

1 **COMPLETE GENOME SEQUENCE OF *VIBRIO SYNGNATHI* SP. NOV., A FISH
2 PATHOGEN, ISOLATED FROM THE KIEL FJORD**

3

4 CYNTHIA MARIA CHIBANI^{1,2}, ROBERT HERTEL¹, MEINA NEUMANN-SCHAAL³,
5 HENRY GOEHLICH^{4,5}, KIM WAGNER^{4,5}, BOYKE BUNK³, CATHRIN SPRÖER³, JÖRG
6 OVERMANN³, MICHAEL HOPPERT¹, MAREIKE MARTEN^{4,5}, OLIVIA ROTH^{4,5}, HEIKO
7 LIESEGANG¹, CAROLIN C. WENDLING^{4,6*}

8

9 * Corresponding author

10

11 **Addresses:**

12 ¹ Georg-August University Goettingen, Institute of Microbiology and Genetics, 37077
13 Goettingen, Germany

14

15 ² Institute for General Microbiology, Kiel University, 24118 Kiel, Germany

16

17 ³ Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures,
18 Inhoffenstr. 7B, 38124 Braunschweig, Germany

19

20 ⁴ GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology,
21 Düsternbrooker Weg 20, 24105 Kiel, Germany

22

23 ⁵ Marine Evolutionary Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany

24

25 ⁶ETH Zürich, Institute of Integrative Biology, Universitätsstraße 16, 8092 Zürich, Switzerland

26

27 **Running title:** Complete genome sequence of *Vibrio syngnathi*

28 **Subject:** New species – *Proteobacteria*

29

30 **Corresponding author:** Carolin C. Wendling

31 **E-mail:** carolin.wendling@env.ethz.ch

32 **Phone:** +41 44 63 8026

33

34 **Key Words:** *Vibrio*, Genomic comparison, Fish pathogen, pan-genome, virulence factors

35

36 **Footnote:** The complete genome sequence is available at NCBI GenBank under the accession
37 numbers CP017916 and CP017917. The 16S rRNA sequence can be found at NCBI GenBank
38 under the accession number OP359305. The raw reads can be found under BioProject accession
39 number PRJNA345286. The strain has been deposited at DSMZ under the number DSM
40 109818 and the CECT under the number CECT 30086.

41

42 **Supplementary material:** One supplementary figure and six supplementary table are available
43 with the online version of the Manuscript.

44 **Abstract**

45 A new *Vibrio* strain K08M4^T was isolated from the broad-nosed pipefish *Syngnathus typhle* in
46 the Kiel Fjord. Infection experiments revealed that K08M4^T is highly virulent for juvenile
47 pipefish. Cells of strain K08M4^T are Gram-stain-negative, curved rod-shaped and motile by
48 means of a single polar flagellum. The strain can grow aerobically at 9 to 40°C, at pH 4 to 10.5
49 and tolerates up to 12% (w/v) NaCl. The most prevalent (> 10%) cellular fatty acids of K08M4^T
50 were C_{16:1} ω7c and C_{16:0}. Whole-genome comparisons revealed that K08M4^T represents a
51 separate evolutionary lineage which is distinct from other *Vibrio* species and falls within the
52 *Vibrio Splendidus* clade. The genome is 4,886,292 bp in size, consists of two circular
53 chromosomes (3,298,328 bp, 1,587,964 bp), and comprises 4,178 protein-coding genes and
54 175 RNA genes. In this study, we describe the phenotypic features of the new isolate and
55 present the annotation and analysis of its complete genome sequence. Based on these data, the
56 new isolate represents a new species for which we propose the name *Vibrio syngnathi*. The
57 type strain is K08M4^T (=DSM 109818^T).

58

59 **Abbreviations**

60 TCBS: thiosulfate-citrate-bile-sucrose; TYGS: Type Strain Genome Server, dDDH: digital
61 DNA-DNA hybridization
62

63 **Keywords**

64 *Vibrio Splendidus* clade, Genomic comparison, Fish pathogen, virulence factors, *Vibrio*,
65 complete genome sequence

66 Full Text

67 The genus *Vibrio* comprises 137 validly published species
68 (<https://lpsn.dsmz.de/genus/vibrio>) which have been grouped into 16 monophyletic clades [1,
69 2]. The *Vibrio Splendidus* clade, which contains 17 closely related *Vibrio* species constitutes
70 the largest clade within the genus *Vibrio* [3]. The phenotypic variability of additional species,
71 which did not fit exactly the description of *V. splendidus* led to the proposal of the term *Vibrio*
72 *splendidus*-like, which is now widely used for isolates that cannot unequivocally be assigned
73 to the species *V. splendidus*.

74 Bacteria of the *V. Splendidus* clade are dominant members of the costal
75 bacterioplankton, in sediments, and various marine organisms, for a review see [4]. Various *V.*
76 *splendidus*-like strains have been found to cause vibriosis. Vibriosis is one of the most
77 prevalent diseases affecting marine life accounting for major economic losses in aquaculture
78 [4, 5]. Vibriosis causes high rates of mortality in aquaculture animals such as turbot, scallops,
79 clams, and oysters [6-9] and can even spread to humans through the consumption of infected
80 seafood [10, 11]. Virulence of these strains is multifactorial and regulated by genetic
81 determinants, e.g. prophages [12] or pathogenicity islands [13] as well as extrinsic factors, such
82 as temperature [14] or salinity [15]. Furthermore, a recent epidemiological survey of the *V.*
83 *Splendidus* clade suggests an unexplored diversity of virulence factors and a massive lateral
84 transfer of virulence genes within this clade [16].

85 Despite a significant body of empirical research, our understanding of the factors that
86 contribute to the virulence of *V. splendidus*-like strains is far from being complete. Whole-
87 genome sequencing can provide further insights into potential virulence mechanisms of this
88 pathogen. At the time of writing, 819 complete *Vibrio* genome sequences and 13 *V. splendidus*-
89 like strains were publicly available (NCBI, Date of access 22.05.2022).

90 In this study, we sequenced and annotated the complete genome of strain K08M4^T which

91 was found to represent a new *Vibrio* species, *Vibrio syngnathi*. We follow the proposed
92 minimal standards for the use of genome sequence data for taxonomic purposes [17] and
93 provide first insight into the genomic basis of its pathogenicity.

94

95 **Origin and isolation**

96 Strain K08M4^T was isolated during a previous study from the intestine of a healthy adult
97 pipefish collected in the Kiel Fjord in 2010 [for a detailed description see [18]] and was shown
98 to be pathogenic to juvenile pipefish in laboratory experiments. Based on a multi-locus
99 sequencing approach, K08M4^T was initially affiliated to the *V. Splendidus* clade [19]. The
100 whole-genome comparison in the present study supports the consideration that K08M4^T
101 represents a distinct species within the *V. Splendidus* clade.

102

103 **Phenotypic characterization**

104 K08M4^T was routinely cultivated on *Vibrio*-selective thiosulfate-citrate-bile-sucrose
105 (TCBS) agar plates or in liquid culture using Medium101 (Medium101: 0.5% (w/v) peptone,
106 0.3% (w/v) meat extract, 1.5% (w/v) NaCl in MilliQ water) at 25°C.

107 Cell morphology of strain K08M4^T was determined by electron microscopy of
108 negatively stained cells using a Jeol 1011 transmission electron microscope (Eching, Munich,
109 Germany) as described in [20]. Briefly, cells were grown in liquid Medium101 for 12 h
110 overnight at 25° C with constant shaking at 230 rpm as pre-culture. The main culture was
111 inoculated with 1.5% v/v grown for 3 hours and adsorbed onto Formvar-carbon grids (Plano,
112 Wetzlar, Germany) prior to staining. Phosphotungstic acid, dissolved in pure water (1% resp
113 0.5% w/v final concentration) and adjusted to pH 7 with sodium hydroxide served as a staining
114 solution. Images were captured using a Gatan Orius SC 1000A camera and processed with the
115 Gatan Digital Micrograph software package (vs. 1.84.1177 Pleasanton, CA, USA). Cells of

116 strain K08M4^T are slightly curved (1.5-2.5 μ m long and 0.5-1 μ m wide) with a monotrichous
117 flagellum (Figure 1).

118 Salinity and temperature ranges were determined by generating growth curves over 24
119 h-time intervals of 1:100 dilutions of overnight cultures using a microplate reader (TECAN
120 infinite M200) at different NaCl concentrations ranging from 0-15 % (w/v) at 25° C with 0.5
121 % intervals, as well as across a temperature gradient of 4 to 45° C with 5° C intervals at 1.5%
122 (w/v) NaCl and different pH levels ranging from pH 3.5 to 11 at intervals of 1.0 pH unit. Strain
123 K08M4^T produces yellow-colored, round colonies on TCBS agar plates and cream-colored,
124 round colonies on Medium101 plates after incubation for 24h at 25° C. The strain did not grow
125 below 9° C and showed optimum growth between 25 and 35° C at 0.4 to 12 % NaCl, with
126 optimum growth occurring at 1.5 % NaCl and between pH 4 and 10.5.

127 We performed a comparative phenotypic analysis between strain K08M4^T and three
128 closely related species obtained from the German Collection of Microorganisms and Cell
129 Cultures DSMZ: *V. tasmaniensis* DSM 17182^T, *V. splendidus* DSM 19640^T, and *V. splendidus*
130 DSM 26178^T. The Gram reaction was determined by KOH and aminopeptidase using the
131 Bactident Aminopeptidase (Merck, 113301) tests [21]. Oxidase activity was tested by the
132 method of Kovacs et al. (1956) [22]. Catalase tests were performed by mixing freshly grown
133 bacterial cells with 10% H₂O₂, followed by examining gas bubble formation. Chitinase activity
134 was confirmed using the Chitinase Assay Kit (Sigma Aldrich, CS0980). Activities of
135 constitutive enzymes and other physiological properties were determined using API 20E, API
136 ZYM and API 50CH (bioMérieux) kits according to the instructions of the manufacturer.
137 Susceptibility to the vibriostatic agent 2,4-diamino-6,7-diisopropyl pteridine phosphate salt
138 (O/129, Sigma) was determined by means of discs containing 150 μ g O/129. Fatty acid analysis
139 was performed using the standard protocol of the Sherlock Microbial Identification (System
140 package version 6.4 with the TSBA6.0 database), according to the technical instructions

141 provided by the manufacturer [23]. Combined analysis by gas chromatography coupled to a
142 mass spectrometer was used to confirm the identity of the fatty acids based on retention time
143 and mass spectral data [24]. Major characteristics and unique phenotypic characteristics
144 differentiating K08M4^T from its close relatives *V. tasmaniensis* DSM 17182^T, *V. splendidus*
145 DSM 19640^T, and *V. splendidus* DSM 26178^T are summarized in Table 1, full results are given
146 in Table S1-S3. The cellular fatty acid profile of K08M4^T in comparison to *V. tasmaniensis*
147 DSM 17182^T and *V. splendidus* DSM 19640^T is listed in Table 2, full results for strain K08M4^T
148 only, are given in Table S4.

149

150 **Genomic characterization**

151 The Qiagen Genomic Tip/100 G (Qiagen, Hilden, Germany) was used to extract high
152 molecular weight DNA from cells of strain K08M4^T. The extracted DNA was then used to
153 generate a SMRTbell™ template library for SMRTbell™, according to the instructions from
154 Pacific Biosciences, Menlo Park, CA, USA, following the Procedure & Checklist - 10 kb
155 Template Preparation Using BluePippin™ Size-Selection System.

156 SMRT genome sequencing was carried out on the PacBio RSII (Pacific Biosciences,
157 Menlo Park, CA, USA), taking one 240-min movie for a single SMRT cell using P6 chemistry
158 at the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures in
159 Braunschweig. Genome finishing and annotation were performed at the Institute for
160 Microbiology and Genetics at the Georg-August University of Göttingen.

161 We obtained a total of 64,464 post-filtered reads with a mean read length of 13,396 bp
162 representing a genome coverage of 141.45-fold. Genome assembly was performed with the
163 RS_HGAP_Assembly.3 protocol included in SMRT Portal version 2.3.0. The assembly
164 resulted in two large contigs that could be associated with chromosomes 1 and 2. The genome
165 has a size of 4,886,292 bp (chromosome 1: 3.2 Mb, chromosome 2: 1.5 Mb) and the G+C

166 content of strain K08M4 is 44.06 mol%. The completeness and contamination levels of strain
167 K08M4^T were computed using CheckM [25]. Based on the assembly of the genome without
168 gaps or ambiguities, the completeness level (99.69%) and the contamination level (1.69%) of
169 both chromosomes, a metagenome assembled genome would be labeled as “Finished” [26].
170 The genome project has been deposited at the European Nucleotide Archive under the ID
171 number 345286 and accession number PRJNA345286. The accession number for chromosome
172 1 is CP017916 and for chromosome 2 is CP017917. The raw reads were deposited under the
173 BioProject accession number PRJNA345286.

174 Automatic annotation, gene prediction, and rRNA and tRNA genes identification were
175 carried out with Prokka (v1.11) [27]. Functional annotations were done by searching against
176 InterPro [28], and COG databases [29]. A total of 4,353 genes were predicted, of which 4,178
177 encode proteins, 175 encode rRNAs, 43 encode tRNAs, and at least 46 encode ncRNAs.
178 Twelve pseudogenes were found, with eight located on chromosome 1 and four located on
179 chromosome 2. Of the predicted CDS, a functional prediction was made for 77.1 %. A COG
180 prediction could be retrieved for 70.0%, with the remaining annotated as hypothetical proteins.
181 We found a total of 148 insertion elements: 72 on chromosome 1 and 76 on chromosome 2. A
182 putative 48.2-kb intact prophage was identified on chromosome 2 using PHASTER [30] and
183 this region is predicted to encode 45 proteins, of which most are phage-related, whereas 23 are
184 hypothetical or uncharacterized. In addition, one incomplete prophage was found on
185 chromosome 2.

186 Whole genome based taxonomic analysis was done using the Type (Strain) Genome
187 Server (TYGS) [31], a free bioinformatics platform provided by the DSMZ
188 (<https://tygs.dsmz.de>) following the standard pipeline including recent updates [32]. The 11
189 closest type strain genomes were determined following the standard pipeline.

190 For phylogenomic inference, all pairwise comparisons among the set of genomes were
191 conducted using GBDP and accurate intergenomic distances inferred under the algorithm
192 'trimming' and distance formula d_5 [33]. 100 distance replicates were calculated each. Digital
193 DDH values and confidence intervals were calculated using the recommended settings of the
194 GGDC 3.0.

195 The resulting intergenomic distances were then used to infer a balanced minimum
196 evolution tree with branch support via FASTME 2.1.6.1 including SPR postprocessing [34].
197 Branch support was inferred from 100 pseudo-bootstrap replicates each. The tree was rooted
198 at the midpoint [35] and visualized using FigTree version 1.4.2
199 (<http://tree.bio.ed.ac.uk/software/figtree/>).

200 The type-based species clustering using a 70% dDDH radius around each of the 11 type
201 strains was done as previously described [31]. Subspecies clustering was done using a 79%
202 dDDH threshold as previously introduced [36]. The clustering yielded 12 species clusters and
203 the provided query strains were assigned to 1 of these, K08M4^T was located in 1 of 12
204 subspecies clusters (Figure 2). The dDDH values between the complete genome sequence of
205 strain K08M4^T and the genome sequences of the 11 most closely related species from the *V.*
206 *Splendidus* clade are significantly below the species delination cut-off of 70% (Table 3).

207 In addition, phylogenetic analysis based on an MLSA tree using eight housekeeping
208 genes (*ftsZ*, *gapA*, *gyrB*, *mreB*, *pyrH*, *recA*, *rpoA*, and *tpoA*) confirmed that strain K08M4^T
209 forms a monophyletic group within the *V. Splendidus* clade (Figure S1).

210 Furthermore, we compared the genomic relatedness based on the average nucleotide
211 identity (ANI) between strain K08M4^T and all closed *Vibrio* sequences as reference available
212 on NCBI (date of access 17.11.2022) using FastANI (<https://github.com/ParBLiSS/FastANI>;
213 [37]). All closed *Vibrio* genomes were downloaded using the NCBI Datasets command line

214 tools and the following command line “datasets download genome taxon 662 --complete”.
215 Firstly, the ANI values between the complete genome sequence of strain K08M4^T, were
216 computed separately for Chromosomes1 and Chromosome 2, as well as for the concatenated
217 sequences of Chromosome 1 and Chromosome 2 of all deduplicated closed *Vibrio* genomes
218 (n=532). ANI between the K08M4^T comparisons and reference strains that were above 90%
219 from the concatenated sequences were selected for the purpose of visualization (Figure 3) using
220 PyANI [38] and the ANIb option (<https://github.com/widdowquinn/pyani>). Most ANI values
221 in any combination were below the threshold of 95%, the repeatedly established species
222 demarcation cut-off value [37]. One exception is nucleotide identity between K08M4^T strain
223 and *V. tasmaniensis* LMG 20012 (ANI chromosome 1 = 95.5%, chromosome 2 = 93.96%, both
224 chromosomes together = 95.03%).

225 Phylogenomic treeing and taxonomy assignment of K08M4^T was additionally
226 performed based on 120 bacterial marker genes with GTDB-Tk v2.1.0 [39, 40] (Database
227 release R207) using the ‘classify_wf’ function and default parameters. Genomes are assigned
228 at the species level if the ANI to the closest GTDB species representative genome was ≥95%
229 and the AF was ≥30%. Accordingly, K08M4^T was characterized as *V. tasmaniensis* based on
230 GTDB taxonomy. However, taking all sequence-based results (ANI of K08M4^T and *V.*
231 *tasmaniensis* LMG 20012 is 95.03%, directly at the boundary of the species demarcation cut-
232 off) together with experimental confirmation, we can confidently confirm that K08M4^T
233 represent a novel *Vibrio* species.

234 Pathogenicity

235 We performed a controlled infection experiment to test the virulence of strain K08M4^T
236 on pipefish larvae (a detailed description of the methods and the statistical analysis can be
237 found in [19]). Briefly, we exposed 10-11 juvenile pipefish in triplicates to either 10⁹ CFU/ml

238 of strain K08M4^T, 10⁹ CFU/ml of a non-virulent *V. alginolyticus* K10K4, or seawater as
239 control. Fish mortality was recorded daily. On day three, we sampled one fish per experimental
240 unit and analyzed the expression of 32 immune genes relative to two housekeeping genes using
241 a Fluidigm BioMark™ as described in [41]. This included 17 target genes assigned to the innate
242 immune system, two target genes assigned to the complement component system, and 13 target
243 genes assigned to the adaptive immune system (Table S5). Details about function of genes,
244 sequences and primer design can be found in [41].

245 Strain K08M4^T causes high rates of mortality (Figure 4a) in pipefish larvae and elicits
246 a different expression profile of selected immune genes compared to the non-virulent *V.*
247 *alginolyticus* strain K10K4 or pipefish exposed to seawater (Figure 4b).

248 Several genetically encoded virulence factors such as iron transport systems, flagellum/
249 motility, hemolysins, proteases, lipopolysaccharides, exopolysaccharides, repeats in toxins
250 (RTX), outer membrane proteins, and a type IV pilus could be identified (Table S6). Compared
251 to other *Vibrio* species isolated from the Kiel Fjord, K08M4^T has a unique virulence profile
252 [42].

253 Based on the comparative genomic analysis and phenotypic description, strain K08M4^T
254 represents a novel species of the genus *Vibrio*, with an increased virulence profile for juvenile
255 pipefish, for which we propose the name *Vibrio syngnathi* sp. nov.

256

257 **Description of *Vibrio syngnathi* sp. nov.**

258 *Vibrio syngnathi* (syn. *gna'thi*, N.L. gen. n. *syngnathi*, pertaining to the broad-nosed pipefish
259 *Syngnathus typhle* from which the strain was originally isolated)

260 Cells are slightly curved rods, Gram-stain-negative, curved rod-shaped and motile by
261 means of a single polar flagellum. Colonies are circular, yellow, and 2-4 mm in size after 24h
262 growth on TCBS agar at 25° C. Cells can grow from 9-40° C and pH 4 - 10.5. Optimal growth

263 is observed at 25 - 35° C. Growth occurs in the presence of 0.4 - 12 % (w/v) NaCl. Biochemical
264 characteristics of K08M4^T include positive for oxidase, catalase, chitinase, indole production
265 and O1/129 sensitivity. Acid is produced from glycerol, ribose, glucose, fructose, mannose, N-
266 acetylglucosamine, esculin, salicin, cellobiose, maltose, sucrose, trehalose, starch, glycogen,
267 and gluconate. K08M4^T is negative for β -galactosidase, arginine dihydrolase, lysing
268 decarboxylase, ornithine decarboxylase, citrate utilization, H2S production, urease, tryptophan
269 deaminase, Voges-Proskauer test, gelatin hydrolysis. The type-strain can grow on glycerol,
270 starch, and glycogen. The major fatty acid (> 10%) are C_{16:1} ω 7c and C_{16:0}. K08M4^T causes
271 mortality in juvenile pipefish, *S. typhli*.

272 The type strain, K08M4^T (= DSM 109818^T = CECT 30086^T), was isolated from the
273 whole intestines of an adult broad-nosed pipefish *Syngnathus typhle*, caught in the Kiel Fjord,
274 Germany. The DNA G+C content of the type-strain is 44.06%. The genome is deposited at
275 ENA (PRJNA345286) and NCBI (CP017916 and CP017917). The 16S rRNA sequence can be
276 found at NCBI GenBank under the accession number OP359305.

277 **Funding**

278 This study was supported by the Deutsche Forschungsgemeinschaft (DFG) SPP 1819 on rapid
279 adaptation (WE5822/1-1, WE5822/1-2, and OR4628/4-2 given to CCW and OR) and a
280 Postdoctoral fellowship from the Cluster of Excellence ‘The Future Ocean’ given to CCW.

281

282 **Ethical approval**

283 Approval for using pipefish during infection experiments was given by the Ministerium für
284 Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein V312-
285 7224.121-19 (65-5/13).

286

287 **Conflict of interests**

288 We declare no conflict of interests.

289

290 **Authors' contribution**

291 OR isolated the strain. CCW, OR and HL designed the study. CCW, RH, HL, BB, CS and JO
292 were involved in the preparation of bacterial DNA and genome sequencing. CCW performed
293 infection experiments. HG, KSW MM, and MNS performed microbiological lab work. CC,
294 HL and BB analysed the bacteria genomes. MH performed electron microscopy. CCW
295 coordinated the project. CCW and CC wrote the first draft of the manuscript. All authors
296 approved the final version of the manuscript.

297

298 **Acknowledgements**

299 We are grateful to Anja Frühling, Gesa Martens, Anika Wasner, Bettina Ehlert, Simone
300 Schrader and Nicole Heyer for excellent technical assistance.

301 References

- 302 1. **Sawabe T, Kita-Tsukamoto K, Thompson FL.** Inferring the evolutionary history of
303 *Vibrios* by means of multilocus sequence analysis. *J Bacteriol* 2007;189(21):7932-7936.
- 304 2. **Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR et al.** Updating the *Vibrio*
305 clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the
306 description of *Vibrio tritonius* sp. nov. *Front Microbiol* 2013;4:414.
- 307 3. **Perez-Cataluna A, Lucena T, Tarazona E, Arahal DR, Macian MC et al.** An
308 MLSA approach for the taxonomic update of the Splendidus clade, a lineage containing
309 several fish and shellfish pathogenic *Vibrio* spp. *Systematic and Applied Microbiology*
310 2016;39(6):361-369.
- 311 4. **Egidius E.** *Vibriosis*: Pathogenicity and Pathology. A Review. *Aquaculture*
312 1987;67:15-28.
- 313 5. **Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A et al.**
314 Vibriosis in Fish: A Review on Disease Development and Prevention. *J Aquat Anim Health*
315 2019;31(1):3-22.
- 316 6. **Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K.** *Vibrio splendidus*
317 *biovar II* as the causative agent of bacillary necrosis of Japanese oyster *Crassostrea gigas*
318 larvae. *Dis Aquat Organ* 1998;33(2):111-118.
- 319 7. **Lacoste A, Jalabert F, Malham S, Cueff A, Gelebart F et al.** A *Vibrio splendidus*
320 strain is associated with summer mortality of juvenile oysters *Crassostrea gigas* in the Bay of
321 Morlaix (North Brittany, France). *Dis Aquat Organ* 2001;46(2):139-145.
- 322 8. **Gómez-León J, Villamil L, Lemos M, Novoa B, Figueras A.** Isolation of *Vibrio*
323 *alginolyticus* and *Vibrio splendidus* from Aquacultured Carpet Shell Clam (*Ruditapes*
324 *decussatus*) Larvae Associated with Mass Mortalities. *Appl Environ Microb* 2005;71(1):98-
325 103.
- 326 9. **Balcazar JL, Gallo-Bueno A, Planas M, Pintado J.** Isolation of *Vibrio alginolyticus*
327 and *Vibrio splendidus* from captive-bred seahorses with disease symptoms. *Antonie Van*
328 *Leeuwenhoek* 2010;97(2):207-210.
- 329 10. **Baffone W, Pianetti A, Bruscolini F, Barbieri E, Citterio B.** Occurrence and
330 expression of virulence-related properties of *Vibrio* species isolated from widely consumed
331 seafood products. *Int J Food Microbiol* 2000;54(1-2):9-18.
- 332 11. **Su YC, Liu C.** *Vibrio parahaemolyticus*: a concern of seafood safety. *Food Microbiol*
333 2007;24(6):549-558.
- 334 12. **Weinbauer MG, Brettar I, Hofle MG.** Lysogeny and virus-induced mortality of
335 bacterioplankton in surface, deep, and anoxic marine waters. *Limnol Oceanogr*
336 2003;48(4):1457-1465.
- 337 13. **O'Shea YA, Boyd EF.** Mobilization of the *Vibrio* pathogenicity island between
338 *Vibrio cholerae* isolates mediated by CP-T1 generalized transduction. *Fems Microbiol Lett*
339 2002;214(2):153-157.
- 340 14. **Wendling CC, Batista FM, Wegner KM.** Persistence, seasonal dynamics and
341 pathogenic potential of *Vibrio* communities from Pacific oyster hemolymph. *Plos One*
342 2014;9(4).
- 343 15. **Poirier M, Listmann L, Roth O.** Selection by higher-order effects of salinity and
344 bacteria on early life-stages of Western Baltic spring-spawning herring. *Evol Appl*
345 2017;10(6):603-615.
- 346 16. **Nasfi H, Travers MA, de Lorgeril J, Habib C, Sannie T et al.** A European
347 epidemiological survey of *Vibrio splendidus* clade shows unexplored diversity and massive
348 exchange of virulence factors. *World J Microb Biot* 2015;31(3):461-475.

- 349 17. **Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al.** Proposed minimal
350 standards for the use of genome data for the taxonomy of prokaryotes. *Int J Syst Evol*
351 *Microbiol* 2018;68(1):461-466.
- 352 18. **Roth O, Keller I, Landis SH, Salzburger W, Reusch TB.** Hosts are ahead in a
353 marine host-parasite coevolutionary arms race: innate immune system adaptation in pipefish
354 *Syngnathus typhle* against *Vibrio phylotypes*. *Evolution* 2012;66(8):2528-2539.
- 355 19. **Wendling CC, Piecyk A, Refardt D, Chibani C, Hertel R et al.** Tripartite species
356 interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant
357 bacteria. *BMC Evol Biol* 2017;17(98).
- 358 20. **Chibani CM, Hertel R, Hoppert M, Liesegang H, Wendling CC.** Closely Related
359 Vibrio alginolyticus Strains Encode an Identical Repertoire of Caudovirales-Like Regions
360 and Filamentous Phages. *Viruses* 2020;12(12).
- 361 21. **Cerny G.** Method for the distinction of gramnegative from grampositive bacteria.
362 *European Journal of Applied Microbiology* 1976;3:223-225.
- 363 22. **Kovacs N.** Identification of Pseudomonas-Pyocyanne by the Oxidase Reaction.
364 *Nature* 1956;178(4535):703-703.
- 365 23. **Sasser M.** Identification of bacteria by gas chromatography of cellular fatty acids.
366 *Technical Note* 1990;101.
- 367 24. **Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al.**
368 *Usitatabacter rugosus* gen. nov., sp. nov. and *Usitatabacter palustris* sp. nov., novel members
369 of *Usitatabacteraceae* fam. nov. within the order Nitrosomonadales isolated from soil. *Int J*
370 *Syst Evol Micr* 2021;71(2).
- 371 25. **Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW.** CheckM:
372 assessing the quality of microbial genomes recovered from isolates, single cells, and
373 metagenomes. *Genome Res* 2015;25(7):1043-1055.
- 374 26. **Bowers RM, Kyripides NC, Stepanauskas R, Harmon-Smith M, Doud D et al.**
375 Minimum information about a single amplified genome (MISAG) and a metagenome-
376 assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* 2017;35(8):725-731.
- 377 27. **Seemann T.** Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
378 2014;30(14):2068-2069.
- 379 28. **Blum M, Chang HY, Chuguransky S, Grego T, Kandasamy S et al.** The InterPro
380 protein families and domains database: 20 years on. *Nucleic Acids Res* 2021;49(D1):D344-
381 D354.
- 382 29. **Galperin MY, Wolf YI, Makarova KS, Alvarez RV, Landsman D et al.** COG
383 database update: focus on microbial diversity, model organisms, and widespread pathogens.
384 *Nucleic Acids Res* 2021;49(D1):D274-D281.
- 385 30. **Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al.** PHASTER: a better, faster
386 version of the PHAST phage search tool. *Nucleic Acids Res* 2016;44(W1):W16-21.
- 387 31. **Meier-Kolthoff JP, Goker M.** TYGS is an automated high-throughput platform for
388 state-of-the-art genome-based taxonomy. *Nat Commun* 2019;10(1):2182.
- 389 32. **Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Goker M.** TYGS and LPSN:
390 a database tandem for fast and reliable genome-based classification and nomenclature of
391 prokaryotes. *Nucleic Acids Res* 2022;50(D1):D801-D807.
- 392 33. **Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M.** Genome sequence-based
393 species delimitation with confidence intervals and improved distance functions. *Bmc*
394 *Bioinformatics* 2013;14.
- 395 34. **Lefort V, Desper R, Gascuel O.** FastME 2.0: A Comprehensive, Accurate, and Fast
396 Distance-Based Phylogeny Inference Program. *Mol Biol Evol* 2015;32(10):2798-2800.
- 397 35. **Farris JS.** Estimating Phylogenetic Trees from Distance Matrices. *Am Nat*
398 1972;106(951):645-&.

- 399 36. **Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al.**
400 Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of *Escherichia coli*,
401 and a proposal for delineating subspecies in microbial taxonomy. *Stand Genomic Sci*
402 2014;9:2.
- 403 37. **Jain C, Rodriguez RL, Phillippe AM, Konstantinidis KT, Aluru S.** High
404 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat*
405 *Commun* 2018;9(1):5114.
- 406 38. **Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK.** Genomics and
407 taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. *Anal*
408 *Methods-Uk* 2016;8(1):12-24.
- 409 39. **Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH.** GTDB-Tk v2: memory
410 friendly classification with the genome taxonomy database. *Bioinformatics*
411 2022;38(23):5315-5316.
- 412 40. **Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA et al.** GTDB: an
413 ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank
414 normalized and complete genome-based taxonomy. *Nucleic Acids Res* 2022;50(D1):D785-
415 D794.
- 416 41. **Beemelmanns A, Roth O.** Biparental immune priming in the pipefish *Syngnathus*
417 *typhle*. *Zoology (Jena)* 2016.
- 418 42. **Chibani CM, Roth O, Liesegang H, Wendling CC.** Genomic variation among
419 closely related *Vibrio alginolyticus* strains is located on mobile genetic elements. *Bmc*
420 *Genomics* 2020;21(1):354.
- 421 43. **Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J et al.** *Vibrio*
422 *kanaloae* sp. nov., *Vibrio pomeroyi* sp. nov. and *Vibrio chagasici* sp. nov., from sea water and
423 marine animals. *Int J Syst Evol Microbiol* 2003;53(Pt 3):753-759.
- 424 44. **Beaz-Hidalgo R, Doce A, Pascual J, Toranzo AE, Romalde JL.** *Vibrio gallaecicus*
425 sp. nov. isolated from cultured clams in north-western Spain. *Syst Appl Microbiol*
426 2009;32(2):111-117.
- 427 45. **Wang H, Liu J, Wang Y, Zhang XH.** *Vibrio marisflavi* sp. nov., isolated from
428 seawater. *Int J Syst Evol Microbiol* 2011;61(Pt 3):568-573.
- 429 46. **Colwell RR.** Polyphasic taxonomy of the genus *vibrio*: numerical taxonomy of *Vibrio*
430 *cholerae*, *Vibrio parahaemolyticus*, and related *Vibrio* species. *J Bacteriol* 1970;104(1):410-
431 433.

432 **Tables**

433

434 **Table 1:** Differential characteristics between strains K08M4^T and the reference strains of phylogenetically
435 related species

436

437 Strains: 1. DSM 109818^T (this study), 2. *V. tasmaniensis* DSM 17182^T (this study), 3. *V. splendidus* DSM
438 19640^T (this study), 4 *V. splendidus* DSM 26178^T (this study), 5. *V. pomeroyi* LMG 20537^T [43], 6 *V.*
439 *gallaecicus* LMG 24045^T [44, 45], 7 *V. cholerae* ATCC 14035^T [46]; +, positive reaction; -, negative reaction;
440 ND, no data available

	1	2	3	4	5	6	7
ADH	-	+	+	+	+	-	-
VP	-	-	-	-	-	-	±
ONPG	-	-	+	+	+	-	ND
O/129 susceptibility	+	-	+	-	+	+	-
Gelatin hydrolysis	-	-	+	+	+	+	
Acid from							
Galactose	-	-	+	+	ND	ND	+
Mannitol	-	+	+	+	+	+	+
Amygdalin	+	+	+	+	+	-	ND
Melibiose	-	-	+	+	-	-	-
Sucrose	+	-	-	-	+	-	+
2-Ketogluconate	-	-	+	-	ND	ND	-
Mannose	-	+	+	+	ND	ND	+

441 A full Table containing all results from API ZYM, API 20E, and API 50CHE can be found in the supplementary
442 material Table S1-S3.

443 ADH Arginin dihydrolase, VP Voges Proskauer, ONPG β-Galactosidase

444

445

446

447

448 **Table 2:** Fatty acid profile of strain K08M4^T DSM 109818^T in comparison to *V. tasmaniensis* DSM 17182^T, 3.
449 *V. splendidus* DSM 19640^T. All data in the table are from the present study. Fatty acids present in amounts
450 lower than 1% are not shown. Quantification by GC-FID, identity was confirmed by mass spectrometry.

Fatty acid	K08M4^T	<i>V. tasmaniensis</i> DSM 17182 ^T	<i>V. splendidus</i> DSM 19640 ^T
C _{12:0}	3.9%	4.0%	5.0%
C _{12:0} 3OH	2.7%	2.4%	2.5%
C _{14:0}	3.8%	4.1%	5.7%
C _{14:0} 3OH	1.8%	1.7%	1.9%
C _{16:0} iso	7.6%	3.4%	3.2%
C _{16:1} ω7c	39.9%	43.8%	40.7%
C _{16:1} ω7t	3.3%	4.3%	5.3%
C _{16:0}	19.2%	21.6%	19.4%
C _{18:1} ω7c	8.7%	7.0%	11.1%
C _{18:0}	1.0%	1.1%	0.5%

451 A full table can be found in the supplementary material, Table S4.

452

453 **Table 3** GGDC-Distance calculation for *V. syngnathi* K08M4T using the GGDC-server of DSMZ. Distances
454 have been calculated using formulae 4, for details see [32, 33]– T for type strains.

Species	DDH	Model C.I.	Distance	G+C difference	Accession Nr. Chr. 1
<i>V. syngnathi</i> K08M4 ^T	-	-	-	44.06 mol%	CP017916.1
<i>V. tasmaniensis</i> LMG 20012 ^T	58.9	[56 - 61.6%]	0.0536	0.03	NZ_AP025510.1
<i>V. atlanticus</i> LMG 24300	54	[51.3 - 56.7%]	0.0629	0.15	NC_011753.2
<i>V. atlanticus</i> CECT 7223 ^T	54.1	[51.4 - 56.8%]	0.0628	0.09	NZ_AP025460.1
<i>V. cyclitrophicus</i> ED008	39.2	[36.8 - 41.8%]	0.102	0.12	NZ_CP064172.1
<i>V. crassostreae</i> LMG 22240 ^T	37.8	[35.4 - 40.3%]	0.1071	0.44	NZ_AP025476.1
<i>V. gigantis</i> ACE001	35.8	[33.4 - 38.3%]	0.1149	0.23	NZ_CP092384.1
<i>V. crassostreae</i> ED395	39.4	[36.9 - 41.9%]	0.1015	0.31	NZ_CP064170.1
<i>V. cyclitrophicus</i> ED287	39.3	[36.8 - 41.8%]	0.1018	0.01	NZ_CP065366.1
<i>V. gigantis</i> LMG 22741 ^T	35.7	[33.3 - 38.3%]	0.1151	0.25	NZ_AP025492.1
<i>V. splendidus</i> LMG 19031 ^T	43.6	[41.1 - 46.2%]	0.0881	0.15	NZ_AP025508.1
<i>V. pomeroyi</i> LMG 20537 ^T	34.9	[32.5 - 37.4%]	0.1185	0.46	NZ_AP025506.1
<i>V. lentus</i> LMG 21034 ^T	38.6	[36.1 - 41.1%]	0.1043	0.09	NZ_AP025499.1
<i>V. chagasicii</i> LMG 21353 ^T	30.4	[28 - 32.9%]	0.1402	0.41	NZ_AP025465.1
<i>V. artabrorum</i> CECT 7226 ^T	31.8	[29.4 - 34.3%]	0.1327	0.16	NZ_AP025458.1
<i>V. gallaecicus</i> CECT 7244 ^T	24.4	[22.1 - 26.8%]	0.179	2.44	NZ_AP025490.1
<i>V. cholerae</i> El Tor N16961	20.9	[18.7 - 23.3%]	0.2103	3.5	NC_002505
<i>V. celticus</i> 7224 ^T	38.5	[36 - 41%]	0.1047	0.48	NZ_MVJF01000005.1

455
456
457
458
459

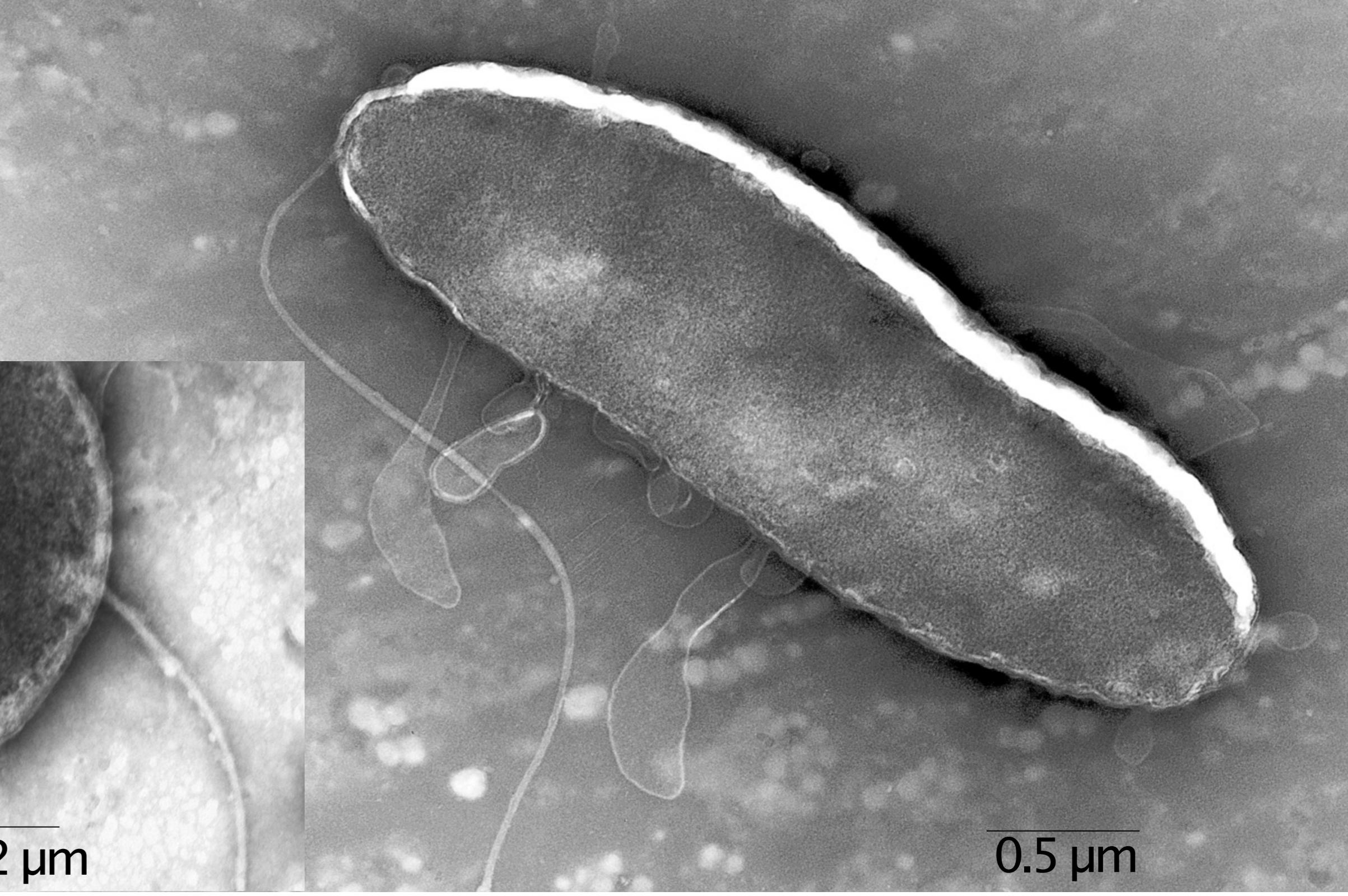
460 **Figure Legends**

461
462
463

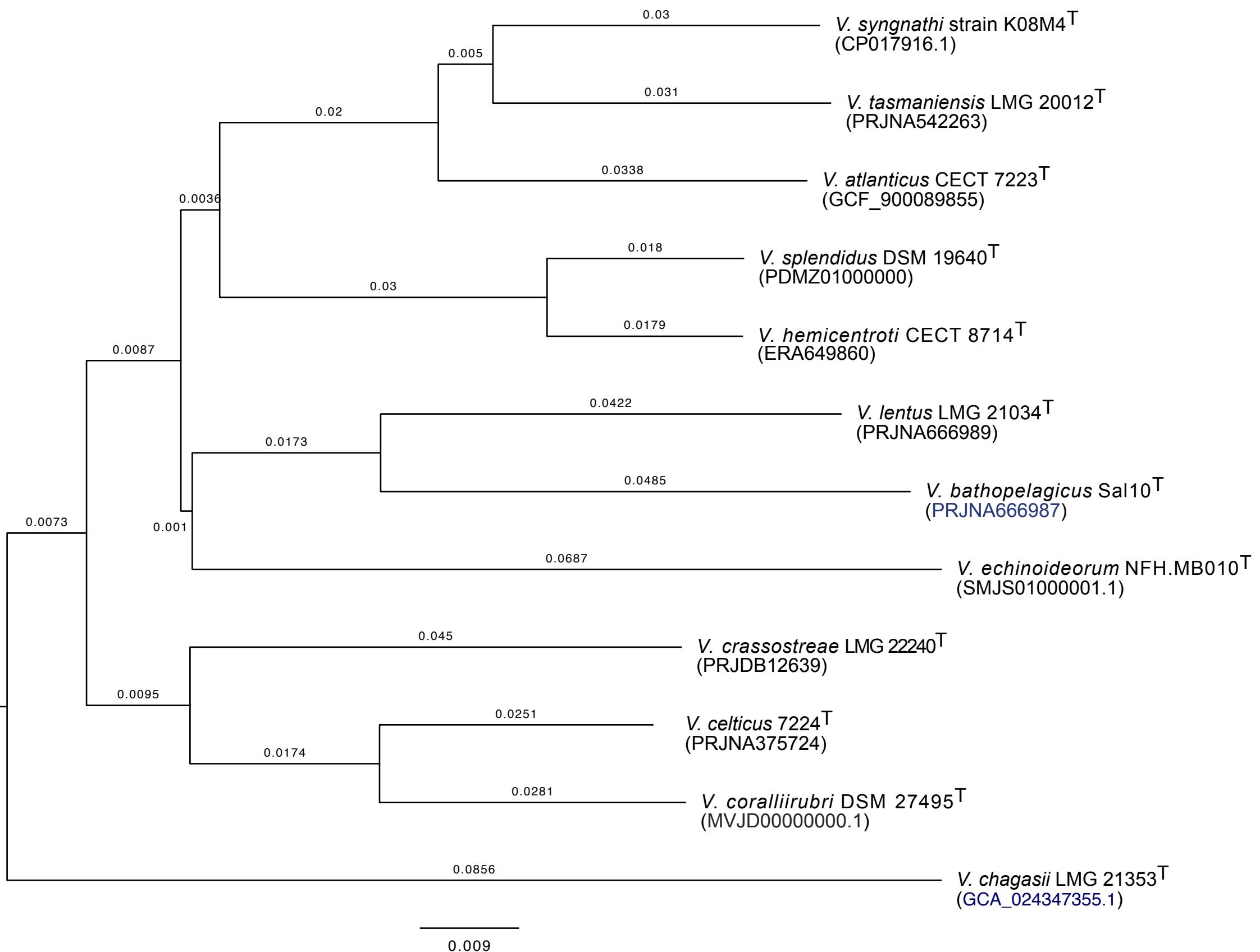
464 **Figure 1:** Left: Broad-nosed pipefish, *Syngnathus typhli* (by Uli Kunz), from which K08M4^T was isolated from;
465 right: Transmission electron microscope image of K08M4^T after 3 hours of growth in medium 101.

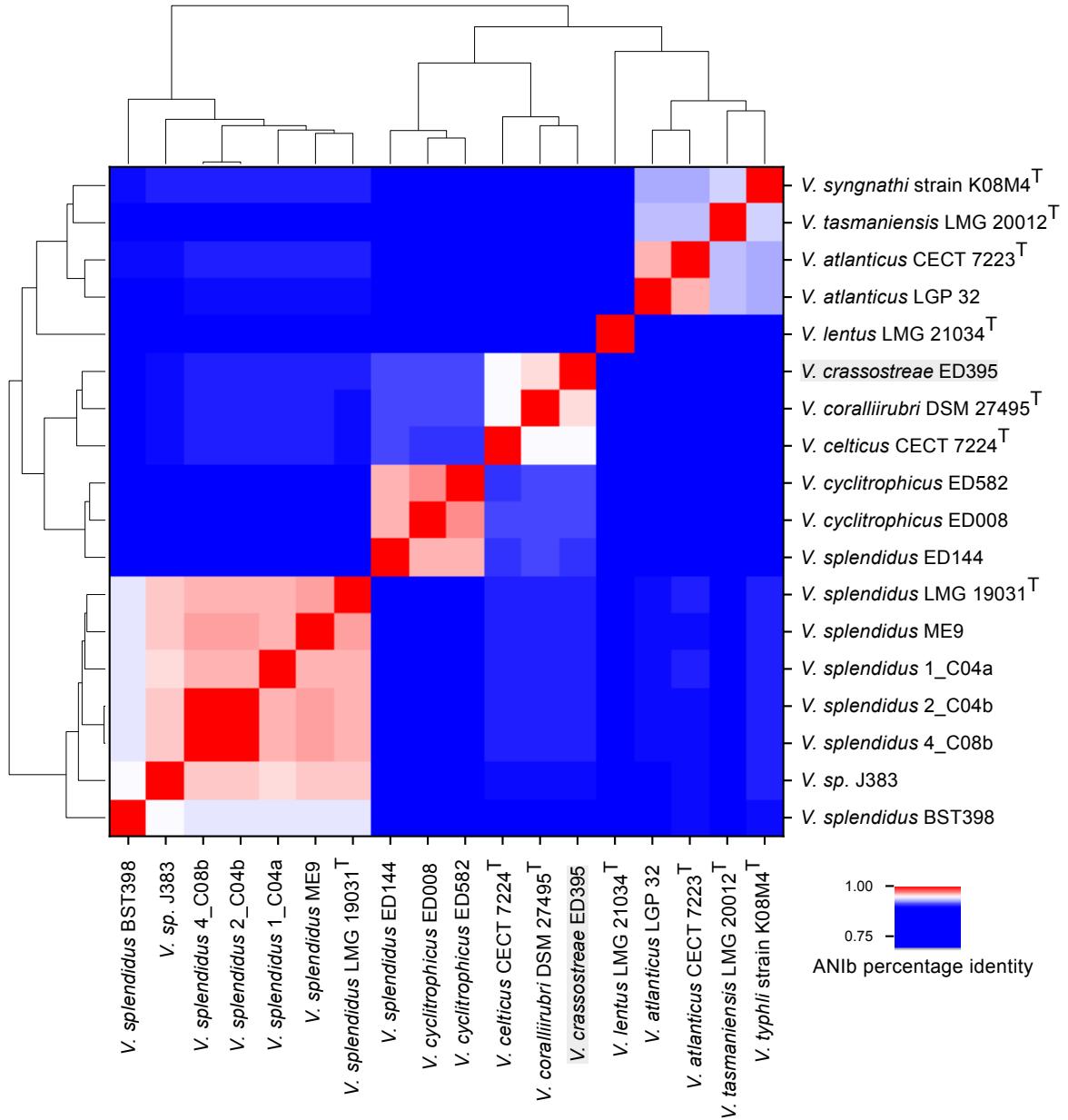
466
467

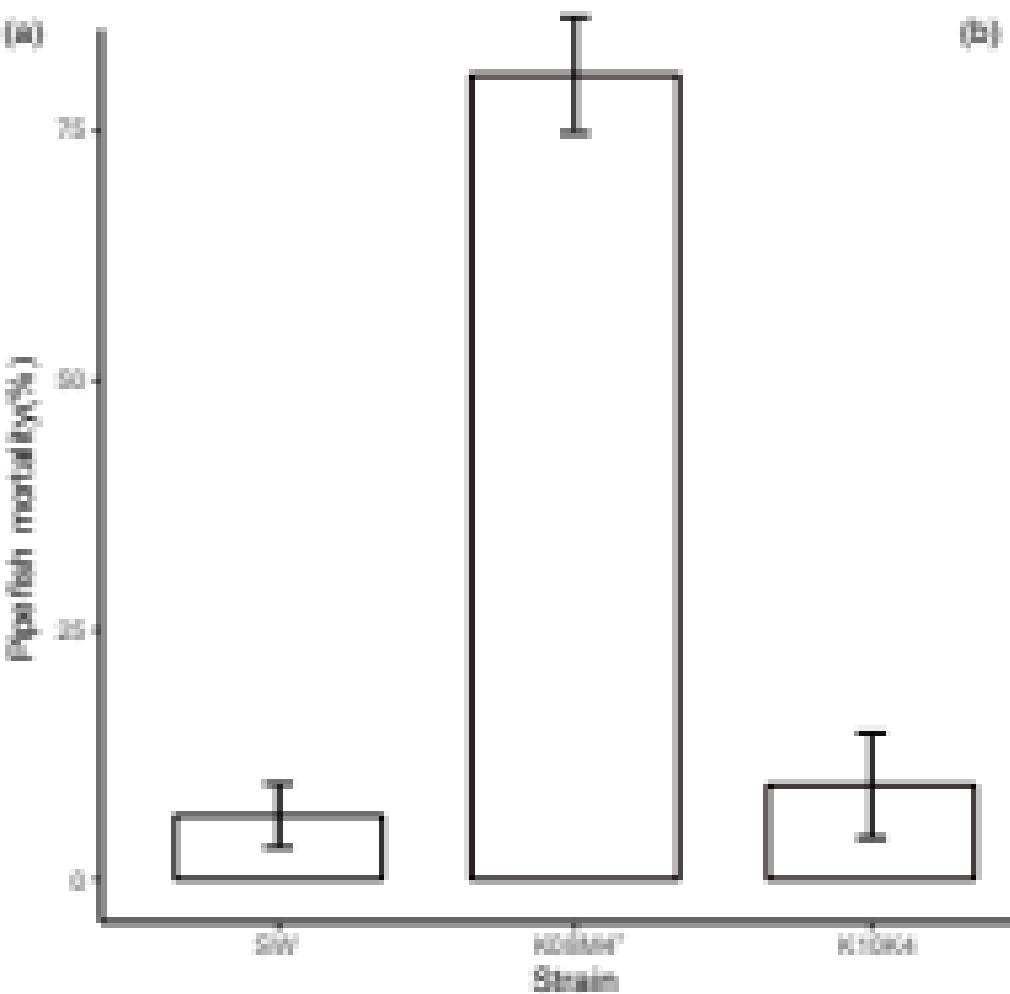
468 **Figure 2** Phylogenetic tree inferred with FastME 2.1.6.1 [34] from GBDP distances calculated from genome
469 sequences. The branch lengths are scaled in terms of GBDP distance formula d_5 . The numbers above branches
470 are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of
471 97.7 %. The tree was rooted at the midpoint [35].


472
473

474 **Figure 3:** Average nucleotide identity (ANI) analysis of strain K08M4^T sequenced strain with available closed
475 *Vibrio* genomes (ANI > 90%) as references. ANI analysis based on BLAST alignment of the genome sequences
476 was performed and visualized using PyANI.


477
478
479 **Figure 4** Pipefish mortality in per cent (a) and ordination of differentially expressed immune genes between
480 K08M4, K10K4 or seawater-injected pipefish (SW).




0.2 μ m

0.5 μ m

