

1 **Running head: Regulation of sorghum stem cell types**

2

3 **Title: The stem cell-type transcriptome of bioenergy sorghum reveals the spatial regulation**
4 **of secondary cell wall networks**

5

6 **Author list:** Jie Fu^{1,2}, Brian McKinley^{3,4}, Brandon James⁵, William Chrisler⁶, Lye Meng
7 Markillie⁶, Matthew J Gaffrey⁶, Hugh D Mitchell⁶, Galya Orr⁶, Kankshita Swaminathan^{2,5}, John
8 Mullet^{3,4}, Amy Marshall-Colon^{1,2}

9

10 **Corresponding author:** amymc@illinois.edu

11

12 **Addresses:**

13 ¹Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801,
14 USA; ²DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois 61801,
15 USA; ³Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas
16 77843, USA; ⁴DOE Great Lakes Bioenergy Resource Center, Madison, WI 53726, USA;
17 ⁵HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; ⁶Pacific Northwest
18 National Laboratory, Richland, WA 99354, USA

19

20

21 **Funding:** This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts
22 Innovation and the DOE Great Lakes Bioenergy Research Center (U.S. Department of Energy,
23 Office of Science, Office of Biological and Environmental Research under Award Numbers DE-
24 SC0018420 and DE-SC0018409, respectively). Any opinions, findings, and conclusions or
25 recommendations expressed in this publication are those of the author(s) and do not necessarily
26 reflect the views of the U.S. Department of Energy. A portion of this research was performed on
27 a project award (51398; **DOI:** [10.46936/lser.proj.2020.51398/60000192](https://doi.org/10.46936/lser.proj.2020.51398/60000192)) from the Environmental
28 Molecular Sciences Laboratory, a DOE Office of Science User Facility sponsored by the
29 Biological and Environmental Research program under Contract No. DE-AC05-76RL01830.

30

31 Material distribution footnote: The author responsible for distribution of materials integral to the
32 findings presented in this article in accordance with the policy described in the Instructions for

33 Authors (<https://academic.oup.com/plcell/pages/General-Instructions>) is: Amy Marshall-Colon
34 (amymc@illinois.edu)
35

36 **Abstract**

37 Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has
38 high biomass yield potential enabling the sustainable production of biofuels, biopower, and
39 bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems
40 accumulate high levels of sucrose that could be used to synthesize bioethanol and useful
41 biopolymers if information about stem cell-type gene expression and regulation was available to
42 enable engineering. To obtain this information, Laser Capture Microdissection (LCM) was used
43 to isolate and collect transcriptome profiles from five major cell types that are present in stems of
44 the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type specific and cell-
45 preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions
46 of each cell type. Analysis of cell-type specific gene regulatory networks (GRNs) revealed that
47 unique TF families contribute to distinct regulatory landscapes, where regulation is organized
48 through various modes and identifiable network motifs. Cell-specific transcriptome data was
49 combined with a stem developmental transcriptome dataset to identify the GRN that differentially
50 activates the secondary cell wall (SCW) formation in stem xylem sclerenchyma and epidermal
51 cells. The cell-type transcriptomic dataset provides a valuable source of information about the
52 function of sorghum stem cell types and GRNs that will enable the engineering of bioenergy
53 sorghum stems.

54 **Introduction**

55 Optimized bioenergy crops are needed to provide feedstocks for a sustainable low
56 carbon fuel economy. An ideal bioenergy crop, or ideotype, is one that can be produced
57 sustainably, is high yielding, stress resilient, and compositionally optimized. Bioenergy
58 sorghum (*Sorghum bicolor* L. Moench) is known for its drought and heat resilience and low
59 input requirements, critical attributes for the production of bioenergy crops in marginal
60 environments. In good environments, bioenergy sorghum hybrids have the genetic potential to
61 accumulate ~40-50 dry MT of biomass per hectare that can be converted to bioethanol or
62 biopower with 75-90% greenhouse gas mitigation impact (Olson et al., 2012; Truong et al.,
63 2017), an energy producing ratio (output/input) > 20 (Byrt et al., 2011), a carbon intensity (C.I.)
64 for bioethanol production of ~17 g CO₂ e/MJ (Kent et al., 2020), and net carbon sequestration
65 in Southern and Lower Midwestern U.S. locations (Gautam et al., 2020). The yield of
66 bioenergy sorghum in water limited environments is lower (~10-25 MT/ha) indicating there is
67 a significant opportunity to improve the productivity of this crop in adverse environments
68 (Truong et al., 2017). Sorghum stems account for ~80% of the harvested biomass (Olson et al.,
69 2012). Bioenergy sorghum stems at harvest are typically 4-5 m in length, and stem height is
70 an early indicator for selecting bioenergy sorghum genotypes with increased biomass yield
71 (Dos Santos et al., 2020). Sorghum stem growth is regulated in a complex way by development
72 (McKinley et al., 2016), auxin transport (Multani et al., 2003), brassinosteroid signaling
73 (Hilley et al., 2016; Hirano et al., 2017), an AGCVIII kinase (Oliver et al., 2021), gibberellin
74 (Ordonio et al., 2014), and shade avoidance signaling (Yu et al., 2021). Phytomers generated
75 by the shoot apical meristem/rib meristem initially produce leaves followed by the activation
76 of the stem intercalary meristem at the upper end of the pulvinus that generates cells required
77 for stem internode growth (Yu et al., 2022). Cells generated by the intercalary meristem
78 subsequently elongate and then xylem sclerenchyma cells and epidermal cells accumulate
79 secondary cell walls (SCWs) that help prevent stalk breakage (Kebrom et al., 2017; Yu et al.,
80 2022). Transcriptional regulation of the sorghum stem SCW pathway has been investigated
81 through analysis of stem tissues collected at various stages of sorghum development (Hennet
82 et al., 2020).

83 Plant organs contain distinct cell types, each programmed to carry out specific
84 functions that collectively influence tissue/organ/plant phenotypes (Giacomello, 2021). For

example, leaf morphology and function are modulated by leaf growth (cells comprising intercalary meristems), gas exchange (guard cells), C4 photosynthesis (mesophyll and bundle sheath cells), and long-distance sugar transport via the phloem (sieve elements and companion cells). Thus, elucidating the developmental programs and regulatory modules of individual cells comprising complex tissues is needed to understand biochemical and physiological processes that influence tissue and organ functions, and traits that integrate functions across the entire plant (Deal & Henikoff, 2011; Yaschenko et al., 2022). Epigenomics, transcriptomics, proteomics/phosphoproteomics, and metabolomics are being used to quantify the functions of gene/protein regulatory networks in organs, tissues, and cells during development and in response to environmental perturbations. Advances in Laser Capture Microdissection (LCM), microfluidics, and cell-sorting technologies are enabling researchers to isolate specific cell types for transcriptome analysis and nuclei for chromatin accessibility profiling. The acquired information allows researchers to identify transcription factor binding sites that distinguish transcriptional programs of diverse cell types. Application of these techniques to cells of bioenergy sorghum plants will provide a fine-scale blueprint of gene and cell-specific function, and insight into cell-specific differentiation, cell-to-cell and inter-organ signaling, transport, and response to environmental cues.

Fluorescence-Activated Cell Sorting (FACS) (Birnbaum et al., 2005), Isolation of Nuclei Tagged Associated Cell Type (INTACT) (Deal & Henikoff, 2011), Fluorescence-Activated Nucleus Sorting (FANS) (Zhang et al., 2008), and immunopurification of ribosome-associated mRNA (Zanetti et al., 2005) all require the construction of transgenic lines and availability of cell-specific promoters (Teixeira & Pereira, 2010; Rogers et al., 2012). Single-cell mRNA sequencing (scRNA-Seq) is a high-throughput technique to achieve single-cell transcriptomes (Tang et al., 2009; Klein et al., 2015; Macosko et al., 2015). Although scRNA-Seq has been applied to a handful of plant species (Satterlee et al., 2020; Farmer et al., 2021; Liu et al., 2021; Y. Wang et al., 2021), it provides the “minimal information” on cell spatial organization (Giacomello, 2021). In addition, rigid plant cell walls constitute a major challenge for all these techniques since the prolonged time in protoplasting solutions may trigger unintended stress responses, and in turn produce noisy transcriptomes (Liu et al., 2022). LCM is an alternative technique that circumvents some of the aforementioned drawbacks in other techniques, and is uniquely suited for spatial analysis in species where transformation is

116 difficult or low-throughput. It precisely isolates cells using a laser beam guided by microscopy
117 and is based on cell anatomical positions and morphological differences rather than labeling
118 strategies and protoplasting. It is particularly amenable to plant species because of their clear
119 cellular histological layout restricted by plant cell walls. LCM protocols for distinct cell types
120 in multiple plant species have been developed and continue to be optimized (Takahashi et al.,
121 2010; Anjam et al., 2016; Blokhina et al., 2017; Hua & Hibberd, 2019; Pires et al., 2022) since
122 its first use in mammalian studies (Emmert-Buck et al., 1996; Schütze & Lahr, 1998).

123 LCM has been broadly applied in multiple plant species to isolate cell types from
124 organs or tissues (Nakazono et al., 2003; Brooks III et al., 2009; Shiono et al., 2014; Shi et al.,
125 2021). In sorghum, LCM was used to isolate mesophyll and bundle sheath cells of leaf
126 (Covshoff et al., 2013; Döring et al., 2016), cells that are located in the shoot apical meristem
127 (Paterson et al., 2020), and epidermal and cortical/stele cells from roots (Koegel et al., 2013;
128 Sivaguru et al., 2013; Calabrese et al., 2016). Most of these studies focused on the expression
129 of targeted genes, rather than the genome-wide characterization of gene expression profiles.
130 Although the sorghum stem is an important organ for mechanical support and transportation
131 of water, nutrients, and signaling molecules, it has not been a target for LCM analysis. Thus,
132 a comprehensive transcriptomic atlas of different stem cell types in sorghum is not available.

133 To help close the gap in our understanding of sorghum stem biology, we used LCM to
134 isolate five different stem cell types from sweet sorghum (cv. Wray) that were collected for
135 RNA-Seq analysis. Our analysis identified differentially expressed genes in each cell type and
136 their underlying regulatory networks. The gene regulatory network that modulates SCW
137 formation in a cell specific manner during development was investigated by applying the
138 LCM-derived data to a developmental transcriptome analysis of SCW formation in sorghum
139 phytomers (Kebrom et al., 2017; Yu et al., 2021). This high-resolution systems analysis is
140 useful for understanding functions of genes/pathways/networks expressed in individual cells,
141 and regulatory mechanisms that contribute to integrated phenotypes that impact stem traits.

142

143 **Results**

144 **Sorghum stem cell types have distinct transcriptomes**

145 Cell types have distinct transcriptomes that are underrepresented and intermixed in whole
146 tissue samples that combine cell types. To investigate sorghum (cv. Wray) stem cell-type specific

147 transcriptomes, Laser Capture Microdissection (LCM) was used to collect five stem cell types
148 (epidermis, pith parenchyma, phloem, vascular parenchyma, xylem sclerenchyma) from the
149 middle of a fully elongated internode (phytomer 8) during the vegetative phase, 74 days after
150 planting (DAP). RNA was isolated from each cell type for RNA-Seq analysis. UMAP analysis of
151 the derived data showed that replicates ($n = 4$) of each cell type cluster together, and that different
152 cell types form distinct clusters (Figure 1). In addition, the analysis showed that pith parenchyma
153 and epidermal transcriptomes cluster near each other and far from cells derived from vascular
154 bundles that form a separate group (Figure 1).

155 While many genes are expressed in most cell types, genes with more selective expression
156 in a single cell type are thought to contribute to cell-type specific functions and unique molecular
157 characteristics. The Tau index (Yanai et al., 2005; Kryuchkova-Mostacci & Robinson-Rechavi,
158 2017) and Wilcoxon test were used to identify genes that were expressed exclusively ($\text{Tau} = 1$ &
159 Wilcoxon p-value < 0.05) or predominantly ($0.8 \leq \text{Tau} < 1$ & Wilcoxon p-value < 0.05) in each
160 stem cell type. This analysis identified 708 genes expressed in a highly specific manner in the
161 epidermis, 764 in the pith parenchyma, 562 in the phloem, 741 in the vascular parenchyma, and
162 327 in the xylem sclerenchyma (Figure 2 and Supplemental Data Set 1).

163 The degree of specificity of the LCM-derived stem cell-type transcriptomes was
164 investigated using known cell-type specific marker genes. Transcripts for numerous cell-type
165 marker genes identified in other studies were present in the expected LCM-derived sorghum stem
166 cell types (Supplemental Data Set 2). For example, the homolog of the *Arabidopsis thaliana* *LIPID*
167 *TRANSFER PROTEIN 1* (*AT2G38540*, *LTP1*) that is expressed in epidermal cells (Thoma et al.,
168 1994; Abe et al., 2001; Baroux et al., 2001) is expressed in LCM-derived sorghum stem epidermal
169 cells (Supplemental Data Set 2). Similarly, *ALTERED PHLOEM DEVELOPMENT* (*AT1G79430*,
170 *APL*) that is expressed in *Arabidopsis* inflorescence stem phloem cells (Abe et al., 2015; Schürholz
171 et al., 2018) and *MYB DOMAIN PROTEIN 103* (*AT1G63910*, *AtMYB103*) and *SULFATE*
172 *TRANSPORTER 1;2* (*AT1G78000*, *SULTR1;2*), genes that are expressed in xylem cells (Zhong et
173 al., 2008), are differentially expressed in the corresponding LCM-derived sorghum stem cell types
174 (Supplemental Data Set 2). No definitive marker gene has been reported for stem pith parenchyma
175 cells (Shi et al., 2021); however, 66 genes with the pith-preferred expression pattern identified in
176 a LCM study of the inflorescence stem in *Arabidopsis* (Shi et al., 2021) are expressed in a highly
177 specific manner in sorghum stem pith parenchyma cells (Supplemental Data Set 2). These results

178 indicate that the LCM-based approach used to enrich for specific stem cell types in the current
179 study was effective. Several of the LCM ‘cell-type’ categories could be further subdivided using
180 single-cell transcriptome analysis. For example, the LCM ‘epidermal cell’ category likely includes
181 ground, cork, and possibly guard cells; the ‘phloem’ cell-type category includes sieve elements
182 and companion cells; ‘vascular parenchyma’ cells likely include both phloem parenchyma and
183 xylem parenchyma.

184 The utility of the LCM data was explored by examining gene expression differences in
185 bulk stem tissue vs isolated cell types. Comparison of transcriptomes of a whole stem internode
186 slice with LCM-derived cell types from an adjacent slice revealed that the majority of the cell-type
187 specific genes identified have much lower expression in the whole tissue sample (Supplemental
188 Figure 1), consistent with an expected dilution effect that occurs when cell-type RNA is collected
189 and mixed during organ/tissue sampling. Thus, the cell-type specific RNA-Seq analysis increases
190 the sensitivity of detecting transcripts derived from genes that are differentially expressed at low
191 levels in specific cell types.

192

193 **LCM-derived cell-type transcriptomes uncover cell-type specific functions**

194 *Different functions distinguish vascular bundle and non-vascular bundle cells*

195 The LCM-derived cell-type specific dataset was next used to investigate differences
196 between cells that comprise vascular bundles (phloem, vascular parenchyma, and xylem
197 sclerenchyma) and non-vascular bundle cells (pith parenchyma and epidermis) (Figure 1).
198 Pairwise comparisons were made between all combinations of vascular and non-vascular cell types
199 (Figure 3). An intersection of all up-regulated genes across vascular cell types compared to non-
200 vascular cell types uncovered 127 common differentially expressed genes (DEGs) (FDR < 0.05
201 for calling DEGs in *edgeR*; Figure 3A and Supplemental Data Set 3). Gene Ontology (GO)
202 enrichment analysis of these 127 genes revealed an overrepresentation of terms associated with
203 localization and transmembrane transport (FDR < 0.05 for Fisher’s exact test; Figure 3A and
204 Supplemental Data Set 4). The same analysis for down-regulated genes across vascular cell types
205 (i.e. up-regulated genes across non-vascular cell types) uncovered 54 common genes (FDR < 0.05;
206 Figure 3B and Supplemental Data Set 3), which are enriched for photosynthesis and light response
207 GO terms (FDR < 0.05; Figure 3B and Supplemental Data Set 4). Thus, the up-regulation of

208 transport processes distinguishes vascular cell types from non-vascular cell types, which are
209 distinguished by the up-regulation of genes involved in photosynthesis.

210 Examination of differentially expressed transcription factors (TFs) revealed enrichment of
211 different TF families in vascular and non-vascular cell-type gene regulatory networks (GRN)
212 (Supplemental Data Set 13). GRN analysis found that the Basic Helix-Loop-Helix (bHLH) TF
213 family has the most interactions with genes up-regulated in vascular cells, followed by the
214 Homeodomain-leucine Zipper (HD-ZIP) family (Supplemental Figure 2A). In non-vascular cell
215 types (epidermis and pith parenchyma GRNs), MYB TF family members are enriched
216 (Supplemental Figure 2B). These results suggest that certain TF families play a role in controlling
217 the functional differentiation between vascular and non-vascular cell types.

218

219 *Different biological processes are up-regulated in each cell type*

220 We further explored the transcriptomes of each of the five stem cell types by quantifying
221 enriched GO terms of Biological Processes (BPs). GO enrichment analysis revealed common and
222 unique biological processes across stem cell types (FDR < 0.05; Figure 4 and Supplemental Data
223 Set 5). Pith parenchyma cells are significantly enriched for GO terms related to photosynthesis and
224 light responses (Figure 4). Epidermal cells are enriched for processes involved in cell wall
225 organization, fatty acid, lipid, and wax metabolism (Figure 4). Phloem and vascular parenchyma
226 cells share processes for various transport and localization GO terms, but also have functions
227 unique to each cell type: metal ion transport in phloem cells, and hormone-, terpenoid-, and
228 glycosinolate-related processes in vascular parenchyma cells (Figure 4). Genes with differential
229 expression in xylem sclerenchyma are enriched in GO terms for aromatic, phenylpropanoid, and
230 lignin metabolic processes and share enriched GO terms with epidermal cells for cell wall
231 organization and biogenesis (Figure 4).

232

233 *Different metabolic pathways and transporters are enriched in each cell type*

234 Predicted enrichment of metabolic pathways in cell types based on the differential gene
235 expression was examined using KEGG pathways (Kanehisa et al., 2021). The vascular cell types
236 are enriched in secondary metabolic pathways and metabolism of terpenoids and polyketides
237 (Figure 5 and Supplemental Data Set 6). Pith parenchyma specific genes are enriched for energy
238 (photosynthesis) and carbohydrate metabolism (Figure 5 and Supplemental Data Set 6). Epidermal

239 specific genes are enriched in metabolic pathways involving secondary metabolites and lipid,
240 terpenoid, and polyketide metabolism (Figure 5 and Supplemental Data Set 6).

241 Genes with cell-type specific expression that encode transporters were also examined using
242 KEGG annotations. Enriched transporter families mirror enriched metabolic pathways and
243 biological processes across cell types (Figures 4-6 and Supplemental Data Set 5-7). The vascular
244 phloem and vascular parenchyma cells have the largest number of cell-type specific genes
245 encoding transporters, including electrochemical potential-driven transporters and sugar efflux
246 transporters in both cell types (Figure 6 and Supplemental Data Set 7). The best match in sorghum
247 for the sugar efflux transporters are SLC50A, SWEET; solute carrier family 50 in both cell types
248 (Supplemental Data Set 7). The electrochemical potential-driven transporters include amino acid
249 permeases, auxin efflux carrier family (PIN) proteins, and xenotropic and polytropic retrovirus
250 receptor 1 (XPR1/PHO1) in both cell types (Supplemental Data Set 7). Genes encoding high and
251 low affinity sulfate transporters (SULTR1 and SULTR2, respectively) and vacuolar iron
252 transporter family proteins (VIT) are specifically expressed in vascular parenchyma cells, while a
253 KUP system potassium uptake protein is exclusively expressed in phloem cells (Supplemental
254 Data Set 7).

255 These results support prior knowledge about the flow of carbon and other cellular entities
256 across cell types, but provide spatial resolution about specific processes that contribute to the
257 distinction of different cell types within the sorghum stem.

258

259 **Cell-type specific gene promoters are enriched for unique TF binding motifs**

260 Gene promoters can be bound by regulatory proteins from several different transcription
261 factor families, and co-expressed genes are often commonly regulated by the same transcription
262 factor(s) (Yin et al., 2021). Promoter sequences of cell-type specific genes identified in this study
263 were analyzed to identify enriched cis-regulatory elements (CREs), including known and *de novo*
264 motifs, within each cell type. Known motifs were identified using the *PlantPan 3.0* promoter
265 analysis tool (Chow et al., 2019), and motif enrichment was determined using the Fisher's exact
266 test (FDR < 0.05); enriched *de novo* motifs were discovered using *MEME* (Bailey & Elkan, 1994)
267 in *MEME* suite tools. Each cell-type specific gene set has significantly enriched motifs (Figure
268 7A). Nearly all epidermal specific genes (95.1%) have promoters that are enriched for the Basic-
269 Leucine-Zipper (bZIP) TF family binding motifs, but are also uniquely enriched for the Zinc-

270 Finger-Homeodomain (ZF-HD) and LBD binding motifs (Figure 7B). The majority (95.4%) of
271 pith parenchyma specific gene promoters are enriched for C2H2 TF family binding motifs, but are
272 also uniquely enriched in genes with MYB-related and TCP binding motifs in their promoters
273 (Figure 7B). The GATA TF family binding motifs are overrepresented in vascular cells including
274 phloem (89.9%), xylem sclerenchyma (87.8%), and vascular parenchyma (74.8%) (Figure 7B).
275 The vascular cell types are also uniquely enriched in G2-like binding motifs (Figure 7B). These
276 results indicate that distinct TF families may play a dominant role in regulating the cell-type
277 specific expression of genes, and in turn control cell functions.

278

279 **Cell-type specific TFs have direct and indirect modes of regulation**

280 Promoter binding information was combined with gene co-expression analysis to construct
281 cell-type specific GRNs to describe predicted TF-target gene relationships. Co-expression edges
282 between nodes (genes) were estimated as Pearson Correlation Coefficients (PCC) ($|PCC| < 0.8$ &
283 $p\text{-value} < 0.05$), and putative interactions between TFs and their targets were achieved using the
284 *PlantPan 3.0* promoter analysis tool to identify CREs within the 1500bp promoter regions
285 (upstream of start codon) of co-expressed genes. We first examined GRNs that only contain cell-
286 type specific genes ($0.8 \leq \text{Tau} \leq 1$ & Wilcoxon $p\text{-value} < 0.05$; Supplemental Data Set 14), and
287 found that TF families that are enriched in the GRNs (labelled with ‘*/*’ in Figure 7B) have
288 regulatory edges with a large proportion (38.5%-56%) of the genes (Figure 7C, left panel).
289 However, for the most part, these cell-type specific TFs do not belong to the TF families predicted
290 to regulate the cell type specific genes based on the above promoter analysis (Figure 7B, framed
291 with pink color). Thus, we expanded the GRNs to include non-cell-type specific TFs that are still
292 highly expressed within the LCM samples to survey the full regulatory landscape of each cell type
293 (Supplemental Data Set 15).

294 The expanded GRNs revealed that non-cell-type specific TFs, which are from the TF
295 families with overrepresented CREs (Figure 7B), have regulatory edges with 64.5% to 97.4% of
296 the cell-type specific genes, depending on the cell type (Figure 8, union of the Venn Diagram).
297 Interestingly, these non-cell-type specific TFs are predicted to be regulated by cell-type specific
298 TFs (Figure 8 and Supplemental Data Set 8), in which the promoters of the non-cell-type specific
299 TFs have binding motifs belonging to cell-type specific TF families. These observations imply

300 direct and indirect modes of regulation by cell-type specific TFs to turn on the spatially explicit
301 expression of genes.

302

303 **Stem secondary cell wall network analysis**

304 Secondary cell walls (SCWs) are typically comprised of cellulose, hemicellulose, lignin,
305 and cell wall proteins. Histological staining of lignin and cellulose in a cross section of the sorghum
306 stem (Figure 9A) show that SCW formation is low in some stem cell types (i.e., pith parenchyma,
307 phloem) and higher in other stem cell types (i.e., xylem sclerenchyma, epidermis). Moreover, SCW
308 formation was previously shown to be repressed in the sorghum stem apical dome and intercalary
309 meristems, regions of cell proliferation (Kebrom et al., 2017; Yu et al., 2021). SCW formation is
310 activated concurrently with the onset of internode growth on cells that have completed elongation
311 (Kebrom et al., 2017; Yu et al., 2021). To learn more about this complex pattern of SCW formation
312 in the sorghum stem, we combined the spatial resolution of the LCM-derived stem cell-type
313 specific transcriptome with the stem developmental profile of SCW formation (Kebrom et al.,
314 2017; Yu et al., 2021). .

315 As the first step in the analysis, genes involved in SCW formation that are coordinately
316 induced during stem development were identified using RNA-Seq data collected from nascent
317 apical stem tissues and intercalary meristems where SCW formation is repressed, and stem tissue
318 from elongating and recently fully elongated internodes where SCW formation is occurring (13
319 developmental time points) (Kebrom et al., 2017; Yu et al., 2021). *SbCESA4/7/8*, genes involved
320 in SCW cellulose biosynthesis, were expressed at very low levels in apical, undeveloped stem
321 tissues and in the growing zones of elongating internodes (i.e., internode 3, Int3-4, Int3-5) but at
322 high levels in fully elongated stem tissues of internodes 3 and 4 (Int3-1, Int4) (Supplemental Data
323 Set 9). Genes with developmental patterns of expression correlated with *SbCESA4/7/8* expression
324 were identified using the same dataset (TPM>4 & PCC>0.91& FC>4). The 1082 genes that are
325 co-expressed with *SbCESA4/7/8* included genes that encode enzymes involved in lignin and
326 glucuronoarabinoxylan (GAX) biosynthesis, Trichome Birefringence Like (TBL) proteins, and
327 FLA arabinogalactan-rich proteins that are known to contribute to SCW formation (Kumar et al.,
328 2016; Coomey et al., 2020). In addition, numerous sorghum homologs of TFs involved in SCW
329 formation were co-expressed with *SbCESA4/7/8* (i.e., *NST*, *SND*, *VNI2*, *MYB52*) (Hennet et al.,
330 2020).

331 Genes involved in SCW formation were coordinately induced during stem development
332 (Supplemental Data Set 10). Analysis of LCM cell-type transcriptome data showed that these
333 genes are generally expressed at the highest levels in xylem sclerenchyma cells and at low levels
334 in pith parenchyma cells, consistent with differences in accumulation of lignin, a marker for SCW
335 formation, on the walls of these cell types (Figure 9A). Genes involved in SCW formation were
336 also expressed at relatively high levels in the epidermis compared to pith parenchyma cells
337 (Supplemental Data Set 10). GRN analysis was implemented to better understand how this
338 complex pattern of cell-type specific SCW gene expression is regulated.

339 A GRN was constructed using the cohort of genes co-expressed with *SbCESA4/7/8* during
340 stem development and used to identify predicted connections between TFs and genes involved in
341 SCW formation (Supplemental Data Set 16). The connections between TFs and SCW genes are
342 shown in Figure 9B, where predicted interactions are designated by blue boxes at the intersection
343 between the TF and its downstream target SCW gene. This analysis showed that *SbSND2d* could
344 potentially bind to the promoters of *SbCESA4/7/8*, several genes involved in GAX biosynthesis
345 (i.e., *SbGUT1*, *SbIRX9*), *SbLAC17* and genes encoding HXXXD-domain acyltransferases such as
346 PMT transferase (Petrik et al., 2014) that modify lignin. In contrast, *SbSND2a* was predicted to
347 interact only with promoters of genes involved in lignin biosynthesis (i.e., *SbPAL*, *Sb4CL2*,
348 *SbCCRI*, *SbCCoAOMT1*). *SbNST1a* and *SbNST1d* were predicted to have more limited
349 interactions with the SCW gene promoters. *SbNAC75* and *SbVIN2g* were highly connected to
350 genes involved in cellulose, GAX and lignin biosynthesis. As expected, MYB factors (i.e.,
351 *SbMYB52/54*, *SbMYB20/43*, *SbMYB60*) had predicted connections to numerous genes involved
352 in SCW formation including nearly every gene involved in lignin biosynthesis. During the analysis
353 several additional transcription factors such as *SbGATA16* were identified that had predicted
354 connections to subsets of genes involved in SCW formation (i.e., lignin pathway in the case of
355 *SbGATA16*).

356 While the genes involved in SCW formation and the TFs they are predicted to interact with
357 are co-expressed during development, the TF genes involved in SCW formation showed a variety
358 of cell-type specific expression patterns. A heat map of TF expression in different stem cell types
359 is shown to the right of Figure 9B. Most of the TFs are differentially expressed in xylem
360 sclerenchyma cells consistent with differential accumulation of SCWs on this cell type (i.e.,
361 *SbSND2d*, *SbSND2a*, *SbVIN2g*). However, *SbNST1a* and *SbNST1d* were differentially expressed

362 in xylem sclerenchyma and epidermal cells whereas *SbNAC75* was more highly expressed in
363 xylem sclerenchyma than in epidermal cells. Expression of *SbMYB52*, *SbMYB43*, *SbMYB60*,
364 *SbMYB103* and *SbMYB42* was highest in xylem sclerenchyma cells but expression was also
365 relatively high in vascular parenchyma and phloem cell types. In contrast, *SbHD-MYB* and
366 *SbMYB46* were highly expressed only in epidermal cells. Interestingly the sorghum homologs of
367 genes that repress SCW formation in Arabidopsis (*SbBHL6*, *SbKNAT7*) (Liu et al., 2014) were
368 expressed at high levels in most stem cell types, although *SbBHL6* expression was relatively low
369 in pith parenchyma cells. These TFs had predicted interactions with genes involved in cellulose,
370 lignin TBL and FLA synthesis. Taken together, sorghum stem TFs predicted to regulate genes
371 involved in SCW formation show a variety of expression patterns across the stem cell types
372 analyzed, suggesting that spatial expression of TFs as well as differential binding of TF-modules
373 specifies the expression of genes involved in SCW formation in a stem cell-type specific manner.

374 Potential TF x TF connections were also investigated to better understand the regulatory
375 dynamics of the SCW network (Figure 10 and Supplemental Data Set 11). The analysis showed
376 that TFs involved in SCW formation have many predicted interconnections including feedback
377 loops (Supplemental Data Set 17). When connections were shown using an interaction matrix
378 (Figure 10), some TFs showed no predicted connections with other TFs (*SbSND2d*, *SbNST1a*)
379 while others were highly connected (i.e., *SbSND2a*, *SbNAC75a*, *MYB52/54*, *GATA16*). This
380 analysis provides new information about the regulatory landscape of SCW formation in sorghum
381 stem cell types.

382

383 **Discussion**

384 **A transcriptomic atlas of the sorghum stem**

385 In this study, we dissected five cell types (epidermis, pith parenchyma, phloem, vascular
386 parenchyma, xylem sclerenchyma) using LCM from the mid-internode of a sweet sorghum variety
387 (cv. Wray) at the vegetative stage for genome-wide transcriptional analysis. The resulting high-
388 resolution, spatial transcriptomes provide a valuable community resource that can facilitate
389 research on sorghum stem biology. To our knowledge, this is the first comprehensive spatial
390 analysis of grass stem transcriptomes. Single cell RNA-Seq (scRNA-Seq) was used in poplar stems
391 to identify 20 distinct cell clusters (Chen et al., 2021), but scRNA-Seq has not been applied to
392 sorghum. Similarly, in the model plant Arabidopsis, Shi et al. (2021) reported on high-resolution,

393 spatial gene expression profiles of nine cell types in the inflorescence stem, investigated using
394 Fluorescence-Activated Nucleus Sorting (FANS) and LCM. The analyses in *Arabidopsis* led to
395 the isolation of more cell types due to the availability of species-specific cell markers that are not
396 currently available for sorghum. However, the results of our analysis may enable the development
397 of such marker lines for sorghum stem cell types. Likewise, the identification of highly cell-type
398 specific genes ($\text{Tau} = 1$) will be useful for additional promoter element analysis to create molecular
399 tools for cell-type specific expression of transgenes. Previous engineering attempts to increase
400 sugar or lipid concentration in stem pith parenchyma cells of bioenergy grasses have not been
401 highly successful (Wu & Birch, 2007; Watt et al., 2013; Jensen & Wilkerson, 2017), likely due to
402 the lack of pith specific promoters (Wang et al., 2021).

403

404 **Spatial transcriptomes reveal distinct functions and metabolisms within cell types**

405 Observed differences in spatial transcriptomes across the sorghum stem reflect distinct cell
406 functions and unique molecular signatures of cells. By grouping transcriptomes into ‘vascular’ and
407 ‘non-vascular’ cell types, we identified sets of genes that distinguish these two groups of spatially
408 separated cell types based on biological functions. Vascular cell types (xylem sclerenchyma,
409 vascular parenchyma, and phloem) commonly express genes involved in various transport
410 processes, as expected, while non-vascular cell types (epidermis and pith parenchyma) commonly
411 express genes involved in photosynthesis and response to light and radiation, which was not
412 entirely expected. While stems of C4 grasses are often considered heterotrophic sinks (McCormick
413 et al., 2009; McKinley et al., 2016), it has been known for decades that photosynthesis occurs in
414 non-foliar tissues (Simkin et al., 2019). Stems may provide significant and alternative sources of
415 photoassimilates essential for the synthesis of lipids required for growth, wax formation and
416 optimization of yield (Hibberd & Quick, 2002), especially under stressful conditions such as
417 drought (Ávila-Lovera et al., 2017). In fact, it was shown that tomato stems account for
418 approximately 4% of whole plant photosynthetic activity (Hetherington et al., 1998). In
419 *Brachypodium distachyon*, a model grass plant, the stem parenchyma cells (cortex parenchyma,
420 cortical pith, and inner pith) have chloroplasts with thylakoid granum stacks. It was also shown
421 that there is a reduction in plastid number from rind toward the stem center, and from younger to
422 older stem internodes because with aging, chloroplasts in pith parenchyma cells are converted to
423 amyloplasts (Jensen & Wilkerson, 2017). These observations are consistent with the differential

424 expression of genes involved in photosynthesis in pith parenchyma cells in the vegetative sorghum
425 stem in our study. Additionally, studies on stem photosynthesis have shown that carbon
426 assimilation by Rubisco in stems is similar to the leaf but with CO₂ diffusion through stomata in
427 the stem, or by refixation of respiratory CO₂ from the mitochondria (Simkin et al., 2019). While
428 the specific genes that are upregulated in the epidermal and pith parenchyma cells suggest
429 photosynthetic activity similar to leaves, we hypothesize that the overall contribution of the stem
430 to atmospheric CO₂ assimilation in sorghum is minimal, at least under non-stressful conditions.
431 This hypothesis is supported by our observation that the expression of these photosynthesis genes
432 across different tissue types in a related sorghum variety (McCormick et al., 2018; Arachchilage
433 et al., 2020) are expressed at a much lower level (0%-8.1%) in stems compared to leaves pre-
434 anthesis. However, specific studies aimed at quantifying stem photosynthesis are needed to learn
435 more about the role of photosynthesis-related genes in the sorghum stem.

436 Besides photosynthesis, another enriched function for pith parenchyma cells is
437 carbohydrate metabolism, which aligns with the role of pith parenchyma in carbohydrate storage
438 post floral initiation in sweet sorghum stems. In sweet sorghum Della, the main forms of stem
439 sugars before anthesis are monosaccharides such as glucose and fructose, but post-anthesis,
440 monosaccharide sugar content decreases as sucrose and starch accumulate (McKinley et al., 2016).
441 Similarly, our analysis in Wray shows that at the vegetative stage, starch and sucrose metabolism
442 is not overrepresented in pith parenchyma cells (FDR < 0.05; Figure 5), but instead, galactose
443 metabolism is the most overrepresented pathway (Figure 5). We found that pith parenchyma
444 specific genes overlaid on the galactose pathway appear to direct molecular efflux into the
445 production of D-Glucose, D-Fructose, and D-Galactose from precursor UDP-galactose by
446 encoding unidirectional enzymes. Further analysis at additional developmental stages is needed to
447 track changes in carbohydrate metabolism in Wray.

448

449 **The regulatory landscape contributes to the establishment of cell identity and function**

450 The differentiation of specific cell types has been of great interest across biological
451 domains. Cell type differentiation is attributed to a number of mechanisms from chromatin
452 structure to peptide and hormonal signals (Pierre-Jerome et al., 2018). Of similar interest are the
453 mechanisms that regulate cell-type specific gene expression in differentiated cell types that have
454 different functions. Chromatin accessibility and DNA sequences (enhancers, promoters, and genic)

455 have been shown to explain cell-type specific gene expression (Rosa et al., 2014; Uygun et al.,
456 2019). Bioinformatics analyses have uncovered novel CREs in the promoters of cell-type specific
457 genes (Uygun et al., 2017; Uygun et al., 2019) and used this information to identify transcription
458 factors that bind to these elements and confer their cell-type specific expression (Noble et al.,
459 2022). In this study, we used a bioinformatics approach that combined promoter CRE scanning
460 and co-expression analysis to generate cell-type specific GRNs. As stated in the results and further
461 discussed below, the vascular cell types are enriched in G2-like and GATA CREs, and the TF
462 SbGATA16, a regulator of SCW formation, is highly expressed in xylem sclerenchyma cells
463 (Figure 9B). In epidermal cells, seven TFs from the Homeodomain-Leucine Zipper (HD-ZIP)
464 family are significantly overrepresented in the epidermis GRN (Figure 7B), and has predicted
465 regulatory interactions with almost half of the epidermis specific genes (Figure 7C). Five of these
466 seven epidermis-specific TFs are from the HD-ZIP class IV family (Javelle et al., 2011), of which
467 most members have been shown to be preferentially expressed in the outmost
468 protodermal/epidermis layer in multiple species (Lu et al., 1996; Abe et al., 2003; Javelle et al.,
469 2011). Functional analysis of the 345 predicted target genes reveals that these epidermal specific
470 HD-ZIP TFs regulate lipid and fatty acid biosynthetic pathways, which is the most statistically
471 overrepresented biological function among epidermis specific genes (Figure 4 and 5). HD-ZIP
472 family members are also enriched in the pith parenchyma specific GRN (Figure 7B), but none of
473 these belong to the HD-ZIP class IV family (Javelle et al., 2011). This finding suggests that TFs
474 from the HD-ZIP class IV family are specifically involved in epidermal expression of genes
475 involved in lipid and fatty acid biosynthesis. Alternatively, the pith parenchyma expressed HD-
476 ZIP TFs regulate nearly 40% of pith parenchyma expressed genes (Figure 7C), which are
477 statistically enriched in photosynthesis-related biological processes. These results suggest that
478 cell-type specific TFs, and even specific classes of TF families, play an important role in conferring
479 unique expression profiles and functions of different cell types.

480 Through our bioinformatics analysis, we uncovered both direct and indirect interactions
481 between cell-type specific TFs and cell-type specific genes, where the indirect interactions are
482 mediated through non-cell-type specific TFs (Figure 8). Such a regulatory hierarchy has been
483 identified in the past for Transforming Growth Factor Beta (TFG- β) in human cell lines (Mullen
484 et al., 2011). It was found that the non-cell-type specific TFs Smad2 and Smad3 function in cell-
485 type specific TFG- β signaling through the interaction with different cell-type specific TFs in

486 embryonic stem cells, myotubes, and pro-B cells (Mullen et al., 2011). Such reaction chains can
487 consist of various types of network motifs and have been shown to be prevalent in the regulatory
488 landscape (Alon, 2007). In our GRN prediction, cell-type specific TFs and non-cell-type specific
489 TFs can commonly regulate cell-type specific genes (Figure 8) by forming various network motifs
490 (Supplemental Data Set 15). For example, Sobic.001G522500 (an epidermis specific bZIP) and
491 Sobic.010G194900 (a non-epidermis specific bZIP) are predicted to mutually activate each other
492 through the formation of a positive feedback loop that represses expression of Sobic.008G137500
493 (an epidermis specific gene). The Arabidopsis homolog of Sobic.008G137500 is AT2G37630,
494 which is annotated to be involved in plant immune defense (Yang et al., 2008; Berardini et al.,
495 2015). Studies have shown that immune defense is one of the main physiological functions for
496 bZIP family members in plants (Jakoby et al., 2002). Also, homologs of these two sorghum bZIP
497 TFs in Arabidopsis have been predicted to form a heterodimer (Deppmann et al., 2006). This
498 possible heterodimer may act as a functional unit to regulate the plant defense associated gene.
499 This is just one example of a hypothesized functional relationship between cell-type specific and
500 non-cell-type specific TFs cooperatively regulating the expression of a cell-type specific gene,
501 possibly in response to an environmental signal. Such relationships must exist to facilitate the
502 complex but flexible regulatory network within distinct cell types.

503

504 **Regulation of genes involved in SCW formation in vegetative sorghum stems**

505 The secondary cell wall biosynthetic pathways and their regulation have been studied at
506 great depth in numerous plants (Taylor-Teeple et al., 2015; Kumar et al., 2016; Meents et al.,
507 2018; Coomey et al., 2020). In bioenergy sorghum, SCW formation is of interest because
508 biosynthesis of this specialized cell wall type in 4-5 m stems consumes a significant amount of
509 photosynthate and contributes to stem strength and biomechanical properties that impact the
510 propensity for stalk lodging (Gomez et al., 2017; Gomez et al., 2018). Genes involved in SCW
511 biosynthesis and TFs that regulate SCW formation were previously identified in sorghum using
512 phylogenetic analysis and tissue-level transcriptome profiling (Hennet et al., 2020). The current
513 study extended the prior work by integrating transcriptome data derived from tissue level stem
514 developmental analysis with the LCM analysis, and by using GRN analysis to predict targets of
515 TFs that are involved in SCW formation. Sorghum stem developmental analysis identified 1082
516 genes that were co-expressed with *CESA4/7/8* genes that are involved in SCW formation. Thirty-

517 two genes involved in cellulose, GAX and lignin biosynthesis and 17 genes encoding TFs (i.e.,
518 NST, SND, NAC075, BHL, KNAT7, MYB52) were co-expressed, consistent with their predicted
519 involvement in SCW formation (Hennet et al., 2020). GRN analysis indicated that the TFs that
520 regulate the expression of genes involved in CESA4/7/8, GAX and lignin are regulated in a
521 complex combinatorial manner. The analysis also predicts sub-specialization of the two SND
522 genes where SbSND2d was connected to genes involved in CESA, GAX and lignin biosynthesis
523 but lacking connections to other TFs, whereas SbSND2a was connected to genes involved in lignin
524 biosynthesis with several connections to other TFs in the network. NST1d was similarly connected
525 to other TFs in the network, whereas NST1a was not. As expected, SbMYB60 was predicted to
526 bind to genes involved in lignin biosynthesis (Scully et al., 2016). In contrast, SbMYB52 and
527 SbMYB20 were predicted to bind to the promoters of genes involved in cellulose, GAX (GUT1)
528 and lignin biosynthesis. The expression patterns of genes in the SCW network help to explain
529 accumulation in the walls of xylem sclerenchyma and epidermal cells. Most genes in the network
530 were more highly expressed in xylem sclerenchyma as expected. In addition, select SCW genes
531 were also expressed in epidermal cells, or in two cases, differentially in epidermal cells compared
532 to xylem sclerenchyma (i.e., *SbHD-MYB*, *SbMYB46*).

533 *SbBHL6* and *SbKNAT7* are part of the stem internode SCW developmental GRN and the
534 corresponding TFs were predicted to have numerous connections to genes involved in cellulose,
535 GAX and lignin biosynthesis. The Class II KNOX protein AtKNAT7 was found to repress
536 secondary cell wall formation (Li et al., 2012) in part through interaction with BHL6 (Liu et al.,
537 2014). KNAT7 also plays a regulatory role in conjunction with KNAT3 in xylem vessel formation
538 (Wang et al., 2020). Expression of *SbKNAT7* was observed in all five stem cell types analyzed,
539 with highest expression in xylem sclerenchyma and lowest expression in vascular parenchyma.
540 *SbBHL6* was also expressed at high levels in all of the cell types except pith cells. It has been
541 previously suggested that SbKNAT7 contributes to a negative feedback loop that functions to fine
542 tune metabolic commitment to SCW formation, especially on interfascicular fibers (Li et al., 2012).
543 SbKNAT7 and KNAT7:BHL6 heterodimers that can repress the commitment to SCW formation
544 (Liu et al., 2014), could serve a similar function in sorghum stems. The repressing function of
545 KNAT7 and BHL6 on SCW formation is further enhanced by interaction with OFP4, an OVATE
546 FAMILY PROTEIN4 (Li et al., 2011; Liu & Douglas, 2015). It was therefore interesting to find
547 that the sorghum homolog of *AtOFP4* (*SbOFP4*, Sobic.003G339100) was differentially expressed

548 in stem pith parenchyma cells (Tau of 0.91; 6-40 fold higher expression than other cells), which
549 accumulate only minimal levels of SCW. Selective and differential expression of *SbOFP4* in
550 sorghum pith cells together with *SbKNAT7* and low levels of *SbBHL6* could help explain the
551 repression of SCW accumulation on sorghum stem pith parenchyma cells relative to xylem
552 sclerenchyma and epidermal cells.

553

554 **Methods**

555 **Plant materials**

556 *Sorghum bicolor* cv. Wray was grown in a greenhouse with the 14-h long day and well-
557 watered conditions. Five-gallon pots were used for planting, filled with MetrtoMix900 (SunGro
558 Horticulture, Agawam, MA) and fertilized with 30 g 14-14-14 Osmocote per pot (The Scotts
559 Company, Marysville, OH). Seeds were obtained from the Texas A&M Breeding Program
560 (College Station, TX, USA). Wray stem samples were collected from the most recently fully
561 elongated internode (phytomer 8) of 74-day-old vegetative phase plants. Four biological replicates
562 from four plants were collected, rapidly frozen, and sent on dry ice to Pacific Northwest National
563 Laboratory (PNNL, WA, USA) for the isolation of different stem cell types using LCM, followed
564 by RNA-Seq to achieve the cell-type transcriptomes (see below). Plant materials used for the stem
565 developmental transcriptome dataset and the FASGA staining method for the stem cross-section
566 to visualize the lignin component are described in Kebrom et al. (2017)

567

568 **LCM Protocol, RNA extraction, and RNA-Seq**

569 Pre-cut and post-cut stem cell types by LCM visualized under microscope showed a high
570 quality of target cell collections (Supplemental Figure 3), suggesting the efficiency of our
571 developed LCM-isolation protocol. Internode sections of Wray were cut to 1 cm and flash-frozen
572 in liquid nitrogen. The frozen sections were then embedded in optimal cutting temperature
573 (OCT) compound and placed at -80°C for 30 minutes to fully solidify. The tissues were mounted
574 by freezing onto magnetic chucks using UltraPure Distilled Water (Invitrogen 10977-015) and
575 20 µm sections were cut using a cryostat microtome with the following settings: Block
576 temperature -20 °C and blade temperature -30 °C. Sections were placed on UV-treated membrane
577 slides and the OCT was removed from the sections by dipping them in a serial dilution (70%,
578 85%, 100%) of ethanol at 4 °C for two minutes per dilution. Slides were then allowed to dry for 5

579 minutes and then either stored at -80 °C with desiccate or immediately placed on the LCM for
580 sectioning using the following parameters: Energy 56 with delta 27, Focus 67 with delta -2, Cut
581 Speed 20, and Magnification 20x (Blokhina et al., 2017). Working time at room temperature for
582 each slide was no more than two hours. Five target cell types (epidermis, pith parenchyma,
583 phloem, vascular parenchyma, and xylem sclerenchyma; Supplemental Figure 3A) after isolation
584 were collected separately by catapulting into 0.2 mL tube caps containing 20 µL of RNAqueous
585 Lysis Solution (Thermo AM1912), followed by total RNA isolation. Full-length cDNA
586 synthesis, fragmentation of synthesized cDNA, and indexing were performed using SMART-
587 Seq® v4 PLUS Kit (cat# R400753) for a RNA-Seq library construction, according to the
588 manufacturer's protocol. Single-end read sequencing with the read length of 150 bp was
589 performed on NextSeq 550 Sequencing System using NextSeq 550 High Output v2 kit 150
590 cycles (cat#20024907). As a result, cell-type transcriptomes with the total read of 23870982 on
591 average were generated. Bulk RNA-Seq for the whole stem tissue from the same internodes was
592 performed following the same pipeline but without LCM-based target cell type enrichment
593 process. Sequencing for the whole stem tissue generated the average library size of 31538064
594 reads.

595

596 **Read trimming and quality check for raw FASTQ sequencing files**

597 *BBDuk* from *BBTools* suite (<https://sourceforge.net/projects/bbmap/>) was used to trim
598 raw reads. *BBDuk* removed adapter sequences from the left end of reads, low-quality bases from
599 both ends until the quality score at the operating base position reached the minimum of 10, and
600 only kept reads with a self-defined minimal length and a quality score of 10 after the first two
601 trimming steps. The minimal length in this study was defined as the one that reads equal to or
602 longer than this length constitute 95% of total reads. Removing the remaining small part (5%),
603 mainly consisting of extremely short reads, can guarantee that most of the sequencing
604 information is retained but sequencing noise introduced by them is removed. Quality check was
605 implemented using *FastQC* (Andrews, 2010) before and after the read trimming process to
606 ensure that trimmed reads have no adapter content and reach the required quality score. Reads
607 checked by *FastQC* after trimming were used for count quantification at the transcript level.

608

609 **Count quantification**

610 *Salmon* (Patro et al., 2017) mapping-based mode was used to get transcript count. First,
611 the decoy-aware transcriptome index was generated by concatenating the genome sequence to
612 the end of the transcriptome sequence as described in its supportive alignment guide
613 (<https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/>). Second, the *Salmon*
614 quantifying method was used to get transcript counts. The transcriptome and genome sequence
615 files used in the indexing process were from *Sorghum bicolor* v3.1.1 archived on *Phytozome*
616 (<https://data.jgi.doe.gov/refine-download/phytozome>). 73.1%-83.2% of reads in cell-type
617 transcriptomes after the read trimming were mapped onto the reference transcriptome by *Salmon*,
618 depending on cell type. These transcript count profiles were used for downstream UMAP
619 visualization, differentially expressed gene (DEG) analysis, Tau (τ) index calculation, and gene
620 regulatory network (GRN) construction in cell-type analysis, but with different preprocessing
621 and normalization processes (see below). Similarly, the average of 82.6% of reads in the whole
622 stem RNA-Seq ($n = 4$) was mapped by *Salmon*. This transcript count for the whole stem was
623 directly summed into gene count to compare with LCM-derived cell-type transcriptomes for the
624 expression of cell-type specific genes.

625

626 **UMAP visualization**

627 Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) was
628 used to visualize LCM samples based on their expression profiles. (1) Transcript counts derived
629 from *Salmon* were concatenated into gene counts. Genes were discarded if the number of
630 samples, where the expression of a certain gene is detected (i.e. gene count > 0), was less than a
631 ‘group size’. Group size is normally set as the number of replicates (i.e., $n = 4$ for this study).
632 However, the group size of 2 was used here to compensate for the possible adverse effect of the
633 low sequencing depth on failing to capture lowly expressed genes. This adjustment leaded to a
634 less stringent filtering criterion compared to the group size of 4. (2) Library size after gene
635 filtering was scaled to one million. Gene counts were then normalized by log transformation. (3)
636 A linear regression for each gene expression on the library size (before gene filtering) was
637 constructed to remove the effect of library size on the gene expression. The residual of each
638 linear regression was substituted for the log-normalized gene count achieved in (2) and used as
639 the new proxy for the gene count. (4) Interquartile range (IQR) was used as the criterion to
640 identify the top 2000 most variable genes. Only these genes were used for the downstream

641 dimension reduction. (5) Principal Component Analysis (PCA) was performed to get the first 20
642 Principal Components (PCs), each of which was a multiple linear regression of these 2000 genes.
643 (6) These 20 PCs were further reduced to two dimensions, on which the coordinates of all
644 samples were visualized. The above steps were performed in *R* (version 4.0.5) using basic
645 functions of '*lm*' for linear regression, '*IQR*' for interquartile range, and '*prcomp*' for PCA, and
646 using '*umap*' library for UMAP.

647

648 **DEGs between vascular bundle cells and non-vascular bundle cells.**

649 *edgeR* (Robinson et al., 2010) was used to identify differentially expressed genes (DEGs)
650 among pairwise comparisons between vascular bundle cells and non-vascular bundle cells.
651 Transcript counts derived from *Salmon* were concatenated into gene counts as the input dataset
652 for *edgeR*. A Gene filtering process was performed to remove low-expressed genes. The
653 expressions of these genes were too low to be biologically significant or be translated into a
654 functional protein. Specially, a gene was discarded if the number of samples, where the Count
655 Per Million (CPM) of this gene is at least 5, was less than the group size of 2 (see UMAP
656 visualization for group size definition). We normalized gene counts after the gene filtering
657 process using the Trimmed Mean of M values (TMM) normalization method. DEGs were
658 identified by performing the quasi-likelihood F-test (FDR < 0.05).

659

660 **Tau (τ) calculation and Wilcoxon test**

661 Tau index (Yanai et al., 2005; Kryuchkova-Mostacci & Robinson-Rechavi, 2017) was
662 used to assign cell-type specificity to each gene. Before calculating Tau, several steps were
663 conducted to get normalized gene counts. These steps include (1) transcript counts from *Salmon*
664 were used for the filtering process and TMM normalization, same with the processes in *edgeR*
665 for identifying DEGs (see above), but at the transcript level; (2) transcript counts were first
666 scaled by transcript length in the unit of kilobase, and then library size was scaled to one million;
667 (3) transcript isoform counts were combined into gene counts, which will be used in Tau
668 calculation. We performed gene concatenation after transcript count filtering and normalization
669 because it can increase the accuracy by normalizing transcript count on its transcript length
670 rather than gene length, particularly useful for some transcript isoforms with substantially
671 different transcript lengths. The Tau calculating formula can be found in Kryuchkova-Mostacci

672 et al. (2017). After getting Tau value for each gene, the Tau range of 0.8-1.0 was used to identify
673 genes with cell-type preferred expression patterns, suggested by Kryuchkova-Mostacci et al.
674 (2017). Since the Tau index does not account for variances among replicates, we applied the
675 Wilcoxon test on each gene passing the Tau threshold to evaluate whether its expression was
676 significantly higher in the cell type with the highest expression than that in other cell types ($p <$
677 0.05). Genes with the Tau of 0.8-1.0 and $p < 0.05$ in the Wilcoxon test were finally defined as
678 ‘cell-type specific genes’ (Figure 2 and Supplemental Data Set 1). Among these, genes with the
679 Tau of 1 were exclusively expressed in one cell type, thus having the highest specificity.

680

681 **BLAST to find the best hits in sorghum for known cell-type marker genes**

682 Genes with known cell-preferred expression patterns were collected from literature across
683 multiple species, including Arabidopsis, maize, and rice. *BLAST+* package (Camacho et al.,
684 2009) was used to find the best sorghum hits for these known marker genes. Peptide sequences
685 of these marker transcript isoforms in corresponding species and all sorghum transcript isoforms
686 were retrieved using *Phytozome Biomart* tool ([https://phytozome-
687 next.jgi.doe.gov/biomart/martview/12933a5a373fa2cefc11af2ecd5dfba5](https://phytozome-next.jgi.doe.gov/biomart/martview/12933a5a373fa2cefc11af2ecd5dfba5)). A sorghum protein
688 database was constructed using *makeblastdb* function. Protein BLAST (i.e., *blastp*) was
689 performed using known marker transcript peptide sequences as queries to search on the self-
690 established sorghum protein database. Critical parameters for *blastp* are “*blastp -query known-
691 marker-sequence -db sorghum-protein-database -max_target_seqs 5 -max_hsps 1 -evalue 1e-3 -
692 outfmt '7 qseqid sseqid length pident ppos qlen slen qstart qend sstart send evalue*”’. For each
693 marker transcript, only the best sorghum transcript hit(s), which has the lowest E-value and
694 passes E-value threshold of 1e-3, was treated as the best hit. BLAST was performed on the
695 isoform peptide sequence, but this result at the transcript level was finally summarized at the
696 gene level (Supplemental Data Set 2).

697

698 **Gene Ontology (GO) enrichment analysis**

699 We used *enricher* function in *ClusterProfiler* (G. Yu et al., 2012) package to perform GO
700 term enrichment analysis. Prior to the enrichment analysis, a GO annotation file for sorghum was
701 created, including not only direct GO terms but also parental GO terms (i.e., nodes at higher
702 hierarchies) for each gene. Direct GO term annotation for sorghum was achieved from

703 *PlantRegMap* (<http://plantregmap.gao-lab.org/download.php>); parental GO term annotation was
704 achieved using *buildGOMap* function in *CluseterProfiler*; information of “Term” (description of
705 GO term) and “Ontology” (BP, CC, MF) was retrieved from the *GOTERM* dataset
706 in *GO.db* package (Carlson et al., 2019). Only GO terms with $FDR < 0.05$ in the enrichment test
707 were thought of as enriched terms for the testing gene set. In our analysis, enrichment analysis
708 for cell-type specific genes usually uncovered a large number of enriched GO terms (90 on
709 average). To facilitate interpretation and visualization, these enriched GO terms were clustered if
710 gene overlap between two individual GO terms, defined as the Jaccard similarity coefficient
711 (Popescu et al., 2006), was more than 40%. The function of each enriched GO cluster was
712 manually summarized. Both enriched GO clusters and orphan GO terms that cannot be
713 connected to other GO terms were visualized in Figure 4.

714

715 **Metabolic pathway and transporter (KEGG) enrichment analysis**

716 KEGG annotations (i.e. K number) of sorghum genes were retrieved from the *Phytozome*
717 sorghum annotation file v3.1.1, where 8744 of 34129 genes in the genome have been annotated
718 with K numbers. To get a more comprehensive KEGG annotation, *BlastKOALA* (Kanehisa et
719 al., 2016) was used to assign the K number to genes that are absent of KEGG annotation. This
720 process increased the number of sorghum genes with KEGG annotations to 10917. K numbers
721 involved in the metabolic pathway and transporter category were achieved from KEGG database.
722 Fisher's exact test was implemented for enrichment analysis to estimate whether a metabolic
723 pathway or a transporter category is enriched in cell-type specific genes, compared to genome
724 background.

725

726 **Enriched motif analysis**

727 Enriched motif analysis, including known and *de novo* motifs, was performed on putative
728 promoter regions of 1500 bp upstream of ATG at the gene level. Promoter sequences of sorghum
729 genes were retrieved using *Phytozome Biomart* tool. For known motifs, we used *PlantPan 3.0*
730 promoter analysis tool to scan promoter regions to get all known motifs. Fisher's exact test was
731 performed to estimate whether genes containing a certain motif are enriched in cell-type specific
732 genes compared to the genome background ($FDR < 0.05$). For *de novo* motifs, we used *MEME*
733 to discover enriched motifs in promoter regions of cell-type specific genes. Critical parameters

734 for MEME are “*meme -mod anr -nmotifs 20 -minw 5 -maxw 30 -objfun classic -revcomp -bfile 0-*
735 *order background markov model*”. A background Markov model for 1500 bp promoters of all
736 sorghum genes was built using *RSAT create-background-tool* (http://rsat.sb-roscoff.fr/create-background-model_form.cgi). For each *de novo* enriched motif, *Tomtom* (Gupta et al., 2007) was
737 used to find the top known motif that is most and significantly similar to it so that possible
738 binding TFs can be estimated. Critical parameters for *Tomtom* are “*tomtom -no-ssc -min-overlap*
739 *5 -mi 1 -dist pearson -internal -evalue -thresh 10 -incomplete-scores CIS-*
740 *BP_2.00/Sorghum_bicolor.meme*”. TF families that can bind either known or *de novo* enriched
741 motifs were summarized as a heatmap (Figure 7B), where color darkness represents the
742 proportion of cell-type specific genes that can be bound by a TF family through enriched
743 motif(s).

745

746 **Gene regulatory network (GRN) construction**

747 In this study, we constructed different GRNs by integrating the co-expression strength
748 among gene pairs and putative TF-motif interaction to investigate regulatory landscapes of a cell
749 type and/or an interested pathways. Detail information for different GRNs on node identities,
750 edge filtering criteria, and input dataset for calculating the co-expression strength can be found in
751 Supplemental Data Set 12. Generally, we applied gene filtering and normalization processes for
752 input datasets, same with that in Tau calculation (see above). Pearson Correlation Coefficient
753 (PCC) was calculated to estimate the co-expression strength. Putative TF-motif interactions in
754 the promoter region were achieved using *PlantPan 3.0* promoter analysis tool. Edges in GRNs,
755 which connect source nodes and target nodes, were kept if they passed certain criteria set for
756 PCC (Supplemental Data Set 12) and contain putative TF-motif interactions as well. We used
757 *Cytoscape* (<https://cytoscape.org/>) for GRN visualization and network analysis.

758

759 **Accession Numbers**

760 Sequence data from this article can be found in the GenBank data libraries under accession
761 number GSE218642.

762

763 **Supplemental Data files**

764 **Supplemental Figure 1:** Stem bulk tissue combining multiple cell types demonstrated a dilution
765 effect for the expression of cell-type specific genes compared to single cell type.

766 **Supplemental Figure 2:** Distinct TF families play a dominant role in regulating common up-
767 regulated differentially expressed genes (DEGs) in vascular bundle and non-vascular bundle
768 cells.

769 **Supplemental Figure 3:** Different stem cell types of Wray were collected using LCM.

770 **Supplemental Data Set 1:** Cell-type specific genes ($0.8 \leq \text{Tau} \leq 1$ & Wilcoxon p-value < 0.05)
771 identified in this study with gene annotations of their *Arabidopsis* and rice homologs.

772 **Supplemental Data Set 2:** Known cell-type marker genes from previous studies associated with
773 sorghum stem cell-type specific genes identified in this study.

774 **Supplemental Data Set 3:** Differentially expressed genes (DEGs) from pairwise comparisons of
775 vascular bundle and non-vascular bundle cells.

776 **Supplemental Data Set 4:** Enriched Gene Ontology (GO) Biological Processes (BPs) for common
777 differentially expressed genes (DEGs) between vascular bundle and non-vascular bundle cells.

778 **Supplemental Data Set 5:** Enriched Gene Ontology (GO) Biological Processes (BPs) for cell-
779 type specific genes.

780 **Supplemental Data Set 6:** Cell-type specific genes involved in KEGG metabolic pathways.

781 **Supplemental Data Set 7:** Cell-type specific genes involved in KEGG transporter categories.

782 **Supplemental Data Set 8:** Hierarchy for TF family binding the largest proportion of cell-type
783 specific genes through enriched motifs.

784 **Supplemental Data Set 9:** Expressions of *CESA4/7/8* and their co-expressed genes in the stem
785 developmental dataset.

786 **Supplemental Data Set 10:** Expressions of genes involved in SCW formation in the stem
787 developmental dataset and LCM-derived stem cell-type dataset.

788 **Supplemental Data Set 11:** Regulatory interactions among TFs involved in SCW formation.

789 **Supplemental Data Set 12:** Node, edge and dataset for the construction of different gene
790 regulatory networks (GRNs).

791 **Supplemental Data Set 13:** Vascular bundle and non-vascular bundle GRNs.

792 **Supplemental Data Set 14:** Cell-type specific GRNs.

793 **Supplemental Data Set 15:** Cell-type specific gene and all TFs GRNs.

794 **Supplemental Data Set 16:** SCW formation GRN.

795 **Supplemental Data Set 17: SCW TF GRN.**

796

797 **Acknowledgements:** Ka Man Jasmine Yu for collecting stem samples. Austin Lamb for
798 performing stem cross-section FASGA staining. Ryan Tillman for assistance with LCM.

799

800 **Author Contributions:** GO, JM, KS, and AMC conceived the experiments; JF, BM and HM
801 analyzed the data; BJ, WC and MG developed LCM protocol and collected the samples; LMM
802 prepared libraries and performed RNA-sequencing; KMJY collected plant samples; JF, BM, BJ,
803 WC, LMM, JM, KS, and AMC wrote the manuscript; GO, JM, KS, and AMC obtained funding
804 for the project.

805

806 Jie Fu: jief3@illinois.edu

807 Brian McKinley: brian.a.mckinley@gmail.com

808 Brandon James: bjames@hudsonalpha.org

809 William Chrisler: william.chrisler@pnnl.gov

810 Lye Meng Markillie: meng.markillie@pnnl.gov

811 Matthew J Gaffrey: matthew.gaffrey@pnnl.gov

812 Hugh D Mitchell: hugh.mitchell@pnnl.gov

813 Galya Orr: galya.orr@pnnl.gov

814 Kankshita Swaminathan: kswaminathan@hudsonalpha.org

815 John Mullet: john.mullet@ag.tamu.edu

816 Amy Marshall-Colon: amymc@illinois.edu

817

818 **References**

819 Abe, M., Katsumata, H., Komeda, Y., & Takahashi, T. (2003). Regulation of shoot epidermal
820 cell differentiation by a pair of homeodomain proteins in *Arabidopsis*.

821 Abe, M., Kaya, H., Watanabe-Taneda, A., Shibuta, M., Yamaguchi, A., Sakamoto, T., et al.
822 (2015). FE, a phloem-specific Myb-related protein, promotes flowering through
823 transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T
824 INTERACTING PROTEIN 1. *The Plant Journal*, 83(6), 1059-1068.

825 Abe, M., Takahashi, T., & Komeda, Y. (2001). Identification of a cis-regulatory element for L1
826 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein.
827 *The Plant Journal*, 26(5), 487-494.

828 Alon, U. (2007). Network motifs: theory and experimental approaches. *Nature Reviews Genetics*,
829 8(6), 450-461.

830 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. In:
831 Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.

832 Anjam, M. S., Ludwig, Y., Hochholdinger, F., Miyaura, C., Inada, M., Siddique, S., & Grundler,
833 F. M. (2016). An improved procedure for isolation of high-quality RNA from nematode-
834 infected *Arabidopsis* roots through laser capture microdissection. *Plant methods*, 12(1),
835 1-9.

836 Arachchilage, M. H., Mullet, J. E., & Marshall-Colon, A. (2020). Sorghum bicolor cultivars have
837 divergent and dynamic gene regulatory networks that control the temporal expression of
838 genes in stem tissue. *bioRxiv*.

839 Ávila-Lovera, E., Zerpa, A. J., & Santiago, L. S. (2017). Stem photosynthesis and hydraulics are
840 coordinated in desert plant species. *New Phytologist*, 216(4), 1119-1129.

841 Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to
842 discover motifs in bipolymers.

843 Baroux, C., Blanvillain, R., Moore, I. R., & Gallois, P. (2001). Transactivation of BARNASE
844 under the AtLTP1 promoter affects the basal pole of the embryo and shoot development
845 of the adult plant in *Arabidopsis*. *The Plant Journal*, 28(5), 503-515.

846 Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015).
847 The *Arabidopsis* information resource: making and mining the “gold standard” annotated
848 reference plant genome. *genesis*, 53(8), 474-485.

849 Birnbaum, K., Jung, J. W., Wang, J. Y., Lambert, G. M., Hirst, J. A., Galbraith, D. W., &
850 Benfey, P. N. (2005). Cell type-specific expression profiling in plants via cell sorting of
851 protoplasts from fluorescent reporter lines. *Nature methods*, 2(8), 615-619.

852 Blokhina, O., Valerio, C., Sokołowska, K., Zhao, L., Kärkönen, A., Niittylä, T., & Fagerstedt, K.
853 (2017). Laser capture microdissection protocol for xylem tissues of woody plants.
854 *Frontiers in plant science*, 7, 1965.

855 Brooks III, L., Strable, J., Zhang, X., Ohtsu, K., Zhou, R., Sarkar, A., et al. (2009).
856 Microdissection of shoot meristem functional domains. *PLoS genetics*, 5(5), e1000476.

857 Byrt, C. S., Grof, C. P., & Furbank, R. T. (2011). C4 Plants as biofuel feedstocks: optimising
858 biomass production and feedstock quality from a lignocellulosic perspective free access.
859 *Journal of integrative plant biology*, 53(2), 120-135.

860 Calabrese, S., Pérez-Tienda, J., Ellerbeck, M., Arnould, C., Chatagnier, O., Boller, T., et al.
861 (2016). GintAMT3—a low-affinity ammonium transporter of the arbuscular mycorrhizal
862 Rhizophagus irregularis. *Frontiers in plant science*, 7, 679.

863 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
864 L. (2009). BLAST+: architecture and applications. *BMC bioinformatics*, 10(1), 1-9.

865 Carlson, M., Falcon, S., Pages, H., & Li, N. (2019). GO. db: A set of annotation maps describing
866 the entire Gene Ontology. *R package version*, 3(2), 10.18129.

867 Chen, Y., Tong, S., Jiang, Y., Ai, F., Feng, Y., Zhang, J., et al. (2021). Transcriptional landscape
868 of highly lignified poplar stems at single-cell resolution. *Genome biology*, 22(1), 1-22.

869 Chow, C.-N., Lee, T.-Y., Hung, Y.-C., Li, G.-Z., Tseng, K.-C., Liu, Y.-H., et al. (2019).
870 PlantPAN3. 0: a new and updated resource for reconstructing transcriptional regulatory
871 networks from ChIP-seq experiments in plants. *Nucleic acids research*, 47(D1), D1155-
872 D1163.

873 Coomey, J. H., Sibout, R., & Hazen, S. P. (2020). Grass secondary cell walls, *Brachypodium*
874 *distachyon* as a model for discovery. *New Phytologist*, 227(6), 1649-1667.

875 Covshoff, S., Furbank, R. T., Leegood, R. C., & Hibberd, J. M. (2013). Leaf rolling allows
876 quantification of mRNA abundance in mesophyll cells of sorghum. *Journal of*
877 *Experimental Botany*, 64(3), 807-813.

878 Deal, R. B., & Henikoff, S. (2011). The INTACT method for cell type–specific gene expression
879 and chromatin profiling in *Arabidopsis thaliana*. *nature protocols*, 6(1), 56-68.

880 Deppmann, C. D., Alvania, R. S., & Taparowsky, E. J. (2006). Cross-species annotation of basic
881 leucine zipper factor interactions: Insight into the evolution of closed interaction
882 networks. *Molecular biology and evolution*, 23(8), 1480-1492.

883 Döring, F., Streubel, M., Bräutigam, A., & Gowik, U. (2016). Most photorespiratory genes are
884 preferentially expressed in the bundle sheath cells of the C4 grass *Sorghum bicolor*.
885 *Journal of Experimental Botany*, 67(10), 3053-3064.

886 Dos Santos, J. P., Fernandes, S. B., McCoy, S., Lozano, R., Brown, P. J., Leakey, A. D., et al.
887 (2020). Novel bayesian networks for genomic prediction of developmental traits in
888 biomass sorghum. *G3: Genes, Genomes, Genetics*, 10(2), 769-781.
889 Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R.,
890 et al. (1996). Laser capture microdissection. *Science*, 274(5289), 998-1001.
891 Farmer, A., Thibivilliers, S., Ryu, K. H., Schiefelbein, J., & Libault, M. (2021). Single-nucleus
892 RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene
893 expression in *Arabidopsis* roots at the single-cell level. *Molecular Plant*, 14(3), 372-383.
894 Gautam, S., Mishra, U., Scown, C. D., & Zhang, Y. (2020). Sorghum biomass production in the
895 continental United States and its potential impacts on soil organic carbon and nitrous
896 oxide emissions. *GCB Bioenergy*, 12(10), 878-890.
897 Giacomello, S. (2021). A new era for plant science: spatial single-cell transcriptomics. *Current
898 opinion in plant biology*, 60, 102041.
899 Gomez, F. E., Muliana, A. H., Niklas, K. J., & Rooney, W. L. (2017). Identifying morphological
900 and mechanical traits associated with stem lodging in bioenergy sorghum (*Sorghum
901 bicolor*). *BioEnergy Research*, 10(3), 635-647.
902 Gomez, F. E., Muliana, A. H., & Rooney, W. L. (2018). Predicting stem strength in diverse
903 bioenergy sorghum genotypes. *Crop Science*, 58(2), 739-751.
904 Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., & Noble, W. S. (2007). Quantifying
905 similarity between motifs. *Genome biology*, 8(2), 1-9.
906 Hennet, L., Berger, A., Trabanco, N., Ricciuti, E., Dufayard, J.-F., Bocs, S., et al. (2020).
907 Transcriptional regulation of sorghum stem composition: key players identified through
908 co-expression gene network and comparative genomics analyses. *Frontiers in plant
909 science*, 11, 224.
910 Hetherington, S. E., Smillie, R. M., & Davies, W. (1998). Photosynthetic activities of vegetative
911 and fruiting tissues of tomato. *Journal of Experimental Botany*, 49(324), 1173-1181.
912 Hibberd, J. M., & Quick, W. P. (2002). Characteristics of C4 photosynthesis in stems and
913 petioles of C3 flowering plants. *Nature*, 415(6870), 451-454.
914 Hille, J., Truong, S., Olson, S., Morishige, D., & Mullet, J. (2016). Identification of Dw1, a
915 regulator of sorghum stem internode length. *PLoS one*, 11(3), e0151271.

916 Hirano, K., Kawamura, M., Araki-Nakamura, S., Fujimoto, H., Ohmae-Shinohara, K.,
917 Yamaguchi, M., et al. (2017). Sorghum DW1 positively regulates brassinosteroid
918 signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE
919 2. *Scientific reports*, 7(1), 1-10.

920 Hua, L., & Hibberd, J. M. (2019). An optimized protocol for isolation of high-quality RNA
921 through laser capture microdissection of leaf material. *Plant direct*, 3(8), e00156.

922 Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carabajosa, J., Tiedemann, J., Koj, T., &
923 Parcy, F. (2002). bZIP transcription factors in *Arabidopsis*. *Trends in plant science*, 7(3),
924 106-111.

925 Javelle, M., Klein-Cosson, C., Vernoud, V., Boltz, V., Maher, C., Timmermans, M., et al.
926 (2011). Genome-wide characterization of the HD-ZIP IV transcription factor family in
927 maize: preferential expression in the epidermis. *Plant Physiology*, 157(2), 790-803.

928 Jensen, J. K., & Wilkerson, C. G. (2017). Brachypodium as an experimental system for the study
929 of stem parenchyma biology in grasses. *PloS one*, 12(3), e0173095.

930 Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG:
931 integrating viruses and cellular organisms. *Nucleic acids research*, 49(D1), D545-D551.

932 Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools
933 for functional characterization of genome and metagenome sequences. *Journal of
934 molecular biology*, 428(4), 726-731.

935 Kebrom, T. H., McKinley, B., & Mullet, J. E. (2017). Dynamics of gene expression during
936 development and expansion of vegetative stem internodes of bioenergy sorghum.
937 *Biotechnology for Biofuels*, 10(1), 1-16.

938 Kent, J., Hartman, M. D., Lee, D. K., & Hudiburg, T. (2020). Simulated biomass sorghum GHG
939 reduction potential is similar to maize. *Environmental Science & Technology*, 54(19),
940 12456-12466.

941 Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., et al. (2015). Droplet
942 barcoding for single-cell transcriptomics applied to embryonic stem cells. *Cell*, 161(5),
943 1187-1201.

944 Koegel, S., Ait Lahmidi, N., Arnould, C., Chatagnier, O., Walder, F., Ineichen, K., et al. (2013).
945 The family of ammonium transporters (AMT) in *Sorghum bicolor*: two AMT members

946 are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal
947 fungi. *New Phytologist*, 198(3), 853-865.

948 Kryuchkova-Mostacci, N., & Robinson-Rechavi, M. (2017). A benchmark of gene expression
949 tissue-specificity metrics. *Briefings in bioinformatics*, 18(2), 205-214.

950 Kumar, M., Campbell, L., & Turner, S. (2016). Secondary cell walls: biosynthesis and
951 manipulation. *Journal of Experimental Botany*, 67(2), 515-531.

952 Li, E., Bhargava, A., Qiang, W., Friedmann, M. C., Forneris, N., Savidge, R. A., et al. (2012).
953 The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in
954 *Arabidopsis* and is functionally conserved in *Populus*. *New Phytologist*, 194(1), 102-115.

955 Li, E., Wang, S., Liu, Y., Chen, J. G., & Douglas, C. J. (2011). OVATE FAMILY PROTEIN4
956 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in *Arabidopsis*
957 *thaliana*. *The Plant Journal*, 67(2), 328-341.

958 Liu, Q., Liang, Z., Feng, D., Jiang, S., Wang, Y., Du, Z., et al. (2021). Transcriptional landscape
959 of rice roots at the single-cell resolution. *Molecular Plant*, 14(3), 384-394.

960 Liu, Y., & Douglas, C. J. (2015). A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in
961 a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in
962 *Arabidopsis thaliana*. *Plant signaling & behavior*, 10(7), e1033126.

963 Liu, Y., You, S., Taylor-Teeple, M., Li, W. L., Schuetz, M., Brady, S. M., & Douglas, C. J.
964 (2014). BEL1-LIKE HOMEO DOMAIN6 and KNOTTED ARABIDOPSIS
965 THALIANA7 interact and regulate secondary cell wall formation via repression of
966 REVOLUTA. *The Plant Cell*, 26(12), 4843-4861.

967 Liu, Z., Yu, X., Qin, A., Zhao, Z., Liu, Y., Sun, S., et al. (2022). Research strategies for single-
968 cell transcriptome analysis in plant leaves. *The Plant Journal*.

969 Lu, P., Porat, R., Nadeau, J. A., & O'Neill, S. D. (1996). Identification of a meristem L1 layer-
970 specific gene in *Arabidopsis* that is expressed during embryonic pattern formation and
971 defines a new class of homeobox genes. *The Plant Cell*, 8(12), 2155-2168.

972 Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al. (2015). Highly
973 parallel genome-wide expression profiling of individual cells using nanoliter droplets.
974 *Cell*, 161(5), 1202-1214.

975 McCormick, A., Watt, D., & Cramer, M. (2009). Supply and demand: sink regulation of sugar
976 accumulation in sugarcane. *Journal of Experimental Botany*, 60(2), 357-364.

977 McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., et al. (2018).
978 The Sorghum bicolor reference genome: improved assembly, gene annotations, a
979 transcriptome atlas, and signatures of genome organization. *The Plant Journal*, 93(2),
980 338-354.

981 McKinley, B., Rooney, W., Wilkerson, C., & Mullet, J. (2016). Dynamics of biomass
982 partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation
983 during development of Sorghum bicolor. *The Plant Journal*, 88(4), 662-680.

984 Meents, M. J., Watanabe, Y., & Samuels, A. L. (2018). The cell biology of secondary cell wall
985 biosynthesis. *Annals of Botany*, 121(6), 1107-1125.

986 Mullen, A. C., Orlando, D. A., Newman, J. J., Lovén, J., Kumar, R. M., Bilodeau, S., et al.
987 (2011). Master transcription factors determine cell-type-specific responses to TGF- β
988 signaling. *Cell*, 147(3), 565-576.

989 Multani, D. S., Briggs, S. P., Chamberlin, M. A., Blakeslee, J. J., Murphy, A. S., & Johal, G. S.
990 (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3
991 mutants. *Science*, 302(5642), 81-84.

992 Nakazono, M., Qiu, F., Borsuk, L. A., & Schnable, P. S. (2003). Laser-capture microdissection, a
993 tool for the global analysis of gene expression in specific plant cell types: identification
994 of genes expressed differentially in epidermal cells or vascular tissues of maize. *The
995 Plant Cell*, 15(3), 583-596.

996 Noble, J. A., Seddon, A., Uygun, S., Bright, A., Smith, S. E., Shiu, S.-h., & Palanivelu, R.
997 (2022). The SEEL motif and members of the MYB-related REVEILLE transcription
998 factor family are important for the expression of LORELEI in the synergid cells of the
999 Arabidopsis female gametophyte. *Plant Reproduction*, 35(1), 61-76.

1000 Oliver, J., Fan, M., McKinley, B., Zemelis-Durfee, S., Brandizzi, F., Wilkerson, C., & Mullet, J.
1001 E. (2021). The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane
1002 trafficking, and MLG/xylan cell wall localization in elongating stem internodes of
1003 Sorghum bicolor. *The Plant Journal*, 105(4), 1053-1071.

1004 Olson, S. N., Ritter, K., Rooney, W., Kemanian, A., McCarl, B. A., Zhang, Y., et al. (2012).
1005 High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy
1006 crops. *Biofuels, Bioproducts and Biorefining*, 6(6), 640-655.

1007 Ordonio, R. L., Ito, Y., Hatakeyama, A., Ohmae-Shinohara, K., Kasuga, S., Tokunaga, T., et al.
1008 (2014). Gibberellin deficiency pleiotropically induces culm bending in sorghum: an
1009 insight into sorghum semi-dwarf breeding. *Scientific reports*, 4(1), 1-10.
1010 Paterson, A. H., Kong, W., Johnston, R. M., Nabukalu, P., Wu, G., Poehlman, W. L., et al.
1011 (2020). The evolution of an invasive plant, Sorghum halepense L.('Johnsongrass').
1012 *Frontiers in genetics*, 11, 317.
1013 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast
1014 and bias-aware quantification of transcript expression. *Nature methods*, 14(4), 417-419.
1015 Petrik, D. L., Karlen, S. D., Cass, C. L., Padmakshan, D., Lu, F., Liu, S., et al. (2014). p-
1016 Coumaroyl-C o A: monolignol transferase (PMT) acts specifically in the lignin
1017 biosynthetic pathway in B rachypodium distachyon. *The Plant Journal*, 77(5), 713-726.
1018 Pierre-Jerome, E., Drapek, C., & Benfey, P. N. (2018). Regulation of division and differentiation
1019 of plant stem cells. *Annual review of cell and developmental biology*, 34, 289.
1020 Pires, R. C., Ferro, A., Capote, T., Usié, A., Correia, B., Pinto, G., et al. (2022). Laser
1021 Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis.
1022 *Molecular Biotechnology*, 1-14.
1023 Popescu, M., Keller, J. M., & Mitchell, J. A. (2006). Fuzzy measures on the gene ontology for
1024 gene product similarity. *IEEE/ACM Transactions on computational biology and*
1025 *bioinformatics*, 3(3), 263-274.
1026 Robinson, M., McCarthy, D., & Smyth, G. K. (2010). edgeR: differential expression analysis of
1027 digital gene expression data. *Bioinformatics*, 26(1), 139-140.
1028 Rogers, E. D., Jackson, T., Moussaieff, A., Aharoni, A., & Benfey, P. N. (2012). Cell type-
1029 specific transcriptional profiling: implications for metabolite profiling. *The Plant*
1030 *Journal*, 70(1), 5-17.
1031 Rosa, S., Ntoukakis, V., Ohmido, N., Pendle, A., Abranchedes, R., & Shaw, P. (2014). Cell
1032 differentiation and development in *Arabidopsis* are associated with changes in histone
1033 dynamics at the single-cell level. *The Plant Cell*, 26(12), 4821-4833.
1034 Satterlee, J. W., Strable, J., & Scanlon, M. J. (2020). Plant stem-cell organization and
1035 differentiation at single-cell resolution. *Proceedings of the National Academy of Sciences*,
1036 117(52), 33689-33699.

1037 Schütze, K., & Lahr, G. (1998). Identification of expressed genes by laser-mediated
1038 manipulation of single cells. *Nature biotechnology*, 16(8), 737-742.

1039 Schürholz, A.-K., López-Salmerón, V., Li, Z., Forner, J., Wenzl, C., Gaillochet, C., et al. (2018).
1040 A comprehensive toolkit for inducible, cell type-specific gene expression in Arabidopsis.
1041 *Plant Physiology*, 178(1), 40-53.

1042 Scully, E. D., Gries, T., Sarath, G., Palmer, N. A., Baird, L., Serapiglia, M. J., et al. (2016).
1043 Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary
1044 cell wall composition in Sorghum bicolor. *The Plant Journal*, 85(3), 378-395.

1045 Shi, D., Jouannet, V., Agustí, J., Kaul, V., Levitsky, V., Sanchez, P., et al. (2021). Tissue-
1046 specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local
1047 cellular signatures. *The Plant Cell*, 33(2), 200-223.

1048 Shiono, K., Yamauchi, T., Yamazaki, S., Mohanty, B., Malik, A. I., Nagamura, Y., et al. (2014).
1049 Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin
1050 in the outer part of roots during formation of a barrier to radial oxygen loss in rice (*Oryza*
1051 *sativa*). *Journal of Experimental Botany*, 65(17), 4795-4806.

1052 Simkin, A. J., López-Calcagno, P. E., & Raines, C. A. (2019). Feeding the world: improving
1053 photosynthetic efficiency for sustainable crop production. *Journal of Experimental*
1054 *Botany*, 70(4), 1119-1140.

1055 Sivaguru, M., Liu, J., & Kochian, L. V. (2013). Targeted expression of Sb MATE in the root
1056 distal transition zone is responsible for sorghum aluminum resistance. *The Plant Journal*,
1057 76(2), 297-307.

1058 Takahashi, H., Kamakura, H., Sato, Y., Shiono, K., Abiko, T., Tsutsumi, N., et al. (2010). A
1059 method for obtaining high quality RNA from paraffin sections of plant tissues by laser
1060 microdissection. *Journal of plant research*, 123(6), 807-813.

1061 Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009). mRNA-Seq
1062 whole-transcriptome analysis of a single cell. *Nature methods*, 6(5), 377-382.

1063 Taylor-Teeple, M., Lin, L., De Lucas, M., Turco, G., Toal, T., Gaudinier, A., et al. (2015). An
1064 Arabidopsis gene regulatory network for secondary cell wall synthesis. *Nature*,
1065 517(7536), 571-575.

1066 Teixeira, R., & Pereira, H. (2010). Laser Microdissection applied to plants. *Microscopy: Science,*
1067 *Technology, Applications and Education; Formatec Research Center: Badajoz, Spain,*
1068 986-992.

1069 Thoma, S., Hecht, U., Kippers, A., Botella, J., De Vries, S., & Somerville, C. (1994). Tissue-
1070 specific expression of a gene encoding a cell wall-localized lipid transfer protein from
1071 *Arabidopsis. Plant Physiology, 105*(1), 35-45.

1072 Truong, S. K., McCormick, R. F., & Mullet, J. E. (2017). Bioenergy sorghum crop model
1073 predicts VPD-limited transpiration traits enhance biomass yield in water-limited
1074 environments. *Frontiers in plant science, 8*, 335.

1075 Uygun, S., Azodi, C. B., & Shiu, S.-H. (2019). Cis-regulatory code for predicting plant cell-type
1076 transcriptional response to high salinity. *Plant Physiology, 181*(4), 1739-1751.

1077 Uygun, S., Seddon, A. E., Azodi, C. B., & Shiu, S.-H. (2017). Predictive models of spatial
1078 transcriptional response to high salinity. *Plant Physiology, 174*(1), 450-464.

1079 Wang, J., Li, Y., Wai, C. M., Beuchat, G., & Chen, L. Q. (2021). Identification and analysis of
1080 stem-specific promoters from sugarcane and energy cane for oil accumulation in their
1081 stems. *GCB Bioenergy, 13*(9), 1515-1527.

1082 Wang, S., Yamaguchi, M., Grienenberger, E., Martone, P. T., Samuels, A. L., & Mansfield, S. D.
1083 (2020). The Class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence
1084 deposition of secondary cell walls that provide mechanical support to *Arabidopsis* stems.
1085 *The Plant Journal, 101*(2), 293-309.

1086 Wang, Y., Huan, Q., Li, K., & Qian, W. (2021). Single-cell transcriptome atlas of the leaf and
1087 root of rice seedlings. *Journal of Genetics and Genomics, 48*(10), 881-898.

1088 Watt, D. A., McCormick, A. J., & Cramer, M. D. (2013). Source and sink physiology.
1089 *Sugarcane: physiology, biochemistry, and functional biology, 483-520.*

1090 Wu, L., & Birch, R. G. (2007). Doubled sugar content in sugarcane plants modified to produce a
1091 sucrose isomer. *Plant biotechnology journal, 5*(1), 109-117.

1092 Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shkler, M., Ophir, R., et al. (2005).
1093 Genome-wide midrange transcription profiles reveal expression level relationships in
1094 human tissue specification. *Bioinformatics, 21*(5), 650-659.

1095 Yang, J.-Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., & Chua, N.-H. (2008). β C1, the
1096 pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and
1097 suppress selective jasmonic acid responses. *Genes & Development*, 22(18), 2564-2577.

1098 Yaschenko, A. E., Fenech, M., Mazzoni-Putman, S., Alonso, J. M., & Stepanova, A. N. (2022).
1099 Deciphering the molecular basis of tissue-specific gene expression in plants: Can
1100 synthetic biology help? *Current opinion in plant biology*, 68, 102241.

1101 Yin, W., Mendoza, L., Monzon-Sandoval, J., Urrutia, A. O., & Gutierrez, H. (2021). Emergence
1102 of co-expression in gene regulatory networks. *PloS one*, 16(4), e0247671.

1103 Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: an R package for comparing
1104 biological themes among gene clusters. *Omics: a journal of integrative biology*, 16(5),
1105 284-287.

1106 Yu, K. M. J., McKinley, B., Rooney, W. L., & Mullet, J. E. (2021). High planting density
1107 induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in
1108 bioenergy sorghum. *Scientific reports*, 11(1), 1-13.

1109 Yu, K. M. J., Oliver, J., McKinley, B., Weers, B., Fabich, H. T., Evetts, N., et al. (2022).
1110 Bioenergy sorghum stem growth regulation: Intercalary meristem localization,
1111 development and gene regulatory network analysis. *The Plant Journal*.

1112 Zanetti, M. E., Chang, I.-F., Gong, F., Galbraith, D. W., & Bailey-Serres, J. (2005).
1113 Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of
1114 gene expression. *Plant Physiology*, 138(2), 624-635.

1115 Zhang, C., Barthelson, R. A., Lambert, G. M., & Galbraith, D. W. (2008). Global
1116 characterization of cell-specific gene expression through fluorescence-activated sorting of
1117 nuclei. *Plant Physiology*, 147(1), 30-40.

1118 Zhong, R., Lee, C., Zhou, J., McCarthy, R. L., & Ye, Z.-H. (2008). A battery of transcription
1119 factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. *The
1120 Plant Cell*, 20(10), 2763-2782.

1121

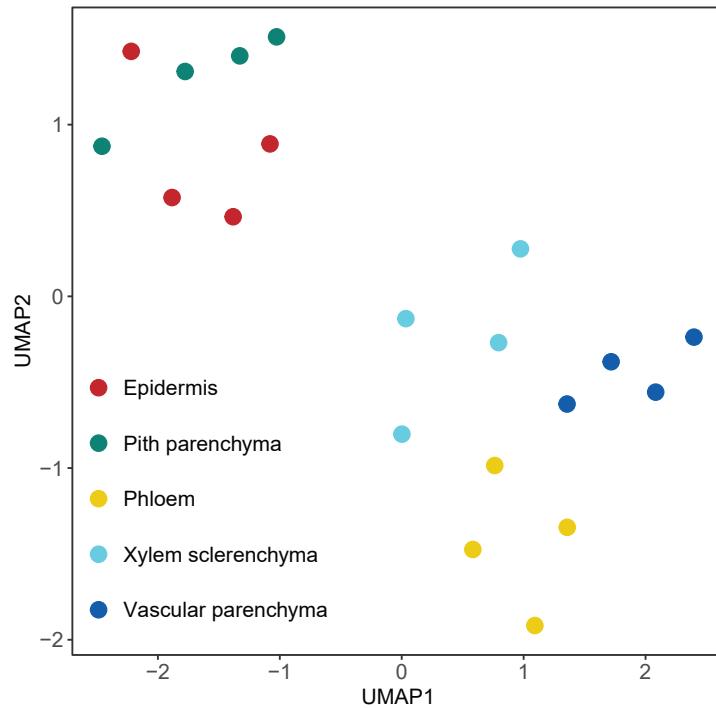


Figure 1 Dimension reduction UMAP plot showed a clear separation of five stem cell types, which form two large groups of vascular bundle cells (phloem, vascular parenchyma, and xylem sclerenchyma) and non-vascular bundle cells (epidermis and pith parenchyma).

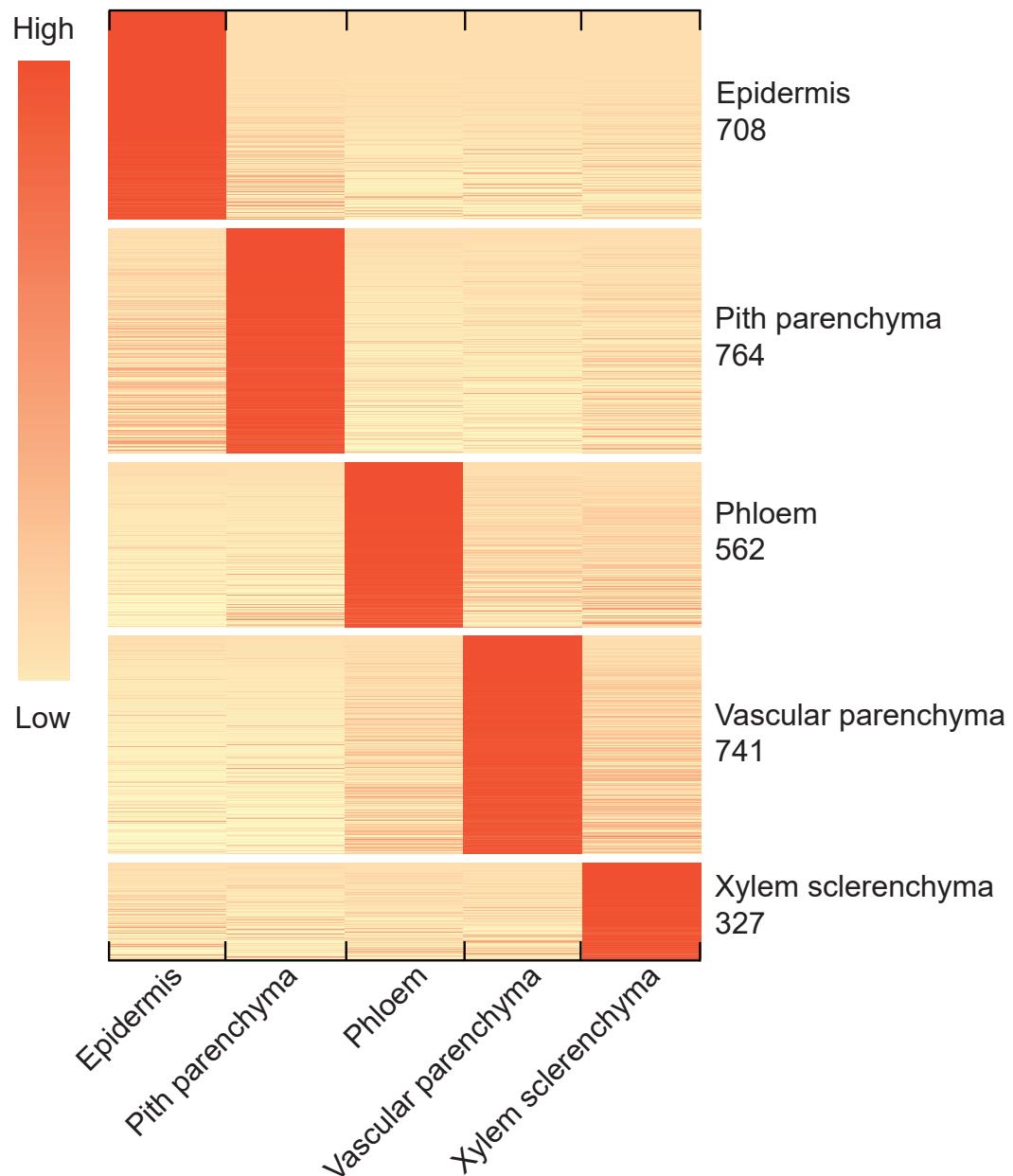


Figure 2 Cell-type specific genes were identified from the LCM-derived cell-type transcriptome dataset by applying the Tau index and Wilcoxon test. In the heatmap, gene expressions were centered and scaled by row.

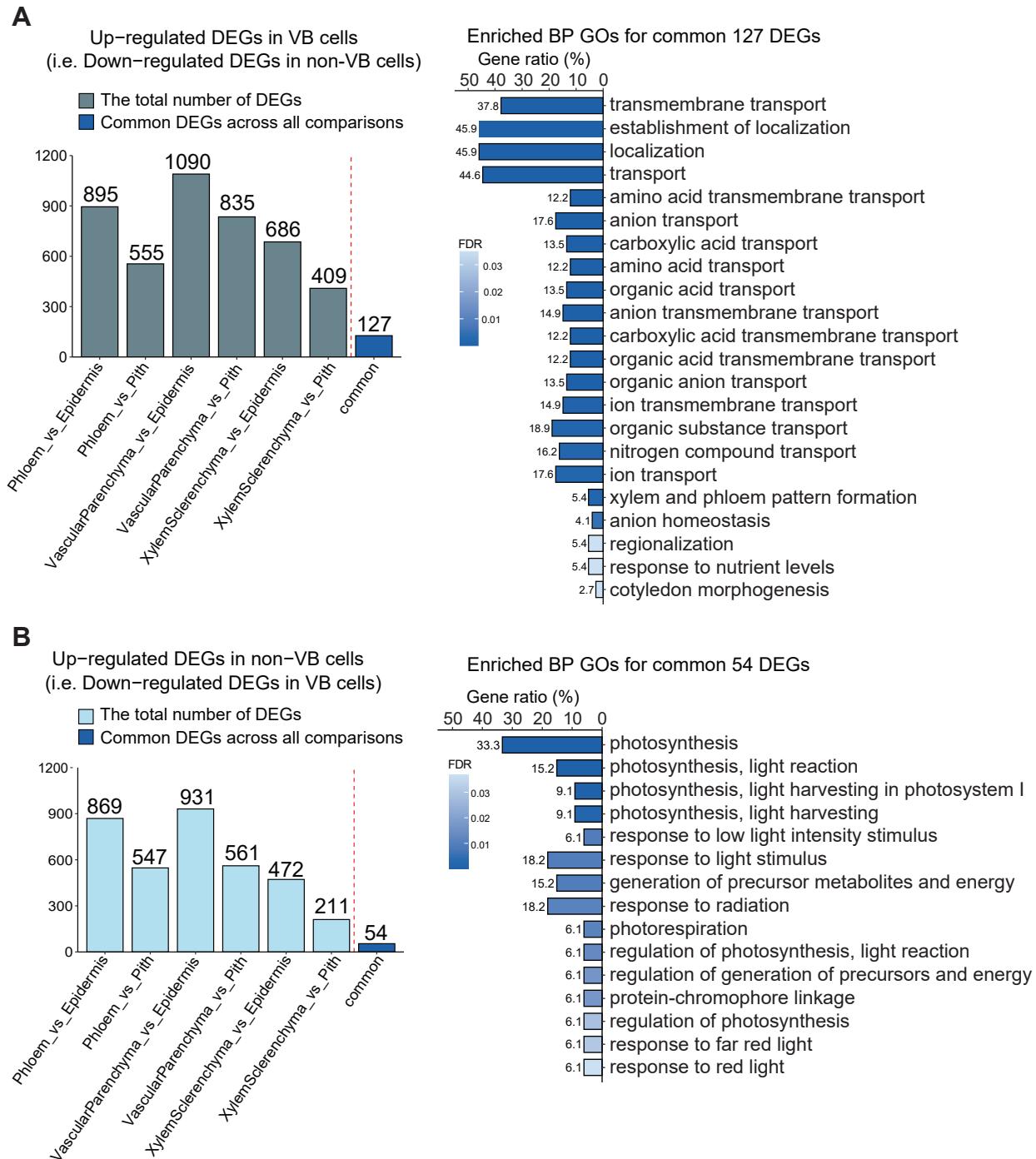


Figure 3 Common differentially expressed genes (DEGs) across cell-type pairwise comparisons of vascular bundle cells (phloem, vascular parenchyma, and xylem sclerenchyma) and non-vascular bundle cells (epidermis and pith parenchyma) imply that these two tissue types can be distinguished by transport-related and photosynthesis-related functions. (A) and (B) Up-regulated DEGs identified by *edgeR* ($FDR < 0.05$) and their enriched Gene Ontology (GO) Biological Process (BP) functions ($FDR < 0.05$) in vascular bundle (VB) cells (A) and non-VB cells (B). Bars labeled with 'common' are intersections of all pairwise comparisons.

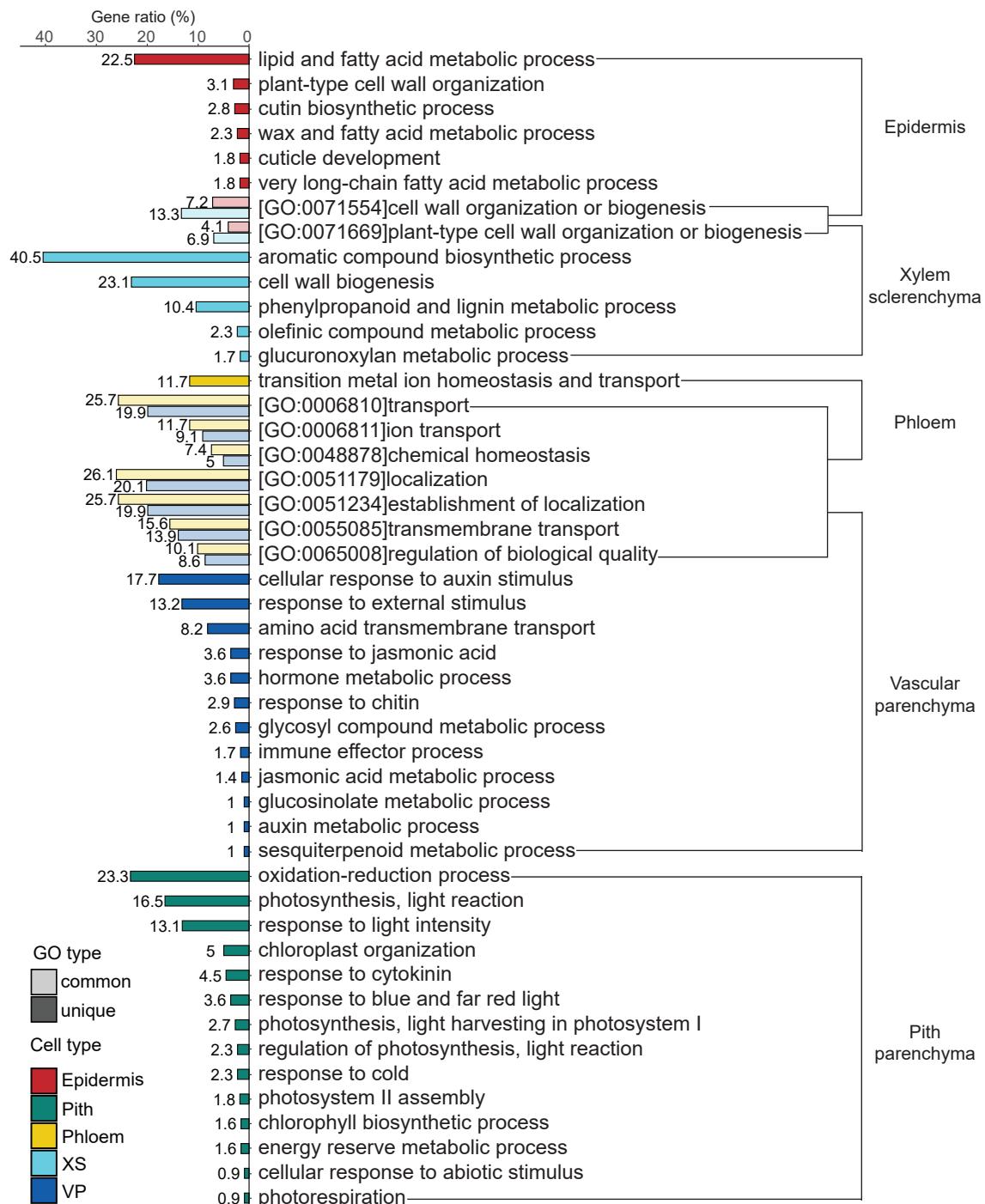


Figure 4 Cell-type specific genes are enriched in common (transparent colors) and unique (solid colors) Gene Ontology (GO) Biological Process (BP) functions (FDR < 0.05). Enriched GO terms were clustered if the overlap ratio of genes involved in these GO terms (Jaccard similarity coefficient) was more than 40%, followed by manually summarizing the function of each cluster (see method). Both GO clusters and orphan GO terms that cannot form a cluster are included in this plot. The X-axis represents the proportion of DEGs involved in this GO cluster or orphan GO term out of cell-type specific genes with GO annotations. The complete list of enriched GO terms can be found in Supplemental Table 5.

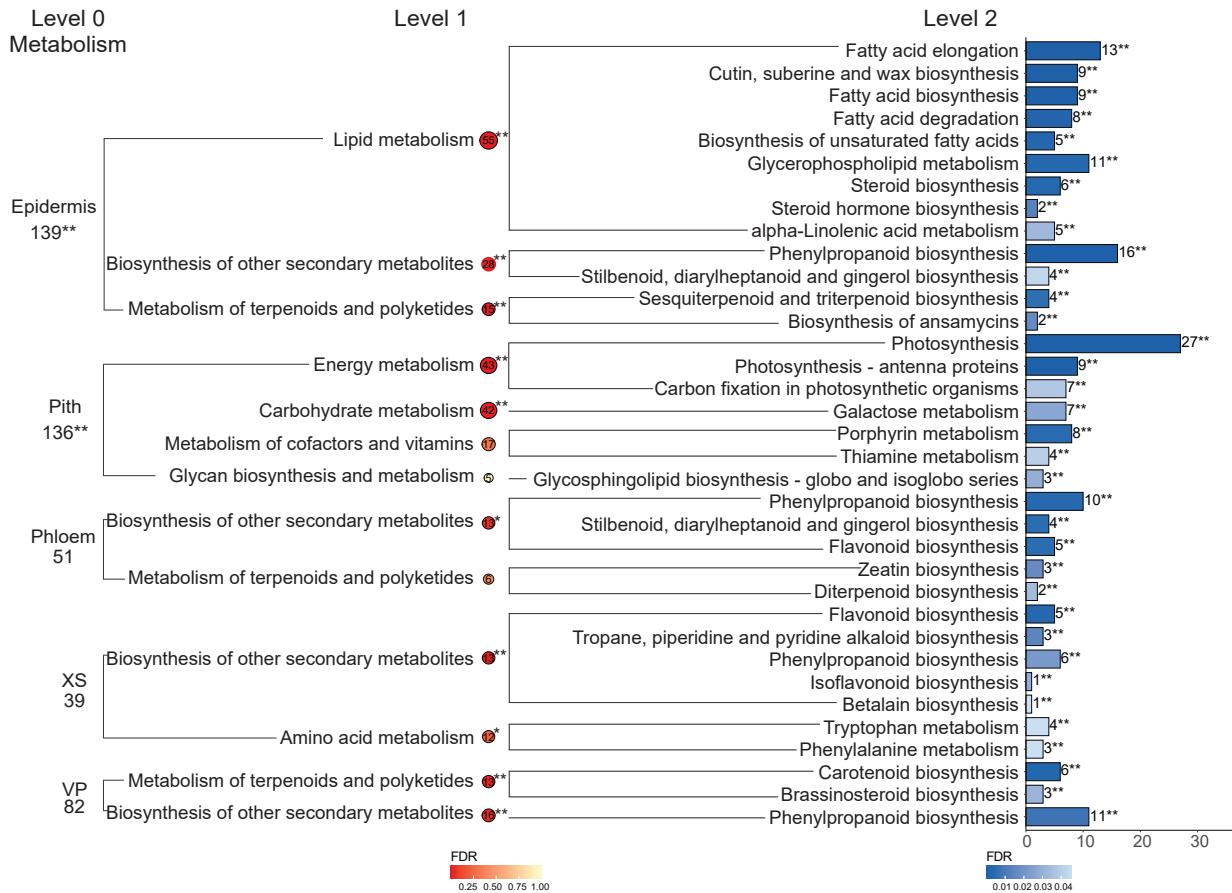
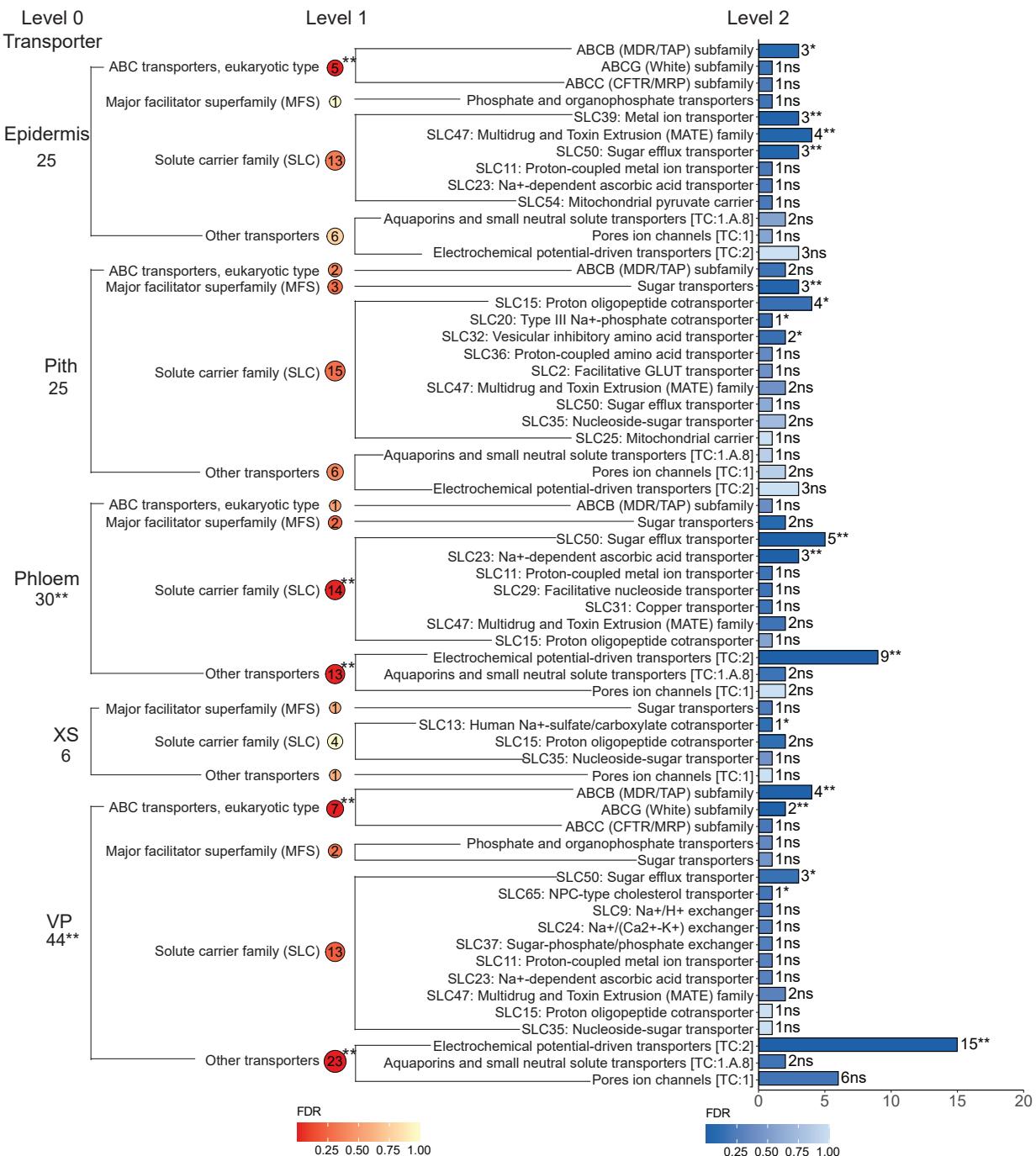



Figure 5 Cell-type specific genes are enriched in distinct metabolic processes defined in KEGG database. Pathways at different levels are shown as cell-type names for level0, bubbles for level1, and bars for level2, respectively. This plot only includes enriched level2 pathways (Fisher's exact test, FDR < 0.05, labelled with “**”) due to the large number of defined pathways in KEGG, on which based its level1 pathway at the higher level is added into the plot or not. “**” and “*” represent significance levels of FDR < 0.05 and p-value < 0.05, respectively. Pathways (level1 and 2) and cell types (level0) without an asterisk indicate that they are not enriched. The complete result including gene identities and non-enriched pathways can be found in Supplemental Table 6. ‘VP’ represents ‘vascular parenchyma’ and ‘XS’ represents ‘xylem sclerenchyma’.

Figure 6 Cell-type specific genes are enriched in distinct transporter categories defined in KEGG database. Transporters at different levels are shown as cell-type names for level0, bubbles for level1, and bars for level2, respectively. This plot includes all the transporter categories regardless of enrichment significance, different from Figure5. “**”, “*” and “ns” represent significance levels of FDR < 0.05, p-value < 0.05, and not significant, respectively. The complete result including gene identities can be found in Supplemental Table 7. ‘VP’ represents ‘vascular parenchyma’ and ‘XS’ represents ‘xylem sclerenchyma’.

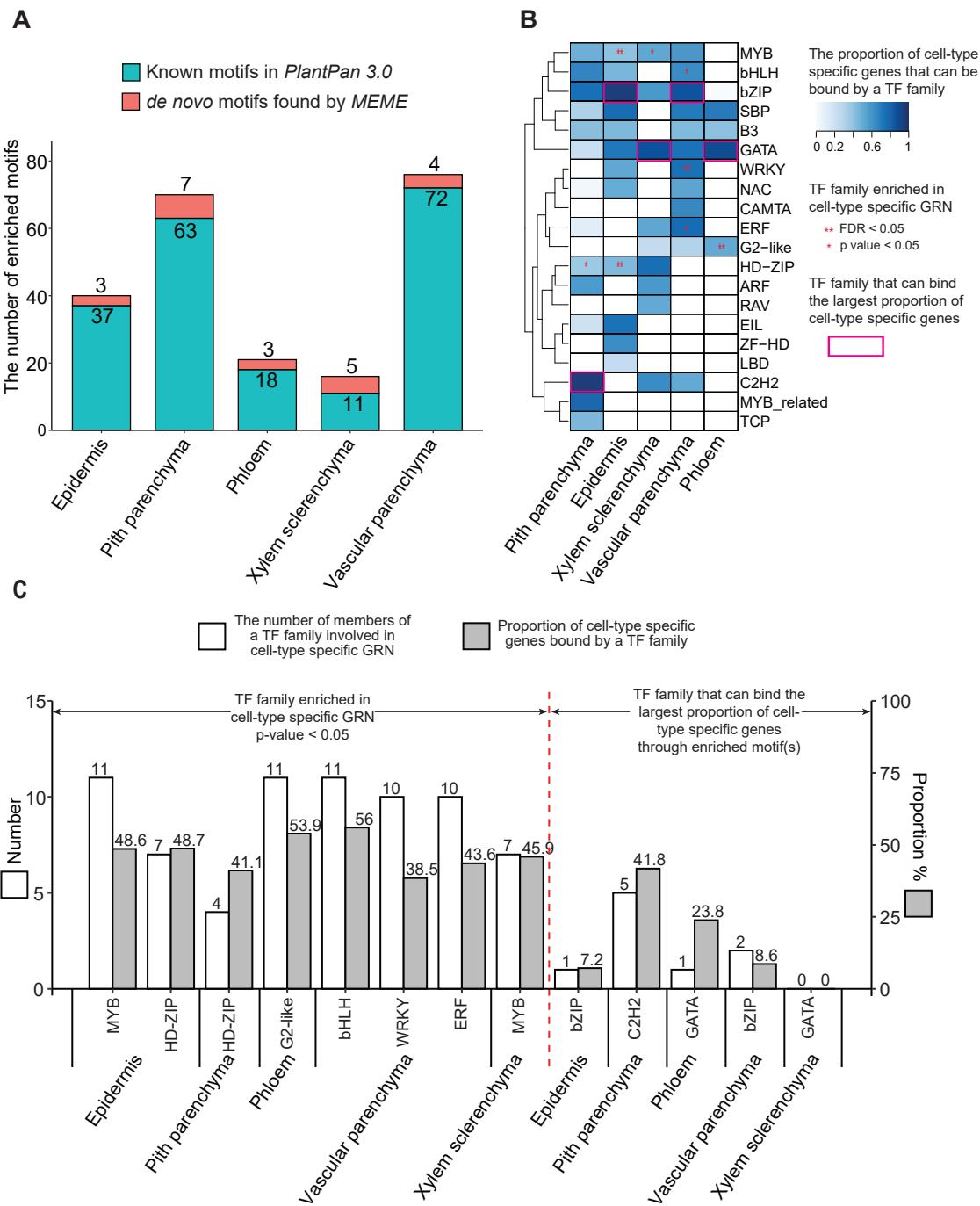


Figure 7 Transcription factor (TF) families could regulate cell-type specific genes by binding enriched motif(s) occurring in 1500bp promotor regions. (A) Cell-type specific genes are enriched in known motifs archived in *PlantPan 3.0* (green bars, Fisher's exact test) and *de novo* motifs discovered by *MEME* (red bars). (B) Distinct TF families can regulate cell-type specific genes through binding known and *de novo* motif(s). Some TF families are enriched in cell-type specific GRNs (Fisher's exact test). (C) TF families (labelled with asterisk in panel B) that are enriched in cell-type specific GRNs tend to directly regulate more cell-type specific genes than TF families (labelled with pink rectangle) that can bind the largest proportion of cell-type specific genes through enriched motifs.

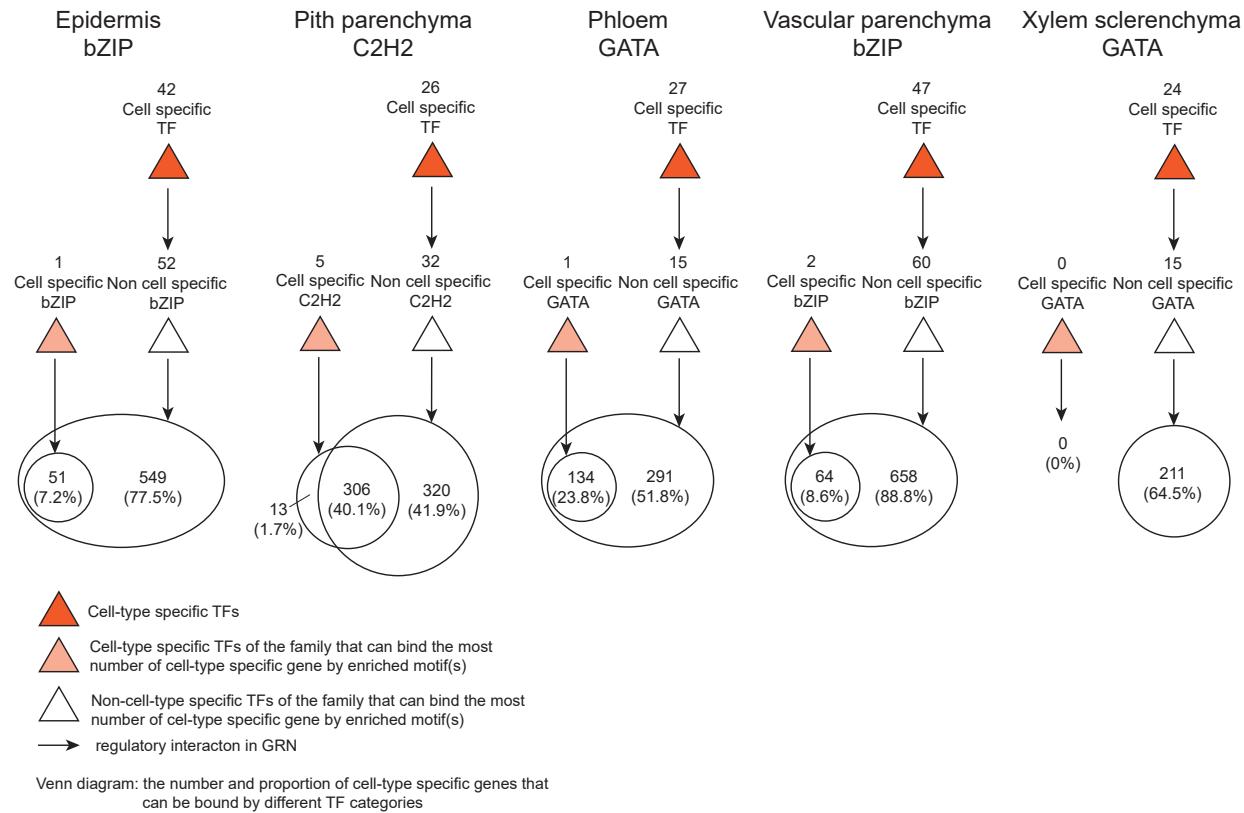


Figure 8 Cell-type specific TFs can regulate cell-type specific genes directly, or indirectly using non-cell-type specific TFs as intermedia. TF families involved in this plot are ones (labelled with pink rectangle in Figure 7B) that can bind the largest proportion of cell-type specific genes through enriched motifs.



Figure 9 Secondary cell wall (SCW) TFs have cell-type preferred expression patterns and can differentially regulate genes involved in SCW formation, which helps explain the differential SCW pattern among cell types. **(A)** A FASGA-stained cross-section of the stem internode of Wray, the same as internodes collected for LCM-derived transcriptomes. Lignin was stained in red. ‘Ep’ for epidermis; ‘PP’ for pith parenchyma; ‘Ph’ for phloem; ‘VP’ for vascular parenchyma; ‘XS’ for xylem sclerenchyma. **(B)** The regulatory role and expression pattern of SCW TFs. Dark blue boxes represent regulatory interactions between SCW TFs (on the row) and SCW genes (on the column). SCW genes are grouped as biosynthetic pathways in which they are mainly involved. ‘GAX’ for glucuronoarabinoxylan; ‘TBL’ for Trichome Birefringence Like proteins; ‘FLA’ for Fasciclin-Like Arabinogalactan proteins. The heatmap on the right side is TMM-normalized TPM expressions of SCW TFs in the LCM-derived stem cell-type transcriptome dataset. Gene expressions are centered and scaled by row.

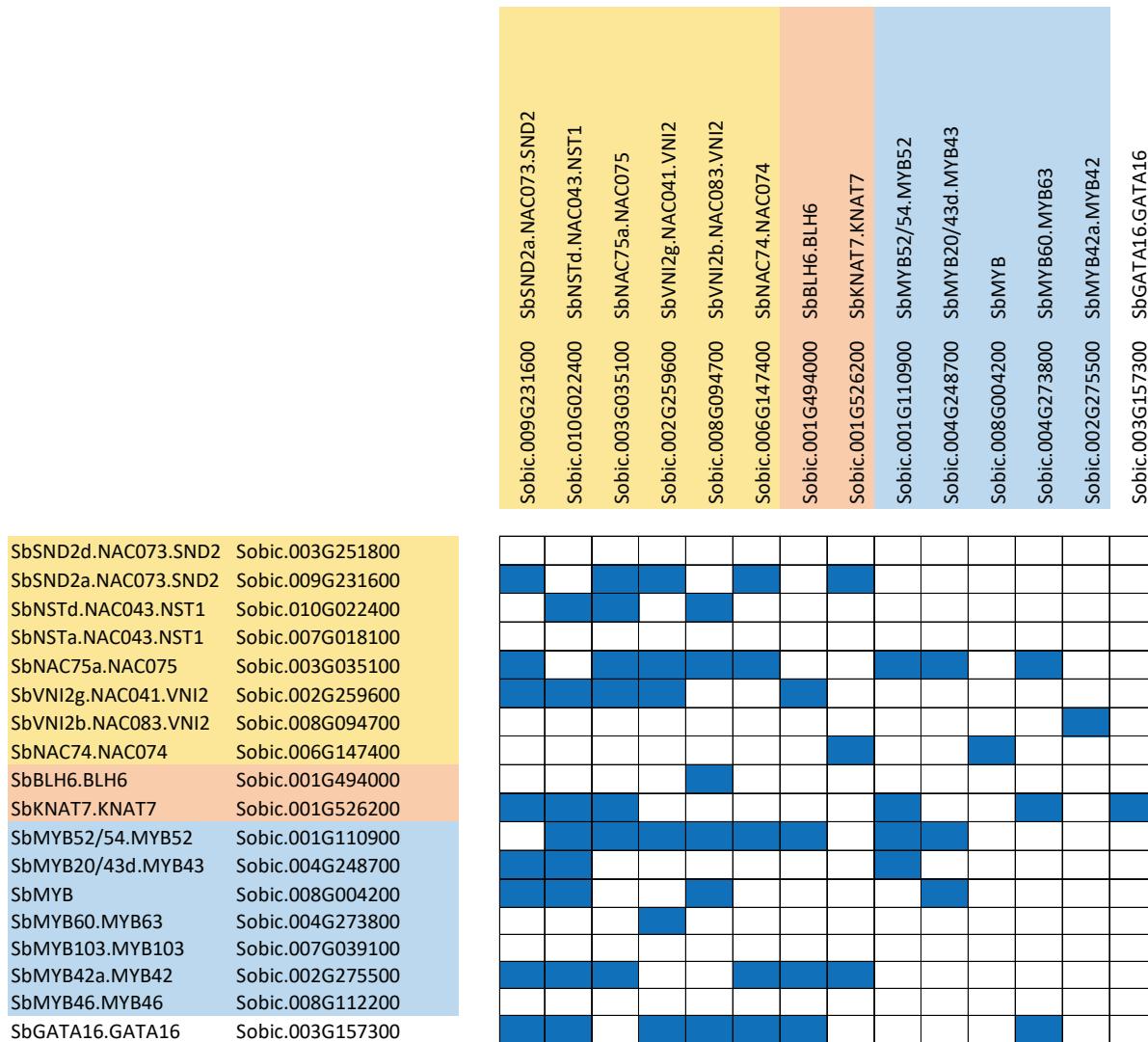


Figure 10 The regulatory landscape among SCW TFs. Dark blue boxes represent regulatory interactions among these TFs.