by the
392 addition of 20 μL of GPS stock diluted at the indicated concentrations.

393

394 **Quantification of secoiridoid glucosides in *E. grandiflorum* roots**

395 Fresh *E. grandiflorum* roots collected from two seedlings were weighted. The harvested
396 roots were homogenized in a clean tube (INA-OPTIKA, Osaka, Japan) containing two
397 beads and an aliquot of methanol using ShakeMan6 (Bio-Medical Science, Tokyo,
398 Japan). The concentration of each sample was normalized by adding methanol at 50 mg
399 root fresh weight (FW) mL^{-1} . After extracting the root contents at room temperature
400 overnight, the slurries were centrifuged at 13,000 rpm for 5 min. The supernatants were
401 collected and filtered through 0.45- μm PTFE filters (Shimadzu). The endogenous levels
402 of GPS and SWM were analyzed on an LC-2030C HPLC system (Shimadzu) equipped

403 with a COSMOSIL 5C₁₈-MS-II Packed Column (4.6 × 150 mm, 5 µm particle size;
404 Nacalai Tesque, Kyoto, Japan) and a COSMOSIL Guard Column 5C₁₈-MS-II (4.6 mm
405 × 10 mm, 5 µm particle size; Nacalai Tesque) at 30°C. The mobile phases were Milli-Q
406 water (solvent A) and methanol (solvent B), and the elution program was 30% B from 0
407 to 8 min, 30%–100% B (linear gradient) from 8 to 10 min, 100% B from 10 to 15 min,
408 and 30% B from 15.01 to 20 min. The flow rate was 1 mL min⁻¹, and the detection
409 wavelength was 254 nm.

410

411 **Preparation of root exudates from *E. grandiflorum***

412 Four-week-old *E. grandiflorum* seedlings were transplanted into boxes containing 300
413 mL of washed and autoclaved river sand (0–1 mm particle size). *R. irregularis* spores
414 and GA₃ were mixed as previously mentioned. Distilled water (50 mL) was poured onto
415 the river sand, and the filtrate was collected using a vacuum pump 4 and 6 weeks after
416 transplanting. The collected samples were centrifuged at 13,000 rpm for 10 min and
417 filtered with 0.45-µm PTFE membranes. The clear filtrates were loaded onto a Sep-Pak
418 C18 Plus Short cartridge (Waters, Milford, MA, USA) and washed with 20 mL of
419 distilled water. Metabolites were extracted with 6 mL of methanol from the sorbent. The
420 extracted samples were stored at 4°C until use. Finally, the metabolites were dried and
421 redissolved in distilled water at 50 mg root FW mL⁻¹. The samples were immediately
422 passed through 0.45-µm PTFE filters and used for the bioassay.

423

424 **RNA extraction from AM fungal spores and hyphae and RNA-seq**

425 Five thousand *R. irregularis* spores were inoculated in 2.4 mL of M liquid medium in
426 each well of a six-well plate and incubated at 25°C for 5 days in the dark. GR24 or GPS

427 was added to the germinating spores at a final concentration of 100 nM. *R. irregularis*
428 spores and hyphae in eight wells (40,000 spores per sample) were collected on a cell
429 strainer after 8 days. The fungal sample was immediately frozen in an RNase-free tube
430 containing two beads in liquid nitrogen. The frozen spores and hyphae were homogenized
431 in ShakeMan6. RNA extraction and genomic DNA removal were performed using a
432 Total RNA Extraction Kit (Plant) (RBC Bioscience, New Taipei, Taiwan) and DNase I
433 (Takara Bio, Shiga, Japan) following the manufacturers' protocol. The quality and
434 quantity of the total RNA were checked using a Qubit RNA HS Assay Kit and Qubit 2.0
435 Fluorometer (Thermo Fisher Scientific) before sequencing. An RNA-seq library was
436 constructed from the total RNA using an MGIEasy RNA Directional Library Prep Set
437 (MGI, Shenzhen, China). RNA-seq with strand-specific and paired-end reads (150 bp)
438 was performed using DNBSEQ-T7RS by Genome-Lead Co. (Takamatsu, Kagawa,
439 Japan).

440

441 **Transcriptome analyses**

442 The raw reads obtained from 4- and 6-week-old *E. grandiflorum* roots (Tominaga et al.,
443 2020; Tominaga et al., 2020; Tominaga et al., 2021) and *R. irregularis* (this study) were
444 filtered using Fastp v0.23.2 (Chen et al., 2018) to remove low-quality reads and adapter
445 sequences. The filtered reads were mapped to the assembled *E. grandiflorum* 10B-620
446 (Shirasawa et al., 2023) and *R. irregularis* genome data (Maeda et al., 2018) using
447 STAR v2.6.1d (Dobin et al., 2013) (Supplemental Table S6). Afterward, we quantified
448 the number of reads aligned to the reference genome using featureCounts v2.0.1 (Liao
449 et al., 2014). EdgeR v3.38.1 (Robinson et al., 2010) statistically calculated the fold
450 change (FC) in gene expression and FDR. Differentially expressed genes (DEGs) were

451 sorted using a Venn diagram (<http://bioinformatics.psb.ugent.be/webtools/Venn>). The
452 GO pathways of each *E. grandiflorum* and *R. irregularis* gene were annotated using
453 Blast2GO v6.0.3 (Conesa et al., 2005) to perform enrichment analysis. We first obtained
454 a non-redundant (nr) ncbi-blast-dbs database from NCBI
455 (<https://github.com/yeban/ncbi-blast-dbs.git>). After that, a Blastp search against the nr
456 database was performed by DIAMOND v0.9.14 (Buchfink et al., 2021) using *E.*
457 *grandiflorum* and *R. irregularis* protein sequences as query data. The resulting file was
458 subjected to the Blast2GO program, and GO pathways were annotated with the default
459 setting.

460

461 **Identification and analysis of iridoid biosynthesis genes in *E. grandiflorum***

462 A local tBlastx search (ncbi-blast-2.11.0, <https://blast.ncbi.nlm.nih.gov/Blast.cgi>)
463 against *E. grandiflorum* genomic sequence using nucleotide sequences obtained from
464 the Gentianales model plant *C. roseus* identified several iridoid biosynthesis genes with
465 an E-value cut-off of 1e-100 (Supplemental Table 3). Only several genes with the same
466 annotation as the queries were selected for the subsequent analysis.

467

468 **Quantification and statistical analysis**

469 To quantify AM fungal colonization in host roots, we considered 10 pieces of
470 approximately 10-mm root fragments collected from one seedling as one biological
471 replicate (n , indicated in the figure legends). For RNA-seq of *R. irregularis*, we treated
472 one pool of total RNA extracted from 40,000 spores as one biological replicate and
473 prepared three biological replicates for each treatment. This study considered *R.*
474 *irregularis* genes that fulfilled $|\text{Log}_2\text{FC}| \geq 1$ and $\text{FDR} < 0.05$ as DEGs. When we

475 conducted the germination assay of *O. minor*, one glass filter disk with *O. minor* seeds
476 was considered one biological replicate. The *O. minor* germination rate is shown as the
477 mean of three biological replicates. All statistical analyses were conducted using R
478 software v4.2.0. The differences in hyphal branching induced among the treatments
479 were examined using Wilcoxon's rank-sum test regarding the number of hyphal
480 branches and root colonization rates. *P* values were corrected by the Bonferroni method
481 for multiple comparisons. The Shapiro–Wilk test was used to examine the normality of
482 GPS and SWM concentrations in *E. grandiflorum* roots, and the differences were tested
483 using Welch's *t*-test corrected by the Bonferroni method. The differences in the
484 germination rates of *O. minor* and *F. oxysporum* f. sp. *lycopersici* were checked using
485 Tukey's test.

486

487

488 **Data availability**

489 The original contributions presented in this study were publicly available. The RNA
490 sequence data obtained from 4-week-old *E. grandiflorum* roots have been deposited into
491 the DDBJ Sequence Read Archive under the accession numbers DRA010085 and
492 DRA015766. The sequence of 6-week-old *E. grandiflorum* roots have previously been
493 submitted to the DDBJ (DRA012117)(Tominaga et al., 2021). The RNA sequence data
494 obtained from *R. irregularis* have also been available in the DDBJ (DRA015767).

495

496

497 **Acknowledgments**

498 We would like to thank the National BioResource Project (Legume Base), Dr. Tsutomu

499 Arie (Tokyo University of Agriculture and Technology), and Dr. Satoko Yoshida (Nara
500 Institute of Science and Technology) for kindly providing *L. japonicus* seeds, *F.*
501 *oxysporum* f. sp. *lycopersici*, and *O. minor* seeds, respectively. We thank Dr. Akifumi
502 Sugiyama (Kyoto University), Dr. Shun Sakuma (Tottori University), and Dr. Hiromu
503 Kameoka (CAS Center for Excellence in Molecular Plant Science) for critically reading
504 our manuscript and giving valuable comments. This work was supported by the NIBB
505 Cooperative Research Programs (Next-generation DNA Sequencing Initiative: 21-301,
506 22NIBB403), by the JST Adaptable and Seamless Technology transfer program through
507 Target driven R&D (A-STEP) (Grant No. JPMJTM22DQ to H.K.), and a JSPS
508 KAKENHI Grant-in-Aid for JSPS Fellows (Grant No. 20J21994 to T.T.). The graphical
509 summary was created using BioRender.com.

510

511 **Author contributions**

512 T.T. and H.K. designed the research; T.T. and H.S. performed the experiments, assisted
513 by K.U. contributed to HPLC analyses and by M.E. contributed to antifungal activity
514 assay; T.T., K.Y., and S.S. designed and performed the bioinformatic analyses; T.T and
515 H.K. wrote the manuscript with comments from all authors.

516

517 **Competing interests**

518 T.T., K.U., H.S., and H.K. declare a patent application for part of the work reported here.
519 The remaining authors declare no competing interests.

520

521 **Figure legends**

522 **Figure 1.** Transcriptional activation of the secoiridoid pathway in *Eustoma*

523 *grandiflorum* upon GA treatment. A, GO enrichment analysis showing activated
524 molecular function (MF), cellular component (CC), and biological process (BP) terms
525 in GA-treated *E. grandiflorum* roots colonized by *Rhizophagus irregularis* at 4 and 6
526 weeks post-inoculation (wpi). Genes displaying significant expression ($\text{Log}_2\text{FC} > 1$,
527 $\text{FDR} < 0.01$) at either 4 or 6 wpi were analyzed. See also Supplemental Table S1 and S2.
528 Black arrows indicate GO terms corresponding to secoiridoid biosynthesis. B,
529 Expression pattern of genes involved in the secoiridoid biosynthetic pathway in *E.*
530 *grandiflorum* ($n = 3\text{--}4$). NC, non-colonized roots; AMF, *R. irregularis* inoculation;
531 AMF+GA, *R. irregularis* inoculation with GA treatment. Genes indicated in the boxes
532 are involved in the secoiridoid pathway. Red letters represent genes upregulated by GA
533 treatment. GPPS, geranyl diphosphate synthase; GES, geraniol synthase; G8H, geraniol
534 8-hydroxylase; 8HGO, 8-hydroxygeraniol oxidoreductase; IS, iridoid synthase; IO,
535 iridoid oxidase; 7DLGT, 7-deoxyloganetic acid glucosyltransferase; 7DLH,
536 7-deoxyloganic acid hydroxylase; SLS, secologanin synthase. Magenta and blue denote
537 positive and negative changes in the expression of each gene compared with NC or
538 AMF, respectively ($\text{FDR} < 0.05$). C, Identification of SWM (peak 1; 4.6 min) and GPS
539 (peak 2; 5.7 min) from the methanol extracts of 6-week-old axenic *E. grandiflorum*
540 roots (magenta line) by HPLC. The black line indicates the peaks of the SWM and GPS
541 standards. See also Supplemental Tables S1 and S2.

542

543 **Figure 2.** Effects of GA treatment on GPS and SWM content in *E. grandiflorum* roots.
544 A and B, HPLC analysis of GPS (A) and SWM (B) extracted from *E. grandiflorum*
545 roots at 4–6 weeks. The plants were treated with 0.01% ethanol for mock treatment and
546 1 μM GA_3 . NC, non-colonized roots; GA, GA treatment; AMF, *R. irregularis*

547 inoculation; AMF+GA, *R. irregularis* inoculation with GA treatment. Bars indicate the
548 means of GPS and SWM nmol (g root fresh weight [FW])⁻¹, and error bars represent the
549 standard deviation ($n = 3$ –4 biologically independent samples). The significant
550 differences among treatments were tested using Welch's *t*-test with Bonferroni
551 correction after confirming the normality of the data using the Shapiro–Wilk test.

552

553 **Figure 3.** Quantification of hyphal branching-inducing activity using an *in vitro* assay.
554 A, *R. irregularis* germinating spores treated with distilled water (Mock, left), 100 nM
555 GR24 (middle), and 10 nM GPS (right) for 7 days. The hyphal branches on straight
556 elongating thick hyphae (arrows) were counted. Scale bars, 1 mm. B and C, The number
557 of *R. irregularis* hyphal branches in the presence of GPS (B) and WM (C). Data are
558 shown as box plots with the 25th–75th percentiles (box), median (center line inside the
559 box), and range (whiskers) [$n = 14$ –20 (B) and $n = 15$ –24 (C)]. Different letters indicate
560 significant differences among treatments as determined by Wilcoxon's rank-sum test
561 with Bonferroni's correction ($P < 0.05$).

562

563 **Figure 4.** Transcriptional responses of GPS-treated *R. irregularis*. *R. irregularis* spores
564 were germinated in M liquid medium for 5 days, followed by treatment with 100 nM
565 GPS or GR24. After 8 days, the fungal RNA was extracted from 40,000 germinating
566 spores. A, *R. irregularis* germinating spores and hyphae in each treatment. Scale bars, 1
567 mm. B, Volcano plots showing the distribution of the DEGs of *R. irregularis* treated
568 with GPS (left) or GR24 (right). Horizontal lines represent that the FDR cut-off was set
569 as 0.05, and vertical lines indicate that the Log₂FC threshold was set as -1 and 1 . The
570 downregulated and upregulated DEGs are colored cyan and magenta, respectively. C,

571 Venn diagrams displaying the expression patterns of the fungal DEGs upon GPS and
572 GR24 treatment. Each treatment consisted of three biologically independent samples.
573 See also Supplemental Table S4.

574

575 **Figure 5.** Exogenous GPS application improves *R. irregularis* colonization in chive
576 roots without triggering *O. minor* seed germination. *A. schoenoprasum* (chive) roots
577 inoculated with *R. irregularis* were harvested and observed after 1 month. A, Upper
578 image shows the growth of chive seedlings treated with 0.01% ethanol and 1–100 nM
579 GPS. The hyphal structures formed inside chive roots are displayed in the bottom
580 pictures. Arrowheads indicate arbuscules. Scale bars, 50 μ m. B, Colonization rates (%)
581 of *R. irregularis* in chive roots. Green and orange plots present the total hyphal
582 colonization and arbuscule formation rates, respectively. Significant differences among
583 treatments as calculated using Wilcoxon's rank-sum test with Bonferroni's correction are
584 indicated by different letters ($n = 11$ –12, $P < 0.05$). C and D, Germination rate of *O.*
585 *minor* seeds treated with 20 μ L of distilled water (Mock), 1 μ M GR24, and 1–1000 μ M
586 GPS (C) or SWM (D) (per disk) for 5 days ($n = 3$). *O. minor* seeds were also treated
587 with 1 μ M GR24 and 1–1000 nM GPS or SWM simultaneously. Data are shown as box
588 plots with the 25–75th percentiles (box), the median (center line inside the box), and the
589 minimum to maximum values (whiskers). Different alphabets indicate significant
590 differences among treatments in Tukey test, $P < 0.001$.

591

592 **Figure 6.** Graphical summary of the roles of GPS and SWM in AM symbiosis in *E.*
593 *grandiflorum*. *E. grandiflorum* would not need SLs to associate with AM fungi in the
594 presence of GA. Moreover, *R. irregularis* and *R. clarus* (blue) highly branch around

595 GA-treated *E. grandiflorum* roots, unlike the phylogenetically distant AM fungus *G.*
596 *margarita* (gray). GA activates the biosynthesis of monoterpenes GPS (red stars) and
597 SWM (red triangles) in *E. grandiflorum* roots. These antimicrobial metabolites promote
598 branch formation in two *Rhizophagus* fungi but do not alter *G. margarita* hyphal
599 branching, consistent with the responses to GA-treated *E. grandiflorum* roots. Because
600 the secretion of GPS/SWM has not been confirmed, their transport is shown as a dotted
601 line. The light blue-colored cells in the right image represent hypodermal passage cells
602 in which AM fungal hyphae constantly penetrate before colonizing the root cortex. This
603 figure was created using BioRender.com.

604

605

606 **Supplementary data**

607 **Supplemental Figure S1.** Different effects of GA treatment on AM symbioses between
608 *E. grandiflorum* and *L. japonicus*. *E. grandiflorum* and *L. japonicus* roots inoculated
609 with *R. clarus* or *G. margarita* were observed at 5 weeks post-inoculation. The plants
610 were treated with 0.01% ethanol (Mock) or 1 μ M GA₃ (GA). A and B, *E. grandiflorum*
611 roots were colonized by *R. clarus* (A) and *G. margarita* (B). Arrows denote extraradical
612 hyphae adhering to *E. grandiflorum* roots. Scale bars, 5 mm (A) and 1 mm (B). Below
613 graphs show the colonization rates (%) and hyphopodia number (mm⁻¹) of *R. clarus* (A)
614 and *G. margarita* (B) infecting *E. grandiflorum*. C and D, Colonization rates (%) and
615 hyphopodia number (mm⁻¹) of *R. clarus* (C) and *G. margarita* (D) infecting *L.*
616 *japonicus*. Green and orange plots present the total hyphal colonization and arbuscule
617 formation rates, respectively. Data are shown as box plots with the 25th–75th percentiles
618 (box), median (center line inside the box), and range (whiskers). Asterisks indicate

619 significant differences in GA-treated plants compared to mock-treated plant as
620 determined using Wilcoxon's rank-sum test (**: $P < 0.01$, $n = 5-6$).

621

622 **Supplemental Figure 2.** HPLC analyses of peaks 1 and 2 in Fig. 1C. A and B, Magenta
623 lines represent the UV spectra of peaks 1 (A) and 2 (B) from the methanol extracts of
624 6-week-old axenic *E. grandiflorum* roots (Fig. 1C). Black lines indicate the UV spectra
625 of SW (A) and GPS (B) standards. UV spectra of peaks 1 and 2 matched the SWM and
626 GPS standard spectra (99.9% and 100%), respectively.

627

628 **Supplemental Figure 3.** Antifungal activity of GPS and SWM against *F. oxysporum*. A,
629 Images of *F. oxysporum* f. sp. *lycopersici* bud cells treated with distilled water (left) or
630 10 nM GPS (right). Arrows indicate germinating bud cells, and arrowheads denote bud
631 cells that did not germinate by 12 h. Scale bars, 100 μ m. B and C, Germination rates of
632 *F. oxysporum* bud cells treated with 1–1000 nM GPS (B) or SWM (C). Data are shown
633 as box plots with the 25th–75th percentiles (box), the (center line inside the box), and
634 range (whiskers). Different letters indicate significant differences among treatments as
635 determined using the Tukey test ($P < 0.001$, $n = 3$).

636

637 **Supplemental Figure 4.** Hyphal branching induced by GPS and SWM in the
638 femtomolar range. A and B, Images showing *R. irregularis* hyphae treated with
639 femtomolar level GPS (A) and SWM (B). Distilled water was used as a mock control.
640 Scale bars, 1 mm. C and D, The number of hyphal branches of *R. irregularis* treated
641 with GPS (C) and SWM (D). There was no difference among treatments as determined
642 using Wilcoxon's rank-sum test with Bonferroni's correction ($n = 5-11$). Data are shown

643 as box plots with the 25th–75th percentiles (box), median (center line inside the box), and
644 range (whiskers).

645

646 **Supplemental Figure 5.** Hyphal branching-inducing activity of GA. The effect of
647 exogenous GA₃ on *R. irregularis* hyphal branching. For the mock treatment, 0.01%
648 ethanol was supplied to the fungus ($n = 9–13$). Different letters indicate significant
649 differences among treatments as determined by Wilcoxon's rank-sum test with
650 Bonferroni's correction ($P < 0.05$). There was no statistical difference among the
651 treatments.

652

653 **Supplemental Figure 6.** Hyphal branching-inducing activity of other secoiridoid
654 glucosides and geraniol. A, Box plots indicating the number of hyphal branches in *R.*
655 *irregularis*. *R. irregularis* spores were treated with distilled water (Mock), 100 nM
656 GR24, or the indicated concentrations of secoiridoid glucosides. Different letters
657 indicate significant differences among treatments as determined by Wilcoxon's rank-sum
658 test with Bonferroni's correction ($P < 0.05$, $n = 12–19$). B, Hyphal branching-inducing
659 activity of 0.01% ethanol (Mock; cyan) and geraniol (yellow) in *R. irregularis*. There was
660 no difference among treatments as determined by Wilcoxon's rank-sum test with
661 Bonferroni's correction ($n = 8–10$). Data are shown as box plots with the 25th–75th
662 percentiles (box), median (center line inside the box), and range (whiskers).

663

664 **Supplemental Figure 7.** Response of *R. clarus* and *G. margarita* to GPS and SWM. A,
665 The number of hyphal branches of *R. clarus* treated with distilled water (Mock), 100
666 nM GR24, 1–100 nM GPS, or 1–100 nM SWM. Data are shown as box plots with the

667 25th–75th percentiles (box), median (center line inside the box), and range (whiskers).
668 Different letters indicate significant differences among treatments as determined by
669 Wilcoxon's rank-sum test with Bonferroni's correction ($P < 0.05$, $n = 6$ –13). B, G.
670 *margarita* hyphae treated with water, 0.1–10 $\mu\text{g}/\text{disk}$ GPS, or SWM featured no hyphal
671 branches. An aliquot (30 μL) of root exudates collected from *T. pratense* (red clover) was
672 loaded onto a disk as a positive control. Arrows indicate the direction of primary hyphal
673 elongation. Arrowheads denote newly formed hyphal branches after 24 h. Scale bars: 1
674 mm.

675

676 **Supplemental Figure 8.** HPLC analysis of methanol extracts collected from *L.*
677 *japonicus* and chives. Methanol extracts of *L. japonicus* roots (orange line) and chives
678 (blue line) showed no peaks that matched SWM (R_t 4.6 min) and GPS (R_t 5.7 min)
679 standards (black line). Each extract was prepared at 50 mg root fresh weight mL^{-1} .

680

681 **Supplemental Table S1.** Total DEGs in GA-treated *E. grandiflorum* mycorrhizal roots.

682

683 **Supplemental Table S2.** GO enrichment analysis of GA-treated *E. grandiflorum*
684 mycorrhizal roots.

685

686 **Supplemental Table S3.** Expression pattern of secoiridoid pathway genes in *E.*
687 *grandiflorum*.

688

689 **Supplemental Table S4.** Total DEGs in *R. irregularis* treated with GPS and GR24.

690

691 **Supplemental Table S5.** GO enrichment analysis on *R. irregularis* treated with GPS
692 and GR24.

693

694 **Supplemental Table S6.** Results of trimming, mapping, and counting of RNA-seq
695 reads.

696

697 **References**

698 **Akiyama K, Matsuzaki K, Hayashi H** (2005) Plant sesquiterpenes induce hyphal
699 branching in arbuscular mycorrhizal fungi. *Nature* **435**: 824-827

700 **Akiyama K, Ogasawara S, Ito S, Hayashi H** (2010) Structural requirements of
701 strigolactones for hyphal branching in AM fungi. *Plant Cell Physiol* **51**:
702 1104-1117

703 **Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL** (2018) The soil-borne
704 legacy. *Cell* **172**: 1178-1180

705 **Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N** (2008) GR24, a
706 synthetic analog of strigolactones, stimulates the mitosis and growth of the
707 arbuscular mycorrhizal fungus *Gigaspora rosea* by boosting its energy
708 metabolism. *Plant Physiol* **148**: 402-413

709 **Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais
710 JC, Roux C, Becard G, Sejalon-Delmas N** (2006) Strigolactones stimulate
711 arbuscular mycorrhizal fungi by activating mitochondria. *PLoS Biol* **4**: e226

712 **Božunović J, Skorić M, Matekalo D, Živković S, Dragićević M, Aničić N, Filipović
713 B, Banjanac T, Šiler B, Mišić D** (2019) Secoiridoids metabolism response to
714 wounding in common centaury (*Centaurium erythraea* Rafn) leaves. *In Plants*,

715 Vol 8

716 **Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and**
717 **global host plant diversity. *New Phytol.* **220**: 1108–1115**

718 **Buchfink B, Reuter K, Drost H-G (2021)** Sensitive protein alignments at tree-of-life
719 scales using DIAMOND. *Nat Methods* **18**: 266–268

720 **Buwalda JG, Goh KM** (1982) Host-fungus competition for carbon as a cause of
721 growth depressions in vesicular-arbuscular mycorrhizal ryegrass. *Soil Biol
722 Biochem* **14**: 103-106

723 Cao X, Guo X, Yang X, Wang H, Hua W, He Y, Kang J, Wang Z (2016)
724 Transcriptional responses and gentiopicroside biosynthesis in methyl
725 jasmonate-treated *Gentiana macrophylla* seedlings. PLoS One 11: e0166493

726 Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ
727 preprocessor. *Bioinformatics* **34**: i884-i890

728 **Cohen M, Prandi C, Occhiato EG, Tabasso S, Wininger S, Resnick N, Steinberger**
729 **Y, Koltai H, Kapulnik Y** (2013) Structure–function relations of strigolactone
730 analogs: activity as plant hormones and plant interactions. *Mol Plant* **6**: 141–152

731 **Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M** (2005) Blast2GO:
732 a universal tool for annotation, visualization and analysis in functional genomics
733 research. *Bioinformatics* **21**: 3674-3676

734 **Cosme M, Fernández I, Declerck S, van der Heijden MGA, Pieterse CMJ (2021) A
735 coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in
736 *Arabidopsis thaliana*. *Plant Mol Biol* **106**: 319-334**

737 **Davière JM, Achard P** (2013) Gibberellin signaling in plants. *Development* **140**:
738 1147-1151

739 **De Luca V, Salim V, Thamm A, Masada SA, Yu F** (2014) Making
740 iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway
741 elucidation. *Curr Opin Plant Biol* **19**: 35-42

742 **de Saint Germain A, Bonhomme S, Boyer F-D, Rameau C** (2013) Novel insights into
743 strigolactone distribution and signalling. *Curr Opin Plant Biol* **16**: 583-589

744 **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson
745 M, Gingeras TR** (2013) STAR: ultrafast universal RNA-seq aligner.
746 *Bioinformatics* **29**: 15-21

747 **Dobler S, Petschenka G, Pankoke H** (2011) Coping with toxic plant compounds - The
748 insect's perspective on iridoid glycosides and cardenolides. *Phytochem* **72**:
749 1593-1604

750 **Egusa M, Parada R, Aklog YF, Ifuku S, Kaminaka H** (2019) Nanofibrillation
751 enhances the protective effect of crab shells against Fusarium wilt disease in
752 tomato. *Int J Biol Macromol* **128**: 22-27

753 **Foo E, Ross JJ, Jones WT, Reid JB** (2013) Plant hormones in arbuscular mycorrhizal
754 symbioses: an emerging role for gibberellins. *Ann Bot* **111**: 769-779

755 **Fujimatsu T, Endo K, Yazaki K, Sugiyama A** (2020) Secretion dynamics of
756 soyasaponins in soybean roots and effects to modify the bacterial composition.
757 *Plant Direct* **4**: e00259

758 **Furlan V, Bartschi H, Fortin JA** (1980) Media for density gradient extraction of
759 endomycorrhizal spores. *Trans Br Mycol Soc* **75**: 336-338

760 **Ge S, He L, Jin L, Xia X, Li L, Ahammed GJ, Qi Z, Yu J, Zhou Y** (2022)
761 Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato
762 by systemically regulating strigolactone biosynthesis. *New Phytol* **233**:

763 1900-1914

764 **Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P** (2008) Prepenetration
765 apparatus assembly precedes and predicts the colonization patterns of arbuscular
766 mycorrhizal fungi within the root cortex of both *Medicago truncatula* and
767 *Daucus carota*. *Plant Cell* **20**: 1407-1420

768 **Gutjahr C** (2014) Phytohormone signaling in arbuscular mycorrhiza development. *Curr*
769 *Opin Plant Biol* **20**: 26-34

770 **Hildebrandt U, Janetta K, Bothe H** (2002) Towards growth of arbuscular mycorrhizal
771 fungi independent of a plant host. *Appl Environ Microbiol* **68**: 1919-1924

772 **Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S,**
773 **Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, et al.** (2017) Regulation of
774 strigolactone biosynthesis by gibberellin signaling. *Plant Physiol* **174**:
775 1250-1259

776 **Kameoka H, Maeda T, Okuma N, Kawaguchi M** (2019) Structure-specific regulation
777 of nutrient transport and metabolism in arbuscular mycorrhizal fungi. *Plant Cell*
778 *Physiol* **60**: 2272-2281

779 **Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y, Ezawa T, Hayashi H,**
780 **Kawaguchi M, Akiyama K** (2019) Stimulation of asymbiotic sporulation in
781 arbuscular mycorrhizal fungi by fatty acids. *Nat Microbiol* **4**: 1654-1660

782 **Kaur S, Campbell BJ, Suseela V** (2022) Root metabolome of plant–arbuscular
783 mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal
784 phenotype. *New Phytol* **234**: 672-687

785 **Ketudat Cairns JR, Esen A** (2010) β -Glucosidases. *Cell Mol Life Sci* **67**: 3389-3405

786 **Kim DH, Kim BR, Kim JY, Jeong YC** (2000) Mechanism of covalent adduct

787 formation of aucubin to proteins. *Toxicol Let* **114**: 181-188

788 **Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J**
789 (2018) Strigolactone biosynthesis genes of rice are required for the punctual
790 entry of arbuscular mycorrhizal fungi into the roots. *Plant Cell Physiol* **59**:
791 544-553

792 **Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Shigenobu**
793 **S, Kawaguchi M** (2018) The genome of *Rhizophagus clarus* HR1 reveals a
794 common genetic basis for auxotrophy among arbuscular mycorrhizal fungi.
795 *BMC Genom* **19**: 465

796 **Kodama K, Rich MK, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y,**
797 **Komatsu A, Luo Y, Suzuki H, et al.** (2022) An ancestral function of
798 strigolactones as symbiotic rhizosphere signals. *Nat Commun* **13**: 3974

799 **Konno K, Hirayama C, Yasui H, Nakamura M** (1999) Enzymatic activation of
800 oleuropein: a protein crosslinker used as a chemical defense in the privet tree.
801 *Proc Natl Acad Sci* **96**: 9159-9164

802 **Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt**
803 **D, Bours R, Bouwmeester HJ, Martinoia E** (2012) A petunia ABC protein
804 controls strigolactone-dependent symbiotic signalling and branching. *Nature*
805 **483**: 341-344

806 **Kumarasamy Y, Nahar L, Sarker SD** (2003) Bioactivity of gentiopicroside from the
807 aerial parts of *Centaurium erythraea*. *Fitoterapia* **74**: 151-154

808 **Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E,**
809 **Jansa J** (2011) Symbiont identity matters: carbon and phosphorus fluxes
810 between *Medicago truncatula* and different arbuscular mycorrhizal fungi.

811 **Mycorrhiza** **21**: 689-702

812 **Li T, Yu X, Ren Y, Kang M, Yang W, Feng L, Hu Q** (2022) The chromosome-level
813 genome assembly of *Gentiana dahurica* (Gentianaceae) provides insights into
814 gentiopicroside biosynthesis. *DNA Res* **29**: dsac008

815 **Liao Y, Smyth GK, Shi W** (2014) featureCounts: an efficient general purpose program
816 for assigning sequence reads to genomic features. *Bioinformatics* **30**: 923-930

817 **Lichius A, Berepiki A, Read ND** (2011) Form follows function – The versatile fungal
818 cytoskeleton. *Fungal Biol* **115**: 518-540

819 **Luginbuehl LH, Oldroyd GED** (2017) Understanding the arbuscule at the heart of
820 endomycorrhizal symbioses in plants. *Curr Biol* **27**: R952-R963

821 **Maeda T, Kobayashi Y, Kameoka H, Okuma N, Takeda N, Yamaguchi K, Bino T,
822 Shigenobu S, Kawaguchi M** (2018) Evidence of non-tandemly repeated rDNAs
823 and their intragenomic heterogeneity in *Rhizophagus irregularis*. *Commun Biol*
824 1: 87

825 **Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K,
826 Ahern KR, Romag A, et al.** (2017) An N-acetylglucosamine transporter
827 required for arbuscular mycorrhizal symbioses in rice and maize. *Nat Plants* **3**:
828 17073

829 **Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S,
830 Arima S, Hashiguchi M, Akashi R, et al.** (2015) Red/far red light controls
831 arbuscular mycorrhizal colonization via jasmonic acid and strigolactone
832 signaling. *Plant Cell Physiol* **56**: 2100-2109

833 **Nakabayashi R, Takeda-Kamiya N, Yamada Y, Mori T, Uzaki M, Nirasawa T,
834 Toyooka K, Saito K** (2021) A multimodal metabolomics approach using

835 imaging mass spectrometry and liquid chromatography-tandem mass
836 spectrometry for spatially characterizing monoterpene indole alkaloids secreted
837 from roots. *Plant Biotechnol* **38**: 305-310

838 **Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A** (2021) Tomato roots secrete tomatine to modulate the
839 bacterial assemblage of the rhizosphere. *Plant Physiol* **186**: 270-284

840

841 **Nouri E, Surve R, Bapaume L, Stumpe M, Chen M, Zhang Y, Ruyter-Spira C, Bouwmeester H, Glauser G, Bruisson S, et al.** (2021) Phosphate suppression
842 of arbuscular mycorrhizal symbiosis involves gibberellic acid signalling. *Plant
843 Cell Physiol* **62**: 959-970

844

845 **Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, et al.** (2016) A
846 CCaMK-CYCLOPS-DELLA complex activates transcription of *RAM1* to
847 regulate arbuscule branching. *Curr Biol* **26**: 987-998

848

849 **Rai A, Hirakawa H, Nakabayashi R, Kikuchi S, Hayashi K, Rai M, Tsugawa H, Nakaya T, Mori T, Nagasaki H, et al.** (2021) Chromosome-level genome
850 assembly of *Ophiorrhiza pumila* reveals the evolution of camptothecin
851 biosynthesis. *Nat Commun* **12**: 405

852

853 **Rai A, Nakamura M, Takahashi H, Suzuki H, Saito K, Yamazaki M** (2016)
854 High-throughput sequencing and de novo transcriptome assembly of *Swertia
855 japonica* to identify genes involved in the biosynthesis of therapeutic
856 metabolites. *Plant Cell Rep* **35**: 2091-2111

857

858 **Robinson MD, McCarthy DJ, Smyth GK** (2010) edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. *Bioinformatics*

859 26: 139-140

860 **Shirasawa K, Arimoto R, Hirakawa H, Ishimori M, Ghelfi A, Miyasaka M, Endo**
861 **M, Kawabata S, Isobe SN** (2023) Chromosome-scale genome assembly of
862 *Eustoma grandiflorum*, the first complete genome sequence in the genus
863 *Eustoma*. *G3 Genes|Genomes|Genetics* **13**: jkac329

864 **Šiler B, Mišić D, Nestorović J, Banjanac T, Glamočlija J, Soković M, Ćirić A** (2010)
865 Antibacterial and antifungal screening of *Centaurium pulchellum* crude extracts
866 and main secoiridoid compounds. *Nat Prod Commun* **5**: 1934578X1000501001

867 **Soler-Rivas C, Espín JC, Wicher HJ** (2000) Oleuropein and related compounds. *J*
868 *Sci Food Agric* **80**: 1013-1023

869 **Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M** (2015)
870 Gibberellins interfere with symbiosis signaling and gene expression and alter
871 colonization by arbuscular mycorrhizal fungi in *Lotus japonicus*. *Plant Physiol*
872 **167**: 545-557

873 **Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P,**
874 **Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, et al.** (2013) Genome of
875 an arbuscular mycorrhizal fungus provides insight into the oldest plant
876 symbiosis. *Proc Natl Acad Sci* **110**: 20117-20122

877 **Tominaga T, Miura C, Sumigawa Y, Hirose Y, Yamaguchi K, Shigenobu S, Mine A,**
878 **Kaminaka H** (2021) Conservation and diversity in gibberellin-mediated
879 transcriptional responses among host plants forming distinct arbuscular
880 mycorrhizal morphotypes. *Front Plant Sci* **12**: 795695

881 **Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M,**
882 **Kaminaka H** (2020) Gibberellin promotes fungal entry and colonization during

883 *Paris*-type arbuscular mycorrhizal symbiosis in *Eustoma grandiflorum*. Plant
884 Cell Physiol **61**: 565-575

885 **Tominaga T, Yamaguchi K, Shigenobu S, Yamato M, Kaminaka H** (2020) The
886 effects of gibberellin on the expression of symbiosis-related genes in *Paris*-type
887 arbuscular mycorrhizal symbiosis in *Eustoma grandiflorum*. Plant Signal Behav
888 **15**: 1784544

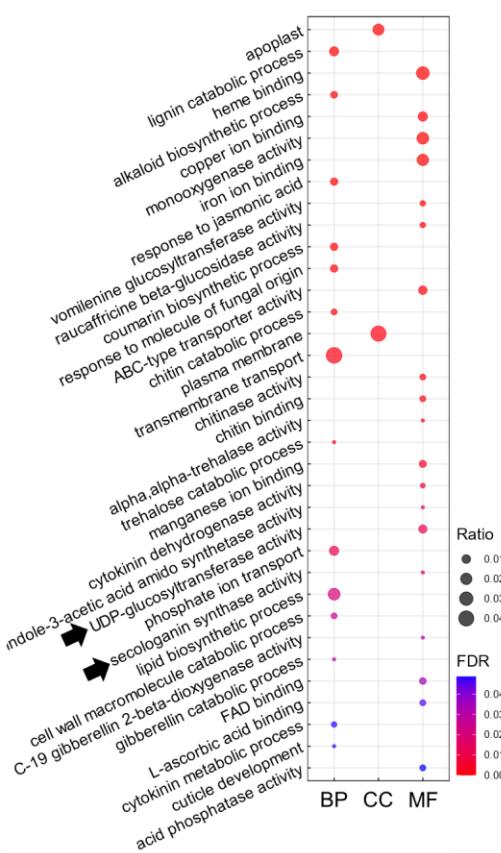
889 **Tsuzuki S, Handa Y, Takeda N, Kawaguchi M** (2016) Strigolactone-induced putative
890 secreted protein 1 Is required for the establishment of symbiosis by the
891 arbuscular mycorrhizal fungus *Rhizophagus irregularis*. Mol Plant Microbe
892 Interact **29**: 277-286

893 **Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H, Batchvarova R, Sugimoto Y** (2014) Heliolactone, a non-sesquiterpene lactone germination
894 stimulant for root parasitic weeds from sunflower. Phytochem **108**: 122-128

895 **Wang S-C, Tseng T-Y, Huang C-M, Tsai T-H** (2004) Gardenia herbal active
896 constituents: applicable separation procedures. J Chromatogr B **812**: 193-202

897 **Yang C, Li L** (2017) Hormonal regulation in shade avoidance. Front Plant Sci **8**: 1527

898 **Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K**
899 **K** (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum
900 promotes the production and exudation of 5-deoxystrigol, the host recognition
901 signal for arbuscular mycorrhizal fungi and root parasites. Planta **227**: 125-132


902 **Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP** (2018) Which are the major players, canonical or non-canonical
903 strigolactones? J Exp Bot **69**: 2231-2239

904 **Yu F, Yu F, Li R, Wang R** (2004) Inhibitory effects of the *Gentiana macrophylla*
905

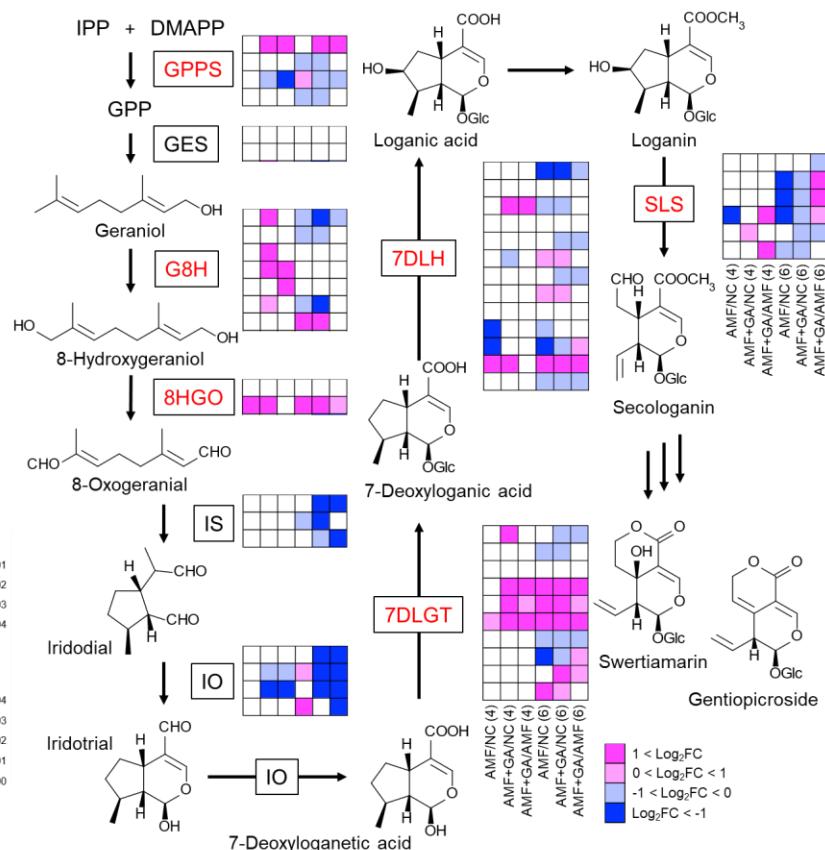
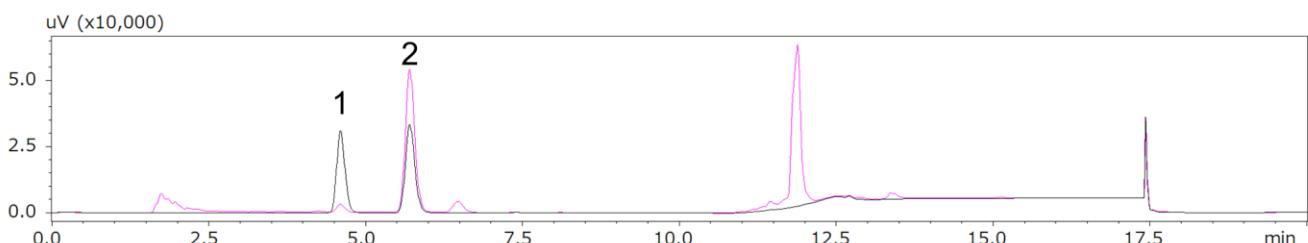
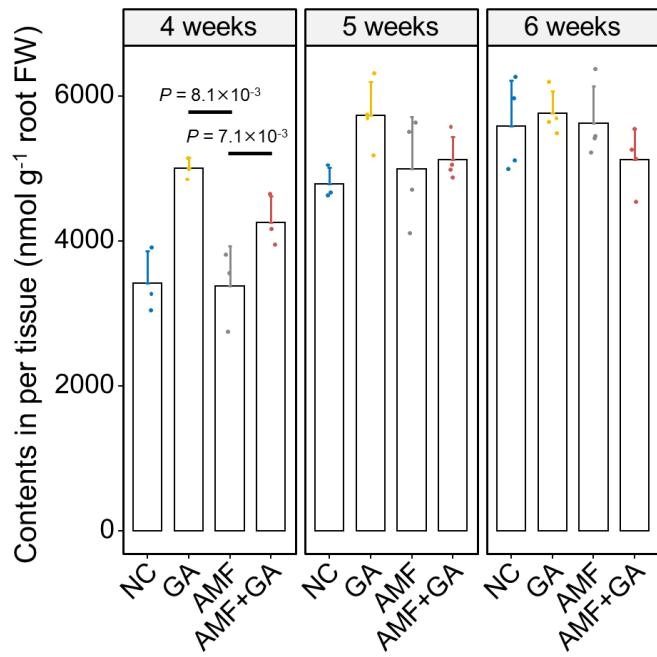

907 (Gentianaceae) extract on rheumatoid arthritis of rats. *J Ethnopharmacol* **95**:
908 77-81
909 **Zhong Y, Xun W, Wang X, Tian S, Zhang Y, Li D, Zhou Y, Qin Y, Zhang B, Zhao G,**
910 **et al.** (2022) Root-secreted bitter triterpene modulates the rhizosphere
911 microbiota to improve plant fitness. *Nat Plants* **8**: 887-896
912 **Zhou T, Bai G, Hu Y, Ruhsam M, Yang Y, Zhao Y** (2022) *De novo* genome assembly
913 of the medicinal plant *Gentiana macrophylla* provides insights into the genomic
914 evolution and biosynthesis of iridoids. *DNA Res* **29**: dsac034
915
916

Fig. 1


A

B


C

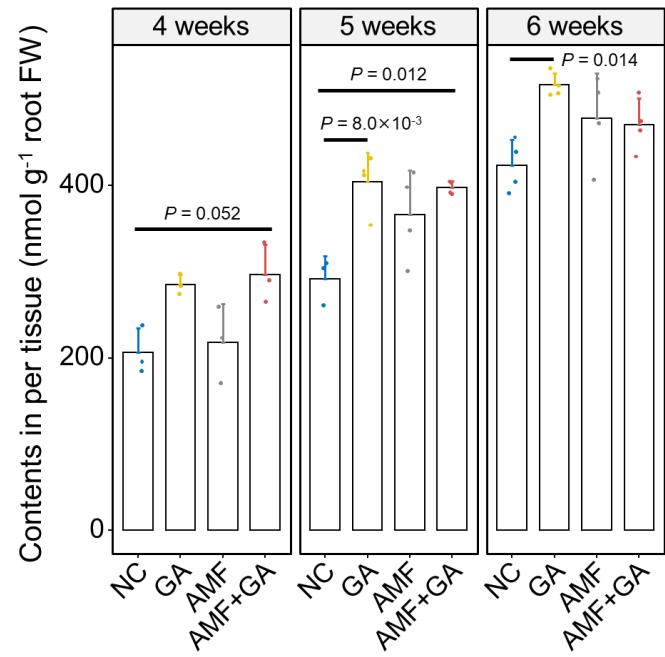
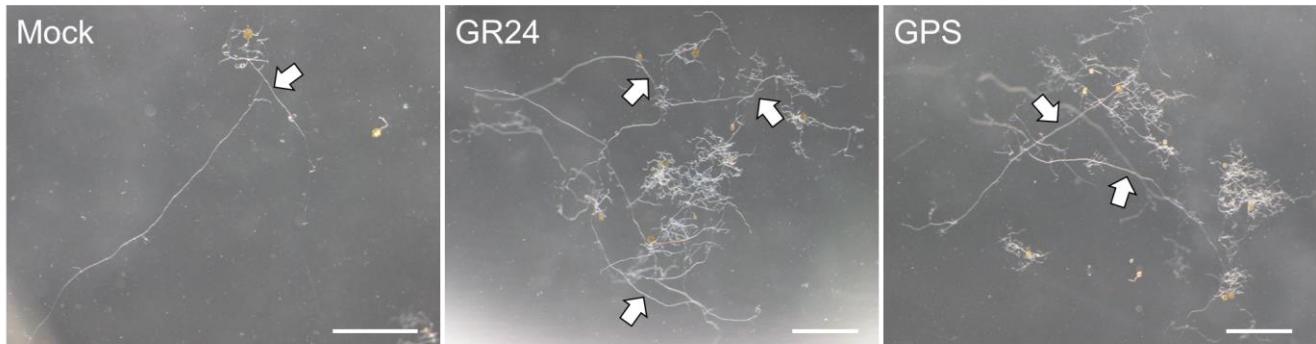

Figure 1. Transcriptional activation of the secoiridoid pathway in *Eustoma grandiflorum* upon GA treatment. A, GO enrichment analysis showing activated molecular function (MF), cellular component (CC), and biological process (BP) terms in GA-treated *E. grandiflorum* roots colonized by *Rhizophagus irregularis* at 4 and 6 weeks post-inoculation (wpi). Genes displaying significant expression ($\text{Log}_2\text{FC} > 1$, $\text{FDR} < 0.01$) at either 4 or 6 wpi were analyzed. See also Supplemental Table S1 and S2. Black arrows indicate GO terms corresponding to secoiridoid biosynthesis. B, Expression pattern of genes involved in the secoiridoid biosynthetic pathway in *E. grandiflorum* ($n = 3-4$). NC, non-colonized roots; AMF, *R. irregularis* inoculation; AMF+GA, *R. irregularis* inoculation with GA treatment. Genes indicated in the boxes are involved in the secoiridoid pathway. Red letters represent genes upregulated by GA treatment. GPPS, geranyl diphosphate synthase; GES, geraniol synthase; G8H, geraniol 8-hydroxylase; 8HGO, 8-hydroxygeraniol oxidoreductase; IS, iridoid synthase; IO, iridoid oxidase; 7DLGT, 7-deoxyloganic acid glucosyltransferase; 7DLH, 7-deoxyloganic acid hydroxylase; SLS, secologanin synthase. Magenta and blue denote positive and negative changes in the expression of each gene compared with NC or AMF, respectively ($\text{FDR} < 0.05$). C, Identification of SWM (peak 1; 4.6 min) and GPS (peak 2; 5.7 min) from the methanol extracts of 6-week-old axenic *E. grandiflorum* roots (magenta line) by HPLC. The black line indicates the peaks of the SWM and GPS standards. See also Supplemental Tables S1 and S2.

Fig. 2

A


B

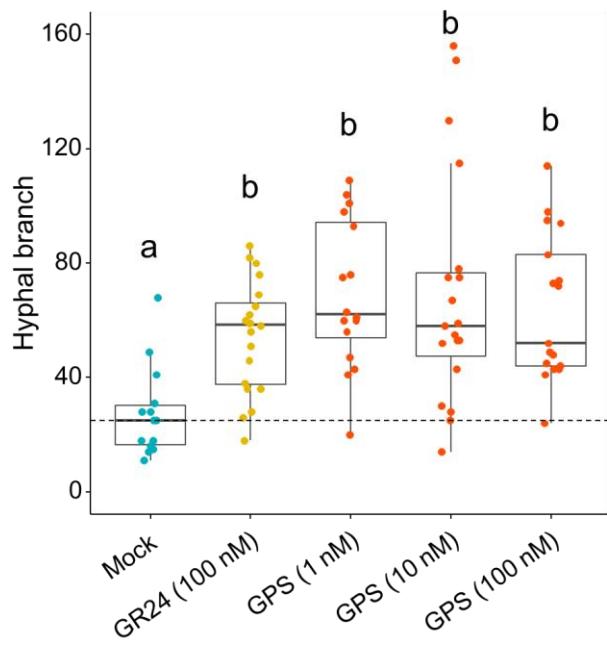
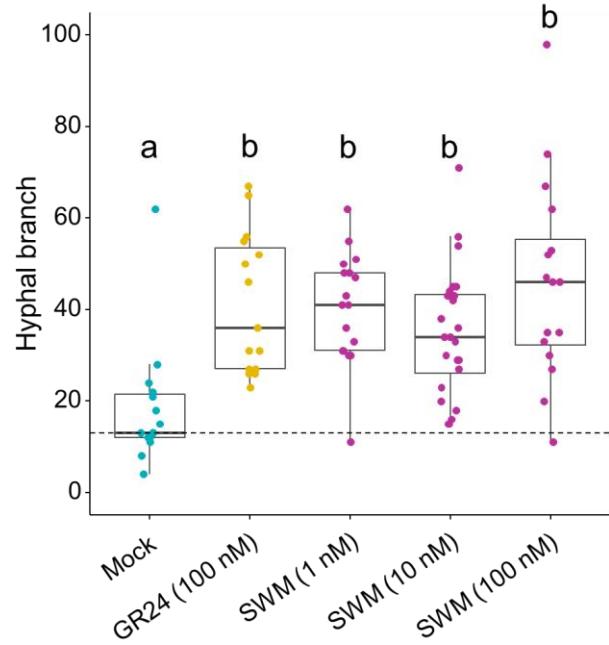
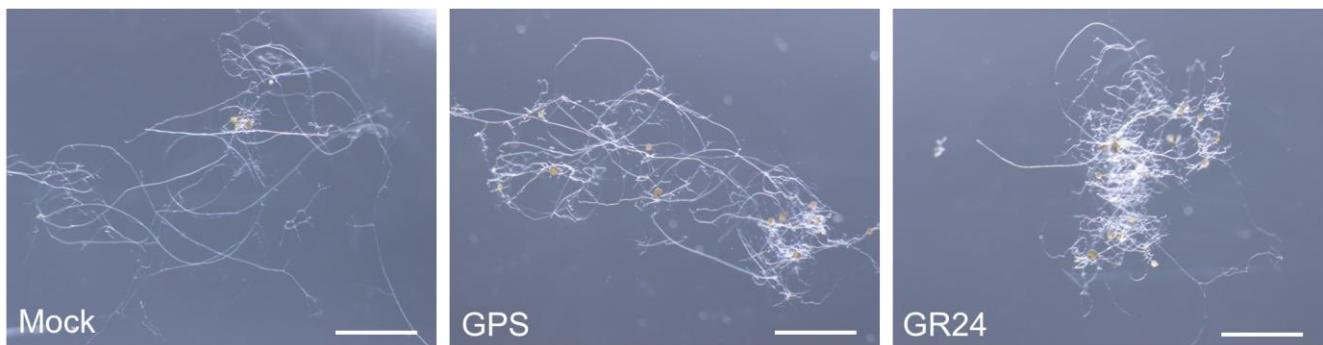

Figure 2. Effects of GA treatment on GPS and SWM content in *E. grandiflorum* roots. A and B, HPLC analysis of GPS (A) and SWM (B) extracted from *E. grandiflorum* roots at 4–6 weeks. The plants were treated with 0.01% ethanol for mock treatment and 1 μ M GA₃. NC, non-colonized roots; GA, GA treatment; AMF, *R. irregularis* inoculation; AMF+GA, *R. irregularis* inoculation with GA treatment. Bars indicate the means of GPS and SWM nmol (g root fresh weight [FW])⁻¹, and error bars represent the standard deviation ($n = 3$ –4 biologically independent samples). The significant differences among treatments were tested using Welch's *t*-test with Bonferroni correction after confirming the normality of the data using the Shapiro–Wilk test.

Fig. 3


A

B


C

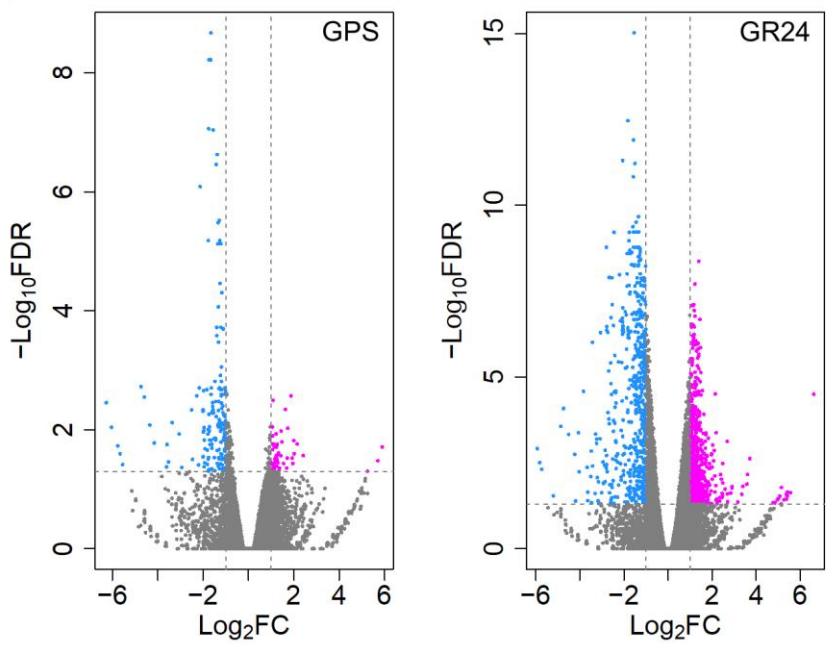
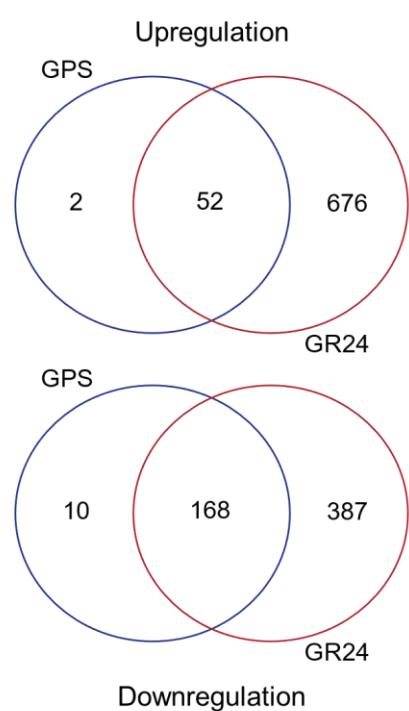
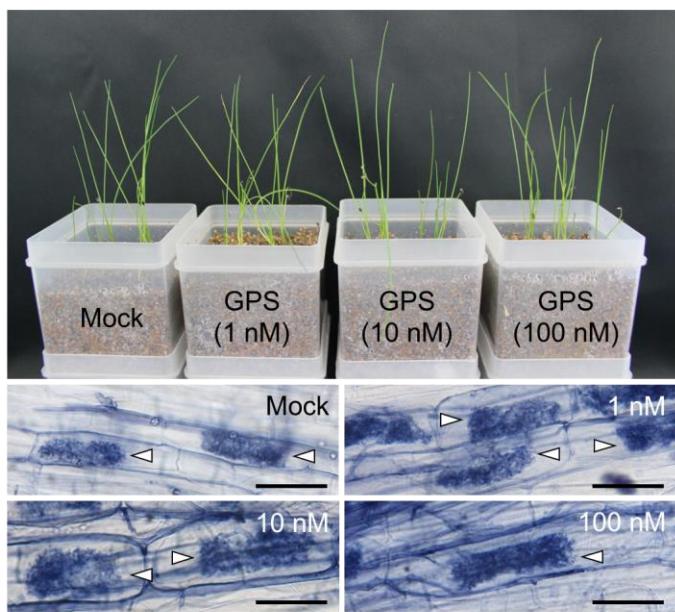

Figure 3. Quantification of hyphal branching-inducing activity using an *in vitro* assay. A, *R. irregularis* germinating spores treated with distilled water (Mock, left), 100 nM GR24 (middle), and 10 nM GPS (right) for 7 days. The hyphal branches on straight elongating thick hyphae (arrows) were counted. Scale bars, 1 mm. B and C, The number of *R. irregularis* hyphal branches in the presence of GPS (B) and WM (C). Data are shown as box plots with the 25th–75th percentiles (box), median (center line inside the box), and range (whiskers) [$n = 14$ –20 (B) and $n = 15$ –24 (C)]. Different letters indicate significant differences among treatments as determined by Wilcoxon's rank-sum test with Bonferroni's correction ($P < 0.05$).

Fig. 4


A

B


C

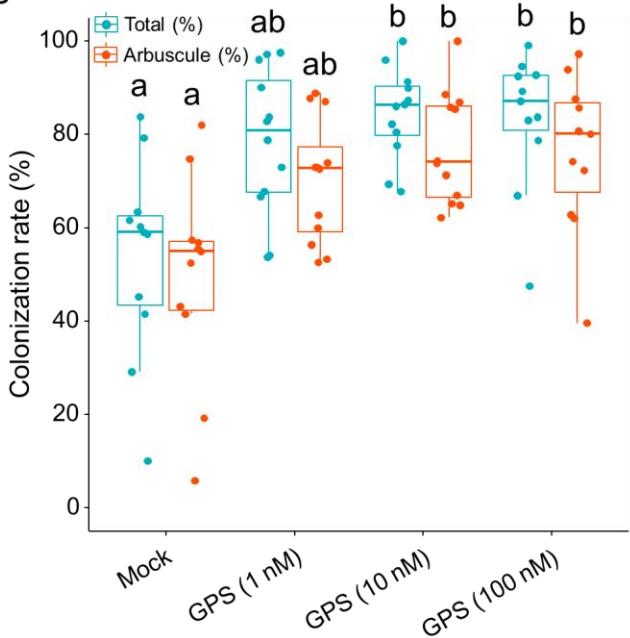
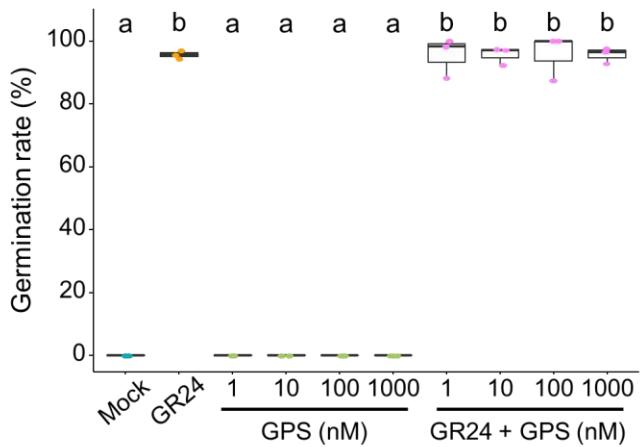
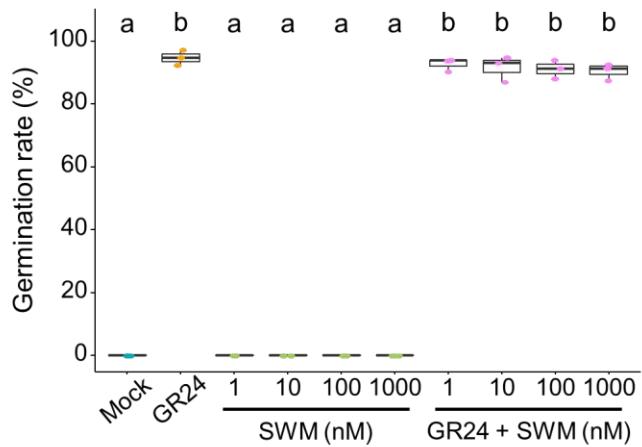
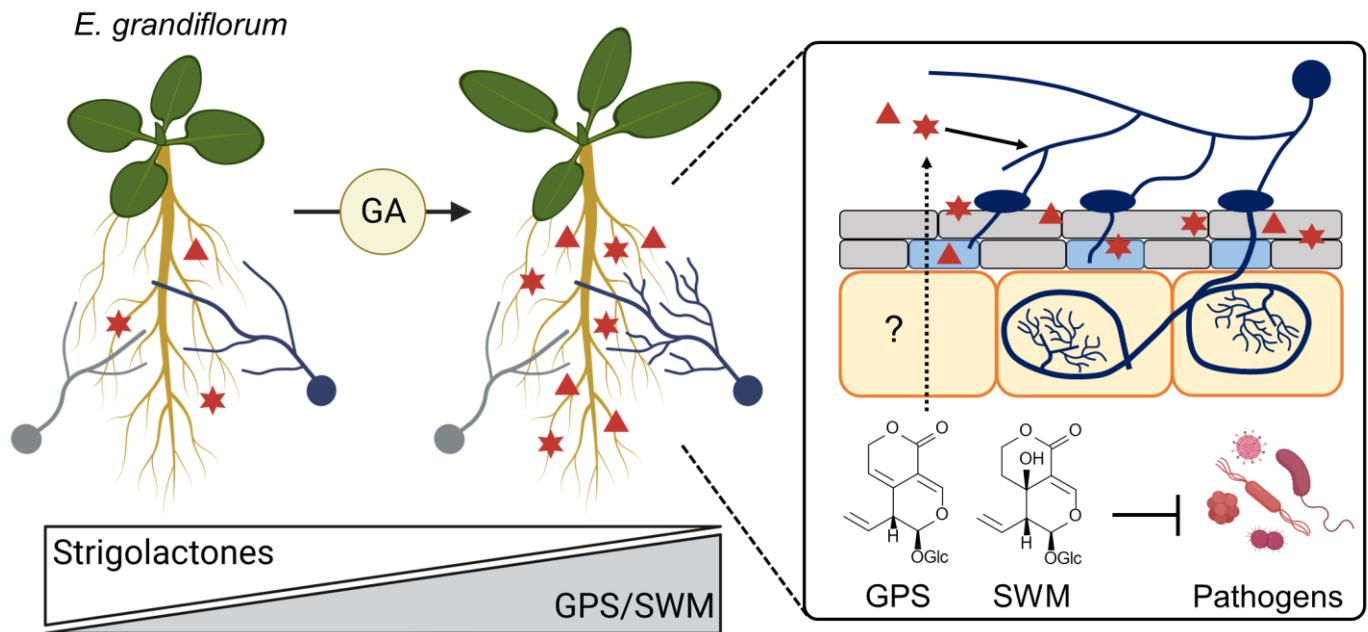

Figure 4. Transcriptional responses of GPS-treated *R. irregularis*. *R. irregularis* spores were germinated in M liquid medium for 5 days, followed by treatment with 100 nM GPS or GR24. After 8 days, the fungal RNA was extracted from 40,000 germinating spores. A, *R. irregularis* germinating spores and hyphae in each treatment. Scale bars, 1 mm. B, Volcano plots showing the distribution of the DEGs of *R. irregularis* treated with GPS (left) or GR24 (right). Horizontal lines represent that the FDR cut-off was set as 0.05, and vertical lines indicate that the Log₂FC threshold was set as -1 and 1. The downregulated and upregulated DEGs are colored cyan and magenta, respectively. C, Venn diagrams displaying the expression patterns of the fungal DEGs upon GPS and GR24 treatment. Each treatment consisted of three biologically independent samples. See also Supplemental Table S4.

Fig. 5


A


B

C



D

Figure 5. Exogenous GPS application improves *R. irregularis* colonization in chive roots without triggering *O. minor* seed germination. A, *A. schoenoprasum* (chive) roots inoculated with *R. irregularis* were harvested and observed after 1 month. A, Upper image shows the growth of chive seedlings treated with 0.01% ethanol and 1–100 nM GPS. The hyphal structures formed inside chive roots are displayed in the bottom pictures. Arrowheads indicate arbuscules. Scale bars, 50 μ m. B, Colonization rates (%) of *R. irregularis* in chive roots. Green and orange plots present the total hyphal colonization and arbuscule formation rates, respectively. Significant differences among treatments as calculated using Wilcoxon's rank-sum test with Bonferroni's correction are indicated by different letters ($n = 11$ –12, $P < 0.05$). C and D, Germination rate of *O. minor* seeds treated with 20 μ L of distilled water (Mock), 1 μ M GR24, and 1–1000 μ M GPS (C) or SWM (D) (per disk) for 5 days ($n = 3$). *O. minor* seeds were also treated with 1 μ M GR24 and 1–1000 nM GPS or SWM simultaneously. Data are shown as box plots with the 25–75th percentiles (box), the median (center line inside the box), and the minimum to maximum values (whiskers). Different alphabets indicate significant differences among treatments in Tukey test, $P < 0.001$.

Fig. 6

Figure 6. Graphical summary of the roles of GPS and SWM in AM symbiosis in *E. grandiflorum*. *E. grandiflorum* would not need SLs to associate with AM fungi in the presence of GA. Moreover, *R. irregularis* and *R. clarus* (blue) highly branch around GA-treated *E. grandiflorum* roots, unlike the phylogenetically distant AM fungus *G. margarita* (gray). GA activates the biosynthesis of monoterpenes GPS (red stars) and SWM (red triangles) in *E. grandiflorum* roots. These antimicrobial metabolites promote branch formation in two *Rhizophagus* fungi but do not alter *G. margarita* hyphal branching, consistent with the responses to GA-treated *E. grandiflorum* roots. Because the secretion of GPS/SWM has not been confirmed, their transport is shown as a dotted line. The light blue-colored cells in the right image represent hypodermal passage cells in which AM fungal hyphae constantly penetrate before colonizing the root cortex. This figure was created using BioRender.com.