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Abstract
One of the major goals of modern -omics studies, in particular
genome-wide association studies (GWASs), is to understand the poly-
genicity of various traits, i.e. the number of genetic factors causally
determining them. Analogous measures could also be used to esti-
mate the number of trait markers from non-genetic studies, such as
proteomics or transcriptomics.
Here, we describe how capture-recapture (C-R) models, originating
in animal ecology, can be applied to this task. Our approach works by
comparing the lists of trait-associated genes (or other markers) from
several studies. In contrast to existing methods, C-R is specifically
designed to make use of heterogeneous input studies, differing in anal-
ysis methods, populations or other factors: it extrapolates from their
variability to estimate how many causal genes still remain undetected.
We present a brief tutorial on C-R models, and demonstrate our pro-
posed usage of it with code examples and simulations. We then apply
it to GWASs and proteomic studies of preterm birth, a major clinical
problem with largely unknown causes. The C-R estimates a relatively
low number of causal genes for this trait, but many still undetected
protein markers, suggesting that diverse environmentally-initiated
pathways can lead to this clinical outcome.
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1 Introduction

Many important human traits are determined by complex molecular networks
that involve a large number of genes and proteins. There is considerable inter-
est in measuring the extent of such a network for a chosen trait, or polygenicity
in its broadest sense. This property is key for our understanding of the overall
molecular control principles, for example, distinguishing between the hypotheses
proposing modular [1], polygenic [2] or omnigenic with core genes [3] archi-
tectures. More pragmatically, polygenicity estimates can help in the search for
disease causes or biomarkers: they can be used to tune study design for better
power [4], or broadly indicate whether we should focus on discovering additional
causal factors or more complex interactions of known ones [5]. While mod-
ern -omics experiments are designed to directly assess which genes, transcripts
or proteins are involved in a particular biological process, differences between
populations, study designs, and random variation mean that each experiment
will still only identify some of the relevant factors, and statistical estimation of
polygenicity is needed.

Currently, polygenicity is commonly estimated using results from genome-
wide association studies (GWASs). The main approach is to model the effect
sizes of genetic variants on the trait (obtained e.g. by regression) with a mixture
distribution of lower-variance and higher-variance components, representing null
and causal effects. The estimated weight of the causal component(s) is taken to
measure the proportion of causal variants, and thus polygenicity at the variant
level [4, 6–9]. Recently, this approach was also applied at the gene level, by
first combining the variant effects into imputed transcript expression changes
and fitting a mixture distribution to these [10]. Alternatively, polygenicity has
been estimated using the kurtosis of the observed effect size distribution [11] or
the kurtosis of gene-level heritabilities [12]. (The methods directly apply to the
meta-analysis setting as well, using pooled effect sizes.) In short, the methods
rely on a precisely chosen distribution of null effects, and infer polygenicity
based on deviations from that.

Measures analogous to polygenicity could also be estimated from other types
of -omics data. Expression microarrays are often used to infer various properties
of the underlying genetic networks, such as connectivity [13]. We are not aware
of any explicit estimators for network size from such data, but in meta-analyses,
overlap between lists of differentially expressed genes from the studies is com-
monly reported, e.g. [14, 15], and various similarity measures for such lists have
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been developed [16, 17]. Meta-analyses in proteomics also typically report such
overlaps of associated markers, e.g. [18–20]. Assuming the detected proteins or
transcripts indeed represent causal genes, the amount of overlap between study
results serves as a clue about the polygenicity of the trait.

While the mixture methods used in GWAS are well formalised statistically,
they are not designed to use heterogeneous data. Specifically, we consider the
problem of meta-analysing studies that are focused on the same trait, but differ
in some biological or statistical design aspects, such as: experimental techniques;
statistical models (e.g. binary or continuous analysis); aspects of the trait def-
inition or inclusion criteria (e.g. earlier- or later-onset cases); sampling tissue
and time point, for non-genetic studies; and others. Likely, different genes or
biomarkers emerge in each setting. Our goal is not to average out their effects
over the settings, as done in standard meta-analysis, but rather to use this
variety to gain insights into the polygenic structure underlying the trait as a
whole.

In this paper, we will show how the capture-recapture framework (C-R) can
be applied to this problem, i.e. to estimate polygenicity from heterogeneous -
omics data. C-R statistically formalises the idea of inspecting list overlaps: it
originates from ecology, where it is used for estimating the total populations of
animals by combining several capture attempts. We will present an introduction
to C-R and how it applies to -omics, demonstrate the usage and performance
of the relevant tools, and analyse two real-data problems of preterm birth.

2 The capture-recapture framework

2.1 The concept

To understand the intuition behind C-R, consider a field experiment consisting
of two surveys, in which animals are captured within a defined area, such as a
forest. In the first survey, n1 animals are randomly caught, then marked and
released, mixing back into the population. After a period of time, a second
survey is conducted, randomly catching n2 individuals, and m2 of these are
seen to carry the mark from the first survey. Then, we can expect that the
first survey marked a fraction of the population close to m2/n2, and so we
have an intuitive way to estimate N , the total number of animals in the area:
n1 = m2/n2N =⇒ N̂ = n1n2/m2; this is the Petersen-Lincoln estimator and
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the simplest case of C-R. (For in-depth technical details and historical references
of the models discussed here we refer the reader to [21–23].)

Throughout the last 100 years, the C-R idea has been formalised and
extended to accommodate a wide variety of data. The concept is not in any
way specific to ecological surveys or physical capturing, and can be applied
to any situation where a population size needs to be estimated from multiple
lists of detected individuals. C-R is commonly used in demographics and public
health, e.g. for estimating disease prevalence by combining sources such as hos-
pital records, prescription registers, and insurance claims [21, 24], and especially
in situations where direct counting is difficult, such as stigmatising or criminal
outcomes [25, 26].

2.2 Model details

More precisely, the input data in C-R settings is the capture history for each
observed individual, such as “1101. . . ”, with 1 at position i indicating that the
individual was observed on the ith occasion and 0 that he was not. We will
denote by n1101... the count of such a capture history; for example, for a three-
list dataset, we have n100 – the number of individuals recorded only in list 1,
n010 – the number of individuals recorded only in list 2, n110 – the number of
individuals present in both lists 1 and 2, but not 3, etc. We seek to estimate
N = n000 + n100 + n010 + n001 + n110 + n101 + n011 + n111, or just the n000, the
number of individuals that were not seen in the dataset.

Since practical applications of C-R often involve more than 2 lists, solving the
model requires more complex techniques than the Petersen-Lincoln estimator.
(We will continue assuming that 3 lists are used, to keep notation clearer.)
Several approaches are common. One is to define a statistical model of the
capture process, with constraints based on the domain knowledge, and estimate
N by maximising the probability of observed data (likelihood). Darroch, Otis
and Pollock developed a series of models in this fashion [27]. The simplest, M0,
assumes that each individual in each list is detected with a fixed probability
p, and independently of others. Then the likelihood can be obtained from the
multinomial distribution as:

L(N, p|nijk : ijk ̸= 000) = N !∏
ijk nijk!p

n.(1 − p)T N−n.
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where n. is the total number of recorded detections in the dataset, T is the
number of lists. Note that maximising the likelihood also provides an estimate
of p, which may be of interest too. If the detection probability changes between
lists, we have model Mt, with likelihood [27]:

L(N, pt|nijk : ijk ̸= 000) = N !∏
ijk nijk!

∏
t

(
pnt

t (1 − pt)N−nt

)

with nt – the number of detections in the list t. Similarly, heterogeneity between
the individuals can be incorporated, as a unique p for each individual (model
Mh). There are also models accounting for behavioural response to capture
(Mb) and combined extensions (Mtb etc.), which are more relevant in eco-
logical applications. Overall, extensibility is one advantage of the likelihood
approach, and it can easily incorporate any additional information recorded
with the detection, for example, if some measure of the detected signal strength
is available [28].

An alternative solution for multiple lists is to create a log-linear model for
the counts of each type of capture history. For three lists, one such possible
setup is: log E(nijk) = u + iu1 + ju2 + ku3 + iju12 + jku23 + iku13 [24, 29];
estimating u = log E(n000) is of interest and allows us to estimate N . The terms
allow different main effects for each survey (in this example, u1 are the log-odds
for being detected in list 1 etc.) and any pairwise or even higher interactions
between the lists, so models M0, Mt and certain others can be obtained in this
approach as special cases. Common GLM software can be used for fitting. This
is also the approach taken in the R package Rcapture, which we will use in this
paper [30].

Note that all the models discussed here share the assumption that the pop-
ulation to be estimated is “closed” – no individuals enter or leave it between
the surveys. This can be a major limitation in certain ecological contexts, and
much work has been done on adapting C-R to include births or deaths. As we
will deal exclusively with closed populations in this paper, we do not discuss
these extensions further and refer the interested reader to [23].

2.3 Adapting C-R for -omics

Our premise is to directly apply the C-R models to the -omics meta-analysis
setting. Thus, the “captured” objects are genes (or other biomarkers) causing a
trait of interest; the population to be estimated, N , is the total number of causal
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genes for that trait; the observed data are lists of associated genes, retrieved
from 2 or more studies of the trait. In effect, applying C-R will allow us to
formally measure the overlap between the lists, and provide an estimate of the
number of causal genes missed in both studies, as well as the total number of
causal genes for this trait (polygenicity).

We assume that the included studies can detect different genes. Several rea-
sons commonly lead to this in practice [31–33]: random variation between the
samples; true differences in effect sizes between studied populations; differences
in study design and technical methods; different inclusion criteria, covariate
adjustment, trait definition, etc. We will highlight some specific instances of
such factors in our case studies further below. In the C-R approach, the detec-
tion process is treated as a black box – the model simply includes a detection
probability term. Based on the variability between the studies’ results, C-R
estimates both this probability and the number of genes remaining undetected.

Specifically, we will consider these models:

• M0. Each gene is detected in each study with equal probability p (no
heterogeneity, no study effects).

• Mt. In study t, each gene is detected with a probability pt (study effects).
• Mh. Gene g is detected in each study with a probability pg (heterogeneity

between genes). We will specifically consider the model Mh Poisson2 where
the pg’s are based on a mixed Poisson distribution [30].

• Mth Poisson2. In study t, gene g is detected with a probability pt,g (het-
erogeneity between genes and study effects), based again on the Poisson
mixture.

The latter models are likely more realistic – we expect some studies to have
higher detection power, e.g. due to sample size, and certain genes likely have
higher effects in all contexts and thus are detected often. However, fitting models
with heterogeneity requires more data, while ignoring these differences generally
leads to underestimated N , so the simplified models still provide valid lower
bounds [23].

Key assumptions are that the total “population” of causal genes is closed
(does not change between the studies), as discussed before, and that the genes
are reliably identified by their names. These assumptions are violated e.g. if some
of the input studies only analyze certain chromosomes or subsets of proteins.
The analyst also has to ensure that the protein names or other identifiers used
are consistent across the studies. We also do not expect the genes to “react” to
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a detection in any way, i.e. the detection probability does not depend on the
temporal order of the studies. With these assumptions, we avoid the need for
the more advanced C-R models developed for other areas [21, 23].

2.4 Implementation and example code

We fit the C-R models using the R package Rcapture [30]. The package takes as
input a detection history, sets up a log-linear (Poisson) regression based on the
tested model, and solves the model to produce the abundance estimate. Several
different models are included in Rcapture (although given 2 lists, only M0, Mt
and Mb can be fitted).

As the starting input, we simply create a list recording the detections of
each study in a separate element. For example:

detected.genes = list(c("ABC1", "DEF2"), c("DEF2",

"FGH3"))

The list is converted into a capture history compatible with Rcapture, and
the available models are fitted, with these three lines of code:

all.genes = unique(unlist(detected.genes))

capt.hist = sapply(detected.genes , function(x)

all.genes %in% x)

closedp(capt.hist)

This example analysis would produce the output below, showing 4 as the
estimated number of causal genes (“abundance”); this matches the simplest 2-
list estimator N̂ = n1n2/m2. Akaike information criterion (AIC) values are also
reported and can be used for model selection. Note the infoFit column which
here warns about a bad model fit, due to the very low amount of data in this
example.

Number of captured units: 3

Abundance estimations and model fits:

abundance stderr deviance df AIC BIC infoFit

M0 4 2.0 0 1 10 8.197 warning #1

Mt 4 2.0 0 0 12 9.296 warning #1

Mb 4 3.5 0 0 12 9.296 OK

Confidence intervals can be calculated from the provided standard errors,
i.e. N̂ ± 1.96 × SE for 95 %, or better ones (based on profile likelihood [30]) can
be obtained using the closedpCI.* functions with the desired model:
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closedpCI .0( capt.hist) # for the M0 model

closedpCI.t(capt.hist , m="Mt") # for the Mt model

3 Simulations

3.1 Methods

We conducted simulations to verify that the proposed framework can recover
the number of causal genes (or other biomarkers). First, we assumed a study
design where the genes are directly identified. From a list of 2552 genes com-
prising human chromosome 1, we randomly assigned 30 genes as causal, and
simulated 2 studies, each having a 10 % probability to detect each causal gene
(i.e. each study has 10 % power, or sensitivity, for each gene). The two resulting
lists of “detected” genes were analysed with C-R, model M0, implemented in
Rcapture [30]. The process was repeated with different numbers of causal genes
and detection probabilities, in 300 replicates in each setting.

Next, we simulated a meta-analysis of 2 GWAS studies, including SNP-
level effects. For each study, we simulated the genotypes of 2000 individuals at
≈ 90, 000 positions (X) with the R sim1000G package [34]. As the reference
(sim1000G uses it to determine the linkage structure and allele frequencies),
we used genotypes of chromosome 1 from the 1000 Genomes European (CEU)
samples, selected to have minor allele frequency in Europeans >0.05 and then
downsampled to approx. 90,000 markers. The genotypes were created once and
used in all simulation replicates. We then randomly selected 50 genes to be
causal. For each study and each gene, a random SNP s within 10 kbp of the gene
was selected, and assigned an effect size of βs ∼ Uniform(−10, 10). A continuous
phenotype was defined:

Y =
∑

s

βsXs + ϵ, ϵ ∼ Normal(0, σ)

with different values of the residual standard deviation σ. The resulting heri-
tability (V ar βsXs/V ar Y ) is in the range of 25–95 %, relatively high to allow
simulating fewer individuals than typical in GWAS.

A GWAS was conducted on this with PLINK 1.9 [35], using linear regres-
sion of the minor allele dosage as the association model. SNPs significant at the
genome-wide threshold p < 5×10−8 were assigned to the closest gene (counting
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from the gene midpoint). The resulting gene lists from the 2 studies were anal-
ysed with the C-R model M0, as described above. We also repeated the C-R
analysis using only genes tagged by independent SNPs (r2 < 0.1 if within 250
kbp, and p < 5 × 10−8), selected with PLINK --clump command. Another set
of simulations was carried out identically, but with 200 causal genes, and the
SNP effect drawn as βs Normal(0, 5). The simulations were repeated 300 times
in each setting.

A third set of simulations was carried out as above, but using 3 GWAS
studies with 1000, 3000 and 9000 individuals. Genotypes and phenotypes were
simulated as above, again in two scenarios: 50 causal genes and a SNP effect
drawn from Uniform(−10, 10), or 200 causal genes and effect ∼ Normal(0, 5),
residual SD σ set to 50. Association tests were conducted, significant SNPs
clumped and assigned to genes as above. Gene lists were analysed with C-R
models M0, Mt or Mth Poisson2 in the Rcapture package.

Fig. 1 Distribution of the C-R (model M0) estimated numbers of causal genes, in
simulations of pairs of studies directly detecting genes. In each simulated study, genes
were directly drawn from the causal set, with the detection probability for each gene
as shown on the x-axis. Also shown is the percentage of simulations that were not
usable in C-R, i.e. the studies had zero overlaps.

3.2 Results

We verified that the C-R model is a consistent estimator for the causal gene
number in simple situations where genes are identified directly in the studies
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(Figure 1). Since it requires at least 1 overlapping record between the studies,
it fails when both the number of genes and detection probability are low, but
in our simulations even ≈ 10 detected genes per study was enough to achieve
useful estimates (Figure 1).

When simulating GWAS studies, the problem of assigning SNPs to the cor-
rect causal gene is introduced. The estimate from C-R can be biased upwards,
if the LD structure is ignored, because the causal signal spreads between linked
SNPs which can then tag several different genes (Figure 2). However, in prac-
tice, researchers would assign such SNPs to the same gene, after standard
post-GWAS procedures such as inspecting the linkage structure or conditional
analysis; to approximately emulate this, we clumped the SNPs to an indepen-
dent set of signals, and the bias mostly disappeared (Figure 2). We expect the
bias to decrease further as researchers tend to define causal loci consistently
with previous studies, which we did not model. Note also that even in the high-
noise settings when up to half of the simulated meta-analyses fail, the remaining
estimates are still roughly accurate (Figure 2).

Fig. 2 Distributions of the C-R (model M0) estimated numbers of causal genes, in
simulations of pairs of GWAS studies. Each study simulates 90,000 SNPs for 2000 indi-
viduals, a phenotype with the specified residual standard deviation (higher SD = lower
heritability), tests the SNPs for association with the phenotype, and reports genes
corresponding to all associated SNPs (“all”) or only independent signals (“clumped”).
Reported genes are analysed with C-R. Also shown is the percentage of simulations
that were not usable in C-R, i.e. the studies had zero overlaps.

With 3 or more studies, other C-R models in addition to M0 can be applied.
We tested this on simulations of triplets of studies, differing in sample size, and
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thus the power or probability to detect the causal genes. Under this heterogene-
ity, model M0 was substantially biased upwards (Figure 3). This was mostly
fixed with the appropriate model Mt (Figure 3), again with a small bias remain-
ing due to assigning linked SNPs to multiple genes, which would be resolved in
practice. (About 7–10 % of the simulations had no overlap between the stud-
ies and could not be analysed.) We also observe that including a between-gene
heterogeneity component (model Mth Poisson2), which was not needed here,
can greatly reduce estimator precision.

Fig. 3 Distributions of the C-R estimated numbers of causal genes, in simulations of
triplets of GWAS studies. In the studies, 90,000 SNPs are simulated for 1000, 3000 and
9000 individuals, then tested for association with a simulated phenotype, and genes
corresponding to the independently associated SNPs are reported. Reported genes are
analysed with different C-R models.

4 Case studies

To demonstrate how the proposed method can be applied to real problems,
we will use it to analyse different -omic studies of human pregnancy duration.
Deviations from the expected duration of 40 weeks, in particular preterm birth
(birth <37 weeks), have major consequences to neonatal survival and health [36].
Several genome-wide association studies of pregnancy duration have been con-
ducted [37–39], as well as many proteomic, transcriptomic and candidate-gene
studies attempting to identify any relevant biomarkers. Still, a large fraction of
the variability in this trait remains unexplained. It is considered that pregnancy
timing control is very heterogeneous, with multiple causal pathways leading to
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apparently similar outcomes [40]; accordingly, studies have used various differ-
ent case definitions or statistical models, with varying success. Using C-R, we
aim to summarise these results, and give an approximate indication of how
many causal genes and proteins still remain unseen in the current studies.

4.1 GWAS of preterm birth and gestational age

Two large maternal GWASs of pregnancy duration have been conducted recently
[38, 39]. Both studies analysed the samples in two statistical models: case-control
tests with preterm delivery as the outcome, and regression models of continuous
gestational duration. Still other models have been proposed and used in the
field, such as testing post-term vs. term pregnancies, more extreme pretermity
cutoffs, survival and rank-transformed models. To estimate how many genes
remain undetected by the two models used so far, we applied C-R to the results
of the two studies.

From each study, we retrieved two lists of genes, i.e. associations with PTD
and with GA, as reported by the authors (generally, for each independently
genome-wide associated SNP the nearest gene was chosen). In Solé-Navais et
al. [38], 23 genes were reported for GA, and 7 for PTD, of which all but 1 were
also reported for GA. The Pasanen et al. [39] study reported 15 genes for GA
and 4 for PTD (of these 2 unique to PTD). Some samples were used in both
studies, and the top hits were largely shared, but 14 of the genes were still
unique to [38] and 7 unique to [39].

We applied C-R models to the pair of lists in each study (Table 1). The
estimated number of genes was around 30 in each (model Mt). This is not
much higher than the numbers of genes detected directly – corresponding to
the high overlap observed between the GA and PTD lists – and indicates that
analysing this data with furhter association models (such as the post-term or
survival ones) likely would not reveal many more genes. (The M0 models are
less appropriate here as they assume equal detection power in both lists, and
also showed higher AIC.)

Note that the C-R estimates can only account for the sources of variability
reflected in the input data. In this example, the two gene lists were produced
by different analysis methods, but in the same cohorts. Thus, the estimates do
not capture, for example, possible variation of effect sizes between populations.
To incorporate that, the C-R models can also be applied to all four gene lists
from the two studies. The estimates increase to around 37–66, depending on
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the chosen model (Table 1; as more than 2 lists are present, Mth models can
also be fitted here). In other words, we can expect that, in addition to the ≈ 30
hits reported from these GWASs so far, at least around 10–30 more could still
be discovered by conducting additional GWASs in other populations. (Noting
that exceptionally large studies may find many more hits by capturing genes
with very small effects, which are not reflected in any of the current GWASs.)

Gene lists model estimate SE AIC

Solé-Navais et al. [38] M0 37.5 9.2 31.6
Solé-Navais et al. [38] Mt 26.8 3.6 16.3
Pasanen et al. [39] M0 45.1 25.2 22.7
Pasanen et al. [39] Mt 30.0 14.0 15.6
both studies M0 40.7 5.3 73.0
both studies Mt 37.0 3.9 52.1
both studies Mh Poisson2 65.6 23.1 68.2
both studies Mth Poisson2 58.1 18.9 43.3

Table 1 C-R estimates of the number of causal genes, based on
different C-R models and input studies. From each study, 2 gene
lists are retrieved, corresponding to gestational duration and
preterm delivery analyses.

4.2 Proteomics of preterm birth

In the next example, we apply C-R to a larger set of studies which differ in
various clinical and technical aspects. We conducted a literature search and
meta-analysis of proteomic studies of preterm birth biomarkers. Studies were
identified from the Web of Science database on 2022 August, using the following
search string: proteom* AND preterm AND (birth OR delivery) in abstract.
The search produced 164 abstracts, which were then manually inspected to
remove studies of cell cultures or other organisms, studies of outcomes not
primarily related to birth timing, reviews or other studies not reporting new
results, as well as targeted multiplex or microarray studies (such designs would
prevent some markers from being detected and so are not compatible with our
method); 47 abstracts passed these criteria.

False positive detections are not accounted for in our method and would
inflate the estimates upwards. To reduce their rate, we required the protein
detections to pass a strict false discovery rate (FDR) criterion of 5 %. This meant
that studies were excluded if they did not report any significance metrics, did
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not provide sufficient information to understand their metrics or calculate FDR,
or if no significant proteins remained after authors’ adjustments or validation.
Note that the method in general does not require significance metrics in the
input, as the user only needs to provide the (reliably) detected marker names.

After the final exclusions, 12 datasets from 10 studies remained, with details
shown in Supplementary Table S1 [20, 41–49]. The studies cover a range of sam-
pling time points, inclusion criteria, different protein identification techniques,
different tissues and fractions (maternal plasma, amniotic fluid, placental tis-
sues); although we excluded several studies which collected neonatal samples
after birth, reasoning that these likely reflect consequences rather than causes of
preterm delivery. In sum, these studies reported 385 detections (at our thresh-
old of FDR <5 %), covering 311 unique proteins. Figure 4 shows the overlap
between the 4 studies with the most detections: clearly, some of the proteins
were common between multiple studies, but it is difficult to make any quantita-
tive conclusion from such visual inspection, especially given that several more
studies are not shown.

In contrast, the C-R models quantify the overlap, and directly produce an
estimate of the total number of preterm birth biomarkers: 832 (95 % profile-
likelihood CI 689–1030) using the M0 model, or 757 (95 % CI 631–930) using
the Mt model. The latter is likely more accurate as it includes a component
to model the substantial heterogeneity present between studies, and is also
favoured by the data, as reflected in the much lower AIC (203 for Mt vs.
550 for M0). Including between-gene heterogeneity components (Mth models)
provided virtually no improvement (AIC 194–201). As the estimated number of
markers is large and several times higher than detected in any single study in this
review, we conclude that the proteomic signatures of preterm birth are highly
diverse, representing different, potentially environment- or ancestry-dependent,
etiologies.

5 Discussion

Capture-recapture modelling has found useful applications in many fields. In
this paper, we showed how it can be applied to -omics as well, specifically when
heterogeneous data sources are meta-analysed. In the case study of preterm
birth, C-R indicated a relatively small number of causal genes and high overlap
between GWASs with different analytic approaches, and in contrast estimated
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Fig. 4 Venn diagram showing the overlap between the proteins reported in the 4
studies with the most detections from the meta-analysis of preterm birth biomarkers.

many biomarkers at the protein level. Our interpretation is that diverse envi-
ronmental pathways lead to preterm birth, in line with e.g. [40], while the
main genetic pathways to this outcome are few, but robust across samples and
conditions.

While C-R models can be straightforward to apply, interpreting the results
requires great care. Firstly, any biases present in the input data remain, in
particular the potential for confounding. At the transcript or protein level, many
of the detected changes might reflect consequences of the trait, not its causes
[50]. Genetic variant associations are robust to many types of confounding, but
even then it may still arise e.g. due to participation bias [51]. In our proteomics
case study, we only include studies where the samples are taken before birth,
to reduce such issues, but still the detection lists – and our estimates – may
include many proteins which are non-causal biomarkers.

Secondly, since C-R works by extrapolating from the variability in the input
studies, it can only account for the sources of variability that were present there.
In particular, if all input studies were conducted on European individuals, the
estimated polygenicity may miss some causal factors that are important in other
populations, and will likely be too low. Thus, the usefulness of our method
critically depends on the availability of relevant and diverse input data.

Finally, we emphasise again that polygenicity in our framework is defined
differently than in the current alternatives. In C-R, we expect that the causal
factors must become apparent and detectable in at least one testable setting.
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In contrast, mixture methods such as [8] define polygenicity as the weight of
the higher-variance component of the effect size distribution – which means
that most of the causal factors are in fact modelled to have zero or near-zero
effect. One could, in principle, meta-analyse different studies and apply the lat-
ter methods to the distribution of averaged effect sizes. However, even simple
differences in design – such as binary vs. continuous outcome – lead to complica-
tions when averaging the effects [52]. Harmonising effect sizes for meta-analysis
can also be a challenge with expression arrays [53]. We therefore see C-R, mix-
ture models, as well as other methods for quantifying heritability and genetic
correlation [54] as complementary approaches, and combining and contrasting
these will be needed to fully understand the challenges of human complex trait
genetics.
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