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ABSTRACT 

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is 

important to account for the spatial context and identity of cell in situ. State-of-the-art spatial profiling 

technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially 

resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used 

to analyse GeoMx data often fail to successfully account for the technical variability within the data and the 

complexity of experimental designs, thus limiting the accuracy and reliability of subsequent analysis. 

Carefully designed quality control workflows, that include in-depth experiment-specific investigations into 

technical variation and appropriate adjustment for such variation can address this issue. Here we present 

standR, a R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four 

case studies from previously published experiments, we demonstrate how the standR workflow can 

enhance the statistical power of GeoMx DSP data analysis and how application of standR enables scientists 

to develop in-depth insights into the biology of interest.  
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INTRODUCTION 

Quantitative gene expression analysis of disease systems using technologies such as bulk RNA-seq have 

led to many biomarker discoveries and mechanistic insights through application of differential expression, 

transcriptional network and pathway analysis methods (1,2). Single-cell RNA sequencing added further 

resolution to transcriptomics studies by enabling the investigation of the whole transcriptome at a single cell 

level, fueling the identification of many novel cell states (3,4). New generation spatial molecular 

measurement platforms that incorporate spatial information with existing imaging and sequencing 

technologies allows in-depth and fine-grained analyses, such as cell-cell interactions, cellular 

neighbourhood analysis and cell type deconvolution (5,6). Further, these technologies enable spatially 

resolved questions, such as the identification of differential expression between different parts of a tumour, 

between tissues with and without a particular cellular infiltrate, or of tissues adjacent to and distant from 

certain anatomical features. 

 

Amongst the spatial platforms, Nanostring’s GeoMx Digital Spatial Profiler (DSP) (7) is one of the more 

robust platforms for Formal-Fixed Paraffin-Embedded (FFPE) tissues (8), providing regions of interest 

(ROIs) level-selection methods, with ROIs ranging from tens to hundreds of cells. The FFPE compatibility 

allows the GeoMx DSP to be applicable to clinical and pathological investigations using banked FFPE 

archival tissues, thus enabling retrospective clinical cohort studies. However, the generation of DSP data 

includes placing tissue samples on glass slides, where different slides may introduce technical variations 

to the data, becoming a source of batch effects, which can lead to false discovery (9). Besides, sampling 

biases, such as unbalanced cell count and segment size, could be present due to the nature of randomness 

of FFPE materials or tissue segments from patients. Taking these factors together with other technical 

variations that are commonly seen in bulk or mini-bulk RNA-seq experiments (e.g. sequencing errors and 

sequencing depth or library size (10), it is necessary to perform data quality control (QC) and filtering and 

appropriate normalization or batch correction when analysing GeoMx DSP data. Moreover, it has been 

long-established that linear-based method such as Limma (11,12) and edgeR (13) are more appropriate 

for carrying out differential expression (DE) analysis compared to traditional T-test (14), especially for 

datasets with limited sample size. Methods must also correctly account for the complexity of experimental 

designs in spatial data, where multiple samples may be taken from one patient, or from adjacent regions in 

a single tissue. Taken together, it is essential to construct a computational workflow that can carry out 

comprehensive QC, data normalization and can be compatible with complex experimental designs and 

sophisticated DE methods. 

 

Based on our literature review of publications with GeoMx DSP transcriptome datasets from 2020 to July 

2022 (Figure 1A), the current most generic approaches rely heavily on the default quality control of the 

platform as well as standard paired T-tests (Figure 1D), which may be inadequate to handle the complexity 
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of the experiment. To this end, we have developed a Bioconductor R package standR (Spatial 

transcriptomics analyses and decoding in R) to assist the QC, normalization and batch correction, 

differential expression analysis, and downstream analysis of Nanostring GeoMx transcriptomics data. Here 

we introduce standR and describe the package's workflow and utility in analysing GeoMx DSP datasets. 

We have also performed a comprehensive comparison of standR with the current generic GeoMx DSP 

workflow on four publicly available GeoMx datasets.  
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MATERIAL AND METHODS 

Nanostring GeoMx DSP data pre-processing 

The Nanostring GeoMx datasets used in this study are publicly available and were downloaded from 

Nanostring’s Spatial Organ Atlas (https://nanostring.com/products/geomx-digital-spatial-profiler/spatial-

organ-atlas/). Initial data processing and sample-based QC were conducted using standR, any ROIs that 

were assigned with QC flags indicating low qualities (including “Low Percent Aligned Reads”, “Low Percent 

Stitched Reads”, “Low Surface Area”, “Low Nuclei Count”) were excluded from further analysis. 

 

Quality control 

For the gene filtering, the generic workflow removes genes with raw count smaller than the ROI-specific 

limitation of quantification (LOQ) in all ROIs, while the standR workflow removes genes with logCPM (log 

counts per million) count smaller than a calculated threshold in 90% of the ROIs. The threshold is calculated 

based on the median and mean of library size and a minimal count (default is 5) within the standR 

packages’s addPerROIQC function. QC was assessed by visualizing the mean-variance distribution of 

genes (Figure 2B), which was generated using voom from the limma R package with the linear modelling 

equation: model.matrix(~0 + TissueGroups). 

 

For sample filtering: In the standR workflow, the distribution of both library size and cell count were taken 

into account, we used a common library size threshold of 50,000 so that lower-quality ROIs with very small 

library sizes in the distribution histograms can be removed. To quantify the differences between the original 

ROIs, filtered ROIs and retained ROIs, we fit a linear model between log-scaled mean expression and the 

variance of the gene expressions, and the fitted data were then used to calculate the residual sum of 

squares (RSS). 

 

Normalization 

Different normalisation methods are available in the standR package via the geomxNorm and 

geomxBatchCorrection functions. When performing RUV4 batch correction, we first identified 200 negative 

control genes using the findNCGs function from the standR package. The geomxBatchCorrection function 

was then applied where the parameter k, which indicates the unwanted factor to be used, was set to 3 for 

the diabetic kidney and brain data, and 2 for the lymph node data. The weight matrices from RUV4 were 

then included in the design matrix of the linear model as covariates when performing DE analysis.  

 

Assessing normalisation performance 

To calculate the similarity statistics for assessing normalizations, adjusted rand index, jaccard index, mirkin 

distance and silhouette coefficient were calculated using the plotClusterEvalStats function from the standR 
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package between the first two principal components of the data and their slide and tissue type annotations, 

which indicate batch effect and biological effect, respectively. 

 

Differential expression analysis 

In the generic workflow, paired T-test from the R package stats and multiple testing adjustment using 

Benjamini-Hochberg correction were used to identify statistically significant (FDR < 0.05) differential 

expressed (DE) genes. In the standR workflow, duplicateCorrelation from the limma R package were first 

used to calculate the consensus correlation across patients to account for patient variation as a random 

effect. The linear model was then fitted to the appropriate experimental design containing the biological 

factors of interest. DE was then performed for specific contrasts of interest, including comparing abnormal 

glomeruli in diabetic kidney (n=65) to glomeruli in normal kidney (n=12); comparing B cell zone (n=24) to T 

cell zone (n=24) in lymph node; comparing longitudinal muscle layer (n=8) to circular muscle layer (n=20) 

in colon; and comparing cortical layer II/III (n=18) to hippocampus CA1 areas (n=13) in brain tissues. The 

resulting statistic was an empirical Bayes moderated t-statistic, followed by multiple testing adjustment was 

carried out with the Benjamini–Hochberg procedure to identify statistically significant (FDR < 0.05) DE 

genes. 
 

Gene-set over representation analysis 

The Molecular Signatures Database (MSigDB) gene-sets (15,16) data was obtained via the R package 

msigdbr. C5 and the Hallmark gene-sets was then used in the over representation analysis. The enricher 

function from the R package clusterProfiler (17) was then used to perform the over representation analysis. 

Gene-sets with adjusted P-value smaller than 0.05 were considered as significantly enriched gene-sets. 
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RESULTS 

A comprehensive analysis workflow for Nanstring GeoMx DSP data: standR 

From a review of the published studies from Jan 2020 to July 2022, we observed that there is a trend to 

use the combination of ProbeQC and limitation of quantification (LOQ) filtering strategy to conduct data 

quality control (QC) (Figure 1B). ProbeQC is the default data processing method provided with GeoMx DSP 

data, where negative probes are used to detect and remove outliers in the dataset. LOQ is a metric 

calculated based on the distribution of negative probes and is used as a proxy of the quantifiable limit of 

gene expression for each tissue fragment (7). After QC, the data is typically scaled using third quantile (Q3) 

normalization to account for technical variation in the dataset (Figure 1C). Most commonly, differential 

expression (DE) analysis is performed using standard t-test (Figure 1D). Based on these and for ease of 

comparison in this study, we define a generic workflow composing these commonly used analysis steps: 

probeQC and LOQ filtering for data QC, then a Q3 normalisation of the data, followed by identification of 

differentially expressed genes using a t-test (Figure 1E). 

 

In this study we proposed a refined analysis workflow for Nanostring GeoMx DSP data, which we believe 

is more suitable for spatial contexture analysis and the complex experimental workflow typically found in 

Nanostring GeoMx DSP experiments. Here we present the standR analysis workflow which consists of 

recommended strategies for each step (Figure 1F) in a sequential manner.  

 

For QC, our approach is to identify genes that are lowly expressed in over 90% of the regions of interest 

(ROIs), such genes are then removed from the analysis because genes with constantly low expression are 

unlikely to be determined as significantly differential expressed genes given their inadequate significance 

power (18). Subsequently, ROIs with low cell count and/or low total detection count are considered as low-

quality tissue fragments and filtered from the analysis to avoid bias due to sample quality in the downstream 

comparisons.  

 

After QC, suitable normalization method is required due to variation within the Nanostring GeoMx data can 

be driven by various complex factors, including the desired biological factor such as diseased and control 

groups or different tissue/cell type groups, or unwanted technical factors such as slide variations (datasets 

may have each slide containing individual or multiple patient samples), tissue microarray cores differences, 

different experiment runs or sequencing depth variation (Supplementary figure 1). In such cases where 

batch effects are observed, it is recommended to apply an appropriate batch effect correction method in 

the workflow to remove unwanted variation so that fair comparisons between biological groups can be 

established. Finally, in the standR workflow, DE workflows such as limma-voom (11,12) or edgeR (13) are 

preferred instead of standard t-test, as these methods have been shown to be more appropriate for 

obtaining accurate DE results from complex experimental designs (14). 
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Comparison between standR and a generic workflow of commonly used analytical processes 

To demonstrate the advantages of using the standR analysis workflow, here we applied both standR and 

generic workflows to analyse four publicly available Nanostring GeoMx DSP datasets from the Spatial 

Organ Atlas (19), systematically comparing the results generated by the two workflows at different stages 

of the analyses. The public datasets used are from human diabetic kidney, lymph node, colon and brain 

tissues, respectively, using the whole transcriptome atlas (WTA) panel for GeoMX DSP (> 18,000 genes). 

 
standR gene filtering approach retains tissue relevant genes 

The basic principles of gene filtering in both workflows are the same: a gene is removed when its expression 

is smaller than a certain threshold. However, there are three main differences. The first is that the generic 

workflow uses the distinct LOQ, which is calculated based on the geometric mean of the negative probes 

measured in the tissue fragments of each ROI separately, while standR calculates an overall expression 

threshold based on both the library size and the minimum count requirement for all genes. The second 

difference is that the generic workflow uses raw count data while standR uses log-transformed count per 

million (CPM) data to perform the filtering. Comparing the filtering results for all four datasets tested, the 

generic workflow tends to remove more genes from the analysis than standR (Figure 1A and B, 

supplementary figure 2 and supplementary file 1). In the diabetic kidney and lymph node datasets, standR 

removed markedly fewer genes than the standard filtering, though the genes it did remove were largely 

also removed by the generic workflow. However, in the other two datasets (colon and brain), the generic 

removed a substantial proportion of genes, (5.94% and 37.33% respectively), while standR did not remove 

any genes (Supplementary figure 2B). Our comparison also shows that genes filtered by standR are outliers 

across all ROIs for the mean expression-variance distribution while the generic workflow may also remove 

genes with medium level of mean expression and variance (Figure 2A). For example, in the brain dataset, 

the generic workflow removed some tissue-relevant genes, such as MDGA1 and CLMP (Supplementary 

figure 3), which may lead to loss of meaningful biological insight. In particular, CLMP is membrane protein 

coding gene where the expression of the CLMP gene was reported in the developing cerebral neocortex 

and other brain areas and might regulate aspects of synapse development and function in the brain (20,21). 

Similarly, MDGA1 gene encodes a membrane protein, which has a role in cell adhesion, migration, and 

axon guidance and, in the developing brain, neuronal migration (22,23). We used linear models to 

investigate if the standR-filtered genes are biologically significant (Figure 2B). By taking into account 

biological factors as covariates in the model, it can be seen that genes filtered by both methods (including 

standR-filtered) are not highly variable between the groups. However, in the brain dataset specifically, there 

are genes filtered by generic only which are highly variable and potentially DE. Not unexpectedly, MDGA1 

and CLMP are amongst them (Supplementary figure 3B labelled), indicating that these two generic-filtered 

brain-related genes might be differentially expressed between the biological groups in the data. 
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standR sample filtering is able to remove low quality samples  

During Nanostring GeoMx experiments, low-quality ROIs, such as those with low cell count, might be 

acquired during the tissue sampling. In order to detect and flag such ROIs, the Nanostring GeoMx NGS 

pipeline has pre-set cut-offs, such as sequencing read count, sequencing saturation, minimal nuclei count 

and minimal size of segment area (7,19). As such, the generic workflow does not apply any further sample 

filtering. However, some low-quality ROIs might not be captured by these pre-defined cut-offs, we therefore 

included a ROI QC step in the standR workflow, which uses the relationship between the cell count and the 

total detection distribution of each ROI to identify low-quality ROIs (Figure 2C and supplementary figure 4). 

In this study we applied a common threshold of 50,000 total detection counts to identify low-quality ROIs 

for the four datasets, removing 8 ROIs in both the diabetic kidney and colon datasets (Supplementary file 

2). The mean-variance distribution of the genes for the ROIs that were filtered suggests that genes within 

them are lowly expressed and less variable compared to the retained ROIs (Figure 2D). Additionally, the 

residual sum of squares (RSS) (see Methods) between the filtered ROIs and the unfiltered data (103608.2 

and 191174.4) is much higher than the RSS between the retained ROIs and the unfiltered data (0.065 and 

1.801) (Figure 2D), indicating that standR filtered ROIs that are very different from the other ROIs in these 

two datasets. Taken together, this suggests that the standR ROI QC strategy provides an additional filter 

for low-quality ROIs, supporting a more-accurate downstream analysis.  

 

Comparison of normalization results 

Data normalization can adjust data to a comparable scale by removing undesired biases, such as library 

size differences, batch variations and other technical factors, allowing a better estimation of the data. In the 

case of GeoMx data, the experiments are usually composed of multiple slides and patient samples, which 

can lead to batch effects caused by differences between slides. Furthermore, the heterogeneity and density 

of cells in the selected ROIs can also lead to variation in library size. Other factors including the age of 

samples, or sample preparation steps can also introduce variation. It is therefore crucial to perform suitable 

normalization to allow comparative analysis, such as differential expression analysis, between groups. 

Technical variations can be visualised in QC plots, such as relative log expression (RLE) plots, which are 

sensitive to technical variations (24), and principal component analysis (PCA) plots, which visualises the 

variation in the data by dimension reduction and investigate how these variations are related to the factors 

in the experiment. In the standR package, we provide implementations of different normalization methods, 

including the “trimmed mean of the M values” (TMM) from the edgeR (13) and the “median of ratios” from 

DESeq2 (25), both of which are established data normalization method for bulk RNA-seq data. Similarly, 

established batch correction methods including “Removal of Unwanted Variation 4” (RUV4) (26), “Remove 

Unwanted Variation Using Control Genes” (RUVg) (27) and “Remove Batch Effect” function in limma (11) 

are also implemented in standR. 
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PCA was performed on the raw data of the four GeoMx dataset tested. We identified confounding batch 

effects due to slide differences in the brain, lymph node and diabetic kidney datasets, while no batch effects 

were identified in the colon (Supplementary figure 5). The generic workflow uses Q3 normalization, which 

is a method using the 75th quantile as normalised factor for each ROI. In the batch-confounded datasets 

(i.e., brain, lymph node and diabetic kidney), the PCA of Q3-normalised data suggest that the batch effect 

due to the different slides has not been removed, nor is the variation explained by tissue types (Figure 3A, 

left and supplementary figure 6). 

 

Using the standR implemented normalisation functions, RUV4 normalization was applied to batch affected 

datasets (i.e. diabetic kidney, lymph node and brain), while TMM normalization was applied to the colon 

dataset. Results as shown in Figure 3A (right) suggested improved grouping based on tissue type (bottom, 

biological) in the brain dataset while reducing the grouping based on slide (top). Results for RUV4 

normalisation on diabetic kidney and lymph node datasets are shown in Supplementary figure 6. These 

suggest that by using appropriate methods provided by standR, batch effects can be appropriately 

addressed. Further evidence of appropriate normalisation outcomes can be found in the RLE plots, which 

shows less technical variations for standR-normalised data as compared to Q3-normalised data from the 

generic workflow (Figure 3B). This applies to all four-dataset tested, including the colon dataset, where 

batch effects are not observed (Supplementary figure 7). 

 

To quantify the performance of the normalization methods, we calculated similarity statistics between the 

first two principal components of the data and data annotation (Figure 3C and Supplementary figure 8, see 

Methods). It is clear that normalised data from the standR workflow consistently score high in the statistics 

comparing biology (i.e. tissue types) and consistently score low when comparing batch (i.e. slide 

differences). This suggests that application of the appropriate normalization strategy based on the standR 

workflow is able to adjust the data to retain the biological variations in the data, while minimising unwanted 

technical batch variations.  

 

Comparison of DE results 

DE analysis aims to detect statistically significant genes that are differentially expressed between groups 

of interest, which are used for the biological interpretation of the GeoMx DSP data and downstream 

analysis, such as pathway enrichment analysis and network analysis. Instead of applying a traditional 

paired T-test in the generic workflow to identify DE genes (which assumes that all genes are independent 

and can be strongly influenced by outliers), the standR workflow recommends the limma-voom DE pipeline, 

which borrows information between genes to allows a more precise estimation of biological variation 

(11,12). Moreover, the limma-voom pipeline uses linear modelling which allows greater degrees of freedom 

and more statistical power and is more useful in the analysis of data from the complex experimental designs 

typical of GeoMx experiments.  
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Comparing the DE results between the generic and standR workflows, we define one comparison for each 

of the four datasets: kidney - comparing abnormal glomerulus in diabetic kidney to abnormal glomerulus in 

normal kidney; lymph node - comparing B cell zone to T cell zone in lymph node; colon - comparing 

longitudinal muscle layer to circular muscle layer; and brain - comparing cortical layer II/III to hippocampus 

CA1 areas (Supplementary file 3). We found that the standR workflow identified more DE genes than the 

generic workflow in three of the comparisons, although not in the diabetic kidney dataset (Supplementary 

figure 9).  

 

By plotting the fold-change and mean expression of genes in a comparison (i.e. MA plots) (28), even 

dispersion relative to the fold-change are observed in the genes with low average expression in all four 

comparisons, with the dispersions becoming tighter with higher expression genes (Figure 4A and 

supplementary figure 10). A skewness of the overall distribution toward negative (in the diabetic kidney 

data) or positive (in the colon data) log-fold-change can also be seen. This trend is more obvious in the 

results generated from the generic workflow, suggesting that the log-fold-change is not independent to the 

expression of the genes, i.e. higher expression comes with higher/lower log-fold-change, which may 

indicate false positive outcomes. 

 

To assess how well the DE genes identified in either workflow are representative of biological systems, we 

perform gene-sets over-representation analysis for the up and down-regulated DE genes identified by both 

or unique to either workflow (Supplementary file 4). In all four comparisons, more biologically relevant gene-

sets were found from the DE gene lists identified by either the standR workflow or the intersect between 

both workflows. For example, in the kidney dataset, kidney-related gene-sets, such as 

HP_HORSESHOE_KIDNEY and HP_ABNORMAL_LOCALIZATION_OF_KIDNEY, are found to be 

enriched in the up-regulated DE genes from the standR workflow (Figure 4C). Neither this, nor any kidney 

relevant results, are found for the generic workflow. Similarly observed in other analysed datasets, the 

GOBP_MUSCLE_TISSUE_DEVELOPMENT gene-set and the HP_CEREBRAL_CORTICAL_ATROPHY 

and GOBP_CEREBRAL_CORTEX_DEVELOPMENT gene-sets were only found from DE genes 

determined by the standR workflow in the colon and brain data analyses respectively. Taken together, this 

suggests that the standR workflow can identify more specific and biologically relevant DE genes. The above 

observation did not hold for the lymph node dataset, where there was no enrichment for immune-related 

gene-sets in the DE genes from either workflow, however, there is for the DE genes commonly identified 

by both workflows (Figure 4B). 
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DISCUSSION 

Spatial transcriptomics analysis allows for a greater understanding of the cellular context of disease biology 

(29). As one of the key pioneering platforms of this technology, the Nanostring GeoMx DSP offers the ability 

to study whole-genome spatial transcriptome, with over 18,000 genes for human (22,000 genes for mouse) 

in a high-throughput manner from both Formalin-Fixed Paraffin-Embedded (FFPE) and fresh frozen 

materials (7,19). It is crucial to process and analyse the Nanostring GeoMx transcriptome data carefully to 

identify differential expressed genes with high confidence, leading to a better understanding of spatial 

transcriptome profiles in the tissues of interest. Here we described standR, a Bioconductor package 

providing quality control, normalization and assessment, and visualization functions for GeoMx 

transcriptomic data, and recommended a workflow incorporating the well-established limma-voom 

differential expression pipeline to identify DE genes from GeoMx experiments. 

 

There are key issues that differentiates the standR workflow from generic workflow, one of which is the 

gene filtering approach. In the generic workflow, the LOQ was meant for modelling the expression 

background in each tissue segments to allow removing genes with false signals. However, because LOQ 

is calculated based on the expression of negative control probes, it will be affected by the cell count and 

size of each ROI, as well as stickiness or other physical features related to the tissue. In our investigations 

of the brain dataset, the cell count per segment is negative correlated with the segment area, while the 

LOQ per segments are positively correlated with the area (Supplementary figure 11). In this case, filtering 

genes based on LOQ threshold will remove genes with medium expression level and variance (Figure 2A 

& B, generic only), which may be of biological relevance. This was found in the analysed brain dataset 

where brain tissue-related genes such as MDGA1 and CLMP were removed by generic only (LOQ). On the 

other hand, for the standR workflow, the gene filtering threshold is more targeted, using direct calculation 

based on the expression, while accounting for the library size variation of each ROI. As such, this threshold 

is relatively stable, and genes with extremely low expression and variation can be accurately detected 

(Figure 2A&B). 

 

There are currently several Bioconductor packages available analysis of GeoMx spatial data. These include 

GeoMxTools and GeoMxWorkflows (30,31) which are relevant to Nanostring GeoMx and use linear mixed 

model as the DE analysis method. The use of the standard paired t-test approach in GeoMx data is 

inadequate to handle the complexity of the GeoMx datasets. However, in the case of the two new tools, 

they perform DE analysis using a linear mixed model (LMM)-based method to allow for modelling the 

individual as a random effect. This is a very useful approach in cross-individual experiments, however their 

approach is still limited to singular gene comparisons like the paired t-test, which will need large number of 

replicates in the experiment to increase the degree of freedom and statistical power (32). To address this 

issue with cross-individual comparisons, the standR workflow recommends using the limma-voom pipeline 

with the duplicateCorrelation strategy, which not only can borrow information from all genes using an 
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empirical Bayes method to improve the statistical comparison, but can also account for the correlation 

between individuals by computing consensus correlation between replicates for each gene using restricted 

maximum likelihood (REML) (33). 

 

The standR package and workflow is designed for the analysis of the GeoMx transcriptome data. For 

GeoMx protein data, the quality control and normalization strategies will be different as the protein panel 

often contains fewer than 100 markers, with additional housekeeping and IgG markers as negative control 

markers. Considering the usage of Nanostring GeoMx protein data in the long term and its potential to aid 

in therapeutics and screening, there is a necessity to develop a comprehensive workflow for analysing both 

protein and transcript data. With the rapid development of higher plex and finer resolution spatial 

technologies, specialised analysis workflows and packages, such as standR, are essential for ensuring 

appropriate data QC and processing. While Nanostring GeoMx DSP is reaching maturity as a technology 

platform, more complex and data rich technologies such as the Nanostring CosMx single molecular imaging 

platform (CosMx SMI) (34) are now being released. These platforms will also require specialised analysis 

pipelines and software in order to fully harness the power of spatial location and neighbourhood at the 

single cell level. 

 

In conclusion, we describe our GeoMx analysis package, standR. We analyse the literature describing 

GeoMx experiments in order to identify common analytical steps and construct from the most common of 

these a generic analysis workflow. Then we compare the results from each step between the standR 

workflow and the generic workflow for four publicly available GeoMx WTA datasets. We provided evidence 

that standR’s application improves on the detection of biologically meaningful and nuanced results within 

spatial datasets in comparison to the generic workflow. Overall, we show that the standR workflow provides 

a comprehensive and reasonable quality control process, a better normalization strategy, and a more 

sophisticated differential expression analysis pipeline.  

 

AVAILABILITY 

Supplementary Data are available at NAR online. The GeoMx DSP datasets used in this paper are available 

in the Nanostring’s Spatial Organ Atlas (https://nanostring.com/products/geomx-digital-spatial-

profiler/spatial-organ-atlas/). The standR package is available in Bioconductor 

(https://www.bioconductor.org/packages/release/bioc/html/standR.html). 
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Figure 1. Literature Review and the standR workflow. A: Bar plot shows the increasing trend of publications 

with Nanostring GeoMx DSP datasets. B-D: Bar plots show the preferential choices of QC, normalization 

and differential expression methods in publications. E: Diagram demonstrates the comparison between 

standR and generic workflows. F: Flow diagram shows the standR workflow. 
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Figure 2. Gene and sample filtering by standR retains tissue relevant genes while removing low quality 

samples. Gene filtering (A&B), sample filtering (C&D). (A) Mean expression-variance of the genes across 

all the samples in each GeoMx dataset, colors denote if genes are removed by the gene filtering process 

of the standR or generic workflow. Blue contour lines indicate data density. (B) limma-voom mean-variance 

relationship plots of genes across different biological groups in four GeoMx datasets (see methods). red 

line: lowess regression, legend as per in A. (C) plot of cell count against total detection for each ROI in the 

diabetic kidney dataset, colors depicting the distributions of ROIs for individual slide annotation of the ROIs. 

ROIs with less than 50,000 total detection count (red dotted line) filtered out. (D) After sample filtering, the 

mean expression-variance plots of gene distribution between standR-filtered or retained samples (right) for 

either diabetic kidney (top) and colon (bottom) datasets were shown. The linear regression of genes of 

filtered (blue), retained (green) or unfiltered samples were plotted showing the retained samples maintaining 

the mean-variance relationship in the data while those samples filtered are different.  
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Figure 3. Normalization and batch correction using standR and generic workflows in the brain dataset. (A) 

PCA plots of data normalised using either the generic (left) or standR (right) workflows. Panels denotes 

annotations by either ROIs (top) and tissue structures (bottom). standR normalisation and batch correction 

was able to reduce slide effects while improving separation of biology. (B) RLE plots of the raw (top), Q3-

normalised (middle) and RUV4-normalised (bottom) data show RUV4 gives the best removal of technical 

variations. (C) Summarised statistics of raw, Q3-normalised and RUV4-normalised data comparing 

performance in terms of the biology (top) or batch factor (bottom). RUV4 performed the best across the 

statistics in terms of biology and batch (in general). 
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Figure 4. Differential expression analysis results using standR or generic workflows. (A) MA plots visualising 

differential expressing genes between longitudinal muscle and circular muscle layer in the colon dataset 

(top) and the comparison between cortical layer II/III and hippocampus CA1 in the brain dataset (bottom) 

using either generic (left) or standR (right). Differential expression genes generated using the voom-limma 

pipeline with duplicationCorrelation and applying t-tests relative to a threshold (TREAT) criterion with 

absolute fold change >1.2 with adjusted p-value <0.05. (B) Gene-set enrichment results of biologically 

relevant gene-sets were identified for each dataset and the number of biologically-related gene-sets from 
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either workflows were plotted. Overall, standR was able to identify more unique biological gene-sets for the 

respective dataset.  

 
 
SUPPLEMENTARY DATA 
 
Supplementary file 1. Gene filtering results of GeoMx DSP datasets using generic and standR 
workflow. 
Supplementary file 2. Sample filtering results of GeoMx DSP datasets using generic and standR 
workflow. 
Supplementary file 3. DE analysis results of GeoMx DSP datasets using generic and standR 
workflow. 
Supplementary file 4. Gene-sets enrichment analysis results of GeoMx DSP datasets using 
generic and standR workflow. 
 

 
Supplementary figure 1. Typical factor layers in a hypothetical GeoMx DSP experiment. Columns 

are typical biological and technical factors that introduce variations into GeoMx DSP data. 
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Supplementary figure 2. Comparison of filtered genes across four GeoMx datasets. (A) Venn 

diagrams show the intersection between filtered genes from the generic workflow (purple) and the standR 

workflow (yellow) for the four GeoMx datasets tested. (B) Percentage of genes either removed or retained 

during the filtering process of either the generic or standR workflows for the four GeoMx datasets. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.23.538017doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 
Supplementary figure 3. Brain-related genes MDGA1 and CLMP removed by the generic workflow’s 
filtering. (A) Mean expression against variance of gene expression was plotted for all samples in the brain 

GeoMx dataset, with purple denoting genes removed by the gene filtering process of the standR or generic 

workflow. (B) Mean counts (log2) against variance distribution of the genes across different biological 

groups in the brain GeoMx dataset (see method) was plotted with the red line denoting the lowess 

regression curve of the data point. Legend colors indicate genes either removed or retained by one or both 

methods investigated in this study.  

 

 

 

 
Supplementary figure 4. Sample filtering diagnostics and QC in the standR workflow. The cell count 

vs. total detection of RNA in each ROI of the respective GeoMx dataset was plotted with colours stratifying 

the ROIs by slide annotations. The purple lines are lowess regression curves with the histograms indicating 

either the distribution of cell count (top) or total RNA detection (right) of each dataset. ROIs with total 
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detections less than 50,000 (as indicated by the red dotted line) were considered low quality ROIs and 

removed. 

 

 
Supplementary figure 5. Principal component analysis (PCA) using the raw data for the four GeoMx 
datasets. The first two Principal Components (i.e. PC1 and PC2) for each dataset are plotted with samples 

stratified by slide (i.e. SlideName), suggesting that most of the datasets have varying degree of batch 

effects due to slides, with the only exception being the Colon dataset. 
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Supplementary figure 6. Principal component analysis (PCA) of normalised data for the Kidney (A), 
Lymph Node (B) and Colon (C) GeoMx datasets. Each dataset consists of 4 panels (2 by 2). The columns 

on the left are Q3 normalised data generated using the generic workflow, the columns on the right are 
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normalised data generated using the standR workflow. RUV4 was used for kidney and Lymph node 

datasets, TMM was used for the Colon dataset. For each dataset, top two panels were stratified based on 

slide while the bottom two panels by tissue types. This shows that standR workflow normalisation removes 

unwanted batch effects or variations while maintain the biology of interest.  

 

 
Supplementary figure 7. Relative log expression (RLE) analysis of normalised data for the Kidney, 
Lymph Node and Colon GeoMx datasets. Q3 normalised data generated from the generic workflow are 

on the left while normalised data generated from the standR workflow are on the right. RUV4 normalisation 

was used for kidney and Lymph node datasets while TMM was used for the Colon dataset. For each 

dataset, samples were stratified based on slide. This shows that standR workflow normalisation removes 

unwanted variations within the respective datasets. 
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Supplementary figure 8. Comparing performances using summarised statistics. Similarity statistics 

including adjusted rand index, jaccard index, mirkin distance and silhouette coefficient were applied 

between the first two PCs of the raw, Q3-normalised or RUV4-normalised data of three datasets: (A) 

diabetic kidney, (B) lymph node and (C) colon, comparing against biology (top) or batch (bottom) as a factor. 

For (A) and (B), RUV4 consistently scores highly compared to Q3 or unnormalized data when comparing 

the biology and poorly when comparing batch, suggesting standR workflow (using RUV4) allows 

appropriate normalisation to be applied to retain the biology while minimising the unwanted technical 

variations. 

 

 
Supplementary figure 9. StandR identifies more DE genes in 3 out of the 4 datasets tested compared 
to the generic workflow. Proportional Venn diagrams of the identified DE genes from either standR or 

Commonly Used workflows were visualised for each of the 4 tested GeoMX dataset for the respective 

comparisons applied in this study. Only for the kidney dataset was lesser DE genes identified by standR 

compared to generic workflow whereas the other three datasets have more DE genes identified by standR.  
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Supplementary figure 10. Differential expression analysis results using standR or generic 
workflows for Kidney and Lymph Node datasets. MA plots visualising differential expressing genes in 

the comparison between abnormal vs normal glomerulus in diabetic kidney datasets (top) and the 

comparison between B cell vs T cell zones in the lymph node dataset (bottom). Colours denote significant 

up- (green) and down-regulated (purple) genes for the respective dataset. Differential expression genes 

generated using the voom-limma pipeline with duplicationCorrelation and applying t-tests relative to a 

threshold (TREAT) criterion with absolute fold change >1.2 with p-value <0.05. 
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Supplementary figure 11. Sample diagnostics and QC using the standR workflow for the brain 
dataset. (left) The area/size vs LOQ distributions of the ROIs or (right) the area/size vs cell count within the 

ROIs were plotted for the brain GeoMx dataset. The purple lines are lowess regression curves with the top 

histograms indicating the distribution by area/size and the right histograms indicating the distribution of 

either (left) LOQ or (right) cell count of each dataset. ROIs with total detections less than 50,000 (as 

indicated by the red dotted line) were considered low quality ROIs and removed. 
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