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Abstract 
Neuroimaging data from multiple batches (i.e. acquisition sites, scanner 

manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the 

human brain. However, multi-batch data, as well as extracted radiomic features, exhibit 

pronounced technical artifacts across batches. These batch effects introduce 

confounding into the data and can obscure biological effects of interest, decreasing the 

generalizability and reproducibility of findings. This is especially true when multi-batch 

data is used alongside complex downstream analysis models, such as machine learning 

methods. Image harmonization methods seeking to remove these batch effects are 

important for mitigating these issues; however, significant multivariate batch effects 

remain in the data following harmonization by current state-of-the-art statistical and 

deep learning methods. We present DeepCombat, a deep learning harmonization 

method based on a conditional variational autoencoder architecture and the ComBat 

harmonization model. DeepCombat learns and removes subject-level batch effects by 

accounting for the multivariate relationships between features. Additionally, 

DeepComBat relaxes a number of strong assumptions commonly made by previous 

deep learning harmonization methods and is empirically robust across a wide range of 

hyperparameter choices. We apply this method to neuroimaging data from a large 

cognitive-aging cohort and find that DeepCombat outperforms existing methods, as 

assessed by a battery of machine learning methods, in removing scanner effects from 

cortical thickness measurements while preserving biological heterogeneity. Additionally, 

DeepComBat provides a new perspective for statistically-motivated deep learning 

harmonization methods. 

1 Introduction 
There is increasing need for larger sample sizes in human magnetic resonance 

imaging (MRI) studies to detect small effect sizes, train accurate prediction models, 

improve generalizability, and more. This has led to more interest in multi-batch studies, 

where subjects are imaged across multiple sites or scanners and then aggregated 

together (Bethlehem et al., 2022; Casey et al., 2018; Di Martino et al., 2014; Marek et 
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al., 2022; Mueller et al., 2005; Trivedi et al., 2016; Van Essen et al., 2013). multi-batch 

studies overcome limitations of single site studies, which are often unable to recruit 

sufficiently large or representative samples to achieve study goals; however, multi-batch 

study designs introduce non-biological, technical variability between subjects imaged 

from different batches due to differences in acquisition, scanner manufacturer, magnet 

strength, post-processing, and more (Badhwar et al., 2020; Han et al., 2006; Jovicich et 

al., 2006; Takao et al., 2014, 2011). Such technical variability is often referred to as 

“scanner effects” or “batch effects” and, if not appropriately addressed, may result in 

invalid, non-reproducible, or non-generalizable study results. Post-acquisition removal 

of these batch effects, known as image harmonization, is a promising approach for 

mitigating these issues (Hu et al., 2023). 

Harmonization of image-derived features, such as cortical thicknesses, functional 

connectivity values, radiomics features, and more has been extensively studied. Fortin 

et al. (2017) showed that the ComBat model, adapted from the genomics setting, could 

effectively remove batch effects by modeling them univariately as additive differences in 

means and as multiplicative differences in variances of residuals (Johnson et al., 2007). 

This model has also been extended to unique data settings, such as those where 

covariate effects are non-linear, longitudinal data is present, decentralized learning is 

required, multiple batch variables should be corrected for, or traveling subjects are 

available (Bayer et al., 2022; Bostami et al., 2022; Chen et al., 2022b; Horng et al., 

2022; Maikusa et al., 2021; Pomponio et al., 2020). In applied studies, ComBat-family 

methods have been widely used and shown to improve inference and generalizability of 

results (Acquitter et al., 2022; Bartlett et al., 2018; Bourbonne et al., 2021; Crombé et 

al., 2020; Fortin et al., 2018; Marek et al., 2019; Yu et al., 2018). This may be especially 

true in mass univariate inference settings, where biological effects are modeled at the 

individual feature level, since this setting matches the data assumptions made by the 

ComBat model. 

However, in studies where feature-level data is used in a highly multivariate 

manner, univariate harmonization approaches may be insufficient. For example, as 

imaging researchers have become more interested in complex prediction efforts, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.24.537396doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.537396
http://creativecommons.org/licenses/by/4.0/


multivariate feature datasets are used as inputs to predict an outcome of interest. In 

these settings, state-of-the-art machine learning (ML) algorithms are often used as 

powerful approaches that are able to jointly leverage the multivariate distribution of 

features, accounting for complex non-linear and interaction effects (Hu et al., 2023; 

Koutsouleris et al., 2014; Smith et al., 2017; Wager et al., 2013). Batch effects that exist 

in the interactions between features may also be picked up by these ML algorithms, 

which can lead to decreased generalizability of these models and overfitting of model 

parameters on batch effects, especially when batch status is a relevant confounder for 

the outcome. Thus, recent efforts in feature-level harmonization have attempted to 

detect and mitigate such multivariate batch effects. 

From the statistical perspective, recently proposed methods for multivariate 

harmonization have included CovBat (Chen et al., 2022a), Bayesian factor regression 

(BFR, Avalos-Pacheco et al., 2022), and UNIFAC (Zhang et al., 2022). Like ComBat, 

these models assume batch effects can be effectively modeled through the combination 

of low-rank additive and multiplicative effects. However, instead of modeling batch 

effects solely in a univariate manner, CovBat additionally assumes batch effects to be 

present in the covariance structure of model residuals, while BFR and UNIFAC assume 

additive batch effects to be present in the direction of multivariate latent factors. 

Additionally, while ComBat, CovBat, and UNIFAC all seek to ultimately produce a 

dataset of harmonized features, BFR instead learns a low-dimensional representation of 

the original features where batch effects have been removed; BFR does not map this 

low-dimensional representation back to the feature space. 

From the deep learning perspective, feature-level multivariate harmonization 

methods have leveraged the conditional variational autoencoder (CVAE) architecture, 

an adaptation of the standard variational autoencoder that attempts to disentangle the 

latent space distribution from covariates of interest (Kingma and Welling, 2014; Sohn et 

al., 2015). These models include diffusion CVAE (dcVAE, Moyer et al., 2020) and goal-

specific CVAE (gcVAE, An et al., 2022). In dcVAE, an encoder is used to embed vector 

representations of diffusion MRI data as latent space distributions, and the encoder is 

penalized when batch-specific information is present in the latent space representation. 
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Then, the decoder is given these latent space distributions along with explicit batch 

information and trained to reconstruct the original input. Through this process, dcVAE 

assumes that the encoder can learn to remove batch effects and the decoder can 

accurately reconstruct the original data, but with batch effects removed. However, An et 

al. (2022) noted that dcVAE may inadvertently remove biological information of interest. 

They proposed gcVAE could recover this biological information by fine-tuning the 

dcVAE decoder such that the decoder could not only accurately reconstruct the input 

but could also retain biological information of interest in the reconstruction. gcVAE 

encourages this behavior by adding an additional pre-trained neural network classifier to 

the end of dcVAE that attempts to use decoder output to predict biological covariates of 

interest. Classifier success is rewarded in the loss function. 

Finally, there have been extensive efforts in performing image-level 

harmonization, where batch effects are removed from raw MRI images instead of from 

image-derived features (Bashyam et al., 2022; Cackowski et al., 2021; Fatania et al., 

2022; Fetty et al., 2020; Hiasa et al., 2018; Karras et al., 2019; Liu et al., 2021; 

Modanwal et al., 2020; Tian et al., 2022; Yao et al., 2022; Zhao et al., 2019; Zhu et al., 

2017; Zuo et al., 2021). These methods attempt to disentangle biological variability from 

technical variability through the use of generative adversarial networks (GANs) or 

convolutional autoencoder-style models similar to the CVAE networks describe above. 

In methods based on cycle-consistency GAN (CycleGAN), two generator-

discriminator pairs are trained together (Hiasa et al., 2018; Modanwal et al., 2020; Zhao 

et al., 2019; Zhu et al., 2017). The first pair seeks to make images from the first batch 

look like those from the second batch, while the second pair seeks to make images from 

the second batch look like those from the first batch. Importantly, a cycle-consistency 

constraint is enforced, such that when images from the first batch are cycled to the 

second batch and then back to the first batch, these cycled images are consistent with 

the original raw images. The same constraint is enforced for images from the second 

batch. 

For autoencoder-based methods applied at the image level, ideas similar to 

CVAE are used, where methods seek to decompose images into batch-invariant 
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content representations in the encoding step, and then in the decoding step, inject these 

content representations with batch information necessary for reconstruction (Bashyam 

et al., 2022; Cackowski et al., 2021; Fatania et al., 2022; Fetty et al., 2020; Karras et al., 

2019; Liu et al., 2021; Tian et al., 2022; Yao et al., 2022; Zuo et al., 2021). Broadly, in 

this class of harmonization methods, batch discriminators can be used to impose 

penalties on embedding batch information into the latent space, GANs can be used as 

decoder modules in order to achieve more realistic reconstructions, and cycle-

consistency losses can be imposed to encourage disentanglement of batch and 

content. Importantly, instead of in feature-level CVAE, where batch information is 

merely concatenated to the latent space representations at the decoding stage, in 

image-level autoencoder-based methods, adaptive instance normalization (AdaIN) is 

commonly used to inject batch information (Huang and Belongie, 2017). AdaIN showed 

that in convolutional autoencoders, where latent space representations consist of 

convolutional feature maps where each feature map can be thought to indicate the 

locations and strength of that feature in the input image, arbitrary style transfer can be 

performed in the latent space by shifting and rescaling each feature map such that its 

mean and variance match those of the corresponding feature map in the desired style. 

Intuitively, AdaIN proposes that style, or batch status, is largely encoded in the first two 

moments of the latent space representation and that globally changing these moments 

within each feature map results in style transfer. Non-convolutional autoencoders have 

been shown to similarly encode style information in the latent space, at least with 

respect to the first moment, in single-cell RNA sequencing (Lotfollahi et al., 2019). 

Notably, deep learning harmonization methods designed for both feature-level 

and image-level data make a number of strong implicit assumptions. Firstly, deep 

learning harmonization methods tend to directly use model outputs from the 

harmonization step as the resulting harmonized data – unmodeled residual terms are 

unaccounted for, as well as any batch or biological effects that may exist in these 

residuals. Implicitly, this makes the strong assumption that the deep learning method is 

able to achieve perfect or nearly-perfect model fit – that is, the reconstruction loss and 

cycle-consistency loss for autoencoders and cycle-consistency GANs, respectively, is 

zero or nearly zero. This is in contrast to statistical harmonization methods, which tend 
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to estimate batch effects within unmodeled residual terms as a difference in scale; the 

residuals are rescaled and added back to the model-based biological effects to produce 

the resulting harmonized data. Secondly, deep learning harmonization methods assume 

that batch and biological effects can be completely disentangled through loss function 

optimization and choice of network architecture. While this may be easily achievable in 

isolation, complete disentanglement may be challenging to achieve in conjunction with 

the implicit nearly-perfect model fit assumption. Finally, deep learning harmonization 

methods do not explicitly take into account that biological covariates may be imbalanced 

across batches – in such cases, some population-level differences across batches may 

actually be due to true biological differences and therefore should not be removed. 

In this manuscript, we propose a novel deep learning harmonization method, 

called DeepComBat, that is designed to effectively remove multivariate batch effects in 

a statistically-informed manner. Compared to statistical methods such as ComBat and 

CovBat, DeepComBat promises removal of complex, non-linear, and multivariate batch 

effects from the raw data in a way that mitigates detection of batch effects using highly 

multivariate methods. Compared to other deep learning methods, DeepComBat avoids 

making the assumptions described above – unmodeled residual terms are explicitly 

accounted for and corrected, a completely disentangled latent space is not required, 

and model-based batch effects are removed conditional on biological covariates that 

may be confounders. To the best of our knowledge, DeepComBat is the first deep 

learning harmonization method that explicitly accounts for confounders or unmodeled 

residuals. Additionally, DeepComBat hyperparameters can be tuned manually based on 

readily-accessible latent space summary statistics, and DeepComBat can be thought to 

have a form of “double-robustness” such that even with poor model fit, reasonable 

harmonization can still be achieved. 

We apply DeepComBat to cortical thickness measurements acquired by the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and compare our results to those of 

other feature-level harmonization methods where open-source code was available, 

namely: ComBat, CovBat, dcVAE (modified for non-diffusion setting), and gcVAE. We 

find that, compared to other methods, DeepComBat-harmonized data retains biological 
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information of interest while containing minimal batch information as assessed by a 

number of ML methods. Our results demonstrate the advantage of incorporating 

statistical ideas into deep learning methods in order to more effectively perform 

multivariate harmonization.  

2 Methods 
2.1 ADNI dataset and preprocessing 

We included 663 unique subjects (381 males) from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/). For each subject, the most 

recent T1-weighted (T1w) imaging acquired during the ADNI-1 phase was used; all 

included images were acquired between July 2006 and August 2010. Informed consent 

was obtained for all subjects in the ADNI study. Institutional review boards approved the 

study at all of the contributing institutions. 

For the purposes of this study, we define two batches based on scanner 

manufacturer – the first batch consists of all subjects imaged on scanners manufactured 

by Siemens Healthineers (n = 280) and the second batch consists of all subjects 

imaged on scanners manufactured by either Philips Medical Systems (n = 96) or GE 

Healthcare (n = 287). These two batches were chosen based on findings by Fortin et al. 

(2018), who showed marked cortical thickness differences were present between 

images from Siemens and non-Siemens scanners, while minimal differences were 

present between images from Philips and GE scanners. Philips and GE manufacturers 

were combined into one batch to allow for improved estimation of the batch effects 

between Siemens and non-Siemens scanners. 

Additionally, we define age, sex, and Alzheimer disease status (cognitively 

normal, CN; late mild cognitive impairment, LMCI; Alzheimer disease, AD) as biological 

covariates of interest that may confound the relationship between batch status and T1w 

imaging – these covariates are known to affect brain structure and also may be 

associated with scanner manufacturer through differing population demographics 

across sites. Subject demographics at time of most recent acquisition are presented in 

Table 1, stratified by these two batches. Notably, there are marked differences in the 
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distribution of sex across the two batches, suggesting that confounding of batch status 

by subject demographics is plausible, and estimation of batch effects should be 

conditioned on subject demographics. 

 

Processing of these data was carried out using the Advanced Normalization 

Tools (ANTs) longitudinal single-subject template pipeline (Tustison et al., 2019). 

Briefly, we first downloaded raw T1w images from the ADNI-1 database, which were 

acquired using MPRAGE for Siemens and Philips scanners and using a works-in-

progress version of MPRAGE for GE scanners (Jack Jr. et al., 2010). For each subject, 

we estimated a single-subject template using all image timepoints, and applied rigid 

spatial normalization to this template for each timepoint image. Then, each normalized 

timepoint image is processed using the single-image cortical thickness pipeline 

consisting of 1) brain extraction (Avants et al., 2010), 2) denoising (Manjón et al., 2010), 

3) N4 bias correction (Tustison et al., 2010), 4) Atropos n-tissue segmentation (Avants 

et al., 2011), 5) and registration-based cortical thickness estimation (Das et al., 2009). 

Finally, for our analyses, we used cortical thickness values for the 62 Desikan-Killiany-
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Tourville atlas regions such that the feature matrix we sought to harmonize was of 

dimension 663 × 62 (Klein and Tourville, 2012). Scan metadata were determined based 

on information contained within the Digital Imaging and Communications in Medicine 

(DICOM) headers for each scan. 

2.2 ComBat model 
We first review the ComBat (Combatting Batch Effects) model, which models 

additive and multiplicative batch effects in an empirical Bayes framework (Fortin et al., 

2017; Johnson et al., 2007). This model is used as a building block for DeepComBat. 

For each subject, let 𝐲!" = '𝑦!"#, … , 𝑦!"$ , … , 𝑦!"%+
⊺ represent the 𝑝 × 1 vector of feature-

level information for that subject, where each 𝑦!"$ is a scalar. In this notation, 𝑖 =

1,2, … , 𝐵 indexes batch; 𝑗 = 1,2, … , 𝑛! indexes subjects within batch 𝑖, where 𝑛! is the 

number of subjects acquired in batch 𝑖; and 𝑘 = 1,2, … , 𝑝 indexes features, where 𝑝 is 

the total number of features. First, ComBat is fit on each feature individually using the 

following model: 

𝑦!"$ = 𝛼$ + 𝐱!"' 𝛃$ + 𝛾!$ + 𝛿!$𝑒!"$ 

where 𝛼$ is the vector of shared intercepts across batches; 𝐱!" is the vector of subject-

specific biological covariates; 𝛃$ is the vector of regression coefficients for the 

covariates; 𝛾!$ is the vector of mean batch effects for batch 𝑖 conditional on the 

covariates; and 𝛿!$ is the vector of multiplicative batch effects on the residuals. ComBat 

assumes the errors, 𝑒!"$, are distributed 𝑁(0, 𝜎$(). 

For each individual feature, least-squares estimates 𝛼?$ and 𝛃@$ are obtained. 

Then, to estimate batch effects using empirical Bayes, ComBat assumes the additive 

batch effects, 𝛾!$, are drawn from a normal distribution prior and the multiplicative batch 

effects, 𝛿!$, are drawn from an inverse gamma distribution prior. Hyperparameters for 

these priors are estimated via method of moments using data across all features. Next, 

for each feature-level, empirical Bayes estimates, 𝛾!)∗  and 𝛿!)∗ , are obtained as the 

means of their corresponding posterior distributions. This results in shrinkage estimators 

for both the additive and multiplicative batch effects such that these effects can be well-
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estimated even when within-batch sample size is small. Finally, estimated batch effects 

are removed using the following equation: 

𝑦!"$ComBat = 𝛼?$ + 𝐱!"' 𝛃@$ +
1
𝛿!$∗

A𝑦!"$ − 𝑦?!"$C 

where 𝑦?!"$ = 𝛼?$ + 𝐱!"' 𝛃@$ + 𝛾!$∗  is the subject-specific mean as estimated by the ComBat 

model. 

2.3 DeepComBat method 
The DeepComBat method consists of three steps: 1) normalization, 2) CVAE 

training, and 3) harmonization. A broad overview of the method is given here, and 

further details are described in the following sections. First, the normalization step seeks 

to transform raw data such that the CVAE training step may converge more quickly. 

Then, the CVAE attempts to learn a latent space representation of the input data that 

contains rich subject-specific information, but contains fewer batch effects than the input 

data. In this step, the CVAE also learns to use this latent space representation along 

with explicit batch and biological information to reconstruct the data. Next, since these 

reconstructions are imperfect and batch effects may also be present in the 

reconstruction residuals, these residuals are harmonized using ComBat. Additionally, 

batch effects in the latent space are harmonized using ComBat, and the CVAE decoder 

uses this harmonized latent space along with the reference batch covariate to generate 

harmonized subject-specific means. Finally, the harmonized residuals are added to 

these harmonized means to obtain the final harmonized data. Overall, DeepComBat 

partitions batch effects into three components – the latent space, the CVAE decoder, 

and the reconstruction residuals. Each of these components is individually harmonized 

and then combined to produce the final DeepComBat-harmonized data. Notably, 

although DeepComBat effectiveness is demonstrated here between two batches, the 

code and architecture allow for harmonization between more than two batches without 

the need for alteration. 
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2.3.1 Normalization 

As in the above notation, let 𝐲!" = '𝑦!"#, … , 𝑦!"$ , … , 𝑦!"%+
⊺ represent subject 𝑖𝑗’s 

cortical thickness vector, where 𝑘 indexes features, and 𝐱!" represent the vector of 

subject-specific biological covariates. Additionally, let 𝑏!" represent that subject’s batch 

covariate. 

In the normalization step, all biological covariates are linearly shifted and scaled 

across all 𝑖𝑗 subjects such that they range between 0 and 1. Batch covariates are 

indicators and are thus already in this range. Additionally, each feature is standardized 

across all 𝑖𝑗 subjects such that the overall mean for that feature is 0 and the variance is 

1. CVAE training and harmonization steps use this normalized data; however, the linear 

transformations of features are stored such that they can be inverted, and the 

harmonized output will remain in the original feature space. 

Normalization of biological covariates is theoretically unnecessary, but practically 

may allow for faster convergence of the DeepComBat CVAE since default deep learning 

weight initializations and hyperparameters are designed for inputs approximately in the 

range [0, 1]. Standardization of features, however, is necessary. The DeepComBat 

CVAE loss function, discussed further below, includes the mean-squared error (MSE) 

loss – if features are on drastically different scales, DeepComBat will prioritize 

reconstruction of features with large magnitudes at the expense of features with small 

magnitudes. Standardization allows for errors in reconstruction of all features to 

contribute to the loss function relatively equally. Additionally, standardization may 

provide practical benefits; as above, it may allow for faster convergence, and secondly, 

DeepComBat hyperparameters used in this study for standardized ADNI cortical 

thickness dataset may be more generalizable to other standardized datasets. 

2.3.2 Architecture 

In the CVAE training step, normalized ADNI cortical thickness data are passed 

through a standard, fully-connected CVAE-style model with the architecture shown in 

Figure 1. For architectural hyperparameters, the latent space was empirically chosen to 

be approximately one-fourth the size of the input vector, rounded to the nearest power 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.24.537396doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.537396
http://creativecommons.org/licenses/by/4.0/


of 2 – in practice, latent spaces approximately one-eight or one-half the size of the input 

vector also performed similarly. Four hidden layers were used on either side of the 

latent space to allow for sufficient complexity of the encoder to learn meaningful latent 

space representations with minimal batch effects and of the decoder to incorporate 

batch effects in reconstruction. Hidden layer sizes were defined such that each size was 

approximately halfway between the size of the layers before and after. 

 
Figure 1: DeepComBat CVAE architecture and loss functions used during training. 
Notation corresponds to that in the main text. 

One iteration through the CVAE for one subject is as follows. First, let the 

encoder input be defined as the column-wise concatenation of the column vectors 𝐲!", 

𝐱!", and 𝑏!". This encoder input is passed through successive hidden layers until it is 

eventually encoded into two 16 × 1 vectors – 𝛍!" = 𝑝+!A𝐲!" , 𝐱!" , 𝑏!"C and 𝛔!" =

𝑝+"A𝐲!" , 𝐱!" , 𝑏!"C, where 𝑝+!(⋅,⋅,⋅) and 𝑝+"(⋅,⋅,⋅) represent the encoder functions with neural 

network parameters 𝜃# and 𝜃(, respectively. These vectors together define a 

multivariate normal random variable, 𝐙!" ∼ 𝑁 K𝛍!" ,diagA𝛔!"CL. This random variable is the 

output of the encoder and can be thought of as subject 𝑖𝑗’s latent space representation. 

Next, to begin the decoding step, a sample is drawn from this random variable using the 

reparameterization trick in order to obtain 𝐳!" (Kingma and Welling, 2014). As with the 
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encoder input, this sample is column-wise concatenated with 𝐱!" and 𝑏!" to produce the 

decoder input. Then, it is passed through the decoder hidden and output layers to 

obtain a reconstructed feature vector, 𝐲?!"A𝐳!"C = 𝑞,A𝐳!" , 𝐱!" , 𝑏!"C, where 𝑞,(⋅,⋅,⋅) is the 

decoder function with neural network parameters 𝜙. Note that this reconstructed feature 

vector is a function of the sample from the random variable 𝐙!" and thus changes each 

time subject 𝑖𝑗 is passed through the CVAE. 

Thus, the latent space distribution, 𝐙!", is a function of the features, 𝐲!", as well as 

on the covariates 𝐱!" and 𝑏!". Similarly, the reconstructed feature vector, 𝐲?!"A𝐳!"C is a 

function of the latent distribution through 𝐳!", as well as on the covariates 𝐱!" and 𝑏!". 

Additionally, by giving the decoder random samples from the latent space distribution, 

the decoder learns that probabilistically-nearby points in the latent space should be 

mapped to similar outputs in the feature space. That is, the decoder learns to 

reconstruct the features such that 𝐲?!"A𝐳!"C ≈ 𝐲?!"A𝛍!"C. The risk of overfitting by the 

decoder is also minimized, as this random sampling functions as a form of data 

augmentation with respect to the decoder. 

2.3.3 Loss function 

The loss function was defined to be the standard CVAE loss function which 

consists of an autoencoder reconstruction loss component and a Kullback-Leibler (KL) 

divergence loss component (Kingma and Welling, 2014; Sohn et al., 2015). In the 

DeepComBat CVAE, this loss function is implemented for each subject as follows: 

ℒ!" = ℒ!"Reconstruction + 𝜆ℒ!"Prior =SA𝑦!"$ − 𝑦?!"$C
(

%

$-#

+ 𝜆𝐷./ K𝑓A𝑍!"C ∥ 𝑔(𝑍)L 

where ℒ!"Reconstruction = ∑ A𝑦!"$ − 𝑦?!"$C
(%

$-#  is the reconstruction component, ℒ!"Prior =

𝐷./ K𝑓A𝑍!"C ∥ 𝑔(𝑍)L is the KL divergence component, and 𝜆 is a hyperparameter to 

weight the relative importance of the two components. The KL divergence component 

measures the difference between 𝑓A𝑍!"C, which is the probability density function of the 

multivariate normal latent space distribution for subject 𝑖𝑗, 𝑁 K𝛍!" ,diagA𝛔!"CL, and 𝑔(𝑍), 
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which is defined in DeepComBat to be the probability density function of the standard 

multivariate normal distribution, 𝑁(𝟎, 𝐈). The overall loss function is defined as the sum 

over all subjects: ℒOverall = ∑ ∑ ℒ!"
0#
"-#

1
!-# . 

The KL divergence term can be thought to enforce a standard normal Bayesian 

prior on the latent space, where 𝜆 represents the strength of the prior. For large 𝜆, all 

latent space distributions converge to the uninformative prior, 𝑁 K𝛍!" ,diagA𝛔!"CL →

𝑁(𝟎, 𝐈), and for 𝜆 close to 0, latent space distributions converge to the point estimate for 

the mean, 𝑁K𝛍!" ,diagA𝛔!"CL → 𝛍!". Thus, the KL divergence term allows for 

regularization of the latent space as well as encourages removal of information that is 

unnecessary for reconstruction from the latent space. In the DeepComBat CVAE, since 

biological and batch covariates are explicitly given to the decoder, optimal latent space 

representations should contain no information about these covariates and instead 

encode richer, subject-specific information. Practically, this complete independence may 

be unrealistic to achieve. Importantly, while biological and batch covariates are used as 

inputs for both the encoder and the decoder, the CVAE is not rewarded for including 

information about these covariates in the loss function. This design choice prevents the 

CVAE from introducing bias, but still allows the model to learn multivariate batch effects 

conditional on potential biological confounders. 

2.3.4 Optimization and hyperparameter tuning 

This CVAE loss function is known to have the potential to suffer from KL 

vanishing, also referred to as posterior collapse, where a local minimum of the loss 

function is reached and the model cannot improve (Bowman et al., 2016). In KL 

vanishing, the encoder learns to collapse all latent space representations to the 

standard normal prior such that the KL component of the loss function is nearly zero, 

and the decoder is given total noise and is therefore unable to learn anything in order to 

make progress towards further minimizing the loss. To minimize risk of posterior 

collapse in the DeepComBat CVAE, we utilize a cyclic annealing optimization schedule 

(Fu et al., 2019). In this schedule, 𝜆 is gradually increased from 0 to the goal final KL 

divergence weight multiple times over the course of model training. This provides 
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opportunities for the optimizer to escape local minimum when 𝜆 is small and allows for 

progressive learning of more meaningful latent representations across cycles. 

In DeepComBat, we perform manual hyperparameter tuning, described in more 

detail in the Results section, to determine our desired final 𝜆Final = 0.1. The goal in 

tuning 𝜆Final is to impose a prior that is strong enough to regularize the latent space and 

Euclidean distance between latent space representations are meaningful, but weak 

enough to allow for rich, subject-specific information to be encoded in the latent space 

in order to produce high-quality reconstructions. 

Note that, in contrast to similar CVAE-based harmonization methods like dcVAE, 

gcVAE, and a number of image-based methods which require a KL divergence 

component hyperparameter such that latent space distributions are independent of 

batch, the DeepComBat 𝜆Final is instead only used to regularize the latent space and 

reduce the amount of batch information in the latent space, if possible. However, 

substantial remaining batch information in the DeepComBat latent space is allowed, 

which enables easier hyperparameter tuning. 

Using this 𝜆Final, we first pre-train the CVAE for 5 epochs with 𝜆 = 0, then perform 

cyclic annealing over 30 epochs where one cycle is 5 epochs and 𝜆 increases linearly 

from 0 to 𝜆Final within each cycle, and finally train the CVAE for 5 epochs with the 

desired 𝜆 = 𝜆Final. Optimization was performed using the Adam optimizer with learning 

rate of 0.01, chosen to increase the initial rate of model convergence (Kingma and Ba, 

2017). Within epochs, data was passed to the CVAE in mini-batches of 64 subjects. 

2.3.5 Harmonization 

Once the CVAE model has been trained, harmonization can be performed on the 

latent space, the CVAE decoder, and the reconstruction residuals, as shown in Figure 

2. In the latent space, each subject’s noisy latent space distribution, 𝐙!", is converted to 

the noiseless latent space mean vector, 𝛍!". Then, across all 𝑖𝑗 subjects, the ComBat 

model described above is fitted using both batch and biological covariates to harmonize 

the latent space. Let each ComBat-harmonized latent space representation be denoted 

as: 𝛍!"ComBat. 
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Figure 2: DeepComBat CVAE algorithm used during the harmonization step. At this 
step, encoder and decoder parameters have been learned during the training step and 
are frozen. Notation corresponds to that in the main text. 

Next, the decoder output is harmonized. In this step, the decoder input is 

changed such that it receives harmonized latent space mean vectors as well as the 

desired batch for the harmonized data. The decoder additionally continues to receive 

unchanged biological covariates. Notationally, for one subject, this step can be 

represented as follows: 

𝐲̂!" = 𝑞, KdoA𝛍!"ComBatC, 𝐱!" , 	doA𝑏RCL 

where 𝐲̂!" represents the harmonized decoder output, do(⋅), borrowed from the field of 

causal inference, represents the act of changing the decoder inputs, potentially contrary 

to fact, 𝑏R is the desired reference batch for harmonization, and other notation is as 

defined above. Here, latent space distribution are changed to harmonized latent space 

mean vectors and batch is changed to the reference batch. Note that for all subjects, 𝑏R 
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must be the same such that all subjects are harmonized to the same batch, but that 𝑏R 

can be defined to be either the first batch, the second batch, or some intermediate 

batch. 

Then, the reconstruction residuals are calculated and harmonized. To estimate 

these residuals, noiseless reconstructions are first estimated by giving the decoder 

latent space mean vectors instead of the latent space distribution samples used during 

CVAE training. Notationally, for one subject, this is can be represented as: 

𝐲?!"A𝛍!"C = 𝑞,AdoA𝛍!"C, 𝐱!" , 𝑏!"C 

where 𝐲?!"A𝛍!"C represents the noiseless reconstruction, in contrast to the noisy 

reconstruction used in training, 𝐲?!"A𝐳!"C. 

Then, reconstruction residuals are defined as: 

𝛜!" = 𝐲!" − 𝐲?!"A𝛍!"C 

where 𝐲!" is the standardized raw data. These residuals are then corrected across all 𝑖𝑗 

subjects using the ComBat model with both batch and biological covariates to obtain 

𝛜!"ComBat. 

Finally, individually harmonized components are combined and transformed back 

to the original feature space using the inverses of shift and scale parameters used to 

standardize the raw data in the normalization step: 

𝐲?!"
DeepComBat = Meana (𝐲) + A𝐲̂!" + 𝛜!"ComBatC⊙ cVard (𝐲) 

where Meana (𝐲) and Vard (𝐲) are the 𝑝 × 1 vectors of overall feature-wise means and 

variances, respectively, used to standardize each feature in the normalization step, and 

⊙ represents element-wise vector multiplication. 

2.3.6 Data and code availability 

Data used in the preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 
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launched in 2003 as a public-private partnership, led by Principal Investigator Michael 

W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

For up-to-date information, see www.adni-info.org. 

An R package for performing DeepComBat is available at: 

https://github.com/hufengling/DeepComBat. This package is written in ‘torch for R’ 

which is the R analog of PyTorch that interfaces with the same C++ backend for fast 

computation. Across 30 runs, one full run of the DeepComBat algorithm on the ADNI 

dataset took an average of 53.0 seconds with standard deviation of 1.7 seconds on an 

Intel Xeon CPU with 2.40 GHz clock rate. Active memory use is negligible due to the 

mini-batch stochastic optimization routine. 

The deepcombat package provides functions for normalization, DeepComBat 

architecture building, model-fitting, and manual hyperparameter tuning. It is designed to 

work on data in matrix form, where feature data to harmonize is stored in one matrix 

and biological and batch covariates are stored in another. Additionally, all code for 

evaluation and analysis is available at: 

https://github.com/hufengling/deepcombat_analyses. 

Code for processing ADNI data is available at: 

https://github.com/ntustison/CrossLong.  

2.4 Evaluation 
DeepComBat was evaluated against unharmonized data as well as other feature-

level harmonization methods where code was available. These methods included 

ComBat, CovBat, dcVAE, and gcVAE (An et al., 2022; Chen et al., 2022a; Fortin et al., 

2017; Moyer et al., 2020). Notably, since no code was provided in the original 

manuscript for dcVAE, we implemented this method using code provided by An et al. 

(2022). For all comparison methods, we used default settings and hyperparameters 

provided in the code. Biological covariates of age, sex, and Alzheimer disease status 
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were provided for ComBat, CovBat, and DeepComBat. Evaluation was conducted using 

qualitative visualization, statistical testing, and machine learning (ML) experiments. 

In statistical testing and ML experiments, we assess the presence of both batch 

effects and biological effects. When assessing for batch effects, we assume that 1) test 

statistics corresponding to large p-values for statistical tests and 2) worse performance 

in predicting batch for ML experiments correspond to less presence of batch effects and 

therefore better harmonization. However, when assessing for biological effects, effective 

harmonization may lead to better, worse, or similar results, depending on the underlying 

relationship between batch and biological covariates. 

On one hand, if batch status is strongly correlated with biological covariates in 

the dataset, removal of batch effects may decrease the magnitude of test statistics 

and/or predictive performance on biological covariates. On the other hand, if the 

presence of batch effects greatly reduces generalizability of models or the 

harmonization method introduces bias in the form of stronger biological covariate 

effects, the harmonization method may greatly increase the magnitude of test statistics 

and/or predictive performance on biological covariates. Finally, if none of these issues 

are present, harmonization may leave the resulting performance on biological 

covariates relatively unchanged, when compared to unharmonized data. In the ADNI 

dataset, based on the relative balance of biological covariates across batches, we 

assume that post-harmonization performance of both statistical testing and ML 

experiments should remain relatively unchanged. Therefore, we assess for biological 

effects mainly to investigate for potential pathological behavior rather than for direct 

comparison of harmonization methods. 

2.4.1 Qualitative visualization 

We visualize the overall multivariate distribution of unharmonized and 
harmonized feature matrices using Unifold Manifold Approximation and Projection 

(UMAP) and principal component analysis (PCA) (McInnes et al., 2020). UMAP was fit 

using the umap package in R with 20 neighbors, 100 epochs, and default settings 

otherwise. Points were displayed by batch status. PCA was fit on correlation matrices to 

account for differences in scale across features. For UMAP and PCA, arbitrary 
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differences in sign due to model fitting were changed in order to improve direct 

comparability of these visualizations between methods. Additionally, we explore how 

harmonization methods act on a small random sample of features using bivariate 

density plots and plots of feature-level changes after harmonization. 

2.4.2 Statistical testing 

Harmonization methods were evaluated using mass univariate and multivariate 

statistical testing. For mass univariate testing, we performed a two-sample Anderson-

Darling test on each feature, where the two samples were defined by batch covariate. 

Average p-value across all features and its standard deviation is reported. For this test, 

the null hypothesis is that the two samples come from the same distribution and the 

alternative hypothesis is that the two samples come from different distributions. Under 

the assumption that harmonization addresses distributional differences across batch, 

well-harmonized data should have non-significant p-values, and the mean p-value 

across all features should be approximately 0.5. Distributions of Anderson-Darling p-

values across all features are also shown. 

To test for differences in feature-wise means across batch as well as assess for 

validity of downstream analyses on biological covariates, we performed linear 

regression on each feature, where each regression model included the batch covariate 

as well as biological covariates of age, sex, and Alzheimer disease status. For each 

covariate, the average negative log 10 p-value across all features as well as the 

standard deviation of these transformed p-values is reported. Negative log 10 p-values 

are used to better represent the distribution of p-values very close to 0. Distributions of 

regression p-values for batch across all features are also shown. 

For multivariate statistical testing, we assess harmonization results 

parametrically as well as non-parametrically. For parametric testing, we use the 

multivariate analysis of variance test (MANOVA), which tests for differences in 

multivariate means. The null hypothesis for this test is that there is no effect of a given 

covariate on the multivariate mean vector across all features while the alternative 

hypothesis is that there is some non-zero effect of the covariate on the multivariate 

mean vector. Our MANOVA model includes the batch covariate, age, sex, and 
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Alzheimer disease status. We report the negative log 10 p-value based on Pillai’s trace 

test statistic, which has been shown to be more robust than other MANOVA test 

statistics (Olson, 1974). 

For non-parametric multivariate testing, we use the k-nearest-neighbor batch-

effect test (kBET) metric with default settings, developed and validated in the context of 

detecting batch effects in single-cell RNA-sequencing (scRNA-seq, Büttner et al., 2019). 

The kBET test is a non-parametric permutation-based test that 1) randomly samples a 

proportion of observations, 2) identifies each observation’s k-nearest neighbors, 3) 

evaluates whether the local distribution of batch among each set of k nearest neighbors 

differs from the global distribution of batch, and 4) generates an overall kBET statistic 

evaluating whether the number of observations with large differences in local 

distribution of batch are greater than that expected to occur by chance alone. Ultimately, 

the null hypothesis tested by kBET is that the observed local distributions of batch are 

similar to the expected local distributions of batch, conditional on the global distribution 

of batch. 

2.4.3 Machine learning experiments 

To evaluate how our method interacts with multivariate batch or biological 

effects, we train ML algorithms to predict covariate information using the harmonized 

feature matrix. Prediction models were independently trained to perform classification of 

batch status, sex, and Alzheimer disease status, as well as regression of age. To 

perform the ML experiments, we use the caret package, version 6.0-93, to train and 

assess a large battery of ML algorithms on each feature matrix using the repeated 

cross-validation strategy, with five repeats of 10-fold cross-validation. This repeated 

cross-validation strategy was used to obtain a low-bias, low-variance estimate of the 

out-of-sample predictive performance. 

For two-class classification of batch and sex, average area under the Receiver 

Operating Characteristic Curve (AUROC) across validation sets is reported. For three-

class classification of Alzheimer disease status, AUROC cannot be calculated, so 

average accuracy across validation sets is reported. For regression of age, average 𝑅( 

values across validation sets is reported. Note that in the repeated cross-validation 
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strategy, average cross-validation metrics can be made arbitrarily precise by increasing 

the number of repeats, but variation in these metrics occurs within each cross-validation 

fold due to randomness in ML model fitting and train-validation splitting. 

The ML evaluation battery for classification tasks consisted of: support vector 

machine (SVM) with radial basis, quadratic discriminant analysis (QDA), k-nearest 

neighbors (KNN), random forest (RF), and Extreme Gradient Boosted trees (XGBoost). 

The ML evaluation battery for regression of age consisted of: SVM with radial basis, 

KNN, RF, and XGBoost. SVM, QDA, KNN, and RF were fit using the default 

hyperparameters provided by their corresponding R packages. For XGBoost a few 

hyperparameters were a priori changed from the default to allow for greater algorithm 

differences when compared to RF. These changed hyperparameters included: eta = 0.1 

and colsample_bytree = 0.5. Number of total boosting rounds had no default and was 

set to 100. Other hyperparameters were set to their defaults.  

3 Results 
3.1 DeepComBat reduces batch effects in qualitative visualizations 

We visualized the effect of DeepComBat univariately and multivariately. For a 

representative, randomly-sampled region’s cortical thickness, density plots by batch 

revealed differences in distribution across batch in the raw data that could be attributed 

to differences in mean, variance, and shape (Figure 3). This distributional difference 

was qualitatively mitigated by ComBat, CovBat and DeepComBat, while dcVAE and 

gcVAE showed substantial transformation of the feature distribution. 
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Figure 3: Density plots of one randomly sampled feature for raw data and various 
harmonization method outputs. Red color corresponds to the Siemens batch and blue 
color corresponds to the non-Siemens batch. 

Similar qualitative results were observed in visualizations of the multivariate 

feature distribution using the first two UMAP dimensions and the first two principal 

components (Figures 4 and 5). 
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Figure 4: UMAP visualization of raw data and various harmonization method outputs. 
Red color corresponds to the Siemens batch and blue color corresponds to the non-
Siemens batch. 
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Figure 5: PCA visualization of raw data and various harmonization method outputs. 
PCA ellipses denote major and minor axes for each batch, centered at the batch-wise 
mean. Red color corresponds to the Siemens batch and blue color corresponds to the 
non-Siemens batch. 

Finally, we explored how various harmonization methods change the raw data at 
the feature level. Here, we randomly sampled 10 cortical thickness features and 

randomly sampled 100 subjects to obtain a total of 1,000 randomly-sampled cortical 

thickness values. For each harmonization method, we plotted harmonized values for 

these cortical thicknesses against their corresponding raw values in Figure 6. In this 

visualization, ComBat and CovBat seemed to mostly induce upward and downward 

linear shifts in the data with small deviations from these shifts, which is consistent with 

their underlying shift and scale models. DeepComBat induced small non-linear shifts in 

the data on a similar scale as ComBat and CovBat. Meanwhile, dcVAE and gcVAE 

mapped harmonized values to their corresponding CVAE-predicted mean values 

without accounting for unmodeled CVAE reconstruction errors. Thus, dcVAE and 
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gcVAE produced outputs with noise patterns characteristic of synthetic data, as noted 

by Dewey et al. (2019). 

 
Figure 6: Visualization of randomly-sampled harmonized values plotted against their 
corresponding raw values for various harmonization methods. Colors indicate each of 
the 10 randomly-sampled cortical thickness features. 

Overall, qualitative visualizations showed DeepComBat seemed to make 

reasonable changes to univariate feature distributions, preserve the underlying 

multivariate structure of the data, and estimate harmonized values that were highly 

correlated with the corresponding raw values. 

3.2 DeepComBat removes statistically-detectable batch effects and 
preserves inference on biological effects 

Average feature-wise Anderson-Darling test results, presented in Table 2, 

suggested there were significant differences in univariate distributions across batches in 

the raw data, which is consistent with the qualitative results seen in Figure 3. These 
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differences were effectively reduced by ComBat, CovBat, and DeepComBat – each of 

these harmonization methods produced Anderson-Darling p-values with means around 

0.5 and large standard deviations. However, dcVAE and gcVAE produced outputs such 

that Anderson-Darling p-values for all features were 0, suggesting large differences in 

distribution post-harmonization across features. These results are further illustrated in 

Figure 7, which presents quantile-quantile plots comparing observed negative log 10 

feature-wise p-values to expected p-values under a uniform distribution. In this Figure, 

ComBat, CovBat, and DeepComBat show p-value distributions qualitatively similar to a 

uniform distribution, while raw data, dcVAE, and gcVAE showed p-value distributions 

with many more highly-significant p-values than expected under a uniform distribution. 
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Figure 7: Quantile-Quantile (Q-Q) plots of observed feature-wise Anderson-Darling 
negative log 10 p-values from raw and harmonized data. Observed p-values are plotted 
against expected negative log 10 p-values under a uniform distribution. Gray band 
corresponds to 95% confidence intervals for whether observed data was sampled from 
a uniform. 

Feature-wise linear regression results are presented in Table 3 as average 

negative log 10 p-values and in Figure 8 as quantile-quantile plots of negative log 10 p-

value distributions. In the table, p-values of 1, 0.05, and 0.01 correspond to negative log 

10 p-values of 0, 1.3, and 2, respectively, with small p-values corresponding to large 

negative log 10 p-values. As with the Anderson-Darling analysis, this analysis on the 

raw data also showed significant differences in mean across batch, when age, sex, and 

Alzheimer disease status were also included in the model. Differences in batch-wise 

means were effectively removed by ComBat, CovBat, and DeepComBat, while dcVAE 

and gcVAE seemed to increase the difference in batch-wise means. As in the 

Anderson-Darling results, DeepComBat seemed to provide slightly less correction of 
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univariate batch differences when compared to CovBat, but provided similar levels of 

correction when compared to ComBat. Similar results are qualitatively observed in 

Figure 8. 

 

 
Figure 8: Quantile-Quantile (Q-Q) plots of observed feature-wise linear regression 
negative log 10 p-values from raw and harmonized data. Observed p-values are plotted 
against expected negative log 10 p-values under a uniform distribution. Gray band 
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corresponds to 95% confidence intervals for whether observed data was sampled from 
a uniform. Y-axis scales differ between panels. 

Additionally, ComBat, CovBat, and DeepComBat preserved inference on 

biological covariates of age, sex, and Alzheimer disease status, with the distribution of 

corresponding negative log 10 p-values sharing similar means and standard deviations 

when compared to that of the raw data. Notably, DeepComBat was seen to slightly 

increase power for detecting average differences between controls and both LMCI and 

AD subjects in cortical thicknesses. Meanwhile, dcVAE and gcVAE showed large 

increases in power for age and Alzheimer disease effects and a large decrease in 

power for sex effects. These large increases in statistical power for age and Alzheimer 

disease effects may be explained by the exclusion of unmodeled residuals in dcVAE 

and gcVAE harmonized outputs. 

In statistical testing for multivariate effects using MANOVA, ComBat, CovBat, 

and DeepComBat were seen to completely remove batch effects from the multivariate 

mean across features when biological covariates were also included (Table 4). dcVAE 

and gcVAE were also able to provide a substantial degree of multivariate batch effects 

correction when compared to the raw data; however, the MANOVA p-value still 

remained highly significant indicating significant batch effects remained. 
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As in the feature-wise linear regression analysis, ComBat, CovBat, and 

DeepComBat were additionally able to preserve inference on biological covariates. 

Notably, DeepComBat was slightly less powerful for multivariate sex effects and slightly 

more powerful for Alzheimer disease effects when compared to the raw data. The 

decrease in power for sex effects may reflect removal of the confounding between sex 

and batch seen in Table 1 while the increase in power for inference on Alzheimer 

disease effects may reflect removal of batch-attributable noise. 

Finally, in non-parametric testing using kBET, CovBat and DeepComBat were 

able to produce harmonized outputs where the distributions of batch within local 

neighborhoods were not significantly different from the global distribution of batch. In 

contrast, kBET detected highly significant differences in local distributions of batch for 

raw data, ComBat, dcVAE, and gcVAE; the proportion of local neighborhoods with 

detectable differences in batch distributions was much less in ComBat compared to all 

of raw data, dcVAE and gcVAE. 

 

Overall, we found that DeepComBat effectively removes statistically-detectable 

batch effects both univariately and multivariately, and in doing so, is also able to 

effectively preserve biological information without introducing bias from the statistical-

inference perspective. In univariate analyses, DeepComBat performed slightly worse 

than ComBat and CovBat in terms of harmonization, while in multivariate analyses, 
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DeepComBat outperformed ComBat and CovBat in terms of harmonization. Regarding 

preserving and increasing power for detecting biological associations, DeepComBat 

performed favorably compared to ComBat and CovBat. DeepComBat outperformed 

dcVAE and gcVAE by all metrics. 

3.3 DeepComBat impairs detection of batch by ML algorithms and 
maintains predictability of biological covariates 

A battery of ML experiments seeking to predict batch status were run on raw and 

harmonized data (Figure 9). Note that the error bars shown in this section represent the 

standard deviations, not standard errors of the mean. 

All classifiers could effectively determine the batch status of out-of-sample 

subjects in the raw data. This ability to detect batch was greatly decreased by all 

harmonization methods, with DeepComBat-harmonized data consistently corresponding 

to the lowest AUROCs across all ML experiments. CovBat-harmonized data 

corresponded to the second lowest AUROCs. 
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Figure 9: Bar graphs showing average AUROC for predicting batch of various classifiers 
on raw and harmonized data. Error bars represent the standard deviation of validation-
set AUROCs across 5 repeats of 10-fold cross-validation. 

Additionally, DeepComBat effectively retained biological information in its 

outputs. In Figures 10, 11, and 12, DeepComBat-harmonized data showed predictive 

performances similar to, or better than that, of raw, ComBat-corrected, and CovBat-

corrected data. All post-harmonization predictive performances were significantly higher 

than those of dcVAE and gcVAE. 
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Figure 10: Bar graphs showing average AUROC for predicting sex of various classifiers 
on raw and harmonized data. Error bars represent the standard deviation of validation-
set AUROCs across 5 repeats of 10-fold cross-validation. 
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Figure 11: Bar graphs showing average accuracy for predicting Alzheimer disease 
status of various classifiers on raw and harmonized data. Error bars represent the 
standard deviation of validation-set accuracies across 5 repeats of 10-fold cross-
validation. 
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Figure 12: Bar graphs showing average 𝑅( value for predicting age of various classifiers 
on raw and harmonized data. Error bars represent the standard deviation of validation-
set 𝑅( values across 5 repeats of 10-fold cross-validation. 

Overall, we found that DeepComBat more effectively removed multivariate batch 

effects than other harmonization methods, even when assessed via powerful ML 

algorithms such as XGBoost. Additionally, DeepComBat effectively preserved biological 

information in the predictive context. 

3.4 DeepComBat is easily tunable and robust to selection of the KL-
divergence weighting hyperparameter 

We find the DeepComBat KL-divergence hyperparameter, 𝜆Final, can be easily 

tuned manually through investigation of the variances of latent space distributions since 

𝜆Final is directly correlated with these variances. Empirically, we find that a good choice 

of 𝜆Final can be found when the overall distribution of natural-log variances across all 

latent space dimensions is qualitatively similar to the one shown in the 𝜆 = 0.1 panel of 
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Figure 13. Namely, it is desirable that the distribution of log variances is bimodal with 

some latent-space dimensions being informative (those with very negative log 

variances) and some latent-space dimensions being non-informative (those with log 

variances near 0). 

If too many latent-space dimensions are informative, as in the first two panels of 

Figure 13, 𝜆Final should be increased, as DeepComBat may leave too many batch 

effects in the latent space. If too many latent-space dimensions are uninformative, as in 

the last two panels of Figure 13, 𝜆Final should be decreased, as DeepComBat will be 

unable to adequately reconstruct the subject-specific mean, and batch effects will be left 

in the CVAE residuals. Thus, examination of log variance density plots allows for easy 

heuristics for choosing a suitable hyperparameter value. 

 
Figure 13: Top: Density plots of the log variances of latent-space distributions for each 
subject over all latent-space dimensions for a range of hyperparameter choices. Bottom: 
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Density plots of the log variances of latent-space distributions for each subject for 
individual latent-space dimensions for a range of hyperparameter choices. 

However, even when 𝜆Final is empirically misspecificed, DeepComBat performs 

effective harmonization. The above analyses, including qualitative visualizations, 

statistical tests, and ML experiments, were run on DeepComBat-harmonized outputs 

produced using the range of choices for 𝜆Final ranging from 16 times greater than the 

𝜆Final used in our primary analysis to values 16 times less. These robustness analyses 

are presented in Supplementary Tables 1-4 and Supplementary Figures 1-9. 

Notably, results demonstrated comparable DeepComBat performance across all 

evaluations for these choices of 𝜆Final. Moreover, results from the DeepComBat-

harmonized output corresponding to 𝜆Final = 0.4 were superior to the results from our 

primary analysis. This suggests that more intensive hyperparameter tuning may further 

improve harmonization performance, though this improvements comes at the cost of 

additional complexity in model fitting, computation time, and user expertise. 

This robustness result may be due to the design of DeepComBat, which 

partitions batch effects originally present in the raw data into one of these three 

components: the CVAE latent space, the CVAE decoder, and the reconstructed 

residuals. Component-wise harmonization therefore allows for a form of “double-

robustness” with respect to CVAE fitting. In worst-case scenarios, if 𝜆Final is too large 

such that most batch effects are contained in the reconstruction residuals, ComBat on 

these residuals will still allow for reasonable overall harmonization; and if 𝜆Final is too 

small such that most batch effects are contained in the latent space, ComBat on the 

latent space will address the batch effects. Thus, DeepComBat is robust to 

misspecification of 𝜆Final – as long as the specified 𝜆Final is reasonably close to the 

optimal KL-divergence weight, final DeepComBat output data will be sufficiently 

harmonized. 
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4 Discussion 
Multi-batch neuroimaging data are increasingly common and necessary for 

learning generalizable models for inference and prediction. There is also growing 

interest in using ML techniques to perform multivariate pattern analysis and train 

powerful classifiers that can efficiently use multivariate data. To enable these efforts, 

there is increasing need for statistically-rigorous multivariate harmonization methods. 

In this study, we demonstrate that strong batch effects exist in raw data, and that 

these batch effects remain detectable by ML experiments even after state-of-the-art 

statistical harmonization methods are applied. We also find that, while previously-

proposed deep learning harmonization approaches are able to partially remove batch 

effects from the ADNI dataset, this batch effects correction comes at the cost of removal 

of relevant biological information as well as introduction of artifacts characteristic of 

synthetic data. We then propose DeepComBat, a novel hybrid method that is able to 

take advantage of the strengths of both deep learning and statistical methods – it uses 

the CVAE architecture to perform non-linear, multivariate correction as well as the 

ComBat model to rigorously and robustly harmonize the latent space and residuals. 

When compared to other methods, we show DeepComBat performs more effectively 

when evaluated by highly-multivariate ML experiments as well as non-parametric kBET 

testing. It performs comparably to ComBat and CovBat when evaluated by statistical 

tests. Overall, these results suggest that DeepComBat may be especially useful for 

harmonization in settings where prediction or inference using multivariate features and 

multivariate methods is the goal. In these settings, feature-wise correction using 

statistical methods may lead to significant non-corrected batch effects that may be 

picked up by prediction methods and inappropriately used. 

4.1 DeepComBat may be more robust to model misspecification when 
compared to statistical methods 

Similarly to many statistical methods, such as ComBat and CovBat, 

DeepComBat assumes batch effects can be estimated as differences in feature-wise 

conditional means and variances of unmodeled residuals. However, unlike statistical 

methods, mean batch effect are estimated non-linearly and multivariately using a 
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combination of batch and biological covariates along with subject-specific latent space 

representations. In this mean batch effect estimation procedure, mean batch effect are 

partially removed by the decoder in a non-parametric manner, where the only 

assumption on the nature of batch effect is that it can be approximated by the decoder 

network. Thus, while latent space harmonization still involves the ComBat model, 

overall harmonization may be less contingent on how well the data follow ComBat 

assumptions. Additionally, discussed further below, moment-matching of latent space 

representations has been empirically shown to be effective in various harmonization-like 

tasks (Fatania et al., 2022; Huang and Belongie, 2017; Lopez et al., 2018; Lotfollahi et 

al., 2019; Zuo et al., 2021). 

In terms of correcting batch effect in unmodeled residuals, DeepComBat argues 

a meaningful portion of what statistical methods claims are “unmodeled residuals” – 

information that is not explained by biological nor batch covariates by the naive linear 

model – can in fact be explained as a multivariate non-linear function of biological 

covariates, batch covariates, and subject-specific latent factors. Through the CVAE 

architecture, DeepComBat is able to significantly reduce the mean squared error 

between model-predicted feature vectors and raw feature vectors when compared to 

ComBat and CovBat. Thus, DeepComBat is able to directly model and correct more 

batch effect in terms of conditional differences in mean, and less batch effect is 

corrected based on the strong assumption that there are batch-wise differences in the 

variances of unmodeled residuals. Subsequently, although DeepComBat still uses the 

ComBat model to correct the residuals, it may rely less on ComBat-specific 

assumptions since the magnitude of batch effect correction on the residuals is smaller.  

4.2 DeepComBat relaxes strong assumptions made by other deep 
learning methods and simplifies model fitting 

Previous feature-level deep learning harmonization methods, including dcVAE 

and gcVAE make a number of strong implicit assumptions. These assumptions include 

1) perfect model fit, which assumes that reconstruction residuals insignificant and 

therefore do not need to accounted for or re-incorporated, 2) fully disentangleable latent 

space, which assumes that the neural network can completely learn a batch-invariant 
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latent space based on the loss function alone, and 3) balanced biological covariates 

across batches, which assumes that all population-level differences across batch are in 

fact due to batch and should be removed. 

However, the first assumption is violated in situations where the latent-space 

dimensions are too small to adequately capture non-batch information, the decoder is 

not complex enough to efficiently encode all batch-related information, and sample 

sizes within batches are too limited to estimate all the necessary network parameters. 

These violations are further compounded when the first two assumptions are 

considered together; while near-perfect model fit may be achievable with a large latent 

space, it is even more challenging when a completely batch-invariant latent space is 

required. Finally, in neuroimaging datasets where biological covariates are imbalanced 

across batches, such as in the ADNI dataset used in this study, complete removal of 

marginal batch-wise differences will necessarily involve removal of biological 

information as well. 

DeepComBat is able to relax these strong implicit assumptions by 1) accounting 

for the presence of reconstruction residuals and re-introducing them on top of the 

CVAE-harmonized subject-level means, 2) explicitly removing batch effects from the 

CVAE latent space, and 3) conditioning on biological covariates at each harmonization 

step. By relaxing these assumptions, we are able to greatly improve the usability of 

DeepComBat by simplifying its architecture when compared to that of dcVAE and 

gcVAE. For example, dcVAE and gcVAE rely on adversarial training with a discriminator 

in order to train their decoders to produce more realistic outputs, but DeepComBat no 

longer needs this adversarial component since non-perfect model fit is acceptable. This 

minimizes computational burden and avoids common challenges in adversarial training. 

DeepComBat also circumvents the need for precise tuning of the KL divergence 

weighting hyperparameter, since remaining batch effects in the latent space are 

explicitly removed after CVAE training. 

Importantly, relaxing these assumptions allows for DeepComBat to be designed 

such that, if a subject-level feature vector is “self-harmonized” back to its actual batch, 

that feature vector will be unchanged. This makes sense, since “self-harmonization” 
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should be the identity function. However, in other deep learning harmonization methods, 

including dcVAE and gcVAE, since reconstruction residuals are not explicitly accounted 

for in these other methods, the “self-harmonized” data will have less noise. This 

phenomena has been highlighted by Dewey et al. (2019), who noticed that 

DeepHarmony, an image-level harmonization method, produced harmonized images 

with noise characteristics indicative of a synthetic image – namely, that they looked 

smoother. By keeping reconstruction residuals in the final harmonized output, 

DeepComBat avoids an implicit assumption of perfect model fit and allows for 

harmonized outputs to retain natural noise characteristics. 

4.3 DeepComBat resembles other moment-matching harmonization 
methods 

DeepComBat primarily achieves multivariate harmonization by using ComBat in 

the CVAE latent space in order to generate a batch-invariant latent space. In this step, 

ComBat is used as a moment-matching model that takes advantage of shrinkage 

estimation in order to match conditional means and variances across batches. 

Analogies between latent-space ComBat and other moment-matching style transfer 

algorithms can be drawn. 

Specifically, in single-cell RNA-sequencing (scRNA-seq) batch effects correction, 

scGen encodes gene expression data to a latent space using a standard variational 

autoencoder (Lotfollahi et al., 2019). Then, the algorithm estimates and removes mean 

batch effects, or first moments, from this latent space, conditional on cell type, in order 

to perform correction. CVAE-based methods such as dcVAE, gcVAE, and a number of 

scRNA-seq methods, such as scVI, can also be thought to perform latent-space 

moment-matching (Lopez et al., 2018); however, these methods do so implicitly through 

the loss function, rather than by explicitly estimating and correcting latent space 

coordinates. 

Additionally, in image style transfer, where the goal is to change the style of an 

image without changing its content, adaptive instance normalization (AdaIN) can be 

used along with a convolutional autoencoder and its variations (Huang and Belongie, 

2017). In the convolutional autoencoder, images are encoded into a set of latent space 
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convolutional filters. Then, AdaIN performs style transfer by matching the means and 

variances of each filter, learned from the original image, to the means and variances of 

the corresponding filters learned from the image that has the desired style. In the non-

convolutional setting of DeepComBat, each 1 × 1 element of the latent space vector 

corresponds to one convolutional filter, and similar moment-matching is performed, but 

at the group level instead of the individual input level. 

Finally, outside of deep learning methods, DeepComBat draws on ideas from 

CovBat, which has been shown to harmonize the mean and covariance across sites. 

CovBat first performs standard ComBat and then corrects the covariance structure of 

residuals by projecting them into a latent space defined by principal components and 

running ComBat again. Thus, CovBat performs univariate mean harmonization and 

linearly-multivariate residual harmonization. DeepComBat flips these steps – it first 

performs non-linear multivariate mean harmonization and then univariately corrects the 

reconstruction residuals. Notably, DeepComBat autoencoder residuals are much 

smaller in magnitude than CovBat linear model residuals, so univariate residual 

correction is sufficient. 

4.4 Limitations and future directions 
DeepComBat is designed to only require minimal hyperparameter tuning, and 

this design choices improve the usability of DeepComBat by end-users that are not 

deep learning experts. Even so, DeepComBat performance can vary across different 

choices of hyperparameter as well as across different training runs of the same 

hyperparameter choice. Notably, DeepComBat still performs effective harmonization 

across a range of hyperparameter choices and training runs; however, stochastic 

outputs from a complex algorithm may be undesirable for end-users seeking 

deterministic and transparent harmonization behavior. 

While DeepComBat is intended to train quickly on standard computing resources, 

such as laptops, DeepComBat is still much slower than statistical methods. The overall 

training time is further increased when manual hyperparameter tuning is taken into 

consideration, as end-users may need to train a few models before choosing a suitable 
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𝜆Final. Overall, hyperparameter tuning and final model training should take no longer 

than 5-10 minutes, depending on the number of hyperparameters tried and dataset size. 

Relatedly, we show DeepComBat performs better than dcVAE and gcVAE, which 

were trained using the default hyperparameter values specified by An et al. (2022). 

These default hyperparameter values were determined based on a different dataset, so 

they may not have been optimal for our ADNI data. Hyperparameter tuning for these 

two methods by thorough grid search may have improved their results; however, the 

computational and coding difficulty associated with hyperparameter tuning reflect 

challenges in applying these methods and sensitivity to hyperparameter 

misspecification. Further work could involve incorporating automated hyperparameter 

selection for these methods as well as DeepComBat in order to provide more optimal 

outputs. Notably, while better hyperparameter choices may have improved dcVAE and 

gcVAE performance, these methods still implicitly make the assumptions described 

above. 

Next, as a deep learning model, DeepComBat may be reliant on relatively large 

sample sizes to appropriately estimate neural network parameters. In this study, we 

showed DeepComBat can effectively harmonize a dataset of 663 individuals across two 

batches; however, in datasets with smaller sample sizes where batch effects are harder 

to precisely estimate, purely statistical methods such as ComBat and CovBat may 

perform better. In this same vein, a strength of DeepComBat is in its ability to project 

high-dimensional feature data into a low-dimensional latent space that is easier to 

harmonize – datasets with fewer baseline features may benefit less from this approach. 

Finally, DeepComBat may be unnecessarily complex when intended downstream 

analyses involve using features in a univariate manner. For example, standard ComBat 

may be sufficient if feature-wise inference is the goal, but if the objective is to train a ML 

classifier, DeepComBat may be more appropriate. 

Finally, although DeepComBat partially uses neural networks to learn and correct 

non-linear, multivariate batch effects without the need for explicitly specifying an 

underlying model, overall harmonization still requires the ComBat model in the latent 

space and residual space. Thus, standard ComBat limitations still apply. For example, 
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information about biological covariates not conditioned on in DeepComBat may be 

removed along with batch effects, and non-linear covariate effects located within the 

latent space or residuals may be inappropriately estimated and removed along with 

batch effects. Further work could consider relaxing these limitations by allowing for 

complex, non-linear covariate effects in the latent space and residuals (Pomponio et al., 

2020). Additionally, like standard ComBat, DeepComBat assumes independence 

between subjects and is thus designed for cross-sectional data – extensions to 

longitudinal data may be an important next step (Beer et al., 2020). 

5 Conclusion 
DeepComBat is a novel, statistically-rigorous, deep learning approach to image 

harmonization that leverages deep learning and statistical concepts to perform 

multivariate batch effects correction conditional on biological covariates. We 

demonstrate it can more effectively remove multivariate batch effects from structural 

neuroimaging feature while preserving biological information than previously-proposed 

methods. As high-dimensional, multi-batch data becomes more common and interest in 

using ML techniques to analyze such data grows, we hope that DeepComBat will serve 

as a tool for end-users to remove multivariate batch confounding as well as provide a 

new perspective for methodologists to develop improved harmonization methods. 
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