

1 **Alpha Synuclein Modulates Mitochondrial Ca^{2+} Uptake from ER**
2 **During Cell Stimulation and Under Stress Conditions**
3

4 Meraj Ramezani,¹ Alice Wagenknecht-Wiesner,¹ Tong Wang,¹ David A. Holowka,¹
5 David Eliezer,^{2,*} Barbara A. Baird^{1,*}

6
7 ¹Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
8 ²Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
9 *Co-corresponding authors Barbara A. Baird: bab13@cornell.edu

10 David Eliezer: dae2005@med.cornell.edu

11

12

13 **ABSTRACT**

14 Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and
15 aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite
16 the biomedical importance and extensive studies, the physiological role of a-syn and its
17 participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-
18 syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and
19 increasing with mitochondrial stress.¹ We have now characterized this colocalization and functional
20 correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated
21 mitochondrial uptake of Ca^{2+} from the ER, depending on formation of its N-terminal helices but not
22 on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between
23 mitochondria and ER, and we show increased contacts between these two organelles using
24 structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD,
25 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl
26 hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca^{2+}
27 uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is
28 abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that
29 MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation
30 of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate
31 Ca^{2+} flux between ER and mitochondria, with potential physiological significance. A-syn can also
32 prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a
33 pathological role of a-syn in the etiology of PD.

34

35

36 INTRODUCTION

37 Parkinson's disease (PD) is the second most common neurodegenerative disorder in
38 humans, increasing markedly with age and characterized by formation of Lewy bodies (LBs) and
39 Lewy neurites (LNs) in the dopaminergic neurons of the brain substantia nigra.² Alpha-synuclein (a-
40 syn), an abundant presynaptic protein,³ is found in a filamentous form in LBs and LNs and is in
41 other ways genetically and pathologically linked to PD and other synucleinopathies.⁴
42 Polymeropoulos et al. first reported a PD-related G209A mutation in the SNCA gene encoding for a-
43 syn.⁵ Other studies further linked the SNCA gene and expressed a-syn variants to PD.⁶⁻⁹ Earlier
44 onset of PD and a more severe course have been observed in patients with duplication or
45 triplication of SNCA.¹⁰

46 A-syn is a 140 residue protein, found predominantly in neurons and characterized as
47 intrinsically disordered in solution.³ However, a-syn has been shown to adopt a highly helical
48 structure in the presence of negatively charged lipid surfaces.¹¹⁻¹⁵ An extended helix forms upon
49 binding to negatively charged phospholipid vesicles in the N-terminal amphipathic region (residues
50 1–100), and a broken helix forms when binding to phospholipid micelles.^{12,16-19} The broken helix
51 form of a-syn comprises helix-1 (residues 3 to 38) and helix-2 (residues 46 to 93), loosely
52 connected by an unstructured flexible motif known as the linker region (residues 39 to 45) (Figure
53 1).²⁰ Georgieva et al. proposed that the broken helix form of a-syn can serve as a tether between
54 two phospholipid membranes,²¹ such as between synaptic vesicles and plasma membrane or two
55 organellar membranes, and others have adopted this model as well.²² The C-terminal segment of a-
56 syn (residues 100–140) is acidic, glutamate-rich, and remains disordered even in the presence of
57 membranes.^{16,23} This segment has been implicated in several protein interactions²⁴⁻²⁸ and contains
58 residues that are targets for post translational modifications, notably phosphorylation of serine
59 residue 129 (pS129). Only a small fraction of a-syn (less than 4%) is phosphorylated in normal
60 brain tissue, but a dramatic accumulation of pS129 (More than 90%) is observed within LBs.^{29,30}

61 We previously established that RBL cells expressing human a-syn variants serve as a
62 versatile model for evaluating intracellular distributions of a-syn and accompanying effects on cell
63 function that are mediated by its membrane interactions.^{1,31} RBL cells have internal structures and
64 activities resembling those in neurons, and by integrating fluorescence microscopy and functional
65 assays, we showed this cell line to constitute an experimentally attractive system for developing
66 hypotheses that can subsequently be tested in neurons and neuronal models more commonly
67 associated with PD. Our initial focus was on the role of a-syn in the release and recycling of
68 endosomal vesicles, which serve as a proxy for similarly-sized synaptic vesicles. Our results yielded
69 a consistent view that a-syn in helical forms can bind to intracellular pools of these vesicles in the

70 extended-helix conformation and can also engage vesicles docked at the plasma membrane during
71 the process of exocytosis via its broken-helix form. We further found by immunostaining that a-syn
72 associates with mitochondria when expressed in RBL cells¹, as has been reported previously in
73 other cultured cells and brain tissue.³²⁻³⁴

74 Although PD has a complex etiology involving genetic and environmental factors that vary
75 with individuals, mitochondrial dysfunction is a consistent central feature.^{35,36} In familial, or
76 autosomal recessive, forms of the disease, disruption of mitochondrial function arises from
77 mutations in genes encoding mitochondrial quality control, including SNCA, LRRK2, VPS35,
78 PARKIN, and PINK-1.³⁷⁻⁴¹ Sporadic, or idiopathic, disease and PD-like symptoms can arise from
79 exposure to agents such as rotenone, paraquat, and 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine
80 (MPTP/MPP⁺) which inhibit complex I of the mitochondrial electron transport chain.⁴² Similarly,
81 carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which inhibits oxidative phosphorylation to
82 produce ATP by uncoupling the mitochondrial membrane potential, has been commonly used to
83 study effects related to PD.^{1,43,44} Our previous studies in RBL cells showed that a-syn association
84 with mitochondria increases markedly after treatment with CCCP, and this colocalization is
85 prevented by mutations in either the first (A30P) or second (V70P) N-terminal helices.¹ Multiple
86 pathological effects have been reported for overexpression of a-syn and variants on mitochondria in
87 model and neuronal systems. These include disruption of mitochondrial fission/fusion, generation of
88 reactive oxygen species (ROS), impaired Ca²⁺ uptake, and reduced ATP production.^{34-36,45,46}

89 Mitochondrial stability and function depend on regulated Ca²⁺ flux, and the ER has been
90 reported as the main source of environmentally-stimulated mitochondrial Ca²⁺ uptake in yeast⁴⁷ and
91 mammalian cells,⁴⁸ including neurons.⁴⁹ Functionally, the level of Ca²⁺ in mitochondria regulates the
92 tricarboxylic acid cycle to yield necessary ATP production⁵⁰, and operative sources of Ca²⁺ may
93 differ in the neuronal cell body and in axonal boutons during an action potential.^{49,51} For most cells
94 and conditions studied, uptake of mitochondrial Ca²⁺ appears to occur mainly at the ER-
95 mitochondria (ER-mito) contact sites, where local Ca²⁺ reaches high concentration levels.⁵² Other
96 critical metabolic functions such as phospholipid and cholesterol exchange also occur in these
97 regions.⁵³ Ca²⁺ transfer complexes include several proteins localized to the contact sites, including
98 the voltage-dependent anion-selective channel (VDAC) in the mitochondrial outer membrane; the
99 mitochondrial Ca²⁺ uniporter (MCU) with tissue-specific regulatory proteins (MICU)⁵⁴ reside in the
100 mitochondrial inner membrane. Mitochondria-associated ER membranes (MAM) at the at ER-mito
101 contacts contain the inositol 1,4,5-trisphosphate receptors (IP3R) through which Ca²⁺ is released
102 from the ER, flowing through VDAC to MCU/MICU complex. MAM also contain vesicle-associated
103 membrane protein-associated protein B (VAPB), which serves as a tether by binding to
104 mitochondrial protein tyrosine phosphatase-interacting protein 51 (PTPIP51).⁵⁵

105 Considering our evidence for stress-related association of a-syn with mitochondria¹ and
106 previous reports that a-syn can localize to MAM,³² we proceeded to investigate more directly the
107 participation of a-syn in modulating Ca^{2+} fluxes into mitochondria, including specific structural
108 determinants and disruptions that may have pathological impact in PD. We employed our
109 established RBL cell model, as well as other cell types used previously in studies related to a-syn
110 and PD: human embryonic kidney (HEK293) cells, murine neuronal 2a (N2a) cells, and
111 differentiated dopaminergic N2a cells. Each of these cell types has little or no endogenous
112 expression of a-syn, and we found that ectopic expression of human a-syn leads to an increase in
113 stimulated mitochondrial Ca^{2+} uptake. We systematically evaluated this effect in RBL cells with a-
114 syn variants, including mutations disrupting a-syn helical structure and the C-terminal region. Our
115 results indicate that membrane-binding by the helix-1 and helix-2 regions of the protein is required,
116 suggesting that a-syn may bridge between mitochondrial and ER membranes. Consistent with this
117 possibility, our high resolution micrographs confirm increases in ER-mito contacts in the presence
118 of a-syn.

119 We tested effects of mitochondrial stressors CCCP and the MPTP metabolite MPP⁺, which
120 have been related to PD. After recovery from this stress, cells exhibit enhancement of stimulated
121 mitochondrial Ca^{2+} uptake, but this recovery is dramatically impeded in cells expressing a-syn. This
122 inhibition of recovery depends primarily on the unstructured C-terminal tail of a-syn. Toxin-induced
123 mitochondrial stress also causes increased phosphorylation of Ser129, which is accompanied by
124 aggregation of a-syn. Both inhibition of recovery and a-syn aggregation are eliminated when S129
125 is mutated to alanine, suggesting that these two processes are linked. Overall, our results suggest
126 that a-syn can participate as a tethering protein to modulate Ca^{2+} flux between ER and
127 mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery
128 from toxin-induced mitochondrial dysfunction, possibly in an aggregation-dependent manner,
129 pointing to one pathological mechanism for the role of a-syn in the etiology of PD.

130

131 RESULTS

132 A-syn enhances stimulated mitochondrial Ca^{2+} uptake in model RBL mast cells. We showed
133 previously that a-syn colocalizes with mitochondria, especially under conditions of stress.¹ Because
134 a-syn, mitochondrial dysfunction, and disruption of Ca^{2+} homeostasis are all strongly implicated in
135 PD, we proceeded to evaluate effects of a-syn on a key mitochondrial function: stimulated uptake of
136 Ca^{2+} . We designed a fluorescence assay in which RBL cells, transfected with the mitochondrial
137 Ca^{2+} indicator, mito-GCaMP6f⁵¹ and wildtype a-syn (Wt-syn in pcDNA vector), were sensitized with
138 immunoglobulin E (IgE) and then stimulated by sub-optimally low doses of antigen (0.5-2 ng/ml).
139 Under these sub-optimal conditions, control cells (transfected in parallel with mito-GCaMP6f and

140 empty pcDNA vector) undergo limited stimulated mitochondrial Ca^{2+} uptake (20% normalized
141 response, averaging over all cells), but cells expressing Wt-syn exhibit a much higher uptake (75%,
142 on average) (Figure 2a, red data and “X”, right axis). This enhanced level is similar to the stimulated
143 response with an optimal dose of antigen for control cells. In evaluating these data for RBL cells, we
144 found that stimulated mitochondrial Ca^{2+} uptake typically occurs in some cells and not others, such
145 that changing the conditions causes the fraction of cells responding to change. By this means of
146 accounting, 33% of the control cells respond and 88% of cells expressing Wt-syn respond (Figure
147 2a, blue bars, left axis). Because RBL cells consistently exhibited a bimodal response in this assay,
148 we assessed statistical significance with a non-parametric model (Figure 2a, blue P-values). In
149 contrast, HEK293 and N2a cells show normally distributed responses in this same assay (see
150 below). For simplicity, we generally compare responses using values averaged over all cells (e.g.,
151 Figure 2a, red “X”, right axis).

152 Possible mechanisms for the enhancing effect of a-syn relate to the capacity of this protein
153 to bind to membranes in extended or broken helical forms. The latter form has been proposed to
154 tether between different membranes such as synaptic vesicles and the plasma membrane.^{21,56–58}
155 We hypothesized that a-syn can tether mitochondria to ER, which serves as a source of Ca^{2+} .
156 VAPB, an ER protein, is known to act as tether between ER and mitochondria and to enhance
157 stimulated mitochondrial Ca^{2+} uptake by complexing with mitochondrial protein PTP1P51.^{59,60} We
158 also found that transfection of VAPB into RBL cells causes enhancement in stimulated uptake of
159 Ca^{2+} (average 67%) over control cells (average 20%), very similar to the increase observed with
160 cells expressing Wt-syn (average 75%) (Figure 2a). This result suggests that a-syn can increase
161 Ca^{2+} flow from ER to mitochondria similarly to VAPB, by tethering these two organellar membranes.

162 To evaluate structural features of a-syn involved in enhancing stimulated Ca^{2+} uptake, we
163 tested variants with mutations in each of the two a-syn helices that are posited to enable tethering
164 of membranes (Figure 1). We found previously that proline point mutations within either helix-1
165 (A30P) or helix-2 (V70P) locally disrupt the helical structure as determined by NMR measurements,
166 and also disrupt membrane binding (A30P, V70P) or tethering (V70P) capacity of a-syn, as
167 measured with liposome/micelle binding in vitro and stimulated exocytosis of recycling endosomes
168 in cells.^{1,31} The stimulated mitochondrial uptake assay showed that both mutations significantly
169 attenuate the enhancing effect of Wt-syn: Control empty vector (20%) \approx V70P-syn (20%) $<$ A30P-
170 syn (30%) $<<$ Wt-syn (75%) (Figure 2a). This trend in functional effects correlates with previously
171 observed effects of these mutations on a-syn localization to mitochondria: Wt-syn co-localizes with
172 mitochondria much more strongly than A30P-syn, and V70P-syn co-localization is undetectable.¹

173 Because the helix-forming, N-terminal segment (aa 1 to 97 of 140 total) provides the lipid
174 binding affinity of a-syn, we tested whether this segment is sufficient for observed functional effects.

175 We made a C-terminal truncation variant (1-102-syn), which includes aa 1 to 97 and five additional
176 C-terminal residues to ensure an intact helix-2.⁶¹ Interestingly, 1-102-syn enhances stimulated
177 mitochondrial Ca^{2+} uptake (average 62%), at a level greater than the Control (average 20%)
178 although somewhat less than for Wt-syn (average 75%) (Figure 2a). Together, these results
179 indicate that the N-terminal helices 1 and 2 are primarily involved in mitochondrial binding and
180 tethering capacity of Wt-syn, although the disordered C-terminal residues 103-140 may participate
181 to some extent.

182 A-syn enhances stimulated mitochondrial Ca^{2+} uptake in HEK293 cells and N2a cells.
183 HEK293 cells have been widely used as a model system for various cellular pathways, including
184 those implicated in PD. To assess the generality of the effects of a-syn on mitochondrial Ca^{2+}
185 uptake, we used HEK293 cells expressing the same mitochondrial Ca^{2+} indicator, together with
186 either mRFP (control) or a-syn + mRFP (Wt-syn via multicistronic construct P2a-syn-mRFP).
187 Transfected cells were stimulated with either low-dose ionomycin (0.38 μM) or ATP (100 μM). Wt-
188 syn enhances stimulated mitochondrial Ca^{2+} uptake, compared with controls, for both stimulants:
189 from 30% to 50% for ionomycin (Figure 3a and Supplemental Figure S1) and from 22% to 37% for
190 ATP (Figure S1).

191 Given that PD features selective death of dopaminergic neurons in the substantia nigra
192 region of the brain, we also examined a neuronal cell line, N2a, derived from the mouse neural
193 crest that has been extensively used to study neuronal differentiation, axonal growth, and signaling
194 pathways. We modified previously-established protocols to differentiate N2a cells into dopaminergic
195 neurons, which exhibit morphological neurites and increased levels of tyrosine hydroxylase.^{62,63} We
196 found that endogenous expression of a-syn in this cell line, before and after differentiation, is below
197 our limits of detection by immunostaining or Western blot. Differentiated N2a cells were transfected
198 with mRFP (control) or Wt-syn (via syn-p2a-mRFP vector), together with the mitochondria Ca^{2+}
199 indicator, followed by stimulation with low-dose ionomycin. Under these conditions, we observed
200 that stimulated Ca^{2+} uptake increases from an average of 48% for control cells to 74% for cells
201 expressing Wt-syn (Figures 3b and S2a,b). Enhancement of stimulated mitochondrial uptake by Wt-
202 syn in HEK293 cells and dopaminergic N2a cells (Figure 3) is consistent with that observed for RBL
203 cells (Figure 2), showing the generality of this effect, which evidently depends on mitochondrial
204 membrane binding/tethering by Wt-syn.

205 Endoplasmic reticulum is the main source of Ca^{2+} for stimulated mitochondrial uptake in
206 RBL, HEK293, and N2a cells. Stimulation of cells typically involves release of Ca^{2+} from ER stores,
207 which then triggers opening of plasma membrane channels and Ca^{2+} entry from the extracellular
208 medium into the cytoplasm.^{51,60} We first considered the possibility that a-syn enhances stimulated
209 mitochondrial Ca^{2+} uptake by increasing ER release of Ca^{2+} into the cytoplasm, and that increase in

210 $[\text{Ca}^{2+}]_{\text{cyt}}$ is required for subsequent uptake into mitochondria. We monitored Ca^{2+} changes in both
211 the mitochondria (mito-GCaMP6f) and cytoplasm (GCaMP3) in RBL cells stimulated with antigen in
212 Ca^{2+} -free buffer. Under these experimental conditions, any increase in cytoplasmic Ca^{2+} would
213 come primarily from the ER. We found that expression of Wt-syn enhances stimulated
214 mitochondrial Ca^{2+} uptake (trend similar to Figure 2), but the stimulated change in cytoplasmic Ca^{2+}
215 does not differ significantly in cells expressing Wt-syn compared to control cells (Figure S3). These
216 results are consistent with the view that the stimulated increase in mitochondrial Ca^{2+} comes
217 through a direct route from the ER, rather than indirectly from the bulk pool of cytoplasmic Ca^{2+} .

218 As a more definitive test for the source of Ca^{2+} for mitochondrial uptake, we carried out an
219 experiment similar to Chakrabarti et al⁶⁰ who used the SERCA inhibitor thapsigargin to deplete ER
220 Ca^{2+} stores. They found that pre-treatment of U2OS cells with thapsigargin causes a significant
221 decrease in mitochondrial Ca^{2+} uptake stimulated by ionomycin or histamine. In similar
222 experiments, we tested HEK293 cells (transfected or not with Wt-syn) using thapsigargin to empty
223 ER stores prior to stimulation of mitochondrial Ca^{2+} uptake with ionomycin. The response in
224 HEK293 cells treated with thapsigargin is highly reduced compared to untreated cells: cells
225 expressing Wt-syn decrease from 50% to 10%, and control cells decrease from 30% to 10%
226 (Figures 3a and S1). We carried out the same type of experiment with dopaminergic N2a cells,
227 depleting ER stores with thapsigargin prior to stimulating with ionomycin and observed the same
228 effect on mitochondrial Ca^{2+} uptake: cells expressing Wt-syn decrease from 74% to 8%, and control
229 cells decrease from 48% to 9% (Figures 3b and S2). Thus, for both HEK293 and dopaminergic N2a
230 cells, thapsigargin treatment causes a substantially reduced response in both control cells and cells
231 expressing Wt-syn, indicating that a-syn mainly affects the Ca^{2+} entering mitochondria from ER as
232 opposed to the cytoplasm or other sources. These results are consistent with those from RBL cells,
233 highlighting a-syn-mediated enhancement of stimulated mitochondrial uptake of Ca^{2+} , likely by
234 tethering membranes of the two organelles to facilitate direct flow of Ca^{2+} from the ER.

235 A-syn enhances ER-mitochondria contacts in cells as quantified in super resolution images.
236 We used structured illumination microscopy (SIM) for ultrastructural evidence of a-syn tethering
237 capacity and consequent impact on ER-mitochondria (ER-mito) contacts. SIM enables both high
238 resolution images^{64,65} and sample sizes sufficient for effective statistical analysis. N2a cells were
239 transfected with plasmid DNA for ER (STIM1-mApple) and mitochondria (mEmerald-TOMM20)
240 markers and also for Wt-syn (or empty vector for control). Harvested cells were fixed and
241 immunostained with anti-syn antibody to identify cells expressing Wt-syn. The SIM images provide
242 a detailed view of the tubular structure of ER overlapping with mitochondria (Figure 4a,b). N2a cells
243 expressing Wt-syn form more extensive ER-mito contacts compared to control (Figure 4a,b
244 magnified boxes). We observed differences both in the number of contacts and in the length of

245 each individual contact. We calculated values for Pearson's correlation coefficient (PCC) to
246 determine the overlap of the mitochondrial label with the ER label. This quantification represents the
247 proximity of the two types of organelles and reflects the relative degree of ER-mito contacts in
248 compared samples. The results from analyzing about 35 N2a cells for each condition, shows a
249 significant increase in averaged PCC value from 0.40 to 0.52 (22% increase) for cells transfected
250 with Wt-syn (Figure 4c). This comparison further supports the hypothesis that a-syn acts as a tether
251 between ER and mitochondria, which facilitates an increase in stimulated mitochondrial Ca^{2+}
252 uptake.

253 A-syn disrupts mitochondrial recovery from stress caused by the mitochondrial toxin CCCP
254 in RBL and N2a cells. To investigate possible pathogenic roles of a-syn in mitochondrial dysfunction
255 related to PD, we designed an assay in RBL cells that quantifies the recovery capacity of
256 mitochondria. Brief treatment with CCCP to induce mitochondrial stress was followed by incubation
257 in standard culture medium to facilitate cell recovery. Then, recovery was evaluated by measuring
258 stimulated mitochondrial Ca^{2+} uptake. We showed previously that treatment with CCCP, which has
259 been used in studies of mitochondrial function related to PD⁶⁶, markedly increases colocalization of
260 a-syn with mitochondria, depending on intact N-terminal helices.¹ In the current study, we found that
261 after acute incubation with CCCP stimulated mitochondrial Ca^{2+} uptake is disrupted (either no
262 response or an erratic response; data not shown). However, after the recovery incubation, control
263 (no a-syn) RBL cells show a level of stimulated mitochondrial Ca^{2+} uptake that is enhanced
264 compared to the response with no CCCP treatment (Figure 5a; Cntrl +CCCP > Cntrl -CCCP),
265 indicating a robust compensation mechanism during recovery from stress. This recovery level of
266 enhancement for control cells is similar to that observed for RBL cells expressing Wt-syn with no
267 CCCP treatment (Figure 5a; Cntrl +CCCP ≈ Wt-syn -CCCP). This raises the possibility that the
268 CCCP-recovery mechanism of the control cells involves an increase of mitochondria/ER contacts to
269 enhance stimulated Ca^{2+} transport, and that a similar increase occurs in the absence of CCCP
270 exposure when Wt-syn is expressed. In contrast, RBL cells expressing Wt-syn and treated with
271 CCCP followed by the recovery incubation show a substantially reduced level of stimulated
272 mitochondrial Ca^{2+} uptake (Figure 5a; Wt-syn +CCCP < Cntrl +CCCP ≈ Wt-syn -CCCP). Thus, it
273 appears that Wt-syn interferes with the recovery mechanism operative in control cells.

274 We also tested the effects of CCCP on basal (non-stimulated) levels of mitochondrial Ca^{2+}
275 after the recovery incubation, and we observed a significant basal increase for control cells (Figure
276 S4; basal Cntrl +CCCP > basal Cntrl -CCCP). Interestingly, cells expressing Wt-syn exhibit similarly
277 increased basal mitochondrial Ca^{2+} in the absence of CCCP (Figure S4; basal Wt-syn -CCCP >
278 basal Cntrl -CCCP), again suggesting that control cells may modulate mitochondria/ER contacts in
279 response to CCCP stress and that WT-syn induces the same effect in the absence of CCCP.

280 Accordingly, basal levels do not increase further when WT-syn is present after CCCP treatment and
281 recovery (Figure S4; basal Wt-syn +CCCP \approx basal Wt-syn -CCCP).

282 We carried out similar experiments on stimulated mitochondrial Ca^{2+} uptake in N2a cells,
283 testing recovery from CCCP treatment, and we observed the same trends as for RBL cells. Control
284 N2a cells show an enhanced level of stimulated uptake compared to the response with no CCCP
285 treatment (Figure 5b; Control +CCCP > Control -CCCP), again indicating a robust compensation
286 mechanism during recovery. The enhancement for control cells is again similar to that observed for
287 N2a cells expressing Wt-syn with no CCCP treatment (Figure 5b; Control +CCCP \approx Wt-syn -
288 CCCP). In contrast, N2a cells expressing Wt-syn and treated with CCCP followed by the recovery
289 incubation show a substantially reduced level of stimulated mitochondrial Ca^{2+} uptake (Figure 5b;
290 Wt-syn +CCCP < < Cntrl +CCCP \approx Wt-syn -CCCP). A-syn interferes with the recovery mechanism
291 operative in N2a cells, and it is reasonable to infer that the mechanistic and structural
292 underpinnings are similar to those for RBL cells.

293 The C-terminal tail of a-syn participates in inhibition of mitochondrial stress recovery. Our
294 finding that Wt-syn inhibits stimulated mitochondrial Ca^{2+} uptake after recovery from chemical
295 stress, in stark contrast to enhancing uptake in the absence of stress, suggests differential
296 structural contributions. To test directly whether the N-terminal, helix-forming region of a-syn is
297 sufficient for abrogation of recovery, we evaluated the C-terminal truncation mutant 1-102-syn
298 (Figure 1) in our assay. We found that RBL cells expressing 1-102-syn recover their stimulation
299 capacity after CCCP stress, similarly to control cells (Figure 5a; 1-102-syn +CCCP \approx Cntrl +CCCP),
300 with recovery significantly enhanced compared to cells expressing Wt-syn (Figure 5a; 1-102-syn
301 +CCCP >> Wt-syn +CCCP). In contrast, in the absence of CCCP stress, 1-102-syn expression
302 increases the stimulated mitochondrial Ca^{2+} uptake similarly to Wt-syn (Figure 5a; 1-102-syn -CCCP
303 \approx Wt-syn -CCCP and also Figure 2a). Comparing basal levels of mitochondrial Ca^{2+} we found that
304 cells expressing Wt-syn or 1-102-syn behave similarly to each other and different from control cells
305 (Figure S4; basal Wt-syn +CCCP \approx basal 1-102-syn +CCCP > basal Cntrl -CCCP). These results
306 indicate that the C-terminal tail of a-syn is involved in inhibiting recovery of stimulated Ca^{2+} uptake
307 after mitochondrial stress, whereas the N-terminal helices of a-syn are primarily involved in
308 increasing basal or stimulated Ca^{2+} transport from ER to mitochondria in the absence of stress.

309 The C-terminal tail is the target of post translational modifications associated with PD.^{29,67-70}
310 Prominent among these is phosphorylation of Serine-129 (S129) which affects the aggregation
311 state of a-syn as well as interactions with other proteins.³⁰ We mutated S129 to alanine and tested
312 this variant (S129A-syn) in our mitochondrial stress recovery assay. Cells expressing S129A-syn
313 exhibit stimulated mitochondrial Ca^{2+} uptake at an enhanced level compared to control cells, similar
314 to cells expressing Wt-syn or 1-102-syn (Figure 5a; S129A-syn -CCCP \approx Wt-syn -CCCP \approx 1-102-

315 syn -CCCP > Cntrl -CCCP). After recovery from exposure to CCCP, cells expressing S129A-syn
316 exhibit an enhanced stimulated response, whereas this response is reduced for cells expressing
317 Wt-syn (Figure 5a; S129A-syn +CCCP >> Wt-syn +CCCP). Thus, phosphorylation of S129 may be
318 involved in damaging effects in cells expressing Wt-syn as represented by poor recovery from
319 CCCP-induced mitochondrial stress. A small reduction in the recovery of cells expressing S129A-
320 syn (Figure 5a; S129A-syn +CCCP < S129A-syn -CCCP ≈ Cntrl +CCCP ≈ 1-102-syn +CCCP),
321 leaves open the possibility that residues in the C-terminal tail in addition to S129 contribute to the
322 reduced recovery response.

323 A-syn disrupts recovery of mitochondrial stress caused by MPP+ neurotoxin. MPTP, which
324 is physiologically metabolized to the neurotoxin MPP+, is known to cause symptoms of PD in
325 humans and other primates by damaging dopaminergic neurons in the substantia nigra.⁷¹⁻⁷³ Used
326 extensively to evaluate mechanisms of PD in model systems⁴², MPP+ has been shown to disrupt
327 mitochondrial function by inhibiting oxidative phosphorylation and consequent ATP production. We
328 found recovery of RBL cells from MPP+ exposure and effects of Wt-syn to be very similar to those
329 we observed for CCCP. Control cells (no a-syn) recovered from MPP+ treatment show an
330 enhanced level of stimulated mitochondrial Ca²⁺ uptake compared to the response with no MPP+
331 (Figure 5c; Control +MPP+ > Control -MPP+), whereas cells expressing Wt-syn have substantially
332 reduced recovery (Figure 5c; Wt-syn +MPP+ << Wt-syn -MPP+). These results are again consistent
333 with the existence in cells of recovery mechanisms to counter effects of PD-related mitochondrial
334 toxins, that are disrupted by a-syn.

335 Chemical stress of mitochondria is accompanied by phosphorylation of S129 and
336 aggregation of a-syn. Given the potential involvement of S129 phosphorylation in preventing cellular
337 recovery after mitochondrial stress (Figure 5a) we used confocal fluorescence microscopy and
338 immunostaining to quantify phosphorylated Serine-129 (anti-pSer129-syn; Figure 6) in RBL and
339 N2a cells. Fluorescence intensities observed with each specific antibody were normalized by the
340 expression level of a-syn. CCCP treatment followed by recovery results in increased
341 phosphorylation of S129 in RBL cells transfected with WT-syn (Figure 6b), compared to cells that
342 were not exposed to CCCP (Figure 6a). As expected, RBL or N2a cells transfected with S129A-syn
343 showed negligible fluorescence using anti-pSer129-syn (data not shown) because this variant lacks
344 the phosphorylation site. Quantified over many RBL cells transfected with Wt-syn, the normalized
345 fluorescence of anti-pSer129-syn increases from 0.28 to 0.80 (on average) after recovery from
346 CCCP stress (Figure 6c). In N2a cells, we also observed an increase from 0.22 to 0.48 (Figure 6d).
347 We obtained consistent results in RBL cells treated with MPP+: Anti-pSer129-syn fluorescence
348 increases from 0.37 to 0.95 after recovery from toxin exposure (Figure 6e). These results indicate

349 that phosphorylation of S129 results from exposure to mitochondrial toxins CCCP and MPP+,
350 persisting beyond washing out of the toxin and a recovery incubation.

351 Because phosphorylation of S129 is associated with pathological aggregation of Wt-syn^{30,68},
352 we evaluated the aggregation state of Wt-syn and S129A-syn transfected into RBL and N2a cells.
353 RBL cells immunostained with anti-syn-agg show that CCCP treatment followed by recovery results
354 in increased aggregation of transfected Wt-syn (Figure 7b), compared to cells not exposed to
355 CCCP (Figure 7a). Quantified over many RBL cells transfected with Wt-syn, the normalized
356 fluorescence of anti-syn-agg increases significantly under conditions of CCCP stress (Figure 7c). In
357 contrast, no significant difference in anti-syn-agg staining is detected for RBL cells transfected with
358 S129A-syn with or without exposure to CCCP (Figure 7d-f), indicating that aggregation of Wt-syn in
359 these circumstances requires the presence of Serine-129 and possibly its phosphorylation. We
360 observed the same trends for neuronal N2a cells: Staining by anti-syn-agg increases after exposure
361 to CCCP for cells expressing Wt-syn (Figure 7g) but not for cells expressing S129A-syn (Figure 7h).
362 Use of the neurotoxin MPP+ in RBL cells yielded consistent results: Staining by anti-syn-agg
363 increases after recovery from exposure to MPP+ for cells expressing Wt-syn (Figure 7i) but not for
364 cells expressing S129A-syn (Figure 7j). Together the results shown in Figures 6 and 7 provide
365 structural correlations for the functional outcomes shown in Figure 5, suggesting that a-syn
366 prevents recovery from exposure to mitochondrial toxins by a mechanism involving phosphorylation
367 of S129 and associated aggregation.

368

369 DISCUSSION

370 Two cardinal features of PD are disruptions in mitochondrial function and dynamics^{35,46,74}
371 and aggregation and deposition of the protein a-syn. These features may intersect in the etiology of
372 PD, as a-syn has been associated with disruption of normal mitochondrial functions, including
373 dysregulated fission/fusion, generation of reactive oxygen species (ROS), impaired Ca²⁺ uptake,
374 and reduced ATP production.^{34–36,45,46,75–78} Mitochondrial Ca²⁺ levels are intimately linked to
375 mitochondrial function, and their regulation is known to be important for ATP production⁷⁹, control of
376 cell death⁸⁰, ROS signaling⁸¹, and buffering of cytosolic Ca²⁺ levels.⁸² A-syn has also been
377 implicated in the regulation of cellular Ca²⁺ homeostasis,^{83–86} including within mitochondria. As part
378 of an earlier study, we reported that a-syn association with mitochondria is enhanced under
379 conditions of mitochondrial stress.¹ These initial results motivated our current study to investigate
380 the effects of a-syn in environmentally-stimulated mitochondrial Ca²⁺ uptake. We first examined
381 RBL cells, which we previously established as a versatile system for evaluating a-syn interactions
382 with membranes associated with specific cell functions, such as release and recycling of endosomal
383 vesicles approximating synaptic vesicles.¹ We further corroborated our observations in cell lines

384 HEK293, and N2a, which are commonly used as models for neurons in PD and other studies. Our
385 findings extend and provide new mechanistic insights to previous evidence that a-syn can modulate
386 the flow of Ca^{2+} from ER to mitochondria.

387 A-syn facilitates stimulated mitochondrial Ca^{2+} uptake from ER depending on N-terminal
388 helices and bridging across organelles. With IgE-sensitized RBL cells we showed that ectopically-
389 expressed, human a-syn (Wt-syn) increases mitochondrial Ca^{2+} uptake stimulated by antigen, and
390 the level of this stimulated increase is similar to that caused by over-expression of ER protein VAPB
391 (Figure 2). Miller and colleagues have shown in neurons and neuronal cell lines that VAPB localizes
392 in the MAM sub-compartment of ER membrane, which is enriched with negatively charged
393 phospholipids and cholesterol.⁸⁷ VAPB binding to mitochondrial protein PTPIP51 serves to tether
394 these two organelles in contact sites to facilitate flow of Ca^{2+} from ER stores through IP_3 receptors
395 to VDAC-MCU channels in the mitochondria.^{60,88} The increased concentration of Ca^{2+} sequestered
396 in the contact sites is sufficient for uptake by the low affinity MCU/MICU complex.⁵⁴ Our results
397 suggest that, similar to VAPB, a-syn can serve as a tether to add or further tighten ER-mito contact
398 sites, thereby enhancing Ca^{2+} sequestration and increasing stimulated mitochondrial Ca^{2+} uptake
399 from ER stores. Our analysis of SIM images showing increased ER-mito contacts in the presence of
400 Wt-syn (Figure 4) further supports this interpretation. Guardia-Laguarta et al. reported the presence
401 of a-syn in MAM fractionated from cultured cell models overexpressing a-syn and from normal
402 human/mice brain tissues.³² Supported by structural studies on model and cell membranes^{1,21,22,56–}
403 ^{58,89} this tight association is consistent with dual-anchor a-syn attachment to ER and mitochondria
404 membranes, possibly under both physiological and pathological conditions.

405 Our results showing a-syn enhancement of basal and stimulated mitochondrial Ca^{2+} uptake
406 by increasing ER-mito contacts can be compared to previous reports.^{83,90–92} In a study on SH-SY5Y
407 human neuroblastoma cells and HeLa cells, Cali et al showed that expression or knock-down of a-
408 syn lead to an increase or decrease, respectively, in stimulated mitochondrial Ca^{2+} uptake and in
409 ER-mito contacts⁹⁰ in agreement with our results. Two other studies in SH-SY5Y and HEK293 cells
410 reported that overexpression of a-syn reduces stimulated mitochondrial Ca^{2+} uptake by interfering
411 with ER-mito tethering by either VAPB-PTPIP51⁹² or IP3R-GRP75⁹³ interactions and thereby
412 reducing ER-mito contacts.⁹² In these studies, rounding of mitochondria⁹² or mitochondrial
413 fragmentation and sensitization to depolarization⁹³ accompanied a-syn over-expression, suggesting
414 that expression levels were high enough to cause mitochondrial stress. This could explain the
415 discrepancy with our own work, and may indicate that the authors were instead observing effects of
416 a-syn aggregation related to our observations after treatment with mitochondrial toxins. In support
417 of this view, a subsequent study by Cali et al.⁹⁴ showed that higher levels of a-syn results in a loss
418 of enhanced Ca^{2+} uptake. More generally, it seems clear that differences in results and/or

419 interpretation among these studies are likely due in part to different levels of a-syn expression and
420 perhaps also to other differences in experimental conditions, underlining challenges in elucidating
421 physiologic and pathologic roles of a-syn. Indeed, both overexpression and loss of a-syn have been
422 linked to mitochondrial dysfunction in mice,^{95–98} although aspects of this too remain controversial.
423 Using a simpler model system, we showed previously that high and low expression levels of a-syn
424 in RBL cells lead to different functional outcomes.¹

425 Our focus on structure-function relationships, which we evaluate by introduction of a-syn
426 variants into cells with little or no endogenous a-syn, points to mechanisms by which a-syn may
427 participate in mitochondrial Ca²⁺ homeostasis and disruption. Although intrinsically disordered in
428 solution, a-syn has been shown to adopt an amphipathic helical structure in the presence of
429 negatively charged lipid surfaces^{48,49}, such as located in MAMs. The distribution of broken helix
430 (residues 3-38 and 46-93; Figure 1) vs extended helix (residues 3-97) depends on membrane
431 curvature and proximity of a second membrane.^{21,56,58} Our previous NMR measurements showed
432 that proline point mutations A30P within helix-1 and V70P within helix-2 locally disrupt the helical
433 structure of the protein¹, while also reducing the overall affinity of the protein for membranes.³¹
434 These perturbations have functional consequences. For example, we showed previously that
435 whereas Wt-syn inhibits stimulated exocytosis of recycling endosomes, V70P-syn abrogates this
436 effect, evidently by preventing a-syn bridging between vesicles and the plasma membrane.¹ In
437 current studies we found that, compared to Wt-syn, A30P-syn expression causes much less
438 enhancement of stimulated mitochondrial Ca²⁺ uptake and that V70P-syn expression shows almost
439 no enhancement (Figure 2). Together with our previous findings,¹ our results are consistent with a-
440 syn tethering ER and mitochondrial membranes via the broken-helix form to enhance the stimulated
441 flow of Ca²⁺ into the mitochondria.

442 We also evaluated deletion of a-syn's disordered C-terminal tail in light of previous reports
443 indicating its role in protein-protein interactions, including interactions with the mitochondrial outer
444 membrane anion channel VDAC^{99,100}, which could contribute to ER-mito tethering. We observed
445 that the 1-102-syn variant only slightly reduces the enhancing effect of WT-syn (Figure 2), indicating
446 the primacy of N-terminal helices in the enhancement of Ca²⁺ uptake. In contrast with our results, a
447 recent study reported that the A30P mutation of a-syn does not abrogate its ability to enhance
448 uptake.⁹⁴ Because the effects we observe for the A30P mutation on bridging-related functions¹
449 (Figure 2) are milder than those of the V70P mutation, the A30P variant may retain activity at higher
450 expression levels, suggesting again that different expression levels in the two studies are
451 responsible for the different observations. In addition, Cali et al⁹⁰ found that removal of the C-
452 terminal tail of a-syn by truncation at residue 97 eliminated enhancement of Ca²⁺ uptake, in contrast
453 with our finding that truncation at a-syn residue 102 only mildly reduced this effect. This discrepancy

454 may result from destabilization of a-syn helical structure and membrane binding by truncating the
455 protein at position 97, very close to the C-terminal end of a-syn helix-2^{16,20,101} (Figure 1) with
456 consequent loss of enhanced Ca^{2+} uptake.

457 Our results strongly implicate the ER as the main source of Ca^{2+} transported into
458 mitochondria under our conditions (Figure 3), supporting ER-mito contacts as the relevant context
459 for the effects of a-syn. Our results are consistent with those of Chakrabarti et al⁶⁰ who similarly
460 treated U2OS cells with thapsigargin to empty ER Ca^{2+} stores and demonstrated no significant
461 increase in mitochondrial Ca^{2+} stimulated by ionomycin or histamine, in contrast to non-treated
462 cells. Ashrafi et al⁵¹ used a similar approach to demonstrate ER as the source of stimulated
463 mitochondrial Ca^{2+} uptake in HEK293 cells. They also showed that axonal mitochondria in
464 hippocampal neurons require brain-specific MCU regulator MICU3 to allow efficient Ca^{2+} uptake
465 from the cytoplasm (and not ER) as necessary for rapid ATP production during action potentials. It
466 may be that mitochondrial uptake depends on Ca^{2+} release from the ER in different subcellular
467 regions in neurons, and ER-dependence has been shown for dendrites of cortical pyramidal
468 neurons.⁴⁹ Close examination with focused ion beam-scanning electron microscopy revealed
469 mito/ER contacts in cell bodies, axons, and dendrites from mouse brain tissue.^{64,102}

470 A-syn-mediated susceptibility to damage from mitochondrial toxins is accompanied by
471 phosphorylation of S129 and aggregation. Our finding that a-syn interferes with the capacity of cells
472 to recover from mitochondrial toxins points to a pathway that may contribute to the pathological
473 effects of a-syn. PD arises from and manifests in a complex combination of mitochondrial
474 dysfunctions, including under-production of ATP, over-production of ROS, and mis-regulated Ca^{2+}
475 flow. Using mitochondrial Ca^{2+} uptake as a robust assay, we could test effects of toxins related to
476 PD and participation of a-syn. Along with rotenone and paraquat, MPTP/MPP+ is a known
477 neurotoxin, with limited exposure known to cause Parkinsonian symptoms in humans and other
478 mammals.⁴⁶ The MPTP metabolite MPP+ has been shown to accumulate selectively in
479 dopaminergic neurons and cause their apoptosis.¹⁰³ This class of neurotoxins are Complex 1
480 inhibitors, and pathology is thought to arise in part from increased levels of ROS. Carbonyl cyanide
481 phenylhydrazones, including CCCP, act to dissipate the mitochondrial membrane potential, and this
482 class also increases ROS through pathways that may include reaction with glutathione.¹⁰⁴ As shown
483 by others in cells, consequences of increased ROS include phosphorylation of a-syn S129, which
484 can accompany a-syn aggregation.³⁶ We previously showed that colocalization of Wt-syn with
485 mitochondria increases markedly after stressing with CCCP.¹

486 In the present study we found that acute treatment with CCCP or MPP+ disrupts stimulated
487 mitochondrial Ca^{2+} uptake in RBL and N2a cells. Remarkably, the cells recover this mitochondrial
488 capacity, and stimulated Ca^{2+} uptake is actually enhanced after toxin removal and further incubation

489 in normal media (Figure 5). The similarity of this enhanced uptake to that mediated by VAPB or a-
490 syn in the absence of toxins suggests that the recovery mechanism may involve increased ER-mito
491 contacts. The fact that mitochondria can recover from toxin exposure attests to cellular resilience
492 and robust repair pathways. For example, increases in ROS induced by CCCP results in activation
493 of various protein kinases and phosphatases, in some cases by directly oxidizing the thiol groups of
494 cysteine residues. These and other perturbations initiate signaling pathways of nuclear factor
495 erythroid 2-related factor 2 (Nrf2) and transcription factor EB (TFEB) as part of an integrated cellular
496 stress response.¹⁰⁴ The increase in basal level mitochondrial Ca²⁺ we observed in control cells after
497 CCCP recovery, compared to no treatment, (Figure S4) is consistent with such induced repair
498 mechanisms.

499 We discovered that recovery of stimulated mitochondrial Ca²⁺ uptake after toxin exposure is
500 inhibited in RBL and N2a cells expressing Wt-syn (Figure 5), indicating that perturbations mediated
501 by a-syn when these toxins are present compromise stress response mechanisms. In contrast to
502 Wt-syn, 1-102-syn expression allows mitochondrial recovery from toxin exposure, implicating the C
503 terminal tail in impeding recovery. A prominent feature of the a-syn C-terminal tail is
504 phosphorylation of S129, which is intimately linked to PD pathology.^{29,30} The kinase responsible for
505 S129 phosphorylation is Polo-like kinase 2 (PLK2),¹⁰⁵⁻¹⁰⁸ which has also been reported to function
506 in mitochondrial Ca²⁺ uptake at ER-mito contacts¹⁰⁹ and to be up-regulated by mitochondrial
507 stress.^{110,111} Accordingly, increased S129 phosphorylation under conditions of mitochondrial stress
508 and increased ROS has been established¹⁰⁹ and has been related to a-syn aggregation, changes in
509 subcellular distributions and neuronal loss in transgenic mice.³⁶ We therefore examined
510 phosphorylation of S129 (Figure 6) and a-syn aggregation (Figure 7) in RBL and N2a cells after
511 recovery from exposure to toxins MPP+ and CCCP. Consistent with expected effects of increased
512 ROS due to these toxins, we observed increases in Wt-syn phosphorylation and aggregation, which
513 correlate with abrogated recovery of stimulated mitochondrial Ca²⁺ uptake.

514 Strikingly, we find that S129A-syn does not inhibit recovery from mitochondrial toxins and
515 does not result in associated aggregation of a-syn, suggesting that S129 phosphorylation is
516 upstream of both effects. Remaining unresolved are the mechanisms and structural underpinnings
517 for inhibition of mitochondrial Ca²⁺ uptake by pS129-syn or its accompanying aggregation. We
518 previously observed that CCCP treatment causes recruitment of a-syn to mitochondria¹, and this is
519 reasonably the first step involved. Recruitment may result from increased ER-mito contacts that we
520 posit occur as part of the toxin recovery process and which would present a-syn with favorable
521 binding opportunity via broken-helix bridging between the closely apposed ER and mitochondrial
522 membranes. In this model, S129 phosphorylation occurs after a-syn relocates to stressed
523 mitochondria, likely by PLK2, which has increased activity under this stress.^{110,111} Indeed,

524 accumulation of pS129-syn at damaged mitochondrial membranes has been reported in a PD-
525 related synucleinopathy.¹¹²

526 Subsequent steps involved in a-syn aggregation and inhibition of mitochondrial recovery are
527 more difficult to discern, particularly as they relate to each other. S129 phosphorylation has been
528 shown to modulate a-syn interactions with other cellular proteins,^{28,113,114} and loss or gain of
529 interactions with particular proteins may underlie pathological consequences. For example, the
530 negatively charged C-terminal tail of a-syn has been reported to inhibit VDAC via electrostatic
531 interactions with its positively charged pore.^{99,100} The interaction could be enhanced by S129
532 phosphorylation, providing a potential mechanism for direct interference with recovery of Ca²⁺
533 uptake at ER-mito contacts. It is possible that S129 phosphorylation promotes a-syn aggregation
534 directly or indirectly through other interactions. While this has remained controversial, with reports
535 differing on whether pS129 promotes or inhibits aggregation,¹¹⁵ the reality is likely to be context
536 dependent. Two recent studies reported that a-syn recruitment to mitochondria results in a-syn
537 aggregation^{116,117} but these studies did not examine the phosphorylation state of S129. Finally, the
538 mechanisms by which aggregates of a-syn may lead to mitochondrial dysfunction, including
539 inhibiting their recovery after toxin exposure, are likely complex^{76,118-121} and remain a subject of
540 ongoing investigation.

541

542 CONCLUSIONS

543 Overall, our investigation supports the possibility that a-syn modulates basal and stimulated
544 mitochondrial Ca²⁺ uptake under physiological conditions. We observed that expression of Wt-syn
545 increases mitochondrial Ca²⁺ levels in stimulated RBL cells and neuronal cell models, including N2a
546 cells that are differentiated to mature, dopaminergic neurons similar to those found in the substantia
547 nigra. By comparing structural variants of a-syn and by controlling the sources of Ca²⁺ we provided
548 evidence for Wt-syn acting as a tether to strengthen ER-mito contacts, depending on the integrity of
549 its N-terminal helices. The ultimate functional outcome of this structural interaction may be
550 concentration dependent. Considering the evidence from the literature and our results, we suggest
551 a concentration dependent role for wt a-syn in modulating mitochondrial Ca²⁺ uptake. Within a
552 physiological concentration range the enhancing effect of wt a-syn on mitochondrial Ca²⁺ uptake
553 may help maintain mitochondrial Ca²⁺ homeostasis before and after stimulation. However, for
554 concentrations above the physiological range, the tethering capacity of wt a-syn to increase
555 contacts between ER and mitochondria and/or its aggregation may cause pathological effects on
556 mitochondrial function and morphology.

557 After treatment with mitochondrial toxins, including MPTP/MPP⁺ known to induce
558 parkinsonism, we directly observed pathological effects of a-syn. We showed that Wt-syn disrupts

559 the recovery of mitochondria from toxin-induced stress and consequently causes severe inhibition
560 of stimulated mitochondrial Ca^{2+} uptake. The unstructured C-terminal tail of a-syn participates in
561 causing this damage, which is accompanied by and may depend on phosphorylation of S129, and
562 also results in a-syn aggregation. The roles of specific and nonspecific structural interactions of a-
563 syn with membranes and other proteins in normal physiology and in disease remain an intriguing
564 puzzle awaiting future investigation of this complex system in cellular and neuronal models and in
565 primary neurons susceptible to PD and other synucleinopathies.

566

567 MATERIALS AND METHODS

568 Reagents. 1-methyl-4-phenylpyridinium iodide (MPP+ iodide), retinoic acid, dibutyryl cyclic-
569 AMP sodium salt, thapsigargin, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), and EGTA
570 were from Sigma-Aldrich (St. Louis, MO). Trypsin-EDTA, 0.2 μm TetraSpeck™ beads, Alexa Fluor
571 488-, Alexa Fluor 568-, and Alexa Fluor 647-labeled goat anti-mouse or anti-rabbit IgG secondary
572 antibodies were from Invitrogen (Carlsbad, CA; CAT#: A21121, A21124, A21240, A21241, A11034;
573 1:200 dilution). Transfection reagents TransIT-X2® and Lipofectamine® 2000 were from Mirus Bio
574 (Madison, WI) and Thermo Fisher Scientific (Waltham, MA), respectively. VECTASHIELD HardSet
575 Antifade Mounting Medium was from Vector Laboratories (Burlingame, CA). Mouse monoclonal
576 IgG1 anti- α -synuclein antibodies 3H2897(CAT#: sc-69977; 1:200 dilution), 42/ α -Synuclein (CAT#:
577 610787; 1:200 dilution) and anti α , β -synuclein (AB_2618046; 1:150 dilution) were from Santa Cruz
578 Biotechnology (Dallas, TX), DSHB (University of Iowa) and BD Biosciences (Franklin Lakes, NJ),
579 respectively. These anti-a-syn antibodies were optimized for use across experiments, with the same
580 one used in any given experiment. We found that 42/ α -Synuclein was most sensitive for labeling
581 S129A-syn, similarly to Wt-syn. Monoclonal anti-tyrosine hydroxylase antibody (Product ID: 22941;
582 1:220 dilution) was from ImmunoStar (Hudson, WI). Recombinant rabbit monoclonal anti-
583 phosphorylated- α -synuclein (Ser129) antibody (Clone#: EP1536Y; 1:400 dilution) and anti- α -
584 synuclein aggregate antibody (Clone#: MJFR-14-6-4-2; 1:1000 dilution) were acquired from Abcam
585 (Cambridge UK).

586 Cell Culture. RBL-2H3 cells were cultured as monolayers in minimal essential medium
587 (Invitrogen) with 20% fetal bovine serum (Atlanta Biologicals, Atlanta, GA) and 10 $\mu\text{g}/\text{ml}$ gentamicin
588 sulfate (Invitrogen) as previously described.¹²² HEK293 (a gift from Barbara Hempstead, Weill
589 Cornell Medicine) and Neuro2a (N2a from ATCC) cells were cultured in Dulbecco's modified eagle
590 medium (DMEM, Invitrogen) with 10% fetal bovine serum and 50 $\mu\text{g}/\text{ml}$ of Pen-Strep (Invitrogen).
591 Adherent cells were harvested by treatment with Trypsin-EDTA (0.05%) for 8-10 min (RBL-2H3
592 cells) or 2-3 min (HEK293, N2a cells), 3-5 days after passage.

593 Cell expression plasmids. The cDNA for cell expression of human Wt-syn in pcDNA 3.0
594 vector was a gift from Dr. Chris Rochet (Purdue University). Other plasmids for expression of
595 human a-syn mutants (A30P-syn, V70P-syn, 1-102-syn and S129A-syn) were created within this
596 pcDNA vector by site directed mutagenesis using Phusion High-Fidelity DNA Polymerase (New
597 England Biolabs)¹. The plasmid for GCaMP3 was purchased from Addgene (# 22692), and those
598 for mito-GCaMP6f, mito-jRCaMP1b, and ER-GCaMP6f were gifts from Dr. Tim Ryan (Weill Cornell
599 Medicine).⁵¹ The plasmid for VAPB was a gift from Dr. Chris Steffan (University College, London).
600 The plasmid for STIM1-mApple was prepared in our lab as described previously¹²³ and that for
601 mEmerald-TOMM20-N-10 was a gift from Michael Davidson (<http://n2t.net/addgene:54282> ;
602 RRID:Addgene_54282).

603 Syn-p2a-mRFP is a multicistronic vector encoding Wt-syn and mRFP simultaneously,
604 allowing Wt-syn expression level to be determined without adding a tag to the relatively small a-syn
605 protein. To create the syn-p2a-mRFP plasmid, the cDNA encoding human Wt-syn was introduced
606 into a vector from Clontech (Mountain View, CA) containing the mRFP sequence, using Hind III and
607 KpnI restriction sites, followed by insertion of the p2a sequence using KpnI and XmaI restriction
608 sites.¹²⁴ The p2a motif was prepared by annealing the following primers:

609 p2a-syn-mRFP forward:

610 CGGGAAGCGGAGCTACTAACCTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCT
611 GGACCTGC

612 p2a-syn-mRFP reverse:

613 CCGGGCAGGTCCAGGGTTCTCCTCCACGTCTCCAGCCTGCTTCAGCAGGCTGAAGTTAGTAG
614 CTCCGCTTCCGGTAC

615 Experiments with RBL cells. Transfection by electroporation. RBL-2H3 cells were harvested
616 three to five days after passage, and 5×10^6 cells were suspended in 0.5 ml of cold electroporation
617 buffer (137 mM NaCl, 2.7 mM KCl, 1 mM MgCl₂, 1 mg/ml glucose, 20 mM HEPES, pH 7.4). Co-
618 transfections used a reporter plasmid DNA (5 μ g mito-GCaMP6f), together with 5 μ g of Wt-syn in
619 pcDNA 3.0 vector or empty pcDNA 3.0 vector (control), VAPB, or a-syn mutants: A30P-syn, 1-102-
620 syn, V70P-syn). We have found for RBL cells that cells transfected with two constructs express
621 both proportionally, such that a fluorescent construct can be used as an expression reporter for
622 cells co-transfected with a non-fluorescent construct.¹ Cells were electroporated at 280 V and 950
623 μ F using Gene Pulser X (Bio-Rad), then immediately resuspended in 6 ml medium and cultured in
624 MatTek dishes (2 ml/dish) (MatTek Corporation, Ashland, MA) for 24 hr to recover; the medium was
625 changed after live cells became adherent (1-3 hr). For stimulation by antigen, cells were sensitized
626 with 0.5 μ g/ml anti-2,4-dinitrophenyl (DNP) IgE during the recovery period.¹²⁵

627 We took several measures to ensure consistency of gene expression, in multiple
628 experiments over different days. We visualized the levels of expressed a-syn variants using
629 immunofluorescence imaging labeling with an antibody specific for all tested variants (typically
630 AB_2618046; 1:150 dilution). We also confirmed with regular testing that RBL cells co-transfected
631 with mito-GCaMP6f and Wt-syn show a strong correlation with respect to fluorescence intensity
632 from mito-GCaMP6f compared to immunostained Wt-syn. Therefore, we could evaluate mito-
633 GCaMP6f fluorescence as a reliable reference for consistency of transfection efficiency and thereby
634 a measure of the consistency in transfection of a-syn variants. Our previous measurements,
635 including quantitative western blots,¹ indicate that levels of Wt-syn in RBL-2H3 cells transfected with
636 this amount of Wt-syn plasmid express are around ~10 μ M, which is within the physiological
637 concentration range of this protein found in neurons. The observed immunofluorescence is also
638 consistent with this expression level based on our prior experience.¹

639 *Stimulated mitochondrial Ca²⁺ uptake assay.* After the electroporation recovery period and
640 prior to imaging, cells were washed once and then incubated for 5 min at 37°C with buffered saline
641 solution (BSS: 135 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, 5.6 mM glucose, 20 mM
642 HEPES, pH 7.4). Then, mito-GCamp6f fluorescence was monitored for 20 sec prior to stimulation
643 with 1 ng/ml DNP-BSA (antigen). After 6-8 min of stimulation, a high dose of ionomycin (5 μ M) was
644 added to saturate the mitochondria with Ca²⁺ for normalization of the stimulated fluorescence. Cells
645 were monitored with time by confocal microscopy (Zeiss 710) using a heated, 40X water objective.
646 Mito-GCaMP6f was excited using the 488-nm line of a krypton/argon laser and viewed with a 502-
647 551 nm band-pass filter. Mitochondrial Ca²⁺ uptake was quantified in individual cells as described
648 below (Equation 2).

649 *Mitochondrial stress recovery assay.* RBL cells were co-transfected with 5 μ g mito-
650 GCaMP6f, together with 10 μ g of syn-p2a-mRFP, S129A-syn-p2a-mRFP, 1-102-syn, or mRFP
651 (control). Prior to imaging, cells were divided into three groups: Group 1 cells were treated with 375
652 μ M of MPP+ or 10 μ M of CCCP in BSS buffer for 30 min, followed by washing with culture medium
653 and incubation for 6 hours (after MPP+ treatment) or 3 hours (after CCCP treatment) in culture
654 medium at 37°C to recover. Group 2 cells were treated with CCCP or MPP+ as for Group 1 cells but
655 did not go through recovery and were washed three times with BSS buffer at 37°C. Group 3 cells
656 (control) were treated as for Group 1 cells, except without addition of any drugs. Mitochondrial
657 uptake of Ca²⁺ was stimulated with 100 ng/ml DNP-BSA after the recovery period for Group 1 and 3
658 cells and immediately after the drug treatment for Group 2 cells.

659 *Immunostaining of a-syn variants.* Cells were electroporated with selected plasmids and
660 cultured in MatTek dishes for 24 hr, then fixed with 4% paraformaldehyde + 0.1% glutaraldehyde.
661 After washing, fixed cells were labeled in PBS with 10 mg/ml BSA (PBS/BSA) using a monoclonal

662 anti-a-syn antibody, followed by a secondary antibody conjugated to Alexa Fluor (488 or 568 or
663 647, depending on experiment), and then imaged by confocal microscopy.

664 *Measuring phosphorylation of serine 129 in Wt-syn.* Cells were transfected with 10 µg of
665 syn-p2a-mRFP and cultured in MatTek dishes before treating with CCCP or MPP+ or buffer
666 (control) then incubating in culture medium, as described for the mitochondrial stress recovery
667 assay. Cells were fixed, labeled in PBS/BSA using monoclonal anti-pSer129-syn (1:400) followed
668 by secondary antibody conjugated to Alexa Fluor488, and then imaged by confocal microscopy.
669 The microscopy was performed using a Zeiss LSM 880 confocal microscope equipped with 1.4 NA,
670 40X oil immersion objective and GaAsP detectors, using 488 nm and 561 nm laser lines.

671 *Measuring aggregation level of Wt-syn and S129A-syn.* Cells were transfected with 15 µg of
672 pcDNA-S129A-syn or pcDNA-Wt-syn and cultured in MatTek dishes before treating with CCCP or
673 MPP+, or not, then incubated in culture medium as described for the mitochondrial stress recovery
674 assay. Cells were fixed, labeled in PBS/BSA using monoclonal anti-a-syn antibody (1:200) or
675 monoclonal anti-a-syn aggregate antibody (1:1000) followed by respective secondary antibody
676 conjugated to Alexa Fluor (488 or 647, respectively). Confocal imaging with a Zeiss LSM 880
677 microscope was then performed as described above, using 488 nm and 633 nm laser lines.

678 Experiments with HEK293 cells. Chemical transfection. HEK293 cells were plated at a
679 concentration of 1×10^5 cells/ml in DMEM and 10% FBS for 48 hours and then transfected with
680 mRFP or Syn-p2a-mRFP (1 µg) and mtio-GCaMP6f (1 µg) using Lipofectamine® 2000 Transfection
681 Reagent according to the manufacturer's instructions. 24 hours after the chemical transfection and
682 prior to imaging, cells were washed once and then incubated for 5 min at 37°C in BSS. The
683 stimulated mitochondrial Ca^{2+} uptake assay was carried out as described for RBL cells, except that
684 for HEK293 cells, mito-GcaMP6f fluorescence was monitored for 20 sec prior to stimulation with
685 either 100 µM ATP or 0.38 µM ionomycin. After 3-4 min of stimulation, a high dose of ionomycin (5
686 µM) was added to saturate the mitochondria with Ca^{2+} for fluorescence normalization. In specified
687 experiments, cells were treated with 0.67 mM thapsigargin for 2-3 min before stimulation with 0.38
688 µM ionomycin. Cells were monitored by confocal microscopy as in the RBL cell assay; in addition,
689 the 561 nm laser line was used to quantify the expression level of syn-p2a-mRFP. The consistency
690 of the results we obtain in HEK293 cells with those we observe in the RBL cells indicates that
691 synuclein expression levels are in the same physiological range as in the RBL cells and that we are
692 not in the overexpression regime, where the effects of a-syn on mitochondrial Ca^{2+} entry are
693 different and opposite to those we observed.⁹²⁻⁹⁴

694 Experiments with N2a cells. Cell differentiation. We tested a combination of conditions to
695 differentiate N2a cells into dopaminergic neurons, which are characterized by increased levels of
696 tyrosine hydroxylase and dopamine. N2a cells normally produce low levels of these two

697 components, and these are enhanced in the presence of dibutyryl cyclic adenosine monophosphate
698 (dbcAMP).⁶² Treatment with retinoic acid also drive these cells towards differentiation and formation
699 of neuronal morphological features including neurites. We optimized differentiation by culturing N2a
700 cells (1x 10⁵ cells/mL) in DMEM + 1% FBS with 1 mM of dbcAMP for 48 hours before washing and
701 culturing in DMEM + 1% FBS with 10 µM of retinoic acid for 48 hours. We confirmed differentiation
702 by measuring three- to four-fold cellular increase in tyrosine hydroxylase levels with
703 immunostaining⁶² and observing morphological features such as increased size, irregular shape
704 and development of neurites. Differentiated N2a cells were washed with fresh medium of DMEM +
705 10% FBS before the transfection step.

706 Differentiated N2a cells were transfected with mRFP or syn-p2a-mRFP (1 µg) and mito-
707 GcaMP6f (1 µg) using TransIT-X2® Dynamic Delivery System (Mirus Bio) according to
708 manufacturer's instructions before reculturing in normal medium for 24 hours. Prior to confocal
709 imaging, cells were washed once and then incubated for 5 min at 37°C with BSS. Mito-GcaMP6f
710 fluorescence was monitored for 20 sec prior to stimulation with 2.5 µM ionomycin. After 1-2 min of
711 stimulation, a high dose of ionomycin (8 µM) was added to saturate the mitochondria with Ca²⁺ for
712 fluorescence normalization. In specified experiments, cells were treated with 0.67mM thapsigargin
713 for 2-3 min before stimulation with 2.5 µM ionomycin. Cell fluorescence was monitored by confocal
714 microscopy as in the RBL and HEK cell assays; in addition, the 561 nm laser line was used to
715 quantify the expression level of syn-p2a-mRF. The consistency of the results we obtain in N2a cells
716 with those we observe in the RBL cells indicates that synuclein expression levels are in the same
717 physiological range as in the RBL cells and that we are not in the overexpression regime, where the
718 effects of a-syn on mitochondrial Ca²⁺ entry are different and opposite to those we observed.⁹²⁻⁹⁴

719 *Structured illumination microscopy (SIM).* Undifferentiated N2a cells were plated on collagen
720 coated MatTek dishes at a concentration of 1×10⁵ cells/ml in DMEM and 10% FBS for 48 hours
721 before transfection with selected constructs. ER membranes were labeled with STIM1 conjugated
722 to rapidly maturing monomeric red fluorescent protein mApple (STIM1-mApple). Mitochondria were
723 labeled with Translocase of Outer Mitochondrial Membrane 20 (TOMM20) conjugated with rapidly
724 maturing monomeric green fluorescent protein mEmerald (mEmerald-TOMM20). Cells were
725 transfected with pcDNA or Wt-syn in a pcDNA vector (1 µg), together with STIM1-mApple (1 µg)
726 and mEmerald-TOMM20 (1 µg) using TransIT-X2® Dynamic Delivery System according to
727 manufacturer's instructions, followed by reculturing for 24 hours. Then, cells were washed with PBS
728 (pH = 7.4) three times, fixed and immunostained for Wt-syn as described for RBL cells to visualize
729 and quantify expression. To improve the signal to noise ratio and minimize photobleaching, the
730 samples were covered with VECTASHIELD HardSet Antifade Mounting Medium and incubated in a
731 hypoxia chamber for 1 hour under 1% oxygen until the medium hardened. Samples were then

732 imaged on a Zeiss Elyra microscope utilizing a 63 \times oil objective, and 0.2 μ M TetraSpeckTM beads
733 were used as fiducial markers to ensure alignment of different imaging channels. Collected images
734 were aligned and processed using the Zeiss Zen software to produce the high-resolution SIM
735 images. The fluorescence levels for all samples in each channel were adjusted within similar
736 thresholds to ensure consistency for the following steps. The red (ER) channel was used as a mask
737 to delineate ER location throughout an individual cell. Then, applying this mask the correlation
738 between the red channel and the green (mitochondria) channel, was quantified using the Pearson
739 correlation coefficient (PCC):

$$740 \quad PCC = \frac{\sum_i(R_i - \underline{R})(G_i - \underline{G})}{\sqrt{\sum_i(R_i - \underline{R})^2} \sqrt{\sum_i(G_i - \underline{G})^2}} \quad \text{Equation 1}$$

741 where R represents the signal from the red channel, G represents the signal from the green
742 channel and \underline{R} or \underline{G} is the mean for the specified signal. About 35 cells were collected for each of
743 control cells and cells expressing Wt-syn over 6 -7 separate days of experiment.

744 *Mitochondrial stress recovery assay.* Undifferentiated N2a cells were co-transfected with 1
745 μ g mito-GCaMP6f, together with 1 μ g of syn-p2a-mRFP (Wt-syn) or mRFP (control). Prior to
746 imaging, cells were divided into three groups: Group 1 cells were treated with 40 μ M of CCCP in
747 BSS buffer for 45 min, followed by washing with culture medium and incubation for 7 hours in
748 culture medium at 37°C to recover. Group 2 cells were treated with CCCP as for Group 1 cells but
749 did not go through recovery and were washed three times with BSS buffer at 37°C. Group 3 cells
750 were treated like Group 1 cells but without CCCP and were washed with BSS buffer at 37°C twice.
751 Mitochondrial uptake of Ca^{2+} was stimulated with 2.5 μ M ionomycin after the recovery period for
752 Group 1 and 3 cells and immediately after the drug treatment for Group 2 cells.

753 *Measuring phosphorylation of serine 129 in Wt-syn.* Undifferentiated N2a cells were
754 transfected with 1 μ g of syn-p2a-mRFP and cultured in MatTek dishes for 24 hours before treating
755 with CCCP or buffer then incubating in culture medium, as described for the mitochondrial stress
756 recovery assay. Cells were fixed, labeled in PBS/BSA using monoclonal anti-pSer129-syn (1:400)
757 followed by secondary antibody conjugated to Alexa Fluor488, and then imaged by confocal
758 microscopy as described for RBL cells.

759 *Measuring aggregation level of Wt-syn.* Undifferentiated N2a cells were transfected with 1
760 μ g syn-p2a-mRFP and cultured in MatTek dishes for 24 hours before treating with CCCP or buffer
761 then incubated in culture medium, as described for the mitochondrial stress recovery assay. Cells
762 were fixed, labeled in PBS/BSA using monoclonal anti-a-syn antibody (1:200) and monoclonal anti-
763 a-syn aggregate antibody (1:1000) followed by respective secondary antibody conjugated to Alexa
764 Fluor (488 or 647, respectively), and then imaged by confocal microscopy as described for RBL
765 cells.

766 Offline image analysis using ImageJ (National Institutes of Health). *Stimulated mitochondrial*
767 *Ca²⁺ uptake assay.* Time traces of mito-GCaMP6f fluorescence in individual cells monitored by
768 confocal microscopy were normalized to a 0-1 scale using the following equation:

769
$$\text{Mitochondrial Ca}^{2+} \text{ uptake} = \frac{(F_{\text{stimulated}} - F_{\text{basal}})}{(F_{\text{ionomycin}} - F_{\text{basal}})} \quad \text{Equation 2}$$

770 where F_{basal} is the averaged measured GCaMP6f fluorescence before adding stimulant,
771 $F_{\text{stimulated}}$ is the averaged highest fluorescence values after adding stimulant and before high-dose
772 ionomycin addition, and $F_{\text{ionomycin}}$ is the averaged highest steady values following high-dose
773 ionomycin addition. All three averages were calculated over five points to reduce the effects of the
774 random noise.

775 The resting level for mitochondrial Ca²⁺ in cells was calculated as follows:

776
$$\text{Resting level mitochondrial Ca}^{2+} = \frac{F_{\text{basal}}}{F_{\text{ionomycin}}} \quad \text{Equation 3}$$

777 *Phosphorylation of Ser129 in Wt-syn.* Individual cells in fixed confocal images were
778 segmented, and the following fluorescence signals were quantified: mRFP (measure of Wt-syn
779 expression level); anti-pSer129 (Alexa Fluor 488; measure of phosphorylated Wt-syn); weak
780 background signal from five cells not expressing Wt-syn (Alexa Fluor 488 channel). The
781 phosphorylation level was calculated by subtracting the background noise from the anti-pSer129-
782 syn signal and dividing this value by Wt-syn expression level to account for the variability of Wt-syn
783 expression in different cells.

784 *Aggregation of Wt-syn and S129A-syn.* Individual cells in fixed confocal images were
785 segmented, and the following fluorescence signals were quantified: anti-a-syn antibody (Alexa Fluor
786 647; measure of Wt-syn expression); anti-a-syn aggregate antibody (Alexa Fluor 488, measure of
787 aggregation level of Wt-syn); weak fluorescence signal averaged over five cells not expressing Wt-
788 syn (Alexa Fluor 488 and 647 channels; background noise). After subtracting the background noise
789 from both fluorescent antibody values, the aggregation level was calculated by dividing the anti-a-
790 syn aggregate signal by Wt-syn expression level to account for the variability of Wt-syn expression
791 in different cells.

792 Statistical analyses for cell samples. These were performed with Origin Pro (OriginLab Corp)
793 and Microsoft Excel. For results with normal distribution of data points, statistical significance was
794 determined by a One-Way ANOVA (Analysis of Variance) followed by Tukey's post hoc test using
795 Origin software. We found that data for RBL cells from assays of stimulated mitochondrial Ca²⁺
796 uptake (with and without toxin treatment) is not normally distributed and was best interpreted in
797 terms of responding and non-responding cells. In that case, data were binarized based on a
798 reasonable cut off for the non-responding cells. Then the Kruskal-Wallis rank sum test for multiple
799 independent samples was performed followed by Dunn p-values, further adjusted by the Benjamini-

800 Hochberg FDR method. For both types of statistical analysis, the level of significance is denoted as
801 follows: *P < 0.05, **P < 0.01, ***P < 0.001.

802

803 DATA AVAILABILITY

804 The fluorescence imaging datasets generated and analyzed as part of this study are available from
805 the corresponding authors on reasonable request.

806

807 ACKNOWLEDGEMENTS

808 We are grateful to Tapojyoti Das (Weill Cornell Medical College) for helpful discussions. We thank
809 Dr. Tim Ryan (Weill Cornell Medical College) for Ca^{2+} indicator constructs and helpful discussions.
810 Fluorescence imaging was carried out in the Cornell University Biotechnology Resource Center with
811 funding for the Zeiss LSM 710 confocal microscope (NIH S10RR025502) and Zeiss Elyra
812 microscope (NSF 1428922). Research support came from NIH grant R01GM117552 (B.B. and
813 D.H.) and R35GM136686 (D.E.).

814

815 AUTHOR CONTRIBUTIONS

816 The experiments were designed, executed, and analyzed primarily by M.R., with contributions from
817 A.W.-W. and T.W.. B.B., D.E. and D.H. provided supervision and participated in the design and
818 interpretation of experiments. The manuscript was written by all authors.

819

820 ADDITIONAL INFORMATION

821 Supplementary information accompanies the paper.

822 .

823 Competing interests: The authors declare no competing interests.

824

825 REFERENCES

- 826 1. Ramezani, M. *et al.* Regulation of exocytosis and mitochondrial relocalization by Alpha-
827 synuclein in a mammalian cell model. *NPJ Parkinsons Dis* **5**, 12 (2019).
- 828 2. Irwin, D. J., Lee, V. M.-Y. M.-Y. & Trojanowski, J. Q. Parkinson's disease dementia:
829 convergence of α -synuclein, tau and amyloid- β pathologies. *Nat Rev Neurosci* **14**, 626–36
830 (2013).
- 831 3. Burré, J., Sharma, M. & Südhof, T. C. Cell Biology and Pathophysiology of α -Synuclein. *Cold
832 Spring Harb Perspect Med* **8**, a024091 (2018).
- 833 4. Spillantini, M. G. *et al.* α -Synuclein in Lewy bodies. *Nature* **388**, 839–840 (1997).

834 5. Polymeropoulos, M. H. *et al.* Mutation in the alpha-synuclein gene identified in families with
835 Parkinson's disease. *Science* **276**, 2045–2047 (1997).

836 6. Krüger, R. *et al.* Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's
837 disease. *Nat Genet* **18**, 106–108 (1998).

838 7. Singleton, A. B. α -Synuclein Locus Triplication Causes Parkinson's Disease. *Science* (1979)
839 **302**, 841–841 (2003).

840 8. Zarraz, J. J. *et al.* The new mutation, E46K, of α -synuclein causes parkinson and Lewy
841 body dementia. *Ann Neurol* **55**, 164–173 (2004).

842 9. Chartier-Harlin, M.-C. C. *et al.* α -synuclein locus duplication as a cause of familial
843 Parkinson's disease. *The Lancet* **364**, 1167–1169 (2004).

844 10. Fuchs, J. *et al.* Phenotypic variation in a large Swedish pedigree due to SNCA duplication
845 and triplication. *Neurology* **68**, 916–922 (2007).

846 11. Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of alpha-synuclein
847 secondary structure upon binding to synthetic membranes. *J Biol Chem* **273**, 9443–9 (1998).

848 12. Trexler, A. J. & Rhoades, E. α -Synuclein Binds Large Unilamellar Vesicles as an Extended
849 Helix \dagger . *Biochemistry* **48**, 2304–2306 (2009).

850 13. Bodner, C. R., Dobson, C. M. & Bax, A. Multiple Tight Phospholipid-Binding Modes of α -
851 Synuclein Revealed by Solution NMR Spectroscopy. *J Mol Biol* **390**, 775–790 (2009).

852 14. Middleton, E. R. & Rhoades, E. Effects of curvature and composition on α -synuclein binding
853 to lipid vesicles. *Biophys J* **99**, 2279–88 (2010).

854 15. Fusco, G. *et al.* Direct observation of the three regions in α -synuclein that determine its
855 membrane-bound behaviour. *Nat Commun* **5**, 3827 (2014).

856 16. Bussell, R. & Eliezer, D. A structural and functional role for 11-mer repeats in alpha-synuclein
857 and other exchangeable lipid binding proteins. *J Mol Biol* **329**, 763–78 (2003).

858 17. Chandra, S., Chen, X., Rizo, J., Jahn, R. & Südhof, T. C. A broken α -helix in folded α -
859 synuclein. *Journal of Biological Chemistry* **278**, 15313–15318 (2003).

860 18. Georgieva, E. R., Ramlall, T. F., Borbat, P. P., Freed, J. H. & Eliezer, D. Membrane-Bound α -
861 Synuclein Forms an Extended Helix: Long-Distance Pulsed ESR Measurements Using
862 Vesicles, Bicelles, and Rodlike Micelles. *J Am Chem Soc* **130**, 12856–12857 (2008).

863 19. Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S. & Langen, R. Structure of membrane-
864 bound alpha-synuclein from site-directed spin labeling and computational refinement.
865 *Proceedings of the National Academy of Sciences* **105**, 19666–19671 (2008).

866 20. Ulmer, T. S., Bax, A., Cole, N. B. & Nussbaum, R. L. Structure and dynamics of micelle-
867 bound human alpha-synuclein. *J Biol Chem* **280**, 9595–9603 (2005).

868 21. Georgieva, E. R., Ramlall, T. F., Borbat, P. P., Freed, J. H. & Eliezer, D. The lipid-binding
869 domain of wild type and mutant alpha-synuclein: compactness and interconversion between
870 the broken and extended helix forms. *J Biol Chem* **285**, 28261–74 (2010).

871 22. Fusco, G. *et al.* Structural basis of synaptic vesicle assembly promoted by α -synuclein. *Nat
872 Commun* **7**, 12563 (2016).

873 23. Eliezer, D., Kutluay, E., Bussell, R. & Browne, G. Conformational properties of alpha-
874 synuclein in its free and lipid-associated states. *J Mol Biol* **307**, 1061–1073 (2001).

875 24. Jensen, P. H. *et al.* α -Synuclein Binds to Tau and Stimulates the Protein Kinase A-catalyzed
876 Tau Phosphorylation of Serine Residues 262 and 356. *Journal of Biological Chemistry* **274**,
877 25481–25489 (1999).

878 25. Giasson, B. I. Initiation and Synergistic Fibrillization of Tau and Alpha-Synuclein. *Science*
879 (1979) **300**, 636–640 (2003).

880 26. Cherny, D., Hoyer, W., Subramaniam, V. & Jovin, T. M. Double-stranded DNA Stimulates the
881 Fibrillation of α -Synuclein in vitro and is Associated with the Mature Fibrils: An Electron
882 Microscopy Study. *J Mol Biol* **344**, 929–938 (2004).

883 27. Fernández, C. O. *et al.* NMR of α -synuclein–polyamine complexes elucidates the mechanism
884 and kinetics of induced aggregation. *EMBO J* **23**, 2039–2046 (2004).

885 28. Lv, G., Ko, M. S., Das, T. & Eliezer, D. Molecular and functional interactions of alpha-
886 synuclein with Rab3a. *Journal of Biological Chemistry* **298**, 102239 (2022).

887 29. Fujiwara, H. *et al.* α -Synuclein is phosphorylated in synucleinopathy lesions. *Nat Cell Biol* **4**,
888 160–164 (2002).

889 30. Anderson, J. P. *et al.* Phosphorylation of Ser-129 Is the Dominant Pathological Modification
890 of α -Synuclein in Familial and Sporadic Lewy Body Disease. *Journal of Biological Chemistry*
891 **281**, 29739–29752 (2006).

892 31. Das, T. *et al.* The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein
893 Regulation of Vesicle Release and Trafficking. *Biomolecules* **12**, 1816 (2022).

894 32. Guardia-Laguarta, C. *et al.* α -Synuclein Is Localized to Mitochondria-Associated ER
895 Membranes. *Journal of Neuroscience* **34**, 249–259 (2014).

896 33. Vicario, M., Cieri, D., Brini, M. & Calì, T. The Close Encounter Between Alpha-Synuclein and
897 Mitochondria. *Front Neurosci* **12**, 388 (2018).

898 34. Pozo Devoto, V. M. & Falzone, T. L. Mitochondrial dynamics in Parkinson's disease: a role
899 for α -synuclein? *Dis Model Mech* **10**, 1075–1087 (2017).

900 35. Ryan, B. J., Hoek, S., Fon, E. A. & Wade-Martins, R. Mitochondrial dysfunction and
901 mitophagy in Parkinson's: from familial to sporadic disease. *Trends Biochem Sci* **40**, 200–
902 210 (2015).

903 36. Rocha, E. M., de Miranda, B. & Sanders, L. H. Alpha-synuclein: Pathology, mitochondrial
904 dysfunction and neuroinflammation in Parkinson's disease. *Neurobiol Dis* **109**, 249–257
905 (2018).

906 37. Canet-Avilés, R. M. *et al.* The Parkinson's disease protein DJ-1 is neuroprotective due to
907 cysteine-sulfinic acid-driven mitochondrial localization. *Proceedings of the National Academy
908 of Sciences* **101**, 9103–9108 (2004).

909 38. Burchell, V. S. *et al.* The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to
910 mediate mitophagy. *Nat Neurosci* **16**, 1257–1265 (2013).

911 39. Funayama, M. *et al.* CHCHD2 mutations in autosomal dominant late-onset Parkinson's
912 disease: a genome-wide linkage and sequencing study. *Lancet Neurol* **14**, 274–282 (2015).

913 40. Lesage, S. *et al.* Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes
914 Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. *The American
915 Journal of Human Genetics* **98**, 500–513 (2016).

916 41. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in
917 Parkinson's disease. *Neuron* **85**, 257–73 (2015).

918 42. Langston, J., Ballard, P., Tetrud, J. & Irwin, I. Chronic Parkinsonism in humans due to a
919 product of meperidine-analog synthesis. *Science* (1979) **219**, 979–980 (1983).

920 43. Protter, D., Lang, C. & Cooper, A. A. α Synuclein and Mitochondrial Dysfunction: A
921 Pathogenic Partnership in Parkinson's Disease? *Parkinsons Dis* **2012**, 1–12 (2012).

922 44. Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson's disease. *J Neurochem* **139**,
923 216–231 (2016).

924 45. Nakamura, K. α-Synuclein and Mitochondria: Partners in Crime? *Neurotherapeutics* **10**, 391–
925 399 (2013).

926 46. Park, J.-S., Davis, R. L. & Sue, C. M. Mitochondrial Dysfunction in Parkinson's Disease: New
927 Mechanistic Insights and Therapeutic Perspectives. *Curr Neurol Neurosci Rep* **18**, 21 (2018).

928 47. Kornmann, B. *et al.* An ER-mitochondria tethering complex revealed by a synthetic biology
929 screen. *Science* **325**, 477–81 (2009).

930 48. Rizzuto, R. *et al.* Close contacts with the endoplasmic reticulum as determinants of
931 mitochondrial Ca²⁺ responses. *Science* (1979) **280**, 1763–1766 (1998).

932 49. Hirabayashi, Y. *et al.* ER-mitochondria tethering by PDZD8 regulates Ca²⁺ dynamics in
933 mammalian neurons. *Science* **358**, 623–630 (2017).

934 50. Griffiths, E. J. & Rutter, G. A. Mitochondrial calcium as a key regulator of mitochondrial ATP
935 production in mammalian cells. *Biochim Biophys Acta Bioenerg* **1787**, 1324–1333 (2009).

936 51. Ashrafi, G., de Juan-Sanz, J., Farrell, R. J. & Ryan, T. A. Molecular Tuning of the Axonal
937 Mitochondrial Ca²⁺ Uniporter Ensures Metabolic Flexibility of Neurotransmission. *Neuron*
938 **105**, 678–687.e5 (2020).

939 52. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca²⁺ close to IP₃-
940 sensitive channels that are sensed by neighboring mitochondria. *Science* (1979) **262**, 744–
941 747 (1993).

942 53. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T.-P. MAM: more than just a housekeeper.
943 *Trends Cell Biol* **19**, 81–88 (2009).

944 54. Patron, M., Granatiero, V., Espino, J., Rizzuto, R. & de Stefani, D. MICU3 is a tissue-specific
945 enhancer of mitochondrial calcium uptake. *Cell Death Differ* 1–17 (2018)
946 doi:10.1038/s41418-018-0113-8.

947 55. Rizzuto, R., de Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and
948 regulators of calcium signalling. *Nat Rev Mol Cell Biol* **13**, 566–78 (2012).

949 56. Dikiy, I. *et al.* Semisynthetic and in Vitro Phosphorylation of Alpha-Synuclein at Y39
950 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by
951 PD Mutations. *ACS Chem Biol* **11**, 2428–2437 (2016).

952 57. Snead, D. & Eliezer, D. Alpha-synuclein function and dysfunction on cellular membranes.
953 *Exp Neurobiol* **23**, 292–313 (2014).

954 58. Man, W. K. *et al.* The docking of synaptic vesicles on the presynaptic membrane induced by
955 α-synuclein is modulated by lipid composition. *Nat Commun* **12**, 927 (2021).

956 59. Gomez-Suaga, P. *et al.* The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates
957 Autophagy. *Curr Biol* **27**, 371–385 (2017).

958 60. Chakrabarti, R. *et al.* INF2-mediated actin polymerization at the ER stimulates mitochondrial
959 calcium uptake, inner membrane constriction, and division. *Journal of Cell Biology* **217**, 251–
960 268 (2018).

961 61. Bussell, R. & Eliezer, D. Effects of Parkinson's disease-linked mutations on the structure of
962 lipid-associated alpha-synuclein. *Biochemistry* **43**, 4810–8 (2004).

963 62. Tremblay, R. G. *et al.* Differentiation of mouse Neuro 2A cells into dopamine neurons. *J*
964 *Neurosci Methods* **186**, 60–7 (2010).

965 63. Chattopadhyay, M. *et al.* Mitochondrially targeted cytochrome P450 2D6 is involved in
966 monomethylamine-induced neuronal damage in mouse models. *J Biol Chem* **294**, 10336–
967 10348 (2019).

968 64. Scorrano, L. *et al.* Coming together to define membrane contact sites. *Nat Commun* **10**, 1287
969 (2019).

970 65. Guo, Y. *et al.* Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale
971 Resolution on Millisecond Timescales. *Cell* **175**, 1430-1442.e17 (2018).

972 66. Matheoud, D. *et al.* Parkinson's Disease-Related Proteins PINK1 and Parkin Repress
973 Mitochondrial Antigen Presentation. *Cell* **166**, 314–327 (2016).

974 67. Fayyad, M. *et al.* Investigating the presence of doubly phosphorylated α -synuclein at tyrosine
975 125 and serine 129 in idiopathic Lewy body diseases. *Brain Pathology* **30**, 831–843 (2020).

976 68. Mahul-Mellier, A.-L. *et al.* c-Abl phosphorylates α -synuclein and regulates its degradation:
977 implication for α -synuclein clearance and contribution to the pathogenesis of Parkinson's
978 disease. *Hum Mol Genet* **23**, 2858–79 (2014).

979 69. Giasson, B. I. *et al.* Oxidative damage linked to neurodegeneration by selective alpha-
980 synuclein nitration in synucleinopathy lesions. *Science* **290**, 985–9 (2000).

981 70. Sano, K. *et al.* Tyrosine 136 phosphorylation of α -synuclein aggregates in the Lewy body
982 dementia brain: involvement of serine 129 phosphorylation by casein kinase 2. *Acta
983 Neuropathol Commun* **9**, 182 (2021).

984 71. Gerlach, M., Riederer, P., Przuntek, H. & Youdim, M. B. MPTP mechanisms of neurotoxicity
985 and their implications for Parkinson's disease. *Eur J Pharmacol* **208**, 273–86 (1991).

986 72. Porras, G., Li, Q. & Bezard, E. Modeling Parkinson's Disease in Primates: The MPTP Model.
987 *Cold Spring Harb Perspect Med* **2**, a009308–a009308 (2012).

988 73. Przedborski, S. & Vila, M. MPTP: a review of its mechanisms of neurotoxicity. *Clin Neurosci
989 Res* **1**, 407–418 (2001).

990 74. Wang, X. *et al.* Oxidative stress and mitochondrial dysfunction in Alzheimer's disease.
991 *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease* **1842**, 1240–1247 (2014).

992 75. Kamp, F. *et al.* Inhibition of mitochondrial fusion by α -synuclein is rescued by PINK1, Parkin
993 and DJ-1. *EMBO Journal* **29**, 3571–3589 (2010).

994 76. Nakamura, K. *et al.* Direct Membrane Association Drives Mitochondrial Fission by the
995 Parkinson Disease-associated Protein α -Synuclein. *Journal of Biological Chemistry* **286**,
996 20710–20726 (2011).

997 77. Li, W.-W. *et al.* Localization of α -synuclein to mitochondria within midbrain of mice.
998 *Neuroreport* **18**, 1543–1546 (2007).

999 78. Nakamura, K. *et al.* Optical Reporters for the Conformation of α -Synuclein Reveal a Specific
1000 Interaction with Mitochondria. *Journal of Neuroscience* **28**, 12305–12317 (2008).

1001 79. Murgia, M. & Rizzuto, R. Molecular diversity and pleiotropic role of the mitochondrial calcium
1002 uniporter. *Cell Calcium* **58**, 11–17 (2015).

1003 80. Prudent, J. & McBride, H. M. The mitochondria–endoplasmic reticulum contact sites: a
1004 signalling platform for cell death. *Curr Opin Cell Biol* **47**, 52–63 (2017).

1005 81. Hempel, N. & Trebak, M. Crosstalk between calcium and reactive oxygen species signaling
1006 in cancer. *Cell Calcium* **63**, 70–96 (2017).

1007 82. Paupe, V. & Prudent, J. New insights into the role of mitochondrial calcium homeostasis in
1008 cell migration. *Biochem Biophys Res Commun* **500**, 75–86 (2018).

1009 83. Hettiarachchi, N. T. *et al.* α -Synuclein modulation of Ca^{2+} signaling in human
1010 neuroblastoma (SH-SY5Y) cells. *J Neurochem* **111**, 1192–1201 (2009).

1011 84. Kowalski, A. *et al.* Monomeric α -Synuclein activates the Plasma Membrane Calcium Pump.
1012 *bioRxiv* (2022) doi:10.1101/2022.02.21.481193.

1013 85. Lieberman, O. J. *et al.* α -Synuclein-Dependent Calcium Entry Underlies Differential
1014 Sensitivity of Cultured SN and VTA Dopaminergic Neurons to a Parkinsonian Neurotoxin.
1015 *eNeuro* **4**, (2017).

1016 86. Mosharov, E. v *et al.* Interplay between cytosolic dopamine, calcium, and alpha-synuclein
1017 causes selective death of substantia nigra neurons. *Neuron* **62**, 218–29 (2009).

1018 87. Hayashi, T. & Fujimoto, M. Detergent-Resistant Microdomains Determine the Localization of
1019 σ -1 Receptors to the Endoplasmic Reticulum-Mitochondria Junction. *Mol Pharmacol* **77**,
1020 517–528 (2010).

1021 88. de vos, K. J. *et al.* VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium
1022 homeostasis. *Hum Mol Genet* **21**, 1299–1311 (2012).

1023 89. Dikiy, I. & Eliezer, D. Folding and misfolding of alpha-synuclein on membranes. *Biochim
1024 Biophys Acta Biomembr* **1818**, 1013–1018 (2012).

1025 90. Calì, T., Ottolini, D., Negro, A. & Brini, M. α -Synuclein Controls Mitochondrial Calcium
1026 Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interactions. *Journal of
1027 Biological Chemistry* **287**, 17914–17929 (2012).

1028 91. di Maio, R. *et al.* α -Synuclein binds to TOM20 and inhibits mitochondrial protein import in
1029 Parkinson's disease. *Sci Transl Med* **8**, 342ra78-342ra78 (2016).

1030 92. Paillusson, S. *et al.* α -Synuclein binds to the ER-mitochondria tethering protein VAPB to
1031 disrupt Ca^{2+} homeostasis and mitochondrial ATP production. *Acta Neuropathol* **134**, 129–
1032 149 (2017).

1033 93. Erustes, A. G. *et al.* Overexpression of α -synuclein inhibits mitochondrial Ca^{2+} trafficking
1034 between the endoplasmic reticulum and mitochondria through MAMs by altering the GRP75-
1035 IP3R interaction. *J Neurosci Res* **99**, 2932–2947 (2021).

1036 94. Calì, T. *et al.* splitGFP Technology Reveals Dose-Dependent ER-Mitochondria Interface
1037 Modulation by α -Synuclein A53T and A30P Mutants. *Cells* **8**, (2019).

1038 95. Ellis, C. E. *et al.* Mitochondrial Lipid Abnormality and Electron Transport Chain Impairment in
1039 Mice Lacking α -Synuclein. *Mol Cell Biol* **25**, 10190–10201 (2005).

1040 96. Martin, L. J. *et al.* Parkinson's disease alpha-synuclein transgenic mice develop neuronal
1041 mitochondrial degeneration and cell death. *J Neurosci* **26**, 41–50 (2006).

1042 97. Ludtmann, M. H. R. *et al.* Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain
1043 ATP Synthase. *J Neurosci* **36**, 10510–10521 (2016).

1044 98. Pathak, D. *et al.* Loss of α -Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent
1045 Neurons. *eNeuro* **4**, (2017).

1046 99. Rostovtseva, T. K. *et al.* α -Synuclein Shows High Affinity Interaction with Voltage-dependent
1047 Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in
1048 Parkinson Disease. *J Biol Chem* **290**, 18467–77 (2015).

1049 100. Rosencrans, W. M., Aguilella, V. M., Rostovtseva, T. K. & Bezrukov, S. M. α -Synuclein
1050 emerges as a potent regulator of VDAC-facilitated calcium transport. *Cell Calcium* **95**,
1051 102355 (2021).

1052 101. Chandra, S., Chen, X., Rizo, J., Jahn, R. & Südhof, T. C. A Broken α -Helix in Folded α -
1053 Synuclein. *Journal of Biological Chemistry* **278**, 15313–15318 (2003).

1054 102. Wu, Y. *et al.* Contacts between the endoplasmic reticulum and other membranes in neurons.
1055 *Proceedings of the National Academy of Sciences* **114**, E4859–E4867 (2017).

1056 103. Choi, S. J. *et al.* Changes in Neuronal Dopamine Homeostasis following 1-Methyl-4-
1057 phenylpyridinium (MPP $^{+}$) Exposure. *Journal of Biological Chemistry* **290**, 6799–6809
1058 (2015).

1059 104. Kane, M. S. *et al.* Current mechanistic insights into the CCCP-induced cell survival response.
1060 *Biochem Pharmacol* **148**, 100–110 (2018).

1061 105. Inglis, K. J. *et al.* Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in
1062 central nervous system. *J Biol Chem* **284**, 2598–2602 (2009).

1063 106. Mbefo, M. K. *et al.* Phosphorylation of synucleins by members of the Polo-like kinase family.
1064 *J Biol Chem* **285**, 2807–22 (2010).

1065 107. Waxman, E. A. & Giasson, B. I. Characterization of kinases involved in the phosphorylation
1066 of aggregated α -synuclein. *J Neurosci Res* **89**, 231–47 (2011).

1067 108. Elfarrash, S. *et al.* Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of
1068 physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. *PLoS One*
1069 **16**, e0252635 (2021).

1070 109. Lee, S. *et al.* Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and
1071 Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development. *Dev Cell* **37**, 174–189
1072 (2016).

1073 110. Matsumoto, T. *et al.* Polo-like kinases mediate cell survival in mitochondrial dysfunction. *Proc
1074 Natl Acad Sci U S A* **106**, 14542–6 (2009).

1075 111. Li, J. *et al.* Polo-like kinase 2 activates an antioxidant pathway to promote the survival of cells
1076 with mitochondrial dysfunction. *Free Radic Biol Med* **73**, 270–7 (2014).

1077 112. Sumi-Akamaru, H. *et al.* High expression of α -synuclein in damaged mitochondria with
1078 PLA2G6 dysfunction. *Acta Neuropathol Commun* **4**, 27 (2016).

1079 113. Yin, G. *et al.* α -Synuclein interacts with the switch region of Rab8a in a Ser129
1080 phosphorylation-dependent manner. *Neurobiol Dis* **70**, 149–161 (2014).

1081 114. McFarland, M. A., Ellis, C. E., Markey, S. P. & Nussbaum, R. L. Proteomics analysis
1082 identifies phosphorylation-dependent α -synuclein protein interactions. *Molecular and Cellular
1083 Proteomics* **7**, 2123–2137 (2008).

1084 115. Oueslati, A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies:
1085 What Have We Learned in the Last Decade? *J Parkinsons Dis* **6**, 39–51 (2016).

1086 116. Burmann, B. M. *et al.* Regulation of α -synuclein by chaperones in mammalian cells. *Nature*
1087 **577**, 127–132 (2020).

1088 117. Choi, M. L. *et al.* Pathological structural conversion of α -synuclein at the mitochondria
1089 induces neuronal toxicity. *Nat Neurosci* **25**, 1134–1148 (2022).

1090 118. Betzer, C. *et al.* Alpha-synuclein aggregates activate calcium pump SERCA leading to
1091 calcium dysregulation. *EMBO Rep* **19**, (2018).

1092 119. Choubey, V. *et al.* Mutant A53T alpha-synuclein induces neuronal death by increasing
1093 mitochondrial autophagy. *J Biol Chem* **286**, 10814–24 (2011).

1094 120. Wang, X. *et al.* Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria
1095 and affect cellular respiration. *Acta Neuropathol Commun* **7**, 41 (2019).

1096 121. Burtscher, J., Syed, M. M. K., Keller, M. A., Lashuel, H. A. & Millet, G. P. Fatal attraction -
1097 The role of hypoxia when alpha-synuclein gets intimate with mitochondria. *Neurobiol Aging*
1098 **107**, 128–141 (2021).

1099 122. Gosse, J. J. a, Wagenknecht-Wiesner, A., David Holowka, Baird, B. & Holowka, D.
1100 Transmembrane Sequences Are Determinants of Immunoreceptor Signaling. *The Journal of
1101 Immunology* **175**, 2123–31 (2005).

1102 123. K. Korzeniowski, M., Baird, B. & Holowka, D. STIM1 activation is regulated by a 14 amino
1103 acid sequence adjacent to the CRAC activation domain. *AIMS Biophys* **3**, 99–118 (2016).

1104 124. Kim, J. H. *et al.* High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-
1105 1 in Human Cell Lines, Zebrafish and Mice. *PLoS One* **6**, e18556 (2011).

1106 125. Posner, R. G. *et al.* Aggregation of IgE-receptor complexes on rat basophilic leukemia cells
1107 does not change the intrinsic affinity but can alter the kinetics of the ligand-IgE interaction.
1108 *Biochemistry* **31**, 5350–5356 (1992).

1109

1110 **FIGURE LEGENDS**

1111 Figure 1. Structural features and variants of a-syn. **a)** Schematic representation of the a-syn primary
1112 sequence delineating the amphipathic membrane binding domain (purple) and the acidic C-terminal
1113 tail (blue); locations are indicated for helix-1 and helix-2 of the broken-helix state and for sites of
1114 mutations examined in the manuscript. **b)** Wt a-syn in the broken helix conformation (RCSB protein
1115 data bank entry 1XQ8) with locations shown for sidechains Ala 30, Val 70, and Ser 129, which were
1116 mutated in this study.

1117

1118 Figure 2. Wt-syn enhances Ag-stimulated mitochondrial Ca²⁺ uptake. RBL cells were co-transfected
1119 with plasmids for mito-GCaMP6f and one of pcDNA (empty vector control), VAPB (known
1120 ER/mitochondria tether), Wt-syn, or indicated mutant of a-syn. Cells were imaged by confocal
1121 microscopy, and mitochondrial Ca²⁺ uptake was stimulated by Ag (DNP-BSA, 1 ng/ml). Mito-
1122 GCaMP6f fluorescence was monitored in confocal movies before and after stimulation, and after
1123 indicated addition of high-dose ionomycin 300-400 sec later to achieve the maximal fluorescence
1124 value. **a)** Left axis: RBL cells exhibit a bimodal distribution of Ag-stimulated responses, and fraction
1125 of cells with more than 20% mitochondrial Ca²⁺ uptake (normalized as described in Materials and
1126 Methods) is represented by height of blue box; error bars are \pm SEM. Statistical significance is
1127 based on this fraction; *** represents P-values <0.001 , ** represents P-values <0.01 . Right axis:
1128 Mitochondrial Ca²⁺ uptake for all individual cells evaluated as represented by data points; maroon
1129 box plot shows 25th-75th percentile of the data; midline shows median, and X shows average. Data
1130 sets are the same for right and left axes: Each sample comprising n~80 co-transfected cells are
1131 from three independent experiments. **b, c)** Representative traces of mito-GCaMP6f fluorescence
1132 integrated over 5-7 cells within confocal fields. Arrows indicate addition of Ag (stimulant) and high-
1133 dose ionomycin for cells expressing Wt-syn (b) or empty pcDNA plasmid (control) (c). These traces
1134 were extracted from movies similar to those available in Supplemental Materials (Movie S1 for (b)
1135 and Movie S2 for (c)).

1136

1137 Figure 3. ER is the primary source of Ca²⁺ for stimulated mitochondrial uptake. HEK293 cells (**a**) or
1138 dopaminergic N2a cells (**b**) were co-transfected with plasmids for mito-GCaMP6f and either mRFP
1139 (control) or Wt-syn (via multicistronic construct syn-p2a-mRFP). Mitochondrial Ca²⁺ uptake was
1140 stimulated by low-dose ionomycin; for indicated samples, thapsigargin was added to deplete ER
1141 Ca²⁺ stores prior to addition of stimulant. Mito-GCaMP6f fluorescence was monitored in confocal
1142 movies before and after stimulation, and after subsequent addition of high-dose ionomycin, several

1143 hundred seconds later, to achieve maximal fluorescence. Each sample comprising n~80 (HEK293)
1144 or n~25 (Dopaminergic N2a) co-transfected cells are from three independent experiments. Data
1145 points represent stimulated mitochondrial Ca^{2+} uptake (normalized) for each cell under conditions
1146 specified for each sample in Materials and Methods. Box plot shows 25th-75th percentile of the
1147 data, midline shows median, and X shows average; *** represents P-values <0.001, * represents P-
1148 values <0.05. Representative traces of mito-GCaMP6f fluorescence corresponding to each of the
1149 samples in (a) and (b) are provided in Supplemental Figures S1 and S2, respectively.

1150

1151 Figure 4. Wt-syn increases contacts between ER and mitochondria. N2a cells transfected with
1152 plasmids for pcDNA (control) (a) or Wt-syn (b), together with fluorescent constructs for both STIM1
1153 (shown as green; ER membrane) and TOMM20 (shown as red; mitochondrial outer membrane)
1154 were washed and fixed prior to immunostaining Wt-syn (magenta) for visualization at super
1155 resolution with structured illumination microscopy (SIM). Representative images are shown; scale
1156 bar = 5 μm . Insets in ER/mitochondria-merged images are higher magnification (scale bar = 1 μm):
1157 Arrows point to regions with clearly contacting ER/mitochondrial membranes; stars label proximal
1158 organelle membranes without strong contacts. c) Averaged Pearson's correlation coefficients
1159 (PCC) for mitochondrial membranes overlapping ER membranes were calculated for Wt-syn and
1160 control samples as represented in box plot (n~35 cells). Box shows 25th-75th percentile of the data,
1161 midline shows median, and X shows average.

1162

1163 Figure 5. Wt-syn disrupts mitochondrial recovery from stress caused by toxins as measured by
1164 stimulated Ca^{2+} uptake. RBL cells (a, c) were co-transfected with plasmids for mito-GCaMP6f and
1165 one of empty pcDNA plasmid (control), Wt-syn, 1-102-syn (C-terminal truncation), or S129A-syn
1166 (eliminated phosphorylation site in C-terminus). N2a cells (b) were co-transfected with plasmids for
1167 mito-GCaMP6f and either mRFP (control) or Wt-syn + mRFP (Syn-p2a-mRFP). a) RBL cell
1168 samples were treated (or not, as indicated) with CCCP, then washed and incubated in fresh media
1169 several hours, prior to confocal imaging of mitochondrial Ca^{2+} uptake stimulated by Ag. Left axis: as
1170 for Figure 2, cells with more than 20% mitochondrial Ca^{2+} uptake are represented by height of blue
1171 bar; statistical significance is based on this fraction; error bars are SEM. Right axis: mitochondrial
1172 Ca^{2+} uptake for all individual cells (data points); maroon box shows 25th-75th percentile of the data;
1173 midline shows median, and X shows average. Data sets are same for left and right axes (n=70
1174 cells). b) N2a cell samples were treated (or not, as indicated) with CCCP, then washed and
1175 incubated in fresh media for several hours, prior to confocal imaging of mitochondrial Ca^{2+} uptake
1176 stimulated by low-dose ionomycin. Normalized response for each cell represented by individual

1177 points (n=88 cells); box shows 25th-75th percentile of the data, midline shows median, and X
1178 shows average. **c**) RBL cell samples were treated (or not, as indicated) with MPP+, then washed
1179 and incubated in fresh media for several hours, prior to confocal imaging of mitochondrial Ca²⁺
1180 uptake stimulated by Ag. Left and right axes are the same as described for a (n=100 cells). Details
1181 of conditions for all cell samples (a, b, c) are specified in Materials & Methods; data sets come from
1182 three independent experiments in each case. Statistical significance: *** represents P-values
1183 <0.001, ** represents P-values <0.01, * represents P-values <0.05, NS represents not significant.

1184

1185 Figure 6. Phosphorylation of Ser129 in Wt-syn increases after toxin treatment and recovery. RBL
1186 cells (a, b, c, e) and N2a cells (d), transfected with plasmid for Wt-syn, were treated, or not, with
1187 CCCP (a, b, c, d) or MPP+ (e), then washed and incubated in fresh media several hours (recovery),
1188 prior to immunostaining with anti-pSer129-syn and confocal imaging. **a, b**) Representative images
1189 of RBL cells not treated (control) (a) or treated with CCCP (b) prior to recovery incubation, showing
1190 relative intensities of Wt-syn (red; mRFP from p2a vector) and phosphorylated Wt-syn (green; anti-
1191 pSer129-syn immunostain). **c**) RBL cells ± CCCP, quantification of images (n=82 cells for each
1192 sample from three independent experiments); pSer129 intensity was normalized by Wt-syn intensity
1193 as described in Materials & Methods. **d**) N2a cells ± CCCP, quantification of images similar to a and
1194 b as described for c (n=100 cells for each sample from three independent experiments). **e**) RBL
1195 cells ± MPP+, quantification of images similar to (a) and (b) as described for (c) (n=86 cells for each
1196 sample from two independent experiments). Box plots in (c – e) show 25th-75th percentile of the
1197 data; midline shows median, and X shows average. Statistical significance: *** represents P-values
1198 <0.001.

1199

1200 Figure 7. Aggregation of Wt-syn but not S129A-syn increases after toxin treatment and recovery.
1201 RBL cells (a, b, c, d, e, f, i, j) and N2a cells (g, h), transfected with plasmid for Wt-syn or S129A-
1202 syn, were treated (or not, as indicated) with CCCP (a, b, c, d, e, f, g, h) or MPP+ (i, j), then washed
1203 and incubated in fresh media for several hours (recovery), prior to immunostaining with antibodies
1204 specific for Wt-syn (anti-wt-syn) and aggregated Wt-syn (anti-syn-agg) and confocal imaging. **a, b**)
1205 Representative images of RBL cells expressing Wt-syn and not treated (control) (a) or treated with
1206 CCCP (b) prior to recovery incubation, showing relative intensities of Wt-syn (red) and aggregated
1207 Wt-syn (green). **c**) Multiple images of RBL cells expressing Wt-syn ± CCCP similar to (a) and (b)
1208 are quantified (n=85 cells for each sample from three independent experiments); aggregated Wt-
1209 syn intensity is normalized by Wt-syn intensity as described in Materials & Methods. **d, e**)
1210 Representative images of RBL cells expressing S129A-syn and not treated (control) (d) or treated

1211 with CCCP (e) prior to recovery incubation, showing relative intensities of S129A-syn (red) and
1212 aggregated S129A-syn (green). **f**) Multiple images similar to (d) and (e) of RBL cells expressing
1213 S129A-syn \pm CCCP (n=88 cells for each sample from three independent experiments) are
1214 quantified; aggregated-Wt-syn intensity was normalized by Wt-syn intensity as for (c). **g**) N2a cells
1215 expressing Wt-syn \pm CCCP; quantification of multiple images similar to (a) and (b) (n=78 cells for
1216 each sample from three independent experiments) as described for (c). **h**) N2a cells expressing
1217 S129A-syn \pm CCCP; quantification of multiple images similar to (d) and (e) (n=77 cells for each
1218 sample from three independent experiments) as described for f. **i**) RBL cells expressing Wt-syn \pm
1219 MPP+; quantification of images similar to (a) and (b) (n=86 cells for each sample from two
1220 independent experiments) as described for (c). **j**) RBL cells expressing S129A-syn \pm MPP+;
1221 quantification of images similar to (d) and (e) (n=79 cells for each sample from two independent
1222 experiments) as described for (f). Box plots in (c), (f), and (g – j) show 25th-75th percentile of the
1223 data; midline shows median. Statistical significance: *** represents P-values <0.001; NS represents
1224 not significant.

1225

1226 **SUPPLEMENTAL FIGURE LEGENDS**

1227

1228 Figure S1. Wt-syn enhances mitochondrial Ca²⁺ uptake from ER in HEK293 cell as stimulated by
1229 ionomycin or ATP. Comparative stimulation data and representative traces for experiments shown
1230 in Figure 3a of main text. HEK293 cells were co-transfected with plasmids for mito-GCaMP6f and
1231 mRFP (control) or Wt-syn (via multicistronic construct Syn-p2a-mRFP). Mitochondrial Ca²⁺ uptake
1232 was stimulated by low-dose ionomycin (0.38 μ M, a, c) or ATP (100 μ M, b, d). Mito-GCaMP6f
1233 fluorescence was monitored in confocal movies before and after stimulation, and after indicated
1234 addition of high-dose ionomycin (5 μ M, 300-400 sec later) to achieve the maximal fluorescence
1235 value. **a, b**) Averaged mitochondrial Ca²⁺ uptake stimulated by ionomycin (a) or ATP (b). Each
1236 sample comprising n~80 co-transfected cells are from three independent experiments. The box
1237 shows 25th-75th percentile of the data, midline shows median, and X shows average; ***
1238 represents P-values <0.001. **c, d, e**) Representative traces of mito-GCaMP6f fluorescence
1239 integrated over 5-7 cells within confocal fields. Arrows indicate addition of thapsigargin (0.67 mM)
1240 (e), low-dose ionomycin (c, e) or ATP (d) and high-dose ionomycin (c, d, e) for control cells and
1241 cells expressing Wt-syn.

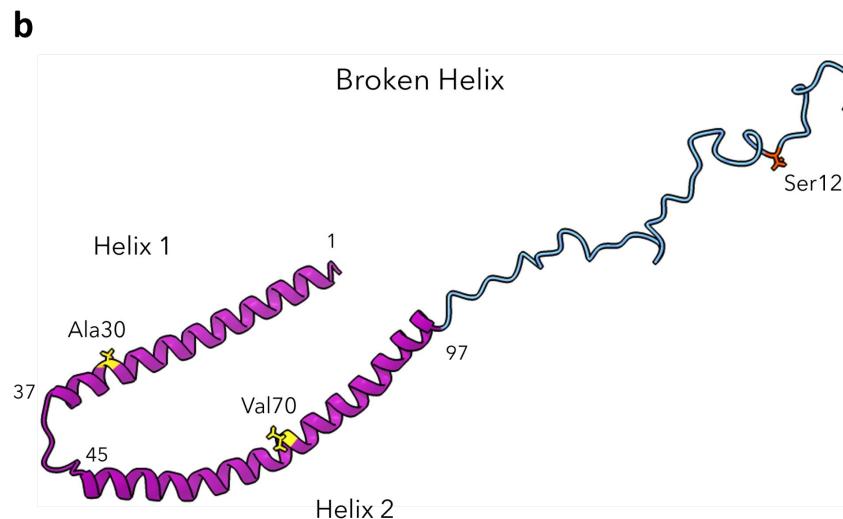
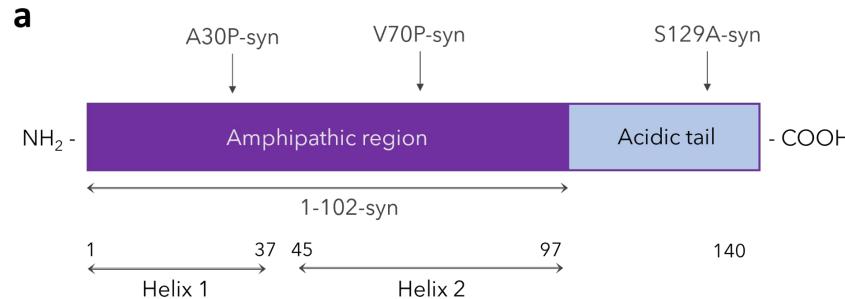
1242

1243 Figure S2. Wt a-syn enhances mitochondrial Ca²⁺ uptake from ER in dopaminergic N2a cells. **a, b,**
1244 **c, d**) Representative traces for experiments shown in Figure 3b of main text. Dopaminergic N2a

1245 cells were co-transfected with mito-GCaMP6f and mRFP (control) (a, c) or Wt-syn (via multicistronic
1246 construct Syn-p2a-mRFP) (b, d). Cells were stimulated by low-dose ionomycin (2.5 μ M) without (a,
1247 b) or with (c, d) pre-treatment with thapsigargin (0.67 mM). Mito-GCaMP6f fluorescence was
1248 monitored in confocal movies before and after thapsigargin and stimulation, and after addition of
1249 high-dose ionomycin (8 μ M, 200-300 sec later) to achieve maximal fluorescence value. Traces
1250 integrated from confocal fields containing 1-3 cells.

1251
1252 Figure S3. Enhancement of stimulated mitochondrial Ca^{2+} uptake by Wt-syn is not due to increased
1253 cytosolic Ca^{2+} uptake. RBL cells were co-transfected with plasmids for either mito-jRCaMP1b
1254 (mitochondrial Ca^{2+} indicator), GCaMP3 (Cytosolic Ca^{2+} indicator) and one of pcDNA (empty vector
1255 control) or Wt-syn. Harvested cells were transferred to Ca^{2+} -free BSS buffer containing 2 μ M EGTA,
1256 then imaged by confocal microscopy. Mitochondrial Ca^{2+} (left axis) and cytosolic Ca^{2+} (right axis)
1257 were monitored in confocal movies before and after stimulation by antigen, and after indicated
1258 addition of high-dose ionomycin (5 μ M, 300-400 sec later) to achieve maximal fluorescence for
1259 each Ca^{2+} indicator. Normalized data points shown are stimulated mitochondrial Ca^{2+} uptake.
1260 Normalized data for both mitochondrial (green, left) and cytosolic (black, right) Ca^{2+} increases are
1261 represented in superimposed box plots. Each sample comprising n~60 cells are from three
1262 independent experiments. The box shows 25th-75th percentile of the data, midline shows median,
1263 and X shows average. Error bars are \pm SEM; ** represents P-values <0.01, NS represents not
1264 significant (P-values > 0.05).

1265
1266 Figure S4. Expression of Wt-syn and 1-102-syn enhances basal level of mitochondrial Ca^{2+} with or
1267 without CCCP treatment. RBL cells were co-transfected with mito-GCaMP6f and one of pcDNA
1268 (control), Wt-syn or 1-102-syn. Samples were treated or not with 10 μ M CCCP for 30 min, then
1269 washed with RBL media and incubated in media for 3 hours (recovery), followed by imaging using
1270 confocal microscopy. Mito-GCaMP6f fluorescence was monitored in confocal movies initially and
1271 after addition of high-dose ionomycin (5 μ M) to achieve maximal fluorescence. Each sample
1272 comprising n~100 co-transfected cells are from three independent experiments. The box plots show
1273 25th-75th percentile of the data; midline shows median, and X shows average; ** represents P-
1274 values <0.01, *** represents P-values <0.001. NS represents not significant (P-values > 0.05).



1275
1276 Movie S1. RBL cells transfected with Wt-syn exhibit high level of mitochondrial Ca^{2+} uptake when
1277 stimulated with sub-optimal concentration of antigen. Movie corresponds to trace shown in Figure
1278 2b of main text; image field includes about 25 cells. RBL cells were co-transfected with plasmids for
1279 mito-GCaMP6f and Wt-syn and imaged by confocal microscopy. Mitochondrial Ca^{2+} uptake was

1280 monitored mito-GCaMP6f fluorescence before (starting at -16 sec) and after stimulation by Ag
1281 (DNP-BSA, 1 ng/ml, starting at 0 sec), followed by addition of high-dose ionomycin (5 μ M, starting at
1282 370 sec).

1283

1284 Movie S2. RBL cells transfected with empty vector exhibit little mitochondrial Ca²⁺ uptake when
1285 stimulated with sub-optimal concentration of antigen. Movie corresponds to trace shown in Figure
1286 2c of main text; image field includes about 25 cells. RBL cells were co-transfected with plasmids for
1287 mito-GCaMP6f and pcDNA (empty vector control) and imaged by confocal microscopy.
1288 Mitochondrial Ca²⁺ uptake was monitored mito-GCaMP6f fluorescence before (starting at -16 sec)
1289 and after stimulation by Ag (DNP-BSA, 1 ng/ml, starting at 0 sec), followed by addition of high-dose
1290 ionomycin (5 μ M, starting at 370 sec).

Figure 1. Structural features and variants of α -syn

Figure 2. Wt-syn enhances Ag-stimulated mitochondrial Ca^{2+} uptake

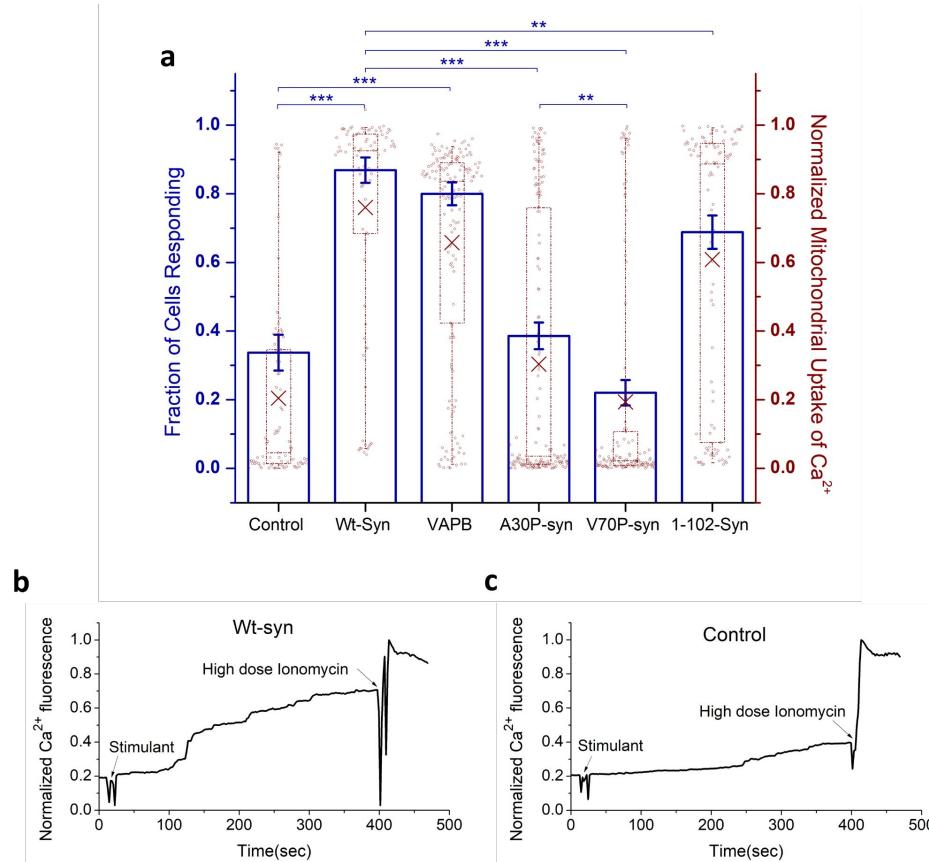


Figure 3. ER is the main source for stimulated mitochondrial uptake of Ca^{2+}

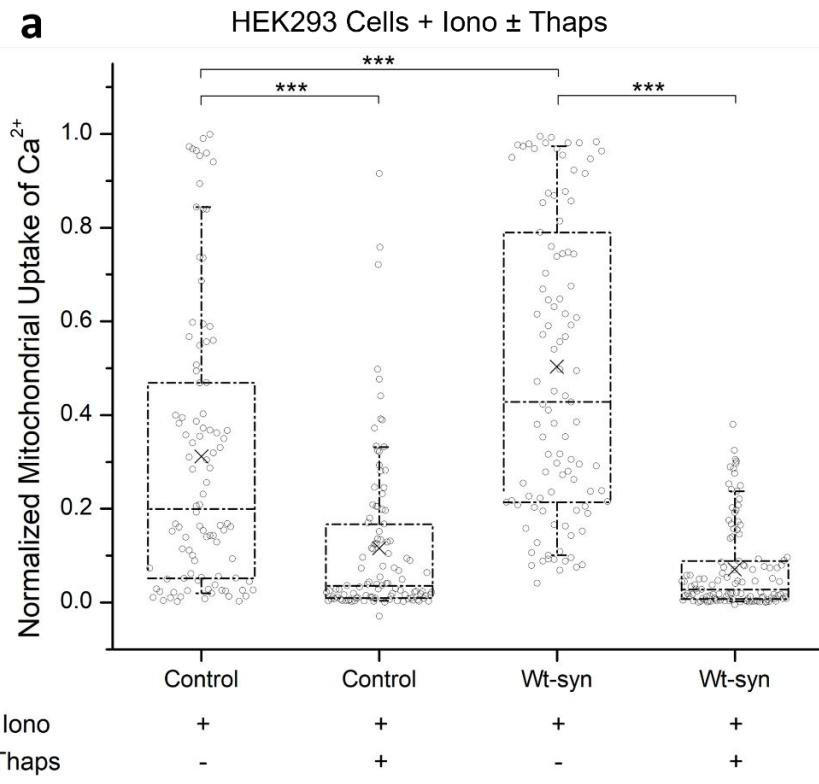


Figure 4. Wt-syn causes increase in mitochondria/ER contacts

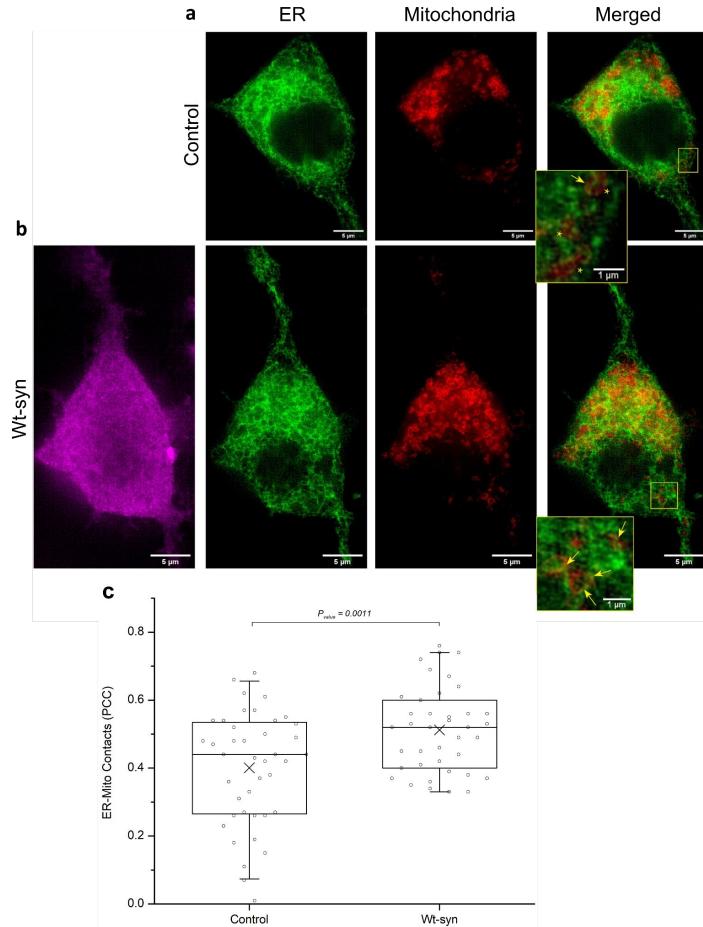


Figure 5. Wt-syn disrupts mitochondria recovery from stress caused by toxins

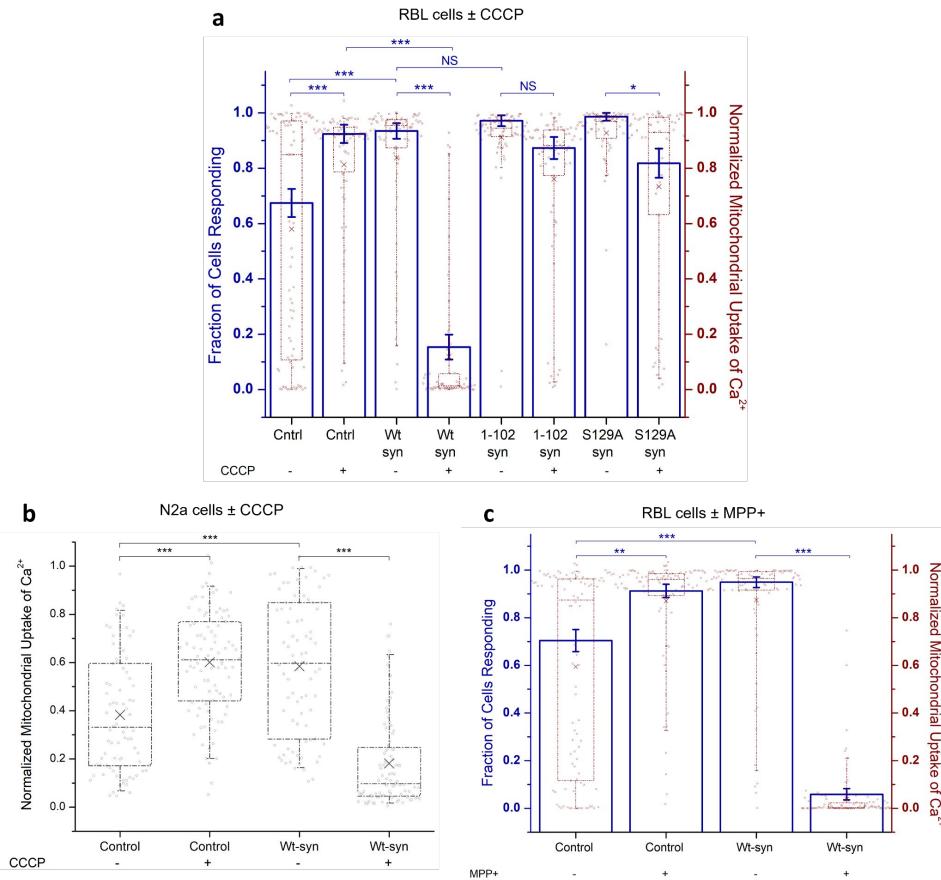


Figure 6. Phosphorylation of Ser129 in Wt-syn increases after toxin treatment

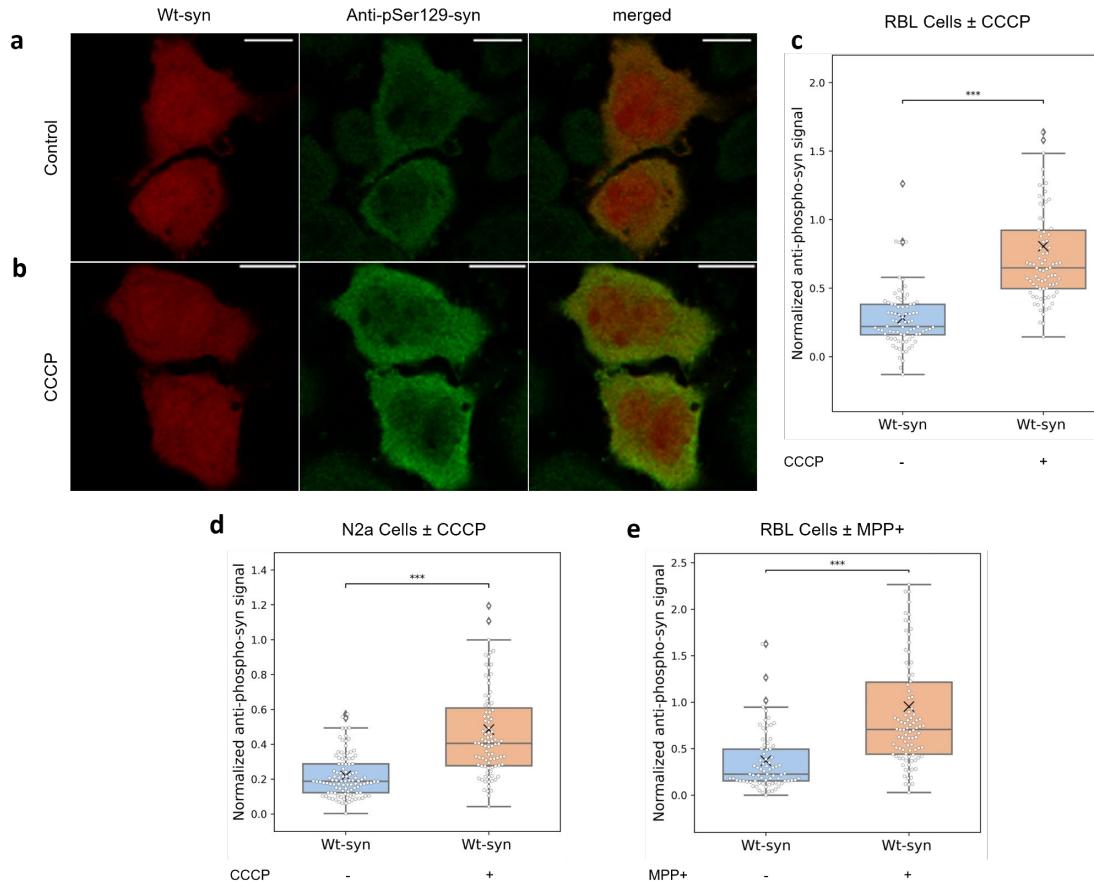
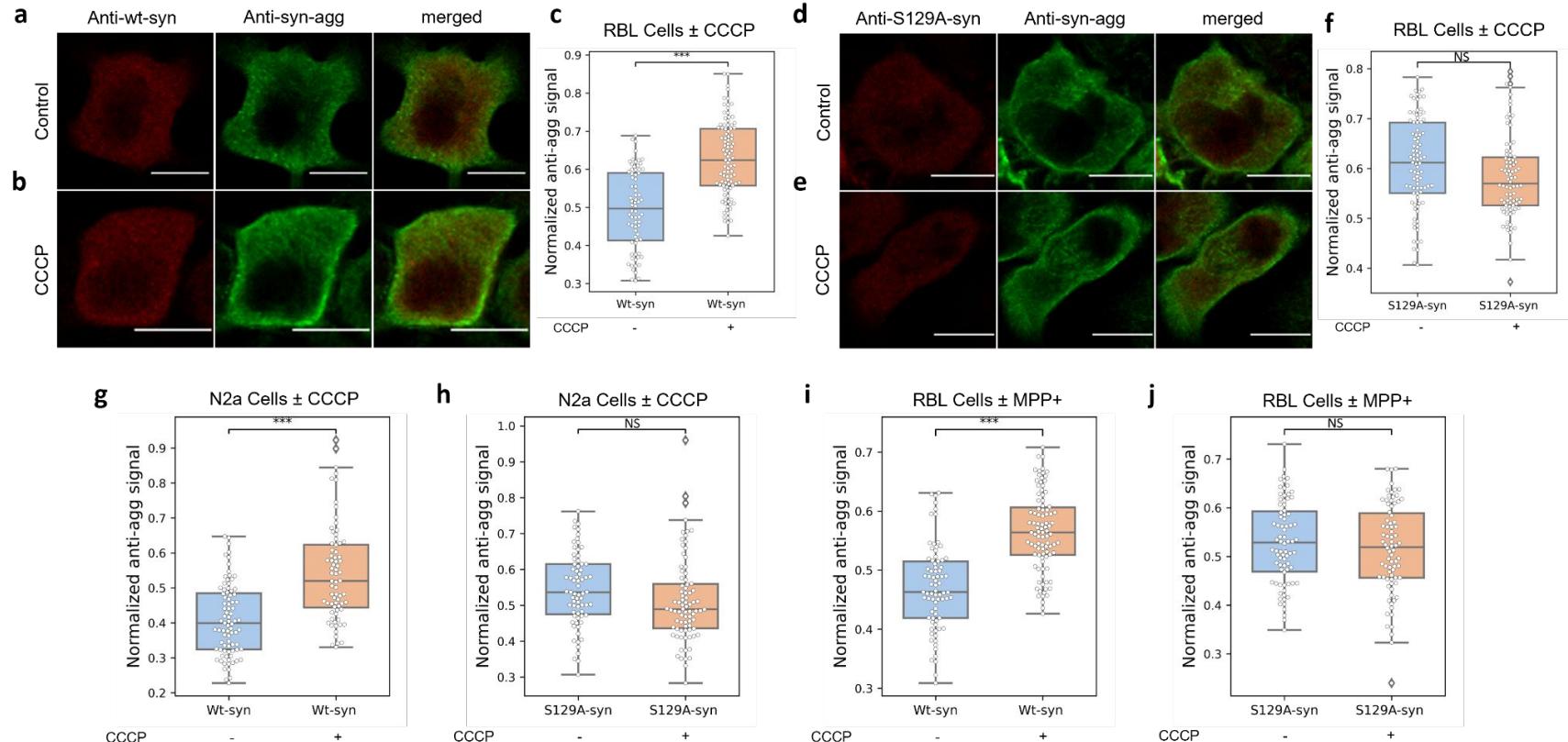



Figure 7. Aggregation of Wt-syn but not S129A-syn increases after toxin treatment

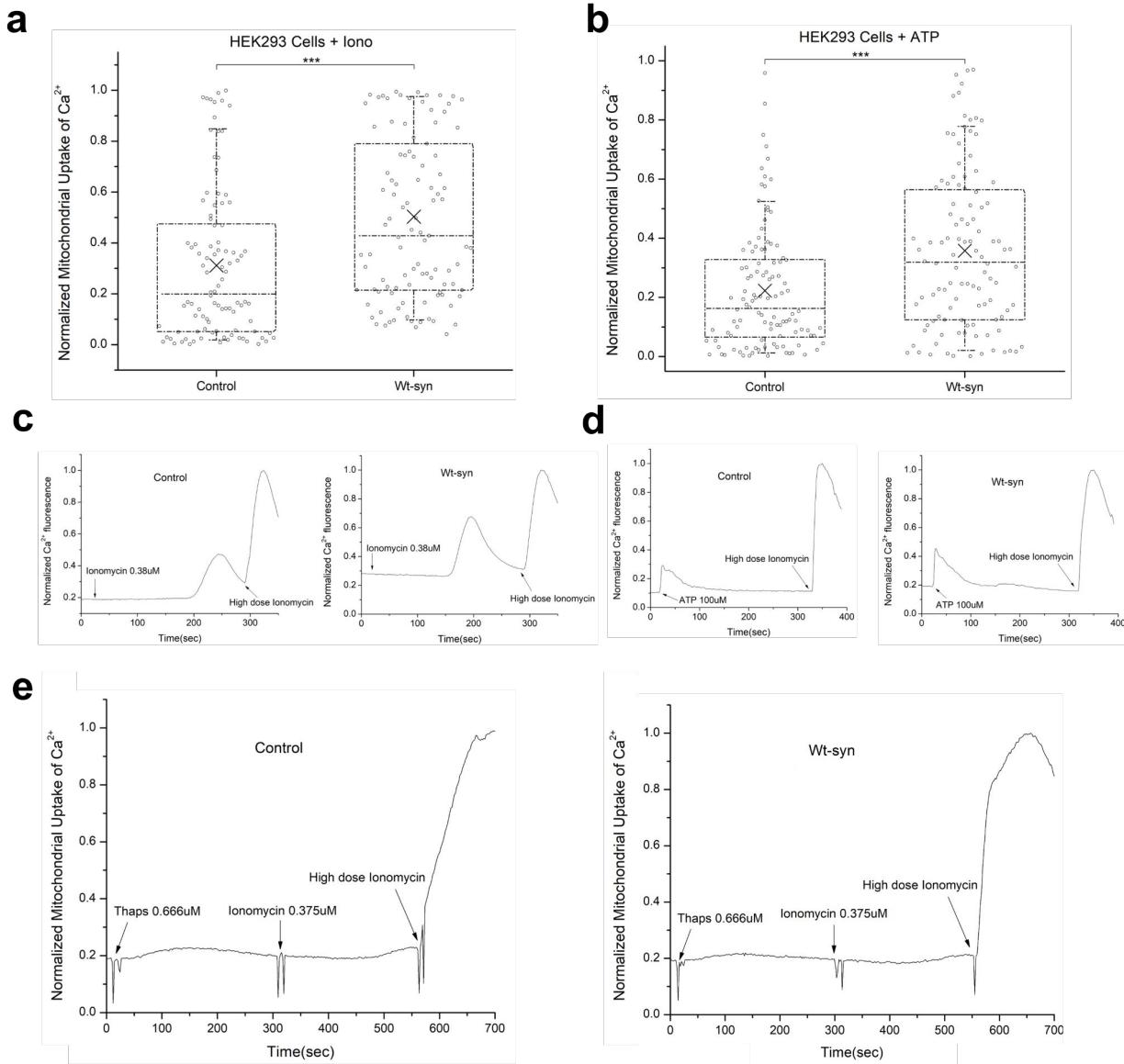


Figure S1. Wt-syn enhances mitochondrial Ca^{2+} uptake from ER in HEK293 cell as stimulated by Ionomycin or ATP.

Figure S2. Wt a-syn enhances mitochondrial Ca^{2+} uptake from ER in dopaminergic N2a cells.

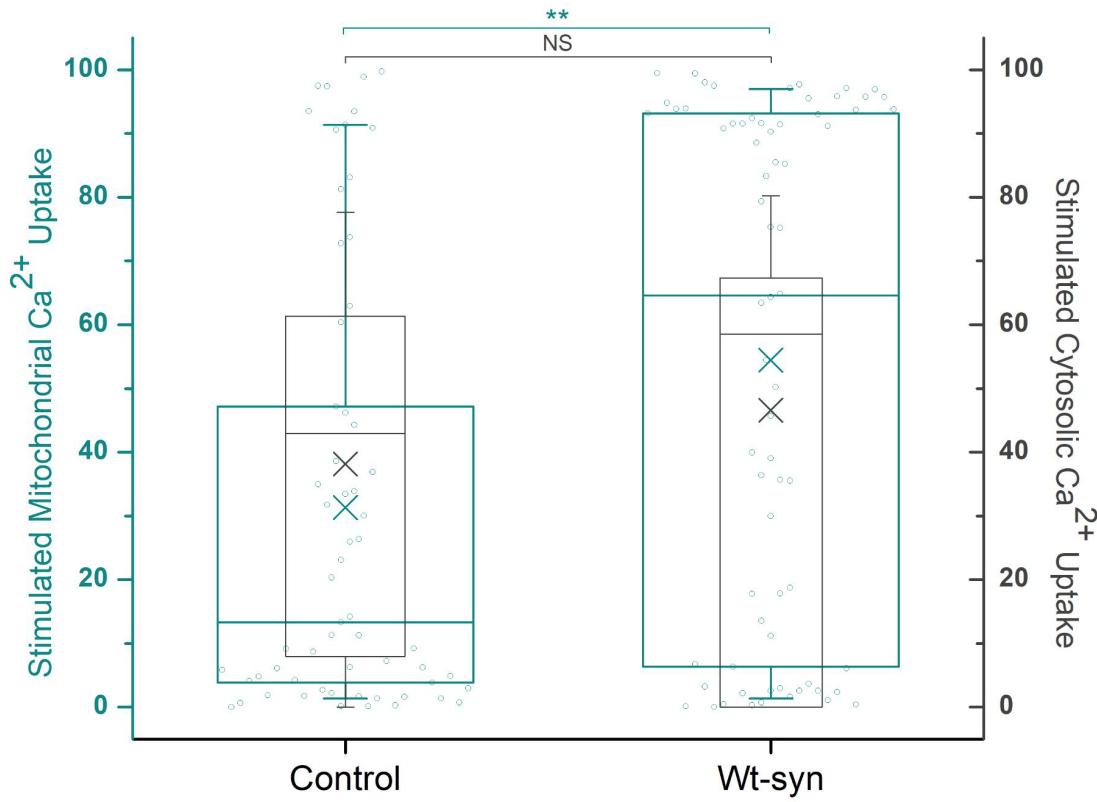


Figure S3. Enhancement of stimulated mitochondrial Ca²⁺ uptake by Wt-syn is not due to increased cytosolic Ca²⁺ uptake.

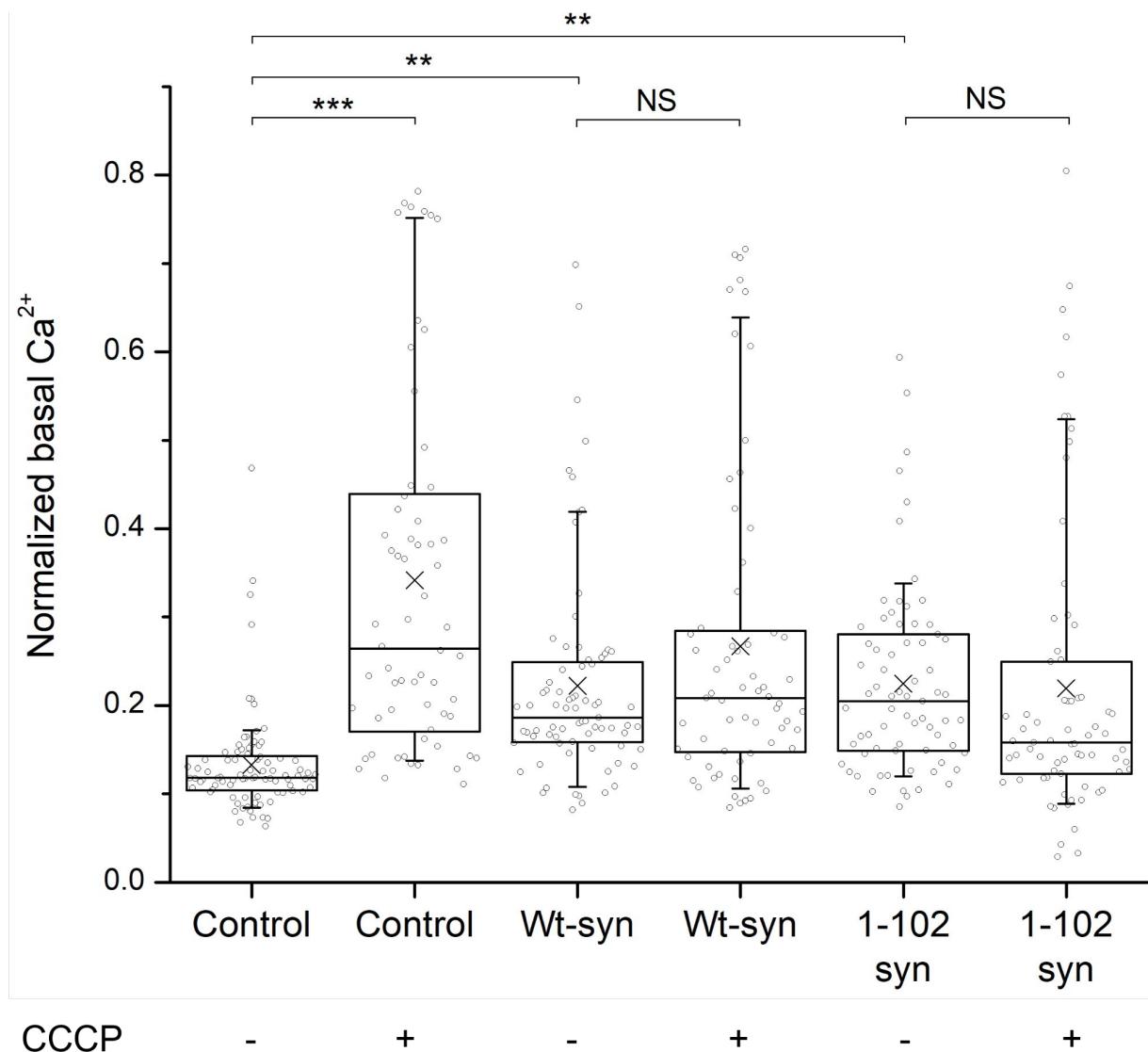


Figure S4. Expression of Wt-syn and 1-102-syn enhances basal level of mitochondrial Ca^{2+} with or without CCCP treatment.