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ABSTRACT

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is
important to account for the spatial context and identity of cell in situ. State-of-the-art spatial profiling
technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially
resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used
to analyse GeoMx data often fail to successfully account for the technical variability within the data and the
complexity of experimental designs, thus limiting the accuracy and reliability of subsequent analysis.
Carefully designed quality control workflows, that include in-depth experiment-specific investigations into
technical variation and appropriate adjustment for such variation can address this issue. Here we present
standR, a R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four
case studies from previously published experiments, we demonstrate how the standR workflow can
enhance the statistical power of GeoMx DSP data analysis and how application of standR enables scientists

to develop in-depth insights into the biology of interest.
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INTRODUCTION

Quantitative gene expression analysis of disease systems using technologies such as bulk RNA-seq have
led to many biomarker discoveries and mechanistic insights through application of differential expression,
transcriptional network and pathway analysis methods (1,2). Single-cell RNA sequencing added further
resolution to transcriptomics studies by enabling the investigation of the whole transcriptome at a single cell
level, fueling the identification of many novel cell states (3,4). New generation spatial molecular
measurement platforms that incorporate spatial information with existing imaging and sequencing
technologies allows in-depth and fine-grained analyses, such as cell-cell interactions, cellular
neighbourhood analysis and cell type deconvolution (5,6). Further, these technologies enable spatially
resolved questions, such as the identification of differential expression between different parts of a tumour,
between tissues with and without a particular cellular infiltrate, or of tissues adjacent to and distant from

certain anatomical features.

Amongst the spatial platforms, Nanostring’s GeoMx Digital Spatial Profiler (DSP) (7) is one of the more
robust platforms for Formal-Fixed Paraffin-Embedded (FFPE) tissues (8), providing regions of interest
(ROls) level-selection methods, with ROls ranging from tens to hundreds of cells. The FFPE compatibility
allows the GeoMx DSP to be applicable to clinical and pathological investigations using banked FFPE
archival tissues, thus enabling retrospective clinical cohort studies. However, the generation of DSP data
includes placing tissue samples on glass slides, where different slides may introduce technical variations
to the data, becoming a source of batch effects, which can lead to false discovery (9). Besides, sampling
biases, such as unbalanced cell count and segment size, could be present due to the nature of randomness
of FFPE materials or tissue segments from patients. Taking these factors together with other technical
variations that are commonly seen in bulk or mini-bulk RNA-seq experiments (e.g. sequencing errors and
sequencing depth or library size (10), it is necessary to perform data quality control (QC) and filtering and
appropriate normalization or batch correction when analysing GeoMx DSP data. Moreover, it has been
long-established that linear-based method such as Limma (11,12) and edgeR (13) are more appropriate
for carrying out differential expression (DE) analysis compared to traditional T-test (14), especially for
datasets with limited sample size. Methods must also correctly account for the complexity of experimental
designs in spatial data, where multiple samples may be taken from one patient, or from adjacent regions in
a single tissue. Taken together, it is essential to construct a computational workflow that can carry out
comprehensive QC, data normalization and can be compatible with complex experimental designs and

sophisticated DE methods.

Based on our literature review of publications with GeoMx DSP transcriptome datasets from 2020 to July
2022 (Figure 1A), the current most generic approaches rely heavily on the default quality control of the

platform as well as standard paired T-tests (Figure 1D), which may be inadequate to handle the complexity
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of the experiment. To this end, we have developed a Bioconductor R package standR (Spatial
transcriptomics analyses and decoding in R) to assist the QC, normalization and batch correction,
differential expression analysis, and downstream analysis of Nanostring GeoMx transcriptomics data. Here
we introduce standR and describe the package's workflow and utility in analysing GeoMx DSP datasets.
We have also performed a comprehensive comparison of standR with the current generic GeoMx DSP

workflow on four publicly available GeoMx datasets.
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MATERIAL AND METHODS
Nanostring GeoMx DSP data pre-processing

The Nanostring GeoMx datasets used in this study are publicly available and were downloaded from
Nanostring’s Spatial Organ Atlas (https://nanostring.com/products/geomx-digital-spatial-profiler/spatial-
organ-atlas/). Initial data processing and sample-based QC were conducted using standR, any ROls that
were assigned with QC flags indicating low qualities (including “Low Percent Aligned Reads”, “Low Percent

Stitched Reads”, “Low Surface Area”, “Low Nuclei Count”) were excluded from further analysis.

Quality control

For the gene filtering, the generic workflow removes genes with raw count smaller than the ROI-specific
limitation of quantification (LOQ) in all ROIs, while the standR workflow removes genes with logCPM (log
counts per million) count smaller than a calculated threshold in 90% of the ROIs. The threshold is calculated
based on the median and mean of library size and a minimal count (default is 5) within the standR
packages’s addPerROIQC function. QC was assessed by visualizing the mean-variance distribution of
genes (Figure 2B), which was generated using voom from the limma R package with the linear modelling

equation: model.matrix(~0 + TissueGroups).

For sampile filtering: In the standR workflow, the distribution of both library size and cell count were taken
into account, we used a common library size threshold of 50,000 so that lower-quality ROls with very small
library sizes in the distribution histograms can be removed. To quantify the differences between the original
ROlIs, filtered ROIs and retained ROIs, we fit a linear model between log-scaled mean expression and the
variance of the gene expressions, and the fitted data were then used to calculate the residual sum of

squares (RSS).

Normalization

Different normalisation methods are available in the standR package via the geomxNorm and
geomxBatchCorrection functions. When performing RUV4 batch correction, we first identified 200 negative
control genes using the findNCGs function from the standR package. The geomxBatchCorrection function
was then applied where the parameter k, which indicates the unwanted factor to be used, was set to 3 for
the diabetic kidney and brain data, and 2 for the lymph node data. The weight matrices from RUV4 were

then included in the design matrix of the linear model as covariates when performing DE analysis.

Assessing normalisation performance

To calculate the similarity statistics for assessing normalizations, adjusted rand index, jaccard index, mirkin

distance and silhouette coefficient were calculated using the plotClusterEvalStats function from the standR
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package between the first two principal components of the data and their slide and tissue type annotations,

which indicate batch effect and biological effect, respectively.

Differential expression analysis

In the generic workflow, paired T-test from the R package stats and multiple testing adjustment using
Benjamini-Hochberg correction were used to identify statistically significant (FDR < 0.05) differential
expressed (DE) genes. In the standR workflow, duplicateCorrelation from the limma R package were first
used to calculate the consensus correlation across patients to account for patient variation as a random
effect. The linear model was then fitted to the appropriate experimental design containing the biological
factors of interest. DE was then performed for specific contrasts of interest, including comparing abnormal
glomeruli in diabetic kidney (n=65) to glomeruli in normal kidney (n=12); comparing B cell zone (n=24)to T
cell zone (n=24) in lymph node; comparing longitudinal muscle layer (n=8) to circular muscle layer (n=20)
in colon; and comparing cortical layer 1l/lll (n=18) to hippocampus CA1 areas (n=13) in brain tissues. The
resulting statistic was an empirical Bayes moderated t-statistic, followed by multiple testing adjustment was
carried out with the Benjamini—-Hochberg procedure to identify statistically significant (FDR < 0.05) DE

genes.

Gene-set over representation analysis

The Molecular Signatures Database (MSigDB) gene-sets (15,16) data was obtained via the R package
msigdbr. C5 and the Hallmark gene-sets was then used in the over representation analysis. The enricher
function from the R package clusterProfiler (17) was then used to perform the over representation analysis.

Gene-sets with adjusted P-value smaller than 0.05 were considered as significantly enriched gene-sets.
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RESULTS
A comprehensive analysis workflow for Nanstring GeoMx DSP data: standR

From a review of the published studies from Jan 2020 to July 2022, we observed that there is a trend to
use the combination of ProbeQC and limitation of quantification (LOQ) filtering strategy to conduct data
quality control (QC) (Figure 1B). ProbeQC is the default data processing method provided with GeoMx DSP
data, where negative probes are used to detect and remove outliers in the dataset. LOQ is a metric
calculated based on the distribution of negative probes and is used as a proxy of the quantifiable limit of
gene expression for each tissue fragment (7). After QC, the data is typically scaled using third quantile (Q3)
normalization to account for technical variation in the dataset (Figure 1C). Most commonly, differential
expression (DE) analysis is performed using standard t-test (Figure 1D). Based on these and for ease of
comparison in this study, we define a generic workflow composing these commonly used analysis steps:
probeQC and LOQ filtering for data QC, then a Q3 normalisation of the data, followed by identification of

differentially expressed genes using a t-test (Figure 1E).

In this study we proposed a refined analysis workflow for Nanostring GeoMx DSP data, which we believe
is more suitable for spatial contexture analysis and the complex experimental workflow typically found in
Nanostring GeoMx DSP experiments. Here we present the standR analysis workflow which consists of

recommended strategies for each step (Figure 1F) in a sequential manner.

For QC, our approach is to identify genes that are lowly expressed in over 90% of the regions of interest
(ROIs), such genes are then removed from the analysis because genes with constantly low expression are
unlikely to be determined as significantly differential expressed genes given their inadequate significance
power (18). Subsequently, ROIs with low cell count and/or low total detection count are considered as low-
quality tissue fragments and filtered from the analysis to avoid bias due to sample quality in the downstream

comparisons.

After QC, suitable normalization method is required due to variation within the Nanostring GeoMx data can
be driven by various complex factors, including the desired biological factor such as diseased and control
groups or different tissue/cell type groups, or unwanted technical factors such as slide variations (datasets
may have each slide containing individual or multiple patient samples), tissue microarray cores differences,
different experiment runs or sequencing depth variation (Supplementary figure 1). In such cases where
batch effects are observed, it is recommended to apply an appropriate batch effect correction method in
the workflow to remove unwanted variation so that fair comparisons between biological groups can be
established. Finally, in the standR workflow, DE workflows such as limma-voom (11,12) or edgeR (13) are
preferred instead of standard t-test, as these methods have been shown to be more appropriate for

obtaining accurate DE results from complex experimental designs (14).
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Comparison between standR and a generic workflow of commonly used analytical processes

To demonstrate the advantages of using the standR analysis workflow, here we applied both standR and
generic workflows to analyse four publicly available Nanostring GeoMx DSP datasets from the Spatial
Organ Atlas (19), systematically comparing the results generated by the two workflows at different stages
of the analyses. The public datasets used are from human diabetic kidney, lymph node, colon and brain

tissues, respectively, using the whole transcriptome atlas (WTA) panel for GeoMX DSP (> 18,000 genes).

standR gene filtering approach retains tissue relevant genes

The basic principles of gene filtering in both workflows are the same: a gene is removed when its expression
is smaller than a certain threshold. However, there are three main differences. The first is that the generic
workflow uses the distinct LOQ, which is calculated based on the geometric mean of the negative probes
measured in the tissue fragments of each ROI separately, while standR calculates an overall expression
threshold based on both the library size and the minimum count requirement for all genes. The second
difference is that the generic workflow uses raw count data while standR uses log-transformed count per
million (CPM) data to perform the filtering. Comparing the filtering results for all four datasets tested, the
generic workflow tends to remove more genes from the analysis than standR (Figure 1A and B,
supplementary figure 2 and supplementary file 1). In the diabetic kidney and lymph node datasets, standR
removed markedly fewer genes than the standard filtering, though the genes it did remove were largely
also removed by the generic workflow. However, in the other two datasets (colon and brain), the generic
removed a substantial proportion of genes, (5.94% and 37.33% respectively), while standR did not remove
any genes (Supplementary figure 2B). Our comparison also shows that genes filtered by standR are outliers
across all ROls for the mean expression-variance distribution while the generic workflow may also remove
genes with medium level of mean expression and variance (Figure 2A). For example, in the brain dataset,
the generic workflow removed some tissue-relevant genes, such as MDGA1 and CLMP (Supplementary
figure 3), which may lead to loss of meaningful biological insight. In particular, CLMP is membrane protein
coding gene where the expression of the CLMP gene was reported in the developing cerebral neocortex
and other brain areas and might regulate aspects of synapse development and function in the brain (20,21).
Similarly, MDGA1 gene encodes a membrane protein, which has a role in cell adhesion, migration, and
axon guidance and, in the developing brain, neuronal migration (22,23). We used linear models to
investigate if the standR-filtered genes are biologically significant (Figure 2B). By taking into account
biological factors as covariates in the model, it can be seen that genes filtered by both methods (including
standR-filtered) are not highly variable between the groups. However, in the brain dataset specifically, there
are genes filtered by generic only which are highly variable and potentially DE. Not unexpectedly, MDGA1
and CLMP are amongst them (Supplementary figure 3B labelled), indicating that these two generic-filtered

brain-related genes might be differentially expressed between the biological groups in the data.
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standR sample filtering is able to remove low quality samples

During Nanostring GeoMx experiments, low-quality ROIs, such as those with low cell count, might be
acquired during the tissue sampling. In order to detect and flag such ROIs, the Nanostring GeoMx NGS
pipeline has pre-set cut-offs, such as sequencing read count, sequencing saturation, minimal nuclei count
and minimal size of segment area (7,19). As such, the generic workflow does not apply any further sample
filtering. However, some low-quality ROIs might not be captured by these pre-defined cut-offs, we therefore
included a ROI QC step in the standR workflow, which uses the relationship between the cell count and the
total detection distribution of each ROI to identify low-quality ROIs (Figure 2C and supplementary figure 4).
In this study we applied a common threshold of 50,000 total detection counts to identify low-quality ROIls
for the four datasets, removing 8 ROlIs in both the diabetic kidney and colon datasets (Supplementary file
2). The mean-variance distribution of the genes for the ROls that were filtered suggests that genes within
them are lowly expressed and less variable compared to the retained ROIs (Figure 2D). Additionally, the
residual sum of squares (RSS) (see Methods) between the filtered ROIs and the unfiltered data (103608.2
and 191174.4) is much higher than the RSS between the retained ROIs and the unfiltered data (0.065 and
1.801) (Figure 2D), indicating that standR filtered ROls that are very different from the other ROls in these
two datasets. Taken together, this suggests that the standR ROI QC strategy provides an additional filter

for low-quality ROls, supporting a more-accurate downstream analysis.

Comparison of normalization results

Data normalization can adjust data to a comparable scale by removing undesired biases, such as library
size differences, batch variations and other technical factors, allowing a better estimation of the data. In the
case of GeoMx data, the experiments are usually composed of multiple slides and patient samples, which
can lead to batch effects caused by differences between slides. Furthermore, the heterogeneity and density
of cells in the selected ROls can also lead to variation in library size. Other factors including the age of
samples, or sample preparation steps can also introduce variation. It is therefore crucial to perform suitable
normalization to allow comparative analysis, such as differential expression analysis, between groups.
Technical variations can be visualised in QC plots, such as relative log expression (RLE) plots, which are
sensitive to technical variations (24), and principal component analysis (PCA) plots, which visualises the
variation in the data by dimension reduction and investigate how these variations are related to the factors
in the experiment. In the standR package, we provide implementations of different normalization methods,
including the “trimmed mean of the M values” (TMM) from the edgeR (13) and the “median of ratios” from
DESeq2 (25), both of which are established data normalization method for bulk RNA-seq data. Similarly,
established batch correction methods including “Removal of Unwanted Variation 4” (RUV4) (26), “Remove
Unwanted Variation Using Control Genes” (RUVQ) (27) and “Remove Batch Effect’ function in limma (11)

are also implemented in standR.
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PCA was performed on the raw data of the four GeoMx dataset tested. We identified confounding batch
effects due to slide differences in the brain, lymph node and diabetic kidney datasets, while no batch effects
were identified in the colon (Supplementary figure 5). The generic workflow uses Q3 normalization, which
is a method using the 75" quantile as normalised factor for each ROI. In the batch-confounded datasets
(i.e., brain, lymph node and diabetic kidney), the PCA of Q3-normalised data suggest that the batch effect
due to the different slides has not been removed, nor is the variation explained by tissue types (Figure 3A,

left and supplementary figure 6).

Using the standR implemented normalisation functions, RUV4 normalization was applied to batch affected
datasets (i.e. diabetic kidney, lymph node and brain), while TMM normalization was applied to the colon
dataset. Results as shown in Figure 3A (right) suggested improved grouping based on tissue type (bottom,
biological) in the brain dataset while reducing the grouping based on slide (top). Results for RUV4
normalisation on diabetic kidney and lymph node datasets are shown in Supplementary figure 6. These
suggest that by using appropriate methods provided by standR, batch effects can be appropriately
addressed. Further evidence of appropriate normalisation outcomes can be found in the RLE plots, which
shows less technical variations for standR-normalised data as compared to Q3-normalised data from the
generic workflow (Figure 3B). This applies to all four-dataset tested, including the colon dataset, where

batch effects are not observed (Supplementary figure 7).

To quantify the performance of the normalization methods, we calculated similarity statistics between the
first two principal components of the data and data annotation (Figure 3C and Supplementary figure 8, see
Methods). It is clear that normalised data from the standR workflow consistently score high in the statistics
comparing biology (i.e. tissue types) and consistently score low when comparing batch (i.e. slide
differences). This suggests that application of the appropriate normalization strategy based on the standR
workflow is able to adjust the data to retain the biological variations in the data, while minimising unwanted

technical batch variations.

Comparison of DE results

DE analysis aims to detect statistically significant genes that are differentially expressed between groups
of interest, which are used for the biological interpretation of the GeoMx DSP data and downstream
analysis, such as pathway enrichment analysis and network analysis. Instead of applying a traditional
paired T-test in the generic workflow to identify DE genes (which assumes that all genes are independent
and can be strongly influenced by outliers), the standR workflow recommends the limma-voom DE pipeline,
which borrows information between genes to allows a more precise estimation of biological variation
(11,12). Moreover, the limma-voom pipeline uses linear modelling which allows greater degrees of freedom
and more statistical power and is more useful in the analysis of data from the complex experimental designs

typical of GeoMx experiments.
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Comparing the DE results between the generic and standR workflows, we define one comparison for each
of the four datasets: kidney - comparing abnormal glomerulus in diabetic kidney to abnormal glomerulus in
normal kidney; lymph node - comparing B cell zone to T cell zone in lymph node; colon - comparing
longitudinal muscle layer to circular muscle layer; and brain - comparing cortical layer Il/Ill to hippocampus
CA1 areas (Supplementary file 3). We found that the standR workflow identified more DE genes than the
generic workflow in three of the comparisons, although not in the diabetic kidney dataset (Supplementary

figure 9).

By plotting the fold-change and mean expression of genes in a comparison (i.e. MA plots) (28), even
dispersion relative to the fold-change are observed in the genes with low average expression in all four
comparisons, with the dispersions becoming tighter with higher expression genes (Figure 4A and
supplementary figure 10). A skewness of the overall distribution toward negative (in the diabetic kidney
data) or positive (in the colon data) log-fold-change can also be seen. This trend is more obvious in the
results generated from the generic workflow, suggesting that the log-fold-change is not independent to the
expression of the genes, i.e. higher expression comes with higher/lower log-fold-change, which may

indicate false positive outcomes.

To assess how well the DE genes identified in either workflow are representative of biological systems, we
perform gene-sets over-representation analysis for the up and down-regulated DE genes identified by both
or unique to either workflow (Supplementary file 4). In all four comparisons, more biologically relevant gene-
sets were found from the DE gene lists identified by either the standR workflow or the intersect between
both workflows. For example, in the kidney dataset, kidney-related gene-sets, such as
HP_HORSESHOE_KIDNEY and HP_ABNORMAL _LOCALIZATION_OF _KIDNEY, are found to be
enriched in the up-regulated DE genes from the standR workflow (Figure 4C). Neither this, nor any kidney
relevant results, are found for the generic workflow. Similarly observed in other analysed datasets, the
GOBP_MUSCLE_TISSUE_DEVELOPMENT gene-set and the HP_CEREBRAL_CORTICAL_ATROPHY
and GOBP_CEREBRAL_CORTEX DEVELOPMENT gene-sets were only found from DE genes
determined by the standR workflow in the colon and brain data analyses respectively. Taken together, this
suggests that the standR workflow can identify more specific and biologically relevant DE genes. The above
observation did not hold for the lymph node dataset, where there was no enrichment for immune-related
gene-sets in the DE genes from either workflow, however, there is for the DE genes commonly identified

by both workflows (Figure 4B).
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DISCUSSION

Spatial transcriptomics analysis allows for a greater understanding of the cellular context of disease biology
(29). As one of the key pioneering platforms of this technology, the Nanostring GeoMx DSP offers the ability
to study whole-genome spatial transcriptome, with over 18,000 genes for human (22,000 genes for mouse)
in a high-throughput manner from both Formalin-Fixed Paraffin-Embedded (FFPE) and fresh frozen
materials (7,19). It is crucial to process and analyse the Nanostring GeoMx transcriptome data carefully to
identify differential expressed genes with high confidence, leading to a better understanding of spatial
transcriptome profiles in the tissues of interest. Here we described standR, a Bioconductor package
providing quality control, normalization and assessment, and visualization functions for GeoMx
transcriptomic data, and recommended a workflow incorporating the well-established limma-voom

differential expression pipeline to identify DE genes from GeoMx experiments.

There are key issues that differentiates the standR workflow from generic workflow, one of which is the
gene filtering approach. In the generic workflow, the LOQ was meant for modelling the expression
background in each tissue segments to allow removing genes with false signals. However, because LOQ
is calculated based on the expression of negative control probes, it will be affected by the cell count and
size of each ROI, as well as stickiness or other physical features related to the tissue. In our investigations
of the brain dataset, the cell count per segment is negative correlated with the segment area, while the
LOQ per segments are positively correlated with the area (Supplementary figure 11). In this case, filtering
genes based on LOQ threshold will remove genes with medium expression level and variance (Figure 2A
& B, generic only), which may be of biological relevance. This was found in the analysed brain dataset
where brain tissue-related genes such as MDGA1 and CLMP were removed by generic only (LOQ). On the
other hand, for the standR workflow, the gene filtering threshold is more targeted, using direct calculation
based on the expression, while accounting for the library size variation of each ROI. As such, this threshold
is relatively stable, and genes with extremely low expression and variation can be accurately detected
(Figure 2A&B).

There are currently several Bioconductor packages available analysis of GeoMx spatial data. These include
GeoMxTools and GeoMxWorkflows (30,31) which are relevant to Nanostring GeoMx and use linear mixed
model as the DE analysis method. The use of the standard paired t-test approach in GeoMx data is
inadequate to handle the complexity of the GeoMx datasets. However, in the case of the two new tools,
they perform DE analysis using a linear mixed model (LMM)-based method to allow for modelling the
individual as a random effect. This is a very useful approach in cross-individual experiments, however their
approach is still limited to singular gene comparisons like the paired t-test, which will need large number of
replicates in the experiment to increase the degree of freedom and statistical power (32). To address this
issue with cross-individual comparisons, the standR workflow recommends using the limma-voom pipeline

with the duplicateCorrelation strategy, which not only can borrow information from all genes using an

11


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

empirical Bayes method to improve the statistical comparison, but can also account for the correlation
between individuals by computing consensus correlation between replicates for each gene using restricted
maximum likelihood (REML) (33).

The standR package and workflow is designed for the analysis of the GeoMx transcriptome data. For
GeoMx protein data, the quality control and normalization strategies will be different as the protein panel
often contains fewer than 100 markers, with additional housekeeping and IgG markers as negative control
markers. Considering the usage of Nanostring GeoMx protein data in the long term and its potential to aid
in therapeutics and screening, there is a necessity to develop a comprehensive workflow for analysing both
protein and transcript data. With the rapid development of higher plex and finer resolution spatial
technologies, specialised analysis workflows and packages, such as standR, are essential for ensuring
appropriate data QC and processing. While Nanostring GeoMx DSP is reaching maturity as a technology
platform, more complex and data rich technologies such as the Nanostring CosMx single molecular imaging
platform (CosMx SMI) (34) are now being released. These platforms will also require specialised analysis
pipelines and software in order to fully harness the power of spatial location and neighbourhood at the

single cell level.

In conclusion, we describe our GeoMx analysis package, standR. We analyse the literature describing
GeoMx experiments in order to identify common analytical steps and construct from the most common of
these a generic analysis workflow. Then we compare the results from each step between the standR
workflow and the generic workflow for four publicly available GeoMx WTA datasets. We provided evidence
that standR’s application improves on the detection of biologically meaningful and nuanced results within
spatial datasets in comparison to the generic workflow. Overall, we show that the standR workflow provides
a comprehensive and reasonable quality control process, a better normalization strategy, and a more

sophisticated differential expression analysis pipeline.

AVAILABILITY

Supplementary Data are available at NAR online. The GeoMx DSP datasets used in this paper are available

in the Nanostring's Spatial Organ Atlas (https:/nanostring.com/products/geomx-digital-spatial-

profiler/spatial-organ-atlas/). The standR package is available in Bioconductor

(https://www.bioconductor.org/packages/release/bioc/html/standR.html).

12


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

ACKNOWLEDGEMENT

The authors thank Nanostring Technologies for releasing the publicly available GeoMx datasets, Professor

Terry Speed (WEHI) for assistance in the implementation of the RUV-4 function in the standR package and

James Monkman and Tony Blick of the University of Queensland for their assistance with reviewing the

manuscript.

FUNDING

This study was supported by the Australian Academy of Sciences (AAS): Regional Collaborations

Programme COVID-19 Digital Grants scheme for Chin Wee Tan and Arutha Kulasinghe.

CONFLICT OF INTEREST

The authors declare there are no conflicts of interest.

REFERENCES

1.

Cancer Genome Atlas Research, N. (2008) Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature, 455, 1061-1068.

Ballouz, S., Verleyen, W. and Gillis, J. (2015) Guidance for RNA-seq co-expression network
construction and analysis: safety in numbers. Bioinformatics, 31, 2123-2130.

Saliba, A.-E., Westermann, A.J., Gorski, S.A. and Vogel, J. (2014) Single-cell RNA-seq:
advances and future challenges. Nucleic acids research, 42, 8845-8860.

Wu, H., Kirita, Y., Donnelly, E.L. and Humphreys, B.D. (2019) Advantages of single-nucleus over
single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in
fibrosis. Journal of the American Society of Nephrology, 30, 23-32.

Ji, A.L., Rubin, AJ., Thrane, K., Jiang, S., Reynolds, D.L., Meyers, R.M., Guo, M.G., George,
B.M., Mollbrink, A., Bergenstrahle, J. et al. (2020) Multimodal Analysis of Composition and Spatial
Architecture in Human Squamous Cell Carcinoma. Cell, 182, 1661-1662.

Jiang, S., Chan, C.N., Rovira-Clave, X., Chen, H., Bai, Y., Zhu, B., McCaffrey, E., Greenwald,
N.F., Liu, C., Barlow, G.L. et al. (2022) Combined protein and nucleic acid imaging reveals virus-
dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity,
55,1118-1134 e1118.

Merritt, C.R., Ong, G.T., Church, S.E., Barker, K., Danaher, P., Geiss, G., Hoang, M., Jung, J.,
Liang, Y., McKay-Fleisch, J. et al. (2020) Multiplex digital spatial profiling of proteins and RNA in
fixed tissue. Nat Biotechnol, 38, 586-599.

13


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

made available under aCC-BY-NC-ND 4.0 International license.

Moses, L. and Pachter, L. (2022) Museum of spatial transcriptomics. Nat Methods, 19, 534-546.
Peixoto, L., Risso, D., Poplawski, S.G., Wimmer, M.E., Speed, T.P., Wood, M.A. and Abel, T.
(2015) How data analysis affects power, reproducibility and biological insight of RNA-seq studies
in complex datasets. Nucleic Acids Res, 43, 7664-7674.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A.,
Szczesniak, M.\W., Gaffney, D.J., Elo, L.L., Zhang, X. et al. (2016) A survey of best practices for
RNA-seq data analysis. Genome Biol, 17, 13.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W. and Smyth, G.K. (2015) limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res, 43, e47.

Law, C.W., Chen, Y., Shi, W. and Smyth, G.K. (2014) voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol, 15, R29.

Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
Seyednasrollah, F., Laiho, A. and Elo, L.L. (2015) Comparison of software packages for detecting
differential expression in RNA-seq studies. Brief Bioinform, 16, 59-70.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich,
A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci
U S A, 102, 15545-15550.

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P. and Tamayo, P. (2015) The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst, 1, 417-425.
Yu, G., Wang, L.G., Han, Y. and He, Q.Y. (2012) clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS, 16, 284-287.

Chen, Y., Lun, AT. and Smyth, G.K. (2016) From reads to genes to pathways: differential
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
pipeline. F1000Res, 5, 1438.

Zollinger, D.R., Lingle, S.E., Sorg, K., Beechem, J.M. and Merritt, C.R. (2020) GeoMx RNA
Assay: High Multiplex, Digital, Spatial Analysis of RNA in FFPE Tissue. Methods Mol Biol, 2148,
331-345.

Jang, S., Yang, E., Kim, D., Kim, H. and Kim, E. (2020) Cimp Regulates AMPA and Kainate
Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in
Mice. Front Synaptic Neurosci, 12, 567075.

Chen, A, Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X, Yang, J., Xu, J., Hao, S. et al.
(2022) Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-
patterned arrays. Cell, 185, 1777-1792 e1721.

14


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

made available under aCC-BY-NC-ND 4.0 International license.

Takeuchi, A. and O'Leary, D.D. (2006) Radial migration of superficial layer cortical neurons
controlled by novel Ig cell adhesion molecule MDGA1. J Neurosci, 26, 4460-4464.

Kim, J., Kim, S., Kim, H., Hwang, I.LW., Bae, S., Karki, S., Kim, D., Ogelman, R., Bang, G., Kim,
J.Y. et al. (2022) MDGA1 negatively regulates amyloid precursor protein-mediated synapse
inhibition in the hippocampus. Proc Natl Acad Sci U S A, 119.

Gandolfo, L.C. and Speed, T.P. (2018) RLE plots: Visualizing unwanted variation in high
dimensional data. PLoS One, 13, e0191629.

Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol, 15, 550.

Gagnon-Bartsch, J.A., Jacob, L. and Speed, T.P. (2013) Removing unwanted variation from high
dimensional data with negative controls. Berkeley: Tech Reports from Dep Stat Univ California, 1-
112.

Risso, D., Ngai, J., Speed, T.P. and Dudoit, S. (2014) Normalization of RNA-seq data using factor
analysis of control genes or samples. Nature biotechnology, 32, 896-902.

McDermaid, A., Monier, B., Zhao, J., Liu, B. and Ma, Q. (2019) Interpretation of differential gene
expression results of RNA-seq data: review and integration. Brief Bioinform, 20, 2044-2054.
Marx, V. (2021) Method of the Year: spatially resolved transcriptomics. Nat Methods, 18, 9-14.
Ortogero N, Y.Z., Vitancol R, Griswold M, Henderson D. (2022). Bioconductor, Vol. R package
version 3.2.0.

Reeves J, D.P., Ortogero N, Griswold M, Yang Z, Zimmerman S, Vitancol R, David H. (2022). R
package version 1.5.0. ed. Bioconductor 3.16.

Smyth, G.K. (2004) Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol, 3, Article3.

Smyth, G.K., Thorne, N. and Wettenhall, J. (2003) Limma: linear models for microarray data
user’s guide. Soffware manual available from http://www. bioconductor. org.

Lewis, Z.R., Phan-Everson, T., Geiss, G., Korukonda, M., Bhatt, R., Brown, C., Dunaway, D.,
Phan, J., Rosenbloom, A. and Filanoski, B. (2022) Subcellular characterization of over 100
proteins in FFPE tumor biopsies with CosMx Spatial Molecular Imager. Cancer Research, 82,
3878-3878.

15


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A B Qualtiy Control Methods C Normalization Methods D Differential Expression Methods.
Test: [
rroveacoa e || | GG os; (I None!
ol -
None{ U )
» ProbeQC-
2 v [
5 oesec2! [
5 ezt [ imertest: R
= - waid test: [l
5 ProbeQC. Gene filtering . Full quantile! Two-sce icouontest! [
3t 29 'wo-side Wilcoxon test
™M Imed+
il o : o
enca
| SRE N S O TN B N o et o cow!
ST o NN N A b A . g ProbeQC.LowExprGeneRemoval: I
N N NN A A asssacnetictosoing: [| cees: M
DESeq2, Ime4
DATE LowExprGeneRemoval RLE A =
Comeat: anova: [l
L S T 5 o % ® o 3 § 5
Count Count Count
Normalisation | Batch correction
+ TMM 2 "
E 3 . FPKM . RUVA Lmzarmodellmg
. LM 5 + Limma-voom
standR Generic fvg - edger

+ Q3
+ Size factor

workflow
LoQ

workflow

standR

filtering

Quality Differential Downstream
control ” expression analysis

TMM/RUV4A of

Quality control Research interest

approaches + RLE plot +  Network analyses

T-test
+ Annotation inspection +  Over-representation

+ Gene & sample QC +  Similarity statistics

+  Relative log expression

+ Dimension reduction

voom

Figure 1. Literature Review and the standR workflow. A: Bar plot shows the increasing trend of publications
with Nanostring GeoMx DSP datasets. B-D: Bar plots show the preferential choices of QC, normalization
and differential expression methods in publications. E: Diagram demonstrates the comparison between

standR and generic workflows. F: Flow diagram shows the standR workflow.

16


https://doi.org/10.1101/2023.04.23.538017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.23.538017; this version posted April 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A Filtered both ® Generic only © Not filtered® standR only
Diabetic Kidney LymphNode Colon Brain
S 7.5] ] 99 S T %] ©Sgl
a7 — = 5_\ — 87
3 5.0 871 g { 36_
g 251 = §5 :':d 5.09 g | }
& 0.0 @ 3] > @ | g4 '
= =3 i 2.5 = " ‘
Basll S / | = 8 1.»"‘.'/ 4 | | g L ‘ ]
0 1 2 3 1 2 3 4 1 2 3 4 2 3 4
Mean expression (log10) Mean expression (logl10) Mean expression (logl10) Mean expression (log10)
BA N . n - -~ w_— .
< Diabetic Kidney < Lymph node < Colon < Brain
5 1.3] 1 5 =R = T ‘
ke | = g &
gllr | 3129 51‘2f > 15
el 1 o kel o
° | ©» - L0y o
‘.‘30-9~"\.‘§¥’,//- 5097 & s 510
° -] Q T 0.84 K o
e . » c = | - <
© 0.71 | @ 0.6 G - ©
kd | @ @ 0.6 Bos
Fos Sy — | okl
E- 3 3 3 = 3 10 = 3 3 5 £ 7 & § 10 12
0 log2( count size + 0.5 ) n log2( count size + 0.5 ) v log2( count size + 0.5 ) w log2( count size + 0.5)
c Diabetic Kidney D — Filtered — Original — Retained — Original
20000007 . i T Diabetic kidney (filtered) Diabetic kidney (retained)
~7 R
(=] o ‘
3 9
k) L J
15000001 : =, =N
o i) v
5 * . e £ ‘
5] @ 21 m 2
g £ g
.5 Lo < G‘
£ 10000001 | = |
@ 0 1 2 3 4 0 1 2 3 a
g Mean expression (log10) Mean expression (log10)
& ; ;
k] Colon (filtered) Colon (retained)
5000001 a8 - ! 81 -
g g
0 msw
2 L
= a4 = a4
a v
04 o V] ‘
B B L 3 521 E2
200 400 600 o e w
Cell count 8 o g 01
. + diseaselB ¢ disease3 ¢ normal2B * normald ! ) ‘ 3
slideName 0 1 2 3 4 0 1 2 3 a
+ disease2B ¢ diseased normal3 Mean expression (log10) Mean expression (logl0)
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Figure 3. Normalization and batch correction using standR and generic workflows in the brain dataset. (A)
PCA plots of data normalised using either the generic (left) or standR (right) workflows. Panels denotes
annotations by either ROIs (top) and tissue structures (bottom). standR normalisation and batch correction
was able to reduce slide effects while improving separation of biology. (B) RLE plots of the raw (top), Q3-
normalised (middle) and RUV4-normalised (bottom) data show RUV4 gives the best removal of technical
variations. (C) Summarised statistics of raw, Q3-normalised and RUV4-normalised data comparing
performance in terms of the biology (top) or batch factor (bottom). RUV4 performed the best across the
statistics in terms of biology and batch (in general).
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Figure 4. Differential expression analysis results using standR or generic workflows. (A) MA plots visualising
differential expressing genes between longitudinal muscle and circular muscle layer in the colon dataset
(top) and the comparison between cortical layer Il/lll and hippocampus CA1 in the brain dataset (bottom)
using either generic (left) or standR (right). Differential expression genes generated using the voom-limma
pipeline with duplicationCorrelation and applying t-tests relative to a threshold (TREAT) criterion with
absolute fold change >1.2 with adjusted p-value <0.05. (B) Gene-set enrichment results of biologically

relevant gene-sets were identified for each dataset and the number of biologically-related gene-sets from
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either workflows were plotted. Overall, standR was able to identify more unique biological gene-sets for the

respective dataset.

SUPPLEMENTARY DATA

Supplementary file 1. Gene filtering results of GeoMx DSP datasets using generic and standR
workflow.

Supplementary file 2. Sample filtering results of GeoMx DSP datasets using generic and standR
workflow.

Supplementary file 3. DE analysis results of GeoMx DSP datasets using generic and standR
workflow.

Supplementary file 4. Gene-sets enrichment analysis results of GeoMx DSP datasets using

generic and standR workflow.
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Supplementary figure 1. Typical factor layers in a hypothetical GeoMx DSP experiment. Columns

are typical biological and technical factors that introduce variations into GeoMx DSP data.
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Supplementary figure 2. Comparison of filtered genes across four GeoMx datasets. (A) Venn
diagrams show the intersection between filtered genes from the generic workflow (purple) and the standR
workflow (yellow) for the four GeoMx datasets tested. (B) Percentage of genes either removed or retained
during the filtering process of either the generic or standR workflows for the four GeoMx datasets.
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Supplementary figure 3. Brain-related genes MDGA1 and CLMP removed by the generic workflow’s
filtering. (A) Mean expression against variance of gene expression was plotted for all samples in the brain
GeoMx dataset, with purple denoting genes removed by the gene filtering process of the standR or generic
workflow. (B) Mean counts (log2) against variance distribution of the genes across different biological
groups in the brain GeoMx dataset (see method) was plotted with the red line denoting the lowess
regression curve of the data point. Legend colors indicate genes either removed or retained by one or both
methods investigated in this study.
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Supplementary figure 4. Sample filtering diagnostics and QC in the standR workflow. The cell count
vs. total detection of RNA in each ROI of the respective GeoMx dataset was plotted with colours stratifying
the ROlIs by slide annotations. The purple lines are lowess regression curves with the histograms indicating

either the distribution of cell count (top) or total RNA detection (right) of each dataset. ROIs with total
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detections less than 50,000 (as indicated by the red dotted line) were considered low quality ROIs and

removed.
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Supplementary figure 5. Principal component analysis (PCA) using the raw data for the four GeoMx
datasets. The first two Principal Components (i.e. PC1 and PC2) for each dataset are plotted with samples

stratified by slide (i.e. SlideName), suggesting that most of the datasets have varying degree of batch

effects due to slides, with the only exception being the Colon dataset.
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Supplementary figure 6. Principal component analysis (PCA) of normalised data for the Kidney (A),
Lymph Node (B) and Colon (C) GeoMx datasets. Each dataset consists of 4 panels (2 by 2). The columns

on the left are Q3 normalised data generated using the generic workflow, the columns on the right are
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normalised data generated using the standR workflow. RUV4 was used for kidney and Lymph node

datasets, TMM was used for the Colon dataset. For each dataset, top two panels were stratified based on

slide while the bottom two panels by tissue types. This shows that standR workflow normalisation removes

unwanted batch effects or variations while maintain the biology of interest.
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Supplementary figure 7. Relative log expression (RLE) analysis of normalised data for the Kidney,

Lymph Node and Colon GeoMx datasets. Q3 normalised data generated from the generic workflow are

on the left while normalised data generated from the standR workflow are on the right. RUV4 normalisation

was used for kidney and Lymph node datasets while TMM was used for the Colon dataset. For each

dataset, samples were stratified based on slide. This shows that standR workflow normalisation removes

unwanted variations within the respective datasets.
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Supplementary figure 8. Comparing performances using summarised statistics. Similarity statistics
including adjusted rand index, jaccard index, mirkin distance and silhouette coefficient were applied
between the first two PCs of the raw, Q3-normalised or RUV4-normalised data of three datasets: (A)
diabetic kidney, (B) lymph node and (C) colon, comparing against biology (top) or batch (bottom) as a factor.
For (A) and (B), RUV4 consistently scores highly compared to Q3 or unnormalized data when comparing
the biology and poorly when comparing batch, suggesting standR workflow (using RUV4) allows
appropriate normalisation to be applied to retain the biology while minimising the unwanted technical

variations.
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Supplementary figure 9. StandR identifies more DE genes in 3 out of the 4 datasets tested compared
to the generic workflow. Proportional Venn diagrams of the identified DE genes from either standR or
Commonly Used workflows were visualised for each of the 4 tested GeoMX dataset for the respective
comparisons applied in this study. Only for the kidney dataset was lesser DE genes identified by standR

compared to generic workflow whereas the other three datasets have more DE genes identified by standR.
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Supplementary figure 10. Differential expression analysis results using standR or generic

workflows for Kidney and Lymph Node datasets. MA plots visualising differential expressing genes in

the comparison between abnormal vs normal glomerulus in diabetic kidney datasets (top) and the

comparison between B cell vs T cell zones in the lymph node dataset (bottom). Colours denote significant

up- (green) and down-regulated (purple) genes for the respective dataset. Differential expression genes

generated using the voom-limma pipeline with duplicationCorrelation and applying t-tests relative to a

threshold (TREAT) criterion with absolute fold change >1.2 with p-value <0.05.
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Supplementary figure 11. Sample diagnostics and QC using the standR workflow for the brain
dataset. (left) The area/size vs LOQ distributions of the ROlIs or (right) the area/size vs cell count within the
ROIls were plotted for the brain GeoMx dataset. The purple lines are lowess regression curves with the top
histograms indicating the distribution by area/size and the right histograms indicating the distribution of
either (left) LOQ or (right) cell count of each dataset. ROIs with total detections less than 50,000 (as

indicated by the red dotted line) were considered low quality ROls and removed.
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