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Abstract13

The perceptual salience of a sound depends on the acoustic context in which it appears, and can14

vary on a timescale of milliseconds. At the level of single neurons in the auditory cortex,15

spectrotemporal tuning for particular sounds is shaped by a similarly fast and systematic16

nonlinear sensitivity to acoustic context. Does this neuronal context sensitivity "drift" over time in17

awake animals, or is it a stable feature of sound representation in the auditory cortex? We used18

chronically implanted tetrode arrays in awake mice to measure the electrophysiological19

responses of auditory cortical neurons to spectrotemporally complex, rapidly varying sounds20

across many days. For each neuron in each recording session, we applied the nonlinear-linear21

"context model" to estimate both a principal (spectrotemporal) receptive field and a "contextual22

gain field" describing the neuron’s nonlinear sensitivity to acoustic context. We then quantified23

the stability of these fields within and across days, using spike waveforms to match neurons24

recorded in multiple sessions. Contextual gain fields of auditory cortical neurons in awake mice25

were remarkably stable across many days of recording, and comparable in stability to principal26

receptive fields. Interestingly, there were small but significant effects of changes in locomotion or27

pupil size on the ability of the context model to fit temporal fluctuations in the neuronal response.28

We conclude that both spectrotemporal tuning and nonlinear sensitivity to acoustic context are29

stable features of neuronal sound representation in the awake auditory cortex, which can be30

modulated by behavioral state.31

32

Introduction33

Are sensory receptive fields of neurons in auditory cortex of adult animals fundamentally stable34

properties? Decades of research has shown that auditory cortical receptive fields in adult animals35

can be altered by behavioral training or by shifts in auditory attention (for reviews seeWeinberger,36

2007; Fritz et al., 2007; Irvine, 2018). However, the long-term baseline stability of auditory cortical37
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receptive-field structure in adult animals is less well studied — especially for nonlinear features38

of the receptive fields, such as sound combination sensitivity and other forms of modulation by39

acoustic context. Here we analyze the long-term stability of nonlinear context sensitivity as well as40

spectrotemporal tuning in auditory cortical receptive fields of awake mice, using chronic electro-41

physiological recording and nonlinear stimulus-response function estimation.42

The stability of sensory cortical response properties in awake animals has recently become43

a hot topic in debates about the nature of "representational drift" (Clopath et al., 2017; Driscoll44

et al., 2022; Marks and Goard, 2021). In the auditory cortex, long-term two-photon calcium imag-45

ing studies in awakemice have reported "representational drift" in population responses to sound46

stimuli (Kato et al., 2015; Chambers et al., 2022; Aschauer et al., 2022). Notably, this "drift" appears47

to arise primarily from changes in whether individual neurons respond to their preferred stimuli,48

rather than changes in their stimulus preferences when responsive (see for instance Supplemen-49

tary Figure 5 in Chambers et al., 2022). However, the slowness of the calcium signal makes it diffi-50

cult to reconstruct details of auditory cortical receptive fields, and therefore difficult to determine51

the extent to which spectrotemporal tuning and combination sensitivity might remain consistently52

stable in individual neurons when they are responsive. Sound patterns that evoke the same re-53

sponse from a neuron on the slow timescale of calcium signalling could evoke different responses54

measured at the fast timescale of neuronal spiking. Thus, previous calcium imaging studies in au-55

ditory cortex have not resolved questions about whether auditory cortical receptive fields in adult56

animals remain stable across days when measured with the millisecond temporal resolution most57

relevant to auditory perception.58

Previous electrophysiological studies have reported that spectrotemporal tuning of auditory59

cortical neurons can remain stable for many hours — but to the best of our knowledge, no studies60

have investigated the long-term stability of nonlinear sensitivity to acoustic context. Elhilali et al.61

(2007) used reverse-correlation techniques to obtain repeated estimates of linear spectrotemporal62

receptive fields (STRFs) from neuronal responses to complex sounds in awake, passively listening63

ferrets, and found that STRF structure of individual neurons remained relatively stable acrossmany64

hours of recording. Similarly, Grana et al. (2009) reported that STRFs recorded from neurons in65

field L (avian auditory cortex) were stable for hours in awake, passively listening songbirds. Other66

electrophysiological studies focusing on more basic measures of spectrotemporal selectivity, such67

as frequency tuning and spike timing statistics, have suggested that neuronal response properties68

might be stable for days or weeks in awake animals implanted with electrode arrays (Williams69

et al., 1999;Witte et al., 1999). How stable are spectrotemporal receptive fields of auditory cortical70

neurons in awake animals across days or weeks? And how stable are nonlinear features of auditory71

cortical receptive fields, such as sound combination sensitivity andmodulation by acoustic context?72

To address these questions, we analyzed the stability of auditory cortical receptive-field struc-73

ture in awake, passively listening mice across days of chronic electrophysiological recording, using74

the nonlinear-linear "context model" (Williamson et al., 2016) to estimate both spectrotemporal75

tuning and contextual sensitivity of auditory cortical neurons from their spiking responses to com-76

plex sounds. Unlike the STRF and commonly used linear-nonlinear models of auditory cortical77

responses (reviewed in Meyer et al., 2017), the context model allows for nonlinear integration of78

spectrotemporal elements within a complex stimulus (for example, nonlinear forward suppres-79

sion or two-tone interactions). The context model includes both an STRF-like principal receptive80

field (PRF), with dimensions of sound frequency and time preceding the neuronal response, and a81

contextual gain field (CGF), with dimensions of frequency offset and time offset for sound combi-82

nations that modulate input gain. The PRF represents the spectrotemporal tuning of the neuron,83

while the CGF represents its contextual sensitivity — i.e., how the responsiveness of a neuron to84

a tonal element within a complex sound is affected by the acoustic context in which that element85

appears. Hence, the CGF captures suppressive or facilitatory effects of sound combinations, which86

modulate the gain of the neuron’s response to each sound element falling within the PRF. Estima-87

tion of PRF and CGF parameters from neuronal responses to a complex sound is an experimentally88

2 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2023.04.22.537782doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.22.537782
http://creativecommons.org/licenses/by-nc-nd/4.0/


efficient and relatively stimulus-agnostic means of determining both spectrotemporal tuning and89

nonlinear sensitivity to acoustic context (Williamson et al., 2016;Meyer et al., 2017).90

We report that neuron-specific patterns of nonlinear contextual sensitivity as well as spec-91

trotemporal tuning remain stable across multiple days in awake, passively listening mice. We also92

observe significant but very small effects of changes in locomotion or pupil size on the ability of93

the context model to fit temporal fluctuations in auditory cortical responses. These results sug-94

gest that auditory cortical neurons can maintain consistent receptive fields for many days, despite95

some modulation by spontaneous behavioral state. Moreover, the findings indicate that nonlin-96

ear tuning to acoustic context is a robust and remarkably stable feature of the neural code in the97

awake auditory cortex.98

Results99

We chronically implantedmale CBA/Camice withmulti-tetrode arrays, using a tangential approach100

to the auditory cortex. We used the tetrodes to record extracellularly from auditory cortical neu-101

rons in awake, head-fixed mice, while also measuring running behavior and pupil diameter, while102

the animals listened passively to noise bursts, tone pips and dynamic random chord (DRC) stimuli103

(Figure 1). Two DRC stimuli, each consisting of 15 continuous repetitions of a 45-s-long DRC trial,104

were presented within each recording session. We conducted multiple recording sessions at each105

recording site, repeating exactly the same stimulation and recording protocol on different days. In106

4 mice we obtained high-quality auditory cortical recordings from multiple recording sites across107

at least 5 days for each site, which could be used to assess stability of neuronal responses over108

time.109

Recordings were spike-sorted to distinguish single units from likely multi-units (see Materials110

and Methods). Recording sites in core auditory areas were then identified as those producing unit111

recordings with significant and short-latency (≤ 20 ms) responses to tone pips (Supplementary112

Figure 1). The core auditory dataset (314 single units, 199 multi-units) included units that either113

directly fulfilled these criteria or were recorded on the same tetrode at the same time (and hence114

at the same location) as another unit that fulfilled the criteria.115

Wematchedneuronal recordings obtainedovermultiple different days by analyzing spikewave-116

form similarity in tetrode recordings. To do so we customized a waveform-matching technique117

introduced by Tolias et al. (2007), which quantifies the difference between two sets of spike wave-118

forms using twometrics, 𝑑1 and 𝑑2. The formermeasures differences in shape between spike wave-119

forms and the latter measures differences in scale. We improved upon the original approach by es-120

tablishing a null distribution (in dimensions of 𝑑1 and 𝑑2) reflecting differences between definitively121

non-matched units, recorded using the same tetrode but from sites spaced at least 250 microns122

apart (Figure 2A). We used parameters of this null distribution to distinguish likely from unlikely123

matched pairs in the experimental dataset, which consisted of spike waveforms recorded using124

the same tetrode on different days at the same recording site (Figure 2B–C; see also Materials and125

Methods).126

We obtained 637 matches, some made between units recorded as long as 3 weeks apart. As127

expected, most waveform matches were made across 1–4 elapsed days (Figure 2D, histogram),128

because most recordings from the same site were obtained across 5 consecutive days. However,129

some of the intervals between recordings at the same site were much longer, and we saw no130

evidence for an overall decline in the fraction of waveformmatches at longer intervals. For record-131

ings separated by weeks, the percentage of waveform comparisons producing matches could be132

as high as for recordings separated by 1–4 days (Figure 2D, dotted line).133

Neuronal sensitivity to acoustic context in awake mice conserves main features134

seen in anesthetized mice135

For consistencywith a previous study of neuronal CGF structure in anesthetized animals (Williamson136

et al., 2016), we included in the context model analysis all units in the core auditory dataset for137
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Figure 1. Experimental setup, auditory stimuli, recording strategy, and stability assessment. A.Illustration of experimental setup. Single-unit and multi-unit recordings were obtained from the auditorycortex of awake mice using a chronically implanted 8-tetrode array. Mice were head-fixed but were able torun on a rotating cylinder. Simultaneous neuronal recordings and measurements of running speed and pupildiameter were obtained during repeated presentations of noise bursts, tone pips, and dynamic randomchord (DRC) stimuli. Responses to noise bursts and tone pips were used to identify core auditory corticalareas. Responses to DRC stimuli were used to estimate contextual gain fields (CGFs) and principal receptivefields (PRFs) using the context model. B. Schematic illustrations of noise bursts (top), tones (middle), and DRCexcerpt (bottom). A full DRC stimulus lasted 675 s, and consisted of 15 continuous repetitions of a 45-s-longsequence of 20-ms random chords. C. Schematic representation of the experimental design. Recordingswere obtained from the same site for multiple days before tetrodes were advanced to sample new sites. Notethe repetition of the full sequence of stimulus presentations (1 segment) within each session. D. Conceptualillustration of methodology used for assessing stability of the context model fits. On each day of recording,the full DRC stimulus was played twice, once in each segment (upper left). CGF or PRF estimates fromdifferent days and/or different segments (field𝑗,𝑘, where 𝑗=day and 𝑘=segment) were compared both withinand between sessions to obtain a similarity matrix (right). Within-session similarities are on the diagonal (ingreen and yellow) and the average estimates of the across-session similarities (lower left) are on theoff-diagonals (in brown).

which the signal power in the neuronal response to the DRC stimulus was at least one standard138

error greater than zero (a total of 142 single units and 127multi-units). Signal power is the stimulus-139

dependent power in the neural response — i.e., the portion of the temporal variability in the140

response that is preserved from trial to trial, and that is at least in principle predictable from a141

stimulus-response function model. As in previous work (Sahani and Linden, 2002b; Ahrens et al.,142

4 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2023.04.22.537782doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.22.537782
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8
d1 (shape)

0

5

10

15

20

25

d 2
 (s

ca
lin

g)

0 2 4 6 8
d1 (shape)

0

5

10

15

20

25

d 2
 (s

ca
lin

g)

0 8 16 24
Days between recordings

0
50

100
150

M
at

ch
es

6

12

18

Pe
rc

en
ta

ge
 m

at
ch

ed

matches
not matches

A B

C D

Figure 2. Spike waveforms matched across multiple days using pairwise waveform distances. See textfor explanation of waveform distance metrics 𝑑1 and 𝑑2. A. Null distribution. Scatterplot shows (𝑑2, 𝑑1) spikewaveform distances for pairwise comparisons (n=6574) between spike waveforms for unit recordings knownto be non-matched (obtained using the same tetrode but from sites located at least 250 microns apart). Theellipse represents the 99% confidence interval (CI) for the null distribution, estimated by fitting a 2D Gaussianto the data. Marginal distributions were obtained using kernel density estimation. B. Experimentaldistribution. Scatterplot shows (𝑑2, 𝑑1) spike waveform distances for pairwise comparisons (n=5594) betweenspike waveforms for unit recordings obtained using the same tetrode on different recording days at the samerecording site. A Gaussian mixture model was fitted to the experimental data using theExpectation-Maximization (EM) algorithm with two clusters. One of the clusters was fixed to the nulldistribution estimated in A. Ellipses show the 99% CIs for the null (blue) and the experimental (red)distributions. We conservatively defined a waveform pair to be "matched" (i.e., likely to be coming from thesame unit) if the waveform distance fell within the experimental but outside the null 99% CI. Colored dotscorrespond to the example matched and non-matched waveform pairs shown in C. C. Examples of spikewaveform pairs. The pairs in the first two columns were identified as matches, whereas those in the latter twocolumns were not. D. Number of matches as a function of the temporal separation between the tworecordings. Dotted gray line shows percentage of total comparisons which were matches. Note that thenumber of waveform pairs identified as matches was highest for recordings occurring 1–4 days apart, but thiswas primarily because the number of pairwise waveform comparisons was highest for recordings occurring asmall number of days apart. The percentage of waveform comparisons producing a match could be just ashigh for recordings made weeks apart as days apart, indicating that prolonged tetrode recordings from thesame site could be stable.

2008; Williamson et al., 2016), we defined noise power as the remaining, stimulus-independent143

part of the response, encompassing any variability that is not repeatable across identical trials.144

Context model parameters can be estimated effectively for any neuronal response with signifi-145

cantly non-zero signal power, regardless of noise power. Nevertheless, the signal-to-noise power146

ratio (SNR) provides a useful quantitative index of selectivity for the DRC stimulus in the recorded147

population. Figure 3A shows the SNR values for all units in the dataset, and Figure 3B–F provides148

examples of DRC responses for units with different SNRs. Note that both single-unit and multi-149

5 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2023.04.22.537782doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.22.537782
http://creativecommons.org/licenses/by-nc-nd/4.0/


unit recordings yielded DRC responses with SNRs spanning the entire SNR range observed in the150

population.151

To examine features of contextual sensitivity in auditory cortical neurons of awake mice, we152

first fit a single context model for each unit, pooling all the DRC responses recorded from that153

unit across multiple days of recording in the awake animal. Procedures for estimating the PRF and154

CGF parameters in the context model are described in Materials and Methods. Figure 3G depicts155

example PRFs and CGFs from three units, and Figure 3H shows the average CGF across all units156

and animals. This average CGF illustrates the most common features of contextual sensitivity in157

auditory cortical neurons of awake, passively listeningmice, and it is consistent with that previously158

reported byWilliamson and Polley (2019) specifically for neurons in layers 5 and 6 of awakemouse159

auditory cortex.160

Notably, contextual sensitivities of auditory cortical neurons in awake passively listening mice161

were also qualitatively similar to those previously described in anesthetizedmice (Williamson et al.,162

2016). Like the average CGF for anesthetized mice shown in that reference, the average CGF for163

awakemice (Figure 3H) exhibited (i) narrowband delayed suppression (blue region centred on zero164

frequency offset and extending over negative time offsets) and (ii) near-simultaneous broadband165

facilitation (red areas at zero time offset and large frequency offsets on either side of the target166

tone). However, the narrowband delayed suppression observed previously in anesthetized mice167

peaked at and extended to longer time offsets than was observed in awake mice here (and by168

Williamson and Polley, 2019).169

Neuronal sensitivity to acoustic context is stable across days of recording in awake170

mice171

We next examinedwhether both spectrotemporal tuning and contextual sensitivity of auditory cor-172

tical neurons were stable over time in awake mice. To do so, we compared different estimates of173

PRFs or CGFs obtained from the same unit within and across recording sessions, using the spike-174

waveform-matching technique described previously to track units across multiple days of record-175

ing at the same recording site. Within-session comparisons of repeated PRF or CGF estimates176

provided ameasure of short-term test-retest reliability, while across-session comparisons allowed177

us to measure long-term stability of spectrotemporal tuning and contextual sensitivity.178

As demonstrated by the examples in Figure 4A-C, the structure of both PRFs and CGFs was179

often remarkably consistent across recording days. We calculated the normalized dot product180

(field correlation) between repeated PRF or CGF estimates obtained for the same unit to assess181

consistency of neuron-specific structure. Correlation between repeated PRF or CGF estimates for182

the same unit could be nearly as high across days as within recording sessions (Figure 4D-F).183

To examine stability of PRFs and CGFs across the neuronal population, we first quantified simi-184

larity using a normalized field alignment index, where 1.0 indicates across-session similarity equiva-185

lent to that observed for within-session comparisons for each unit, and 0.0 indicates similarity no186

higher than the expected baseline for the population (i.e., the similarity that would be expected for187

comparisons between fields from different units). The field alignment index was calculated as 𝛽−𝛾
𝛼−𝛾

,188

with terms defined as follows for CGFs (and equivalently for PRFs). For each unit, we defined the189

within-session similarity 𝛼 to be the average correlation between CGFs estimated within the same190

recording session (i.e., the average across central diagonal values inmatrices shown in Figure 4D-E).191

Likewise, we defined the unit’s across-session similarity 𝛽 for sessions n days apart to be the average192

of the correlation values for all CGF estimates from recordings made n days apart (i.e., the average193

across values in an offset diagonal in matrices shown in Figure 4D-E). Finally, we estimated baseline194

similarity 𝛾 by comparing the CGF for the unit to CGFs from other units recorded from the same195

animal.196

Analysis of field alignment indices for the recorded population revealed that most PRFs and197

CGFs were as stable across days of recording as they were within a single recording session (Fig-198

ure 5). Indeed, as shown by the extended, nearly horizontal trajectories of some of the colored199
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Figure 3. Neuronal responses to the DRC stimulus used to estimate PRF and CGF structure in awake
mice. A. Signal power normalized by noise power (SNR) for neuronal responses to the DRC stimulus, for allunits that qualified for further analysis given our selection criteria (see text). Units are sorted in order ofascending SNR. Single units are shown in red, multi-units in blue. B. Spectrographic reresentation of the final1.5 s of the 45-s-long DRC stimulus used. Each shaded rectangle represents a 20-ms tone pulse, with darkershades corresponding to louder tone pips (see colorbar). C-F. Trial-by-trial spike rasters (top) and histogramsof spiking rate (bottom), describing the responses of four example units to the DRC excerpt in B. Histogrambins are aligned with the 20-ms chords of the DRC. Units were taken from a point in the distribution in Aindicated by the arrows. Time is shown relative to the beginning of the stimulus for the trial. G. Example PRFs(left) and CGFs (right) for three different units (each row is one unit). Yellow and cyan areas in the PRFsrepresent excitatory and inhibitory regions of the time-frequency receptive field respectively. In the CGFs,axes are time offset and frequency offset relative to a "target" tone represented by the notch at 𝜏=0 and 𝜙=0,which can be any tonal element in the DRC stimulus. Red and blue areas in the CGF indicate amplifying ordampening effects (respectively) of acoustic energy at that relative position on the gain of the neuron’sresponse to a target tone. In other words, the CGF depicts modulation of neuronal responsiveness by soundcombinations, as a function of time and frequency differences between the tonal elements in thecombinations. H. Average CGF across all units and animals (center). For units recorded across multiple days,we included in this average a single CGF estimated from all the available data for the unit. Line plots alongmargins show: (left) gain profile as a function of frequency offset between tone pips, averaged across timeoffsets; (bottom) gain profile as a function of time offset between tone pips, averaged across frequencyoffsets; and (right) gain profile as a function of frequency offset for the 0–20-ms time-bin alone (i.e., fornear-simultaneous tone pips). Error bars indicate standard error of the estimated population means.
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Figure 4. Examples of quantification of PRF and CGF stability across recording days. A-C. Example PRF(top row) and CGF (bottom row) pairs for neurons matched across recording sessions. The within-sessionrepetition of the 675-s-long DRC run allowed us to estimate two PRFs and two CGFs for each session. For eachexample, PRFs are identically scaled to the maximum change in firing rate shown in the PRF colorbar. CGFweights at each value of (𝜙, 𝜏) represent the change in gain induced in the response to a sound at the (0,0)notch point if one of the loudest tones of the DRC were to fall at the corresponding (𝜙, 𝜏) location (colorscorrespond to gain change shown on the CGF colorbar). Like PRFs, CGFs are identically scaled within andacross sessions for each example. Time runs from left to right and is in recording sessions conducted onseparate but not necessarily consecutive days; numerals across the top of panel A indicate number ofrecording sessions following the initial session. Note the remarkable consistency of both CGF and PRFstructure, which is nearly as high across days as within sessions. D-F. Heatmaps showing the normalized dotproduct (i.e., field correlation) between the PRFs (orange) or between the CGFs (green) shown in A-C,respectively. Diagonals indicate the within-session comparisons, off-diagonals the across-session (i.e.,across-day) comparisons. Higher values indicate higher correlation in structure. The correlation color scalewas set to 0.70–1.00 (rather than 0.00–1.00) to maximize visibility of small differences in the generally highcorrelation values.

lines in Figure 5, some units maintained within-session levels of stability in neuron-specific PRF200

and CGF structure across recording sessions as long as three weeks apart.201

Similar stability was evident in analysis of the raw correlation values (i.e., 𝛼 for 0 days between202

recordings, 𝛽(𝑛) for recordings n days apart). For reasons explained in Materials and Methods,203

we used the raw correlation values rather than the normalized field alignment indices for popu-204

lation analysis of PRF and CGF stability. For both PRFs and CGFs, correlation between fields esti-205

mated from the sameunit’s responses recorded on different dayswere typically 0.8-1.0, evenwhen206
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Figure 5. Population data on stability of PRFs and CGFs: normalized field alignment indices. A-B.Stability of PRFs (A) and CGFs (B) quantified using a normalized field alignment index, where 1.0 indicatessimilarity equivalent to the field correlation observed for within-session comparisons for each unit, and 0.0indicates baseline field correlation expected for comparisons between PRFs or CGFs obtained from differentunits (see text for details). Data points on day 0 represent the within-session comparison; subsequent pointsrepresent comparisons across different numbers of days. Each colored line represents a unit; the solid blackline is the median across units. Insets show zoomed-in views of the bulk of the data, between days 0 and 5.Normalized field alignment remained close to 1.0 across sessions for most PRFs and CGFs, indicating thatneuron-specific PRF and CGF structure was preserved for many days in most neurons.

recordings were separated by weeks (Figure 6A-B). To illustrate the dominant trends, Figure 6C and207

D show the lines of best fit to the field correlation values for each unit’s PRF or CGF respectively,208

computed as a function of days between recordings using weighted regression. Note that a slope209

of -0.2 for this best-fit line would correspond to loss of field correlation across 5 days, which was210

the most common time range over which our repeated recordings were made. As demonstrated211

in Figure 6E and F, the best-fit line slopes were significantly higher than -0.2 for almost all units212

(68/69 PRFs, 64/69 CGFs with slope estimates at least 2 standard errors greater than -0.2). More-213

over, for both PRFs and CGFs, the slopes were often statistically indistinguishable from zero (29/69214

PRFs, 49/69 CGFs with slope estimates within 2 standard errors of 0). Thus, most PRFs and CGFs215

were stable on a timescale that substantially exceeded the range of our measurements.216

Further analysis confirmed the conclusion that PRFs and CGFs were both remarkably stable217

properties of neuronal responses. For example, using the slope of the line of best fit to the field218

correlation values across recording intervals (Figure 6) as a measure of stability, we found that219

the distribution of unit-by-unit differences in PRF and CGF stability was strongly peaked at zero220

(Figure 7A). We also analyzed relationships between the slope measure of PRF and CGF stability221

and properties of the neuronal response to the DRC stimulus. There was no significant correlation222

between PRF or CGF stability and either the mean evoked firing rate or the signal-to-noise power223

ratio of the neuronal response to the DRC stimuli. There was a weak positive correlation between224

PRF stability and the normalized predictive power of the context model (Spearman’s 𝑟ℎ𝑜 = 0.3,225

𝑝 = 0.014), but no significant relationship for CGF stability. Thus, PRF and CGF structure appeared226
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to be similarly stablewithin units and relatively robust to across-unit variation in neuronal response227

properties or model fits.228

Changes in locomotion or pupil size have significant but small effects on context229

model fits to neuronal responses230

Given that neuron-specific CGF and PRF structure tended to be stable for days in awake mice, we231

wondered if there was any effect of the animal’s behavioral state on the context model fits, and232
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Figure 7. Further analysis of PRF and CGF stability. A. Histogram of unit-by-unit differences between thePRF and CGF slope estimates from the correlation-based stability analysis shown in Figure 6. Note clusteringof values near zero (dotted line). B-D. Slopes of best-fit lines from correlation-based stability analysis for PRFs(orange) and CGFs (green), plotted versus: mean firing rate evoked by the DRC stimulus (B); signal-to-noisepower ratio in the neuronal response (C); and normalized predictive power of the context model fit (D). Therewas no apparent relationship between PRF/CGF stability and firing rate or signal-to-noise power ratio. Thestability of PRFs showed a weak positive correlation with normalized predictive power (Spearman’s 𝑟ℎ𝑜 = 0.3,
𝑝 = 0.014), whereas that of CGFs did not.

by extension, on the spectrotemporal tuning and contextual sensitivities of the neurons. Previ-233

ous studies have found that excitability of auditory cortical neurons decreases during locomotion234

(Schneider et al., 2014) and either increases with pupil dilation or exhibits non-monotonic depen-235

dence on pupil size (McGinley et al., 2015; Schwartz et al., 2020). These changes in neuronal ex-236

citability with behavioral state are known to modulate the gain and variability of auditory cortical237

responses to sound, but do not necessarily affect stimulus selectivity (Schwartz et al., 2020). We238

therefore asked whether context model fits might be robust to changes in locomotion and pupil239

size in awake mice.240

We recorded locomotor activity and pupil size along with auditory cortical activity in the vast241

majority of our experiments (Figure 1), and observed behavioral associations and changes in neu-242

ronal excitability consistent with previous reports. For example, in line with previous work (e.g.:243

Reimer et al., 2014; Schneider et al., 2014), we found that locomotor activity was associated with244

pupil dilation in mice, and evoked firing rates tended to be smaller when the mouse was moving245

than when it was still (data not shown).246

To investigate how changes in locomotor activity and pupil size affected context model fits, we247

compared the residuals from model predictions between different behavioral states. Neuronal248

responses to multiple repetitions of a 45-s-long DRC trial were required to fit each context model,249

and behavioral variables like locomotion and pupil size varied on a much faster timescale than the250

DRC trial length (Figure 8A). Hence, it was not feasible to fit different context models to entire DRC251

trials when the mouse was still versus moving or when the pupil was small versus large. Instead,252

we analyzed how the moment-by-moment error in context model predictions depended on the253
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Figure 8. Small but significant effects of locomotor activity and pupil dilation on context model fits. A.Observed spiking activity of a single unit (top, black) overlaid with the context model prediction (top, red).Underneath is a trace showing the difference between the two (i.e., the residual, shown in grey, measured inspikes). Dotted black line indicates zero residual. Further below is the pupil diameter (measured as aproportion relative to eye width), and below it a trace of the animal’s running activity over the same period oftime. B. Interquartile range (IQR) of the residuals for individual units recorded when the mice were still versusmoving (i.e., timebins when running cylinder rotation speed was zero versus non-zero). Dotted black lineindicates diagonal where the IQRs are equal. Note that more data points fall below than above the line, butthat most data points are very close to the diagonal. C. Residual IQRs for units recorded when the pupil sizewas small versus large (i.e., pupil diameter less than or greater than the median pupil diameter for therelevant recording sessions). Conventions and observations as in B.

animal’s behavioral state. For each unit, we fit a context model to all DRC responses recorded from254

the cell; calculated the difference between the observed neuronal response and context model255

prediction for each 20-ms time bin in all DRC recordings; and then compared the interquartile256

range (IQR) and median of these residuals for time bins when the animal was still versus moving257

or when the pupil was small versus large (see Materials and Methods for further details).258

Analysis of the residual IQRs showed that the ability of the context model to predict tempo-259

ral variation in auditory cortical responses was significantly, but minimally, affected by changes260

in locomotor activity and pupil size (Figure 8, B and C respectively). An increase in residual IQR261

implies poorer prediction of fluctuations in firing rate driven by the DRC stimulus. Comparisons262

between behavioral states revealed that residual IQRs were significantly higher when the animal263

was moving or the pupil was large (Wilcoxon sign-rank tests, 𝑝 = 1.5𝑥10−26 for the locomotion data,264

𝑝 = 2.7𝑥10−13 for the pupil data). However, effect sizes were extremely small in both cases (Cohen’s265

𝑑, 0.09 for the locomotion data and 0.07 for the pupil data). Moreover, the balance of the resid-266

ual IQRs between the behavioral states improved when the dataset was restricted to single-unit267

recordings (e.g., proportion of units above the diagonal rose from 0.31 to 0.34 for the locomotion268
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data and from 0.35 to 0.40 for the pupil data). We therefore conclude that behavioral state had sig-269

nificant but very small effects on the ability of the context model to predict temporal fluctuations270

in auditory cortical responses to the DRC stimulus. In Supplementary Figure 2, we also report small271

but significant effects of behavioral state on the median residuals from context model predictions;272

however these results are more difficult to relate to PRF/CGF structure because unlike residual273

IQRs, median residuals depend not only on the PRF/CGF structure but also on a constant offset274

term in the model related to prediction of overall mean firing rate.275

In sum, these analyses indicate that context model fits were significantly influenced by changes276

in locomotor activity or pupil size in awake mice, but that effect sizes were small. More detailed277

analyses of the influence of behavioral state on CGF/PRF structure will require further experiments278

in which animals are trained or motivated to maintain particular behavioral states for prolonged279

periods, so that separate context models can be estimated for each state.280

Discussion281

Our results indicate that auditory cortical neurons in awake mice maintain remarkably stable pat-282

terns of nonlinear sensitivity to combinations of sound input. Individual neurons recorded across283

many days displayed consistent nonlinear contextual sensitivity (CGF structure) which was stable284

across many days and comparable in stability to spectrotemporal tuning (PRF structure). In fact,285

for most auditory cortical neurons, the projected timescale for stability of neuron-specific CGF286

(and PRF) structure was well beyond the timeframe of the repeated measurements performed287

here. Average CGF structure in awake mice was qualitatively similar to that observed previously in288

anesthetized mice (Williamson et al., 2016). Notably, however, the ability of the CGF/PRF model to289

fit temporal fluctuations in the neuronal response was significantly modulated by behavioral state290

in awake mice, although effect sizes were very small. These observations support the conclusion291

that both spectrotemporal tuning and nonlinear sensitivity to acoustic context are stable features292

of auditory cortical receptive fields, which can be at least partially modified by behavioral state. In-293

terestingly, recent two-photon imaging studies in the visual cortex have drawn similar conclusions294

regarding the stability of orientation tuning, size tuning and surround suppression (Marks and295

Goard, 2021; Ranson, 2017), at least in the highly responsive neurons that would be preferentially296

sampled with electrophysiological recording techniques. Thus, nonlinear sound-combination sen-297

sitivity may well be as stable a feature of auditory cortical receptive fields as orientation selectivity,298

size tuning and surround suppression are in visual cortical receptive fields.299

These results may at first appear in conflict with reports of "representational drift" in the audi-300

tory cortex; however, they are not. Recent two-photon calcium imaging studies of auditory cortex301

in awake mice have concluded that "representational drift" in the auditory cortex arises primarily302

from fluctuations in the responsiveness of individual neurons, not from changes in the stimulus303

selectivities of those neurons when they are responsive (Chambers et al., 2022; Aschauer et al.,304

2022). Two-photon calcium imaging allows individual neurons to be tracked over time more defini-305

tively than is possible with spike-waveformmatching from electrophysiological recording, and it is306

therefore a better technology to use to address questions about whether individual neurons "drop307

in" and "drop out" of population activity over time. However, two-photon calcium imaging provides308

an indirect measure of spiking activity with temporal resolution too low for detailed mapping of309

receptive fields; therefore, it is limited in its ability to address questions about stability of stimu-310

lus selectivity over time. Conversely, while extracellular electrophysiological recording can only be311

used to track neurons when they are responsive, it allowsmeasurement of spiking activity with the312

sub-millisecond temporal resolution required for mapping auditory cortical receptive fields. Thus,313

results of the present electrophysiological study complement and extend the conclusions of pre-314

vious two-photon imaging studies in auditory cortex, by showing that spectrotemporal receptive315

fields and sound combination sensitivities of responsive auditory cortical neurons are remarkably316

stable over time.317
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To the best of our knowledge, these data also provide the first demonstration that nonlinear318

sensitivity to acoustic context is a stable, robust feature of receptive fields in the awake auditory319

cortex. Previous electrophysiological studies of stability in auditory cortical responses to complex320

sounds have examined consistency of linear spectrotemporal tuning, not nonlinear combination321

sensitivity, over a timescale of minutes to hours, not days. These studies have reported that spec-322

trotemporal receptive fields (analogous to PRFs, not CGFs) are stable over minutes to hours of323

recording in awake passively listening animals (Elhilali et al., 2007; Grana et al., 2009) and are sub-324

stantiallymodifiedby engagement in behavior (e.g., Fritz et al., 2005;David et al., 2012). Other elec-325

trophysiological studies have described input nonlinearities analogous to CGF structure (Ahrens326

et al., 2008; David et al., 2009; Pienkowski and Eggermont, 2010; Williamson et al., 2016; Harper327

et al., 2016; Williamson and Polley, 2019), but none have examined whether these nonlinearities328

remain stable over days in individual auditory cortical neurons. We found that both CGFs and329

PRFs were remarkably stable, with neuron-specific structure that was nearly as consistent between330

recording sessions conducted on different days as between repeated recordings conducted within331

the same session on the same day.332

These findings have three important implications: physiological, computational, and concep-333

tual.334

First: physiologically, our results imply that nonlinear sensitivity to acoustic context in the au-335

ditory cortex is driven by neural mechanisms that are as stable as those underlying spectrotem-336

poral tuning — at least for sound conjunctions within the <300 ms, ±1 octave range captured by337

the CGF. Nonlinear contextual sensitivity is sometimes assumed to be a more labile, emergent338

property of auditory cortex than spectrotemporal tuning, which is largely inherited from strongly339

stimulus-driven subcortical inputs. However, neurons throughout the subcortical auditory system340

are known to respond nonlinearly to combinations of sound input. Even within the cochlea, adap-341

tation at the hair-cell synapse generates nonlinear forward suppression in auditory nerve fibres342

over a ∼50ms timescale, and cochlear mechanics generate nonlinear two-tone interactions span-343

ning many octaves (Zhang et al., 2001; Zilany et al., 2009). Other examples of nonlinear combi-344

nation sensitivity have been documented throughout the auditory brainstem and midbrain, for345

example in the dorsal cochlear nucleus (Nelken et al., 1997; Yu and Young, 2000), the medial nu-346

cleus of the trapezoid body (Englitz et al., 2010), the nucleus of the lateral lemniscus (Portfors and347

Wenstrup, 2001), and the inferior colliculus (Portfors andWenstrup, 1999; Portfors and Felix, 2005;348

Brimijoin and O’Neill, 2010; Wenstrup et al., 2012). Finally, previous work has already shown that349

CGF structure in the auditory thalamus is similar to that observed in the auditory cortex, with small350

differences in the temporal extent of delayed suppression (Williamson et al., 2016). Cortical sensi-351

tivity to acoustic context could therefore be predominantly inherited from strongly stimulus-driven,352

sound-combination-sensitive subcortical inputs — a scenario consistent with both the stability of353

CGF structure over time and the small effect sizes observed for variation in model fits with sponta-354

neous changes in behavioral state.355

Second: computationally, our results call into question common assumptions about sound356

representation in the auditory cortex — which are implicit in all studies that have used linear357

spectrotemporal receptive field (STRF) models or linear-nonlinear (LN) models to describe corti-358

cal responses to complex sounds (e.g., Linden et al., 2003; Depireux et al., 2001; Rabinowitz et al.,359

2011; Atencio et al., 2008, and many others). Contrary to the assumptions of STRF and LN models,360

neurons in the auditory cortex do not linearly combine sound information across points in spec-361

trotemporal space, applying any nonlinear transformations only after the linear combination of362

sound inputs. Rather, sound inputs are integrated nonlinearly across spectrotemporal space, as363

demonstrated by the robustness and stability of CGF structure. These input nonlinearities cannot364

be captured by either STRF or LN models. Of course, the nonlinear-linear (NL) CGF/PRF context365

model also has limitations; for example, it assumes that the same pattern of combination sen-366

sitivity applies to all regions of spectrotemporal space (see Williamson et al., 2016, for evidence367

supporting this assumption), and it does not currently incorporate known output nonlinearities368
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such as variable spiking thresholds. Alternative approaches using nonlinear-linear frameworks369

have made different assumptions, but reached similar conclusions regarding the relevance of in-370

put nonlinearities to complex sound encoding in the auditory cortex (David et al., 2009; Pienkowski371

and Eggermont, 2010; Harper et al., 2016; Lopez Espejo et al., 2019). As famously noted by Box, all372

models are approximations and therefore wrong, but some are useful (Box, 1979). The CGF/PRF373

model is useful because it reveals that nonlinear combination sensitivity is a robust and stable374

feature of the neural code for complex sounds in auditory cortical neurons.375

Finally, the third andmost fundamental implication of our results is that the traditional concept376

of a sensory “receptive field” is misleading, at least for auditory cortical neurons. A sensory recep-377

tive field is typically defined as encompassing the region of sensory space where stimuli evoke378

changes in the spiking activity of a neuron. Early discoveries in visual neuroscience led to an ex-379

pansion of this definition to include the concepts of a “classical” (driving) and surrounding “non-380

classical” (modulatory) receptive field (for a recent review, see Angelucci et al., 2017). However,381

even this expanded definition of a receptive field is inadequate for describing the robust and per-382

vasive nonlinear sensitivity to sound combinations revealed in the CGFs. Auditory cortical receptive383

fields are better defined as nonlinear (and therefore context-dependent) filters with stable sensi-384

tivities both to individual sensory inputs and to particular combinations of those inputs within a385

region of sensory space. This alternative conceptualization of a sensory receptive field may be386

more accurate not only for auditory cortical neurons but also for neurons in other brain areas and387

sensory systems.388

Materials and Methods389

Animals390

A total of 8 male CBA/Ca mice were initially implanted for experiments, and 4 provided sufficient391

amounts of well-targeted auditory cortex data over months of recording for this study. We used392

CBA/Ca mice because this strain maintains excellent hearing in adulthood and is therefore a com-393

monly used strain for studies of normal auditory brain function. Following the implantation surgery394

at 8–12 weeks of age, the mice were singly housed in standard mouse housing rooms, in specially395

designed cages for mice with implants. Mice were put on a 12-hour reversed light-dark cycle and396

were provided with food and water ad libitum. Recordings were conducted in each mouse for 3–5397

months. All surgical, recording, and housing procedureswere performed under a licence approved398

by the UK Home Office in accordance with the United Kingdom Animals (Scientific Procedures) Act399

of 1986.400

Chronic tetrode implants401

Chronic tetrode implants were custom-made using amicrodrive (Axona; UK). A connector (OMNET-402

ICS; USA) with 34 pins was attached using dental cement. Eight tetrodes each made of 4 strands of403

17𝜇m thick platinum 10% iridium wire (California Fine Wire Company; USA) were attached to the404

connector, with the two remaining pins used for grounding. Tetrodes were plated with platinum405

to an impedance of 150 kΩ before implantation, and advanced together into the brain using the406

microdrive.407

Surgery408

Mice were chronically implanted with both the tetrode microdrive and a head fixation ring at 8409

to 12 weeks of age. The animals were anesthetized with 1.0–3.0% isofluorane and received peri-410

operative and post-operative analgesia (carprofen 5 mg/kg) and post-operative hydration with 0.1411

ml warmed saline. A bone screw was inserted in an anterolateral position relative to bregma for412

a grounding wire. Then, a small craniotomy for the tetrode implant was made over the left hemi-413

sphere 2.9 mm lateral and 2.6 mm posterior to bregma. The tetrode bundle was inserted into the414

brain at an angle of 24o to vertical to allow for a roughly tangential microdrive trajectory through415
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the auditory cortex. The initial depth of tetrode bundle insertion along this trajectory was nomore416

than 3.5 mm relative to to the skull surface at bregma; tetrodes were subsequently advanced fully417

into core auditory cortex using themicrodrive after the animal recovered from the surgery. Themi-418

crodrive, bone screw, and a head fixation ring were secured to the skull using Superbond (C&B Sun419

Medical; Japan) and dental cement. The grounding wire attached to the bone screw was then sol-420

dered to the ground pin on the implant. Following surgery, mice were allowed 2 weeks to recover421

and acclimatize to head fixation before the commencement of experiments.422

Calibration423

As shown in Figure 1, the speaker was directed at the animal’s right ear during experiments, and424

auditory cortical recordings were made from the left hemisphere. Approximately every month,425

acoustic stimuli were calibrated with a G.R.A.S. 1/4” microphone positioned where the opening of426

the animal’s right ear would be during experiments. Calibrations were performed with a G.R.A.S.427

microphone amplifier and preamplifier (Models 12AA and 26AC). Typically, the calibration ensured428

that the frequency response of the sound system was flat to within ±2 dB over at least a 5–40429

kHz range (more typically, 2–80 kHz). The microphone response was periodically calibrated using430

a Svantek sound level calibrator emitting a 1 kHz tone at 94 or 114 dB SPL.431

Stimuli432

A typical neuronal recording session involved presentation of two identically repeated series of433

stimuli (called here a "segment"). Each segment consisted of 3 different stimuli separated from434

each other by 5 seconds of silence. The stimuli were:435

• Noise bursts of varying duration and inter-onset timing (used primarily for a separate study436

and not discussed further here).437

• Tone sequences: 10 trials per frequency/intensity combination; tone length 100mswith 5-ms438

cosine ramp rise/fall; 20 frequencies equally spaced between 5 kHz and 40 kHz; intensities439

40, 50, 60 or 70 dB SPL each with an equal chance; tones of different frequency/intensity440

combinations presented in a random order.441

• Dynamic Random Chord (DRC) stimulus: 15 continuous repetitions of a 45-s-long DRC trial;442

chords composed of 20-ms tone pips with 5-ms cosine ramp rise/fall; tone pip frequencies443

5–40 kHz in 1/12-octave increments; tone pip intensities 25–70 dB SPL in 5 dB increments;444

average density 6 tones per chord, or 2 tone pips/octave.445

See Figure 1 for illustrations of the stimuli and the recording set-up.446

Experimental set-up447

Recordingswere performed in a sound-attenuating box. Stimuli were generated in Python and con-448

verted to analog signals with a sound card (HDSPe AIO; RME; Germany), amplified using a power449

amplifier (RB-971; ROTEL; Japan) and passed through an attenuator (PA5; Tucker-Davis Technolo-450

gies; USA) for presentation via a loudspeaker (XT25TG30-04; Peerless Vifa; USA) located approxi-451

mately 12 cm to the right of the animal’s right ear.452

Neural activity was recorded using a 32-channel Intan RHD 2132 amplifier board (hardware453

bandpass filtering between 1.1 and 7603.8 Hz; Intan Technologies; California, USA), connected454

to an Open Ephys acquisition board (available from www.open-ephys.org) via an ultra-thin, serial455

peripheral interface (SPI) cable (RHD2000; Intan Technologies; California, USA). Tetrode recordings456

were sampled at 30 kHz. The Open Ephys GUI was used to visualize the local field potential and457

the raw signal was recorded after passing through a bandpass filter of 6-6000 Hz.458

A camera was used to record a close-up around the right eye of the mouse, and a second459

camera recorded the a profile view of the mouse from the right side. Cameras had a sampling460

frequency of 30 frames/s. Infrared light was added as well as dim visible light in order to keep the461

pupil diameter at an appropriate level for tracing light-independent changes in pupil size.462
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The mouse was allowed to run on a custom styrofoam cylinder (20 cm in diameter; 11.5 cm in463

width; ball-bearing mounted axis) while head-fixed throughout the experiment. A rotary encoder464

(1024 steps per rotation; Kubler; Germany) was fitted onto the axis of the polystyrene wheel to465

allow for measurement of the running speed of the mouse during the experiment. Rotation steps466

were extracted using a microcontroller (Arduino Uno; Farnell; UK) and the running signal was syn-467

chronized to neuronal recordings by connecting the microcontroller output onto the Open Ephys468

data acquisition board.469

Experimental procedures470

Mice were accustomed to handling for 2–3 days, acclimatized to the set-up for a further 2–3 days,471

and finally habituated to increasingly longer periods of head-fixation (from 5 to 30–60 minutes472

with a daily addition of 5 minutes) in the recording booth. To assess stability of spectrotemporal473

tuning and contextual sensitivity in auditory cortical neurons across many days, we designed a474

long experiment where we recorded the neural signal from the same site in the auditory cortex475

on at least five different (not necessarily consecutive) days, and then advanced the tetrode by 62.5476

microns to a new recording site in order to repeat the process (Figure 1C). Locomotor activity and477

pupil size were continuously recorded along with auditory cortical activity. We recorded from up478

to 10 recording sites in each mouse. From initial tetrode implantation to the end of recordings,479

experiments were 3-5 months long for each mouse.480

Data pre-processing481

Signals collected from the auditory cortical recordings were spike-sorted using software written in482

MATLAB (Sahani, 1999). The spike-sorting procedure was conducted as follows. First, during the483

automatic phase, the software would use thresholding to identify potential spikes, then whitened484

Principal Component Analysis to reduce dimensionality of the data and identify the 4 dimensions485

which accounted for most of the variance in the waveform shapes. A mixture-of-Gaussians model486

was then fit to the spike data in the space defined by the 4 principal components. Then, in a later487

manual phase, the user evaluated the automatically identified clusters to confirm classification as a488

single unit, multi-unit, or noise, taking into account the following metrics provided by the software.489

• The false positive rate and the false negative rate (i.e., the predictions from the mixture-of-490

Gaussians model for misclassification of spike waveforms inside and outside each cluster).491

We required that both these rates were below 0.05; otherwise the cluster would be labelled492

noise.493

• Graphical representations of the clusters. Each cluster was represented in 10 different plots494

(because of the 10 possible combinations between the 4 principal components calculated). If495

the clusters were not well separated from the noise cluster they were labelled noise. If two496

or more clusters were superimposed onto each other in all plots, then they were merged.497

• The waveform shapes for the spikes of each cluster. In rare cases the user would re-classify498

as noise an automatically identified "unit" cluster for which the waveform shape seemed499

biologically implausible. For example, if the waveform shape had qualities reminiscent of500

electrical noise or if it seemed inconsistent between spikes, or if it looked exactly the same501

across the four channels, then the user would take this into account in deciding how to label502

the cluster.503

• Auto-correlograms and cross-correlograms comparing the firing of any two clusters. Cross-504

correlograms were helpful in identifying clusters that required merging with one another.505

Auto-correlograms allowed us to decided whether clusters representing genuine neural ac-506

tivity were in fact single units or multi-unit activity. Clusters were labelled as single units507

when the autocorrelogram showed no firing in the first 2-ms bin after the cluster had just508

fired. Otherwise, the cluster would be labelled as multi-unit activity.509
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Identifying core auditory areas510

Following conventions usedpreviously in other studies ofmouse auditory cortex (including Williamson511

et al., 2016), we imposed two physiological criteria in order identify recording sites in "core" audi-512

tory areas (i.e., primary auditory cortex and anterior auditory field):513

1. A significantly altered firing rate in the first 50 ms following a tone presentation, based on a514

Wilcoxon test conducted between the firing rates of the unit in interest in the 50 ms before515

and after stimulus onset in each trial presented. Only cases with significant differences (𝑝 <516

0.01) were deemed core auditory cells.517

2. A response latency smaller than 20 ms. The latency was marked as the first 2-ms bin where518

the response of the cell deviated from the mean spontaneous firing rate (as estimated from519

the 50 ms before stimulus presentation) by 3 or more times the standard deviation of the520

spontaneous firing rate.521

Units recorded from the same tetrode and same location at the same time as as another unit522

which directly met these criteria were also designated as core auditory. Therefore, consistent with523

the approach used inmost studies of auditory cortex, the core auditory dataset included both units524

that met the classic physiological criteria themselves, and neighbouring units that did not.525

Spike-waveform matching526

Weused a spike-waveform-matching technique previously described in Tolias et al. (2007) tomatch527

units found in discontinuous recordings from the same sites. We compared each unit to all units528

identified on the same tetrode and at the same depth.529

Let us consider two example tetrode waveforms to be compared to each other: 𝑋 and 𝑌 . 𝑋530

was first scaled by a factor 𝛼 so as to minimize the sum of squared differences between the two531

waveforms. Two different metrics were then computed (here referred to as 𝑑1 and 𝑑2). 𝑑1 is the532

normalized Euclidean distance between the scaledwaveformswhich therefore represents ametric533

of the difference in shape that exists between the two waveforms:534

𝑑1(𝑋, 𝑌 ) =
4
∑

𝑖=1

‖𝛼(𝑥𝑖, 𝑦𝑖)𝑥𝑖 − 𝑦𝑖‖
‖𝑦𝑖‖

where 𝛼(𝑥, 𝑦) = 𝑎𝑟𝑔𝛼𝑚𝑖𝑛‖𝛼𝑥 − 𝑦‖2, and where the sum is over the four channels of the tetrode. 𝑑2 is535

defined as:536

𝑑2(𝑋, 𝑌 ) =
4

max
𝑖=1

|𝑙𝑜𝑔𝛼(𝑥𝑖, 𝑦𝑖)| +
4

max
𝑖,𝑗

|𝑙𝑜𝑔𝛼(𝑥𝑖, 𝑦𝑖) − 𝑙𝑜𝑔𝛼(𝑥𝑗 , 𝑦𝑗)|

and it captures the difference in the amplitudes across the four channels. As in Tolias et al. (2007),537

in order to make these measures symmetric we used 𝑑1(𝑋, 𝑌 ) + 𝑑1(𝑌 ,𝑋) for the shape factor and538

𝑑2(𝑋, 𝑌 ) + 𝑑2(𝑌 ,𝑋) for the scaling factor.539

We established a null distribution which consisted of comparisons between units identified on540

the same tetrode but which were recorded from locations at least 250 𝜇m apart from each other541

(i.e.: units which were definitely not matches). To compare the two distributions in one dimension542

we fitted a mixture of two Gaussians model (m) to the experimental data:543

𝑚 ∼ 𝜋1𝜙(𝜇1, 𝑄1) + 𝜋2𝜙(𝜇2, 𝑄2)

where 𝜇𝑖 and𝑄𝑖 represent the mean and covariance matrix of the 𝑖th component which is normally544

distributed.545

The parameters of one of the two Gaussians in the model were fixed to those which described546

the null distribution obtained earlier, and the otherswere learnt using an Expectation-Maximization547

algorithm. This secondGaussian therefore describes the distribution of possiblematches. We then548

took as confirmed matches the waveform comparisons which fell within the 99% confidence inter-549

val of the distribution of possible matches and outside the 99% confidence interval of the null550

distribution. Using these stringent criteria we aimed to minimize the false positives, and maximise551

the chances that matched recordings truly originated from the same unit.552
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Context model fitting553

For context model analysis, we required that core auditory units met three additional physiological554

criteria related specifically to their responses to the DRC stimulus.555

• Each unit’s DRC responses had to have signal power at least one standard error greater than556

zero. Context models can be fit effectively only to units which show stimulus-dependent557

variation in their responses to the DRC stimulus (i.e., non-zero signal power).558

• Firing rate over all trials had to be greater than or equal to 5 spikes/s. When neurons fire559

very infrequently this leads to highly sparse matrices which create issues with the fitting of560

the model.561

• Normalized noise power had to be belowbelow40. Thiswas a criterion put in place to remove562

outliers with excessive noise power.563

Mathematically, the context model generates predictions for the response (𝑟) of a neuron to a564

given sound (𝑠) with spectrotemporal energy at time t in frequency channel f, as follows:565

𝑟̂(i) = 𝑐 +
J

∑

j=0

K
∑

k=1
𝑤tf
jk𝑠(i − j, k)(1 +

M
∑

m=0

N
∑

n=−𝑁
𝑤𝜏𝜙
m+1,n+N+1𝑠(i − j −m, k + n))

where the constant c sets a baseline firing rate,𝑤tf is the PRF field with summation limits over time566

shifts (t) and frequency (f), and 𝑤𝜏𝜙 is the CGF field and the summation limits are over relative time567

shift (𝜏) and relative frequency (𝜙). The CGF weight corresponding to zero time-frequency offset568

was fixed to 0; therefore no weight contributed to its own context, resulting in a linear STRF model569

prediction for presentations of isolated tones. For more details on the model and validation of its570

performance, seeWilliamson et al. (2016).571

The context model was fitted for each unit to the neuronal responses recorded during DRC seg-572

ments. Typically we had 2 DRC stimuli of 15 trials each, per recording session, for each unit. The573

first DRC trial from each segment was discarded to minimize effects of level adaptation on context574

model fits. The fitting was done using Alternate Least Squares (ALS) as there were two fields whose575

parameters needed to be optimized (the PRF and the CGF). We used Automatic Smoothness De-576

termination (ASD) (Sahani and Linden, 2002a) to find the best smoothing parameters for the PRFs.577

We then fixed those smoothing parameters for the PRF and then used a grid searchmethod to find578

the best smoothing parameters for the CGF, because the ASD method did not reliably converge579

when both PRF and CGF smoothing were simultaneously optimized.580

The grid searchmethod involved runningmultiple fittings of themodel with the PRF smoothing581

parameters fixed and each time changing the combination of the three smoothing parameters for582

the CGF. At the end we proceeded with the CGF smoothing parameters that provided the greatest583

cross-validation predictive power. The parameters we tried during the grid search method were584

the following: scaling parameter: (3, 6 and 9); spectral smoothing parameter: (2, 4, 6, 8, 10, 12)585

and temporal smoothing parameter: (1.5, 3.5, 5.5, 7.5, 9.5). These values were chosen for the586

grid search to try and cover as much parameter space as possible, but were centered around the587

parameter values that were most commonly observed in CGFs.588

To ensure that differences in smoothing parameters did not confound assessments of field589

stability for each unit, we estimated optimal smoothing parameters for the context model for each590

unit using all the data available for the unit (i.e., all DRC recordings made across days). These591

optimal smoothing parameters for the unit were then applied to all context model fits based on592

individual DRC segments.593

Stability assessment594

To evaluate similarity between fields (PRFs or CGFs) estimated in different DRC segments, we calcu-595

lated the normalized dot product (i.e., zero-shift two-dimensional cross-correlation) between the596

fields, without subtraction of the mean matrix. The within-session field correlation was simply the597

correlation between the two fields estimated from the first and second DRC segment of a session598
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respectively. The across-session field correlation was the average correlation across all four possi-599

ble comparisons between the two DRC segments in each of the two recording sessions. We then600

constructed a similarity matrix for each unit which shows on the central diagonal the within-day,601

within-session field correlations and on the offset diagonals the across-day field correlations. The602

method is illustrated graphically in Figure 1D and for example neurons in Figure 4D-F.603

For each unit, we then defined the within-session field similarity 𝛼 to be the average within-604

session field correlation for CGF (or PRF) estimates from all the unit’s recording sessions. Likewise,605

the across-session similarity 𝛽 for sessions n days apart was defined as the average of all the unit’s606

across-session field correlation values for CGF (or PRF) estimates obtained from recordings made607

n days apart. We plotted these within-session and across-session field similarity values versus608

the number of days between recording sessions, and estimated the best-fit line to the data using609

weighted linear regression (taking into account the number of comparisons contributing to the610

averages 𝛼 and 𝛽(𝑛)). We used the slope of this best-fit line as our measure of the unit’s CGF (or611

PRF) stability for population analysis. This slope represents the average rate of change in CGF (or612

PRF) correlation as a function of time between recording sessions, but does not necessarily imply613

a gradual rate of change across chronological days of recording. It should be noted that similar614

slopes could be obtained from a gradual decline in field correlation over time and from a more615

abrupt drop on a particular day during the recording period for a unit.616

We also examined CGF (and PRF) stability using a normalized field alignment index, where 1.0617

represents within-session similarity for the unit and 0.0 indicates baseline similarity expected for618

comparisons with CGF (or PRF) estimates from other units. For each unit’s CGF (or PRF), we defined619

the field alignment index as 𝛽−𝛾
𝛼−𝛾

, where 𝛼 and 𝛽 were calculated as above, and 𝛾 was a baseline field620

correlation measure obtained by comparing the CGF (or PRF) for the unit to those from other units621

recorded from the same animal. This normalized field alignment index was useful for comparing622

across-session to within-session stability and assessing persistence of neuron-specific CGF (or PRF)623

structure (Figure 5). However, unlike the raw field correlation values and field similarity measures624

𝛼 and 𝛽, the values of the normalized field alignment index were potentially unbounded and very625

noisy in units with poor within-session stability. For this reason, we used the field similarity mea-626

sures rather than the normalized field alignment indices to derive the slope estimates used for627

population analyses of CGF and PRF stability (Figure 6 and Figure 7).628

Pupil diameter extraction629

For pupil tracking we used DeepLabCut (version 2) (Mathis et al., 2018; Nath et al., 2019), which630

leverages a ResNet-50-based convolutional neural network for predicting the location of a desired631

bodypart across frames. We labeled 80 frames taken from 4 videos (one from each animal), then632

used 95% of the video data for training. We trained for 1,030,000 iterations, validated with 1 shuf-633

fle and we report a test error of 3.38 pixels and a train error of 1.03 pixels (image size was 416 by634

252). We then used a p-cutoff of 0.99 to condition the predicted coordinates, which served to ex-635

clude predictions for which the network was not certain, hence making our data more reliable. We636

used this network to analyze videos collected under very similar experimental conditions. During637

labelling, we marked 8 specific points: 6 points delineating the edges of the pupil and 2 at the left638

and right edges of the mouse’s eye.639

We fit an ellipse on the pupil in each frame. We asserted that there had to be at least 5 out of 6640

points in a frame in order for us to attempt to fit the ellipse. The major axis of the ellipse (in pixels)641

fitted to the pupil in that frame was then taken as the diameter of the pupil. Some videos were642

excluded after manual inspection due to poor quality of tracking.643

We estimated the width of the eye opening during a recording as the median distance between644

the points marking the right and the left edge of the eye, which the network was also trained645

to detect. Finally, in our analyses we used the frame-wise pupil diameter, obtained as explained646

above and normalized by the median length of the eye in each recording, meaning that our mea-647

surements are not influenced by small perturbations in the positioning and angling of the camera648

20 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2023.04.22.537782doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.22.537782
http://creativecommons.org/licenses/by-nc-nd/4.0/


relative to the animal’s eye from day to day of experimentation.649

Analysis of effects of locomotor activity and pupil dilation650

To assess the effects of locomotor activity and pupil dilation on context model performance we651

divided the timebin-by-timebin data for each unit into categories of still versus moving, or small652

versus large pupil. More specifically, for the locomotor activity analysis, we divided all the 20-ms653

timebins from each recording with locomotor activity data into two categories: (i) timebins when654

the mouse was still (speed = 0.0; 36.0% for the average unit, standard deviation 15.1%), or (ii)655

timebins when the speed of the mouse was non-zero (62.7% of timebins for the average unit, stan-656

dard deviation 16.3%). Results of the residuals analysis were similar when we used a higher speed657

threshold for the still/moving categorization (e.g., with threshold 0.5 cm/s, 83.3% timebins catego-658

rized as still, 15.3% as moving, standard deviation 12.5% and 11.6% respectively). For the pupil659

size analysis, we divided all the timebins into two categories: (i) timebins when the pupil was more660

dilated than the median pupil size for all sessions for the unit, or (ii) timebins when the pupil was661

smaller than themedian. Since this categorization was performed relative to themedian pupil size,662

equal percentages of timebins fell into the two categories.663

We then calculated the residual from the context model prediction of the firing rate in each664

timebin (observed minus predicted firing rate), and computed the interquartile range and median665

of the residual distributions for the different timebin categories for each unit. The IQRs and medi-666

ans for the residual distributions with and without locomotor activity or pupil dilation were then667

compared across units in population analysis (Figure 8 and Supplementary Figure 2). Note that we668

used the actual signed residual rather than the absolute residual, in order to distinguish cases in669

which the observed firing rates were either higher or lower than predicted. Further interpretation670

of these measures is provided in the main text.671
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Supplementary Figure 1. Core auditory cortical recording sites identified using physiological criteria.
A-C. Three example units recorded from one animal. Left: raw waveform on each of the four tetrodechannels. Middle: PSTH of the response of each unit to 100-ms pure tones, pooled across tone frequenciesand intensities. Blue shading indicates time of tone presentation. All three units met the two criteria forclassification as "core" auditory cortex: (1) robust responses to tone pips (significant difference in firing rateacross trials between the 50 ms before and 50 ms after tone onset; Wilcoxon rank-sum test, 𝑝 < 0.01), and (2)response latency <20 ms. Latency is indicated here with a red vertical line and was defined as the first timebin after tone onset where the firing rate fell outside the mean (dotted black line) ±3 standard deviations(grey shaded area) of the bin-by-bin firing rates in the 50 ms before tone onset. Right: Frequency-ResponseAreas (FRA). Top of each panel: frequency tuning profile averaged over all tone intensities. The grey and blacklines indicate estimates of the frequency tuning profile obtained from two different runs of the tone-pipsequence separated by more than 20 minutes. The overlap of these two lines illustrates the consistency offrequency tuning estimates in units with the robust, short-latency responses typical of "core" auditory cortex.
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Supplementary Figure 2. Effects of locomotor activity and pupil dilation on context model residual
distributions and median residuals. A. 2D histograms of the context model residuals plotted against themodel predictions when mice had: (i) non-zero speeds (leftmost plot); (ii) zero speed (still: middle left); (iii) apupil diameter above the median diameter for the unit recordings (middle right); and (iv) a pupil diameterbelow the median diameter (rightmost plot). Pupil median diameters were calculated for each unit based onall data available from the relevant recording sessions. Plots show pooled data from all suitable timepoints inrecordings from all mice. B-C. Scatter plots showing the median of the residuals when the mice were stillversus moving (B) or when the pupil size was small versus large (C). Dotted black line indicates equal values.Note that median residuals were typically slightly negative, indicating that the context model tended toover-predict firing rates. Note also that median residuals were significantly more positive (i.e., in most cases,less negative) when the animal was moving or the pupil was large (Wilcoxon sign-rank tests: locomotion data,
𝑝 = 1.8𝑥10−24; pupil data, 𝑝 = 3.7𝑥10−14). Effect sizes were relatively small (Cohen’s 𝑑: locomotion data 0.23;pupil data 0.29), but not as tiny as for residual IQRs.
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