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Abstract

Ultrasound localization microscopy (ULM) is an emerging super-resolution imaging technique for deep
tissue microvascular imaging. However, conventional localization methods are constrained by low
microbubble (MB) concentration, as accurate localization requires a strict separation of MB point spread
functions (PSFs). Furthermore, deep learning-based localization techniques are often limited in their ability
to generalize to in vivo ultrasound data due to challenges in accurately modeling highly variable MB PSF
distributions and ultrasound imaging conditions. To address these limitations, we propose a novel deep
learning-pipeline, LOcalization with Context Awareness (LOCA)-ULM, which employs simulation that
incorporates MB context to generate synthetic data that closely resemble real MB signals, and a loss
function that considers both MB count and localization loss. In in silico experiments, LOCA-ULM
outperformed conventional localization with superior MB detection accuracy (94.0% vs. 74.9%) and a
significantly lower MB missing rate (13.2% vs 74.8%). In vivo, LOCA-ULM achieved up to three-fold

increase in MB localization efficiency and a x 9.5 faster vessel saturation rate than conventional ULM.
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Main

Super-resolution optical microscopy is an established optical imaging technology that breaks the diffraction
barrier of light and offers an order-of-magnitude improvement in imaging spatial resolution. One of the
successful implementations of optical super-resolution, called single-molecule localization microscopy
(SMLM), uses the stochastic blinking of fluorophore emissions to avoid overlaps between PSFs of
individual molecules within a dense sample '-%. The sample is repeatedly illuminated, and a super-resolved
image is reconstructed by accumulating the localized positions of single emitters that were separated in
time. SMLM provides a nano-scale spatial resolution, which is essential for biological research at the
cellular and subcellular levels °.

The concept of localization microscopy has been successfully adopted by the ultrasound community to
overcome the acoustic diffraction limit. As an acoustic analog to SMLM, ultrasound localization
microscopy (ULM) uses ultrasound contrast agents (i.e., microbubbles or MBs) that flow within the blood
vessels as individual point targets to achieve super-resolution *°. By localizing each MB, ULM increases
the ultrasound imaging spatial resolution by an approximate factor of ten ¢. Because ULM uses the strong
backscattering signal from MBs, it does not sacrifice imaging depth of penetration to gain spatial resolution.
This key advantage makes ULM a powerful tool that allows noninvasive probing of deep tissue
microvasculature for many preclinical and clinical applications .

As with all imaging techniques, ULM is not without limitations. At present, a key limitation of ULM is the
long data acquisition time, which is the result of the inherent compromise between MB concentration and
MB localization efficiency/accuracy. For example, to achieve accurate MB localization, ULM requires
limited number of MBs per imaging frame (e.g., by using low MB concentration) so that MBs are spatially
separated and localizable. However, lower MB concentration also makes it slower to accumulate adequate
MB localizations to fill the lumen of the vessel, which can take several to tens of minutes 8. In contrast, a
higher MB concentration speeds up the MB filling process in theory, but in practice it also increases MB
signal overlap and reduces MB localization efficiency. As a result, increased MB concentration does not

necessarily translate to faster ULM imaging speed. As such, improving MB localization efficiency under
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high MB concentrations remains a challenging yet essential task for improving the imaging speed (i.e.,
temporal resolution) of ULM.

Various methods have been proposed to improve MB localization under high-density MB conditions.
Earlier studies focused on using Fourier-based filters to separate overlapping MBs into subgroups,
leveraging the diverse spatiotemporal flow characteristics of MBs °. Assuming a sparse distribution of MBs
in each imaging frame, localization algorithms based on sparse image recovery and compressed sensing
(CS) have been proposed to separate overlapping MB signals ''2. However, the effectiveness of these
methods depends on constructing an accurate MB PSF forward model, which is challenging due to the
nonlinear response of MBs as well as other complexities involving frequency-dependent ultrasound
attenuation, phase aberration, multi-scattering, and multi-path reverberation. In addition, the assumption of
sparsity does not necessarily hold in areas with high MB density, which hampers the performance of these
methods.

Deep learning has emerged as a promising solution for robustly localizing high-density MBs in ULM. One
major limitation of deep learning-based MB localization is the lack of ground truth for the MB PSF in in
vivo imaging settings. As a result, different MB PSF modeling techniques (e.g., using bivariate Gaussian

models 13

and Field II simulations '*) have been proposed and commonly used to generate simulation
datasets to train deep networks for MB localization. However, the complex MB acoustic responses in vivo
1517 make it difficult to generate MB PSFs that closely resemble real MB signal characteristics (e.g., size,
shape, brightness). Since the performance of deep learning localization heavily depends on the dataset that
it is trained on, inaccurate estimation of the MB PSF can introduce biases in the model. Furthermore,
existing simulation pipelines do not incorporate the appropriate MB signal properties and ultrasound system
characteristics that are frequently observed from in vivo ultrasound data. As a result, the performance of
existing deep learning-based ULM techniques is greatly undermined by the inaccurate modeling of the MB
PSF and ultrasound imaging system.

In this work, we present LOcalization with Context Awareness (LOCA)-ULM, which leverages deep

learning and contextual information to achieve robust localization under high MB concentrations. We first
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80  address the challenge of creating realistic synthetic datasets by constructing an MB PSF model informed
81 by real ultrasound data. Considering the need for a flexible PSF simulator that can describe the high
82  variability of MB PSFs, we utilize a generative adversarial network (GAN) '® to directly learn the
83  underlying properties of real in vivo MB signals. GANs are powerful tools for generating realistic samples
84  without requiring domain-specific knowledge to model real data distributions. As a result, they are well-
85  suited for capturing the complex properties of MB signals and creating realistic MB PSFs. Moreover, our
86  simulation includes modeling of both ultrasound system noise and MB behavior. To accurately represent
87  MB behavior, we assigned parameters related to factors such as brightness, lifetime, and velocity, to create
88  ground truth positions. Overall, by simulating GAN-based MB signals that also reflect the in vivo MB
89  behavior, we can better train the network to identify MB signals present in ultrasound images, leading to
90 improved performance. The second method aims to address the challenges associated with high MB
91  concentration that are present in practice. We translated the Deep Context Dependent (DECODE) " neural
92  network into the ULM framework, in which the DECODE architecture and loss functions were optimized
93  to achieve robust MB localization across a wide range of MB concentrations. In this paper, we
94  systematically evaluated the performance of the proposed methods with both simulation and in vivo data
95 that include chicken embryo chorioallantoic membranes (CAMs) and rat brains.

96

97 Results

98  Fig. laillustrates the simulation pipeline designed to simulate realistic MB response and ultrasound

99  imaging conditions. The simulation used MB PSFs generated by a Least-squares Generative Adversarial
100  Network (LSGAN) %. Conventional localization techniques have limitations in creating a complete set of
101  MB PSFs that accurately represent the distribution of real MB PSFs. To overcome this challenge, we
102  employed LSGAN (as depicted by "G" in Fig. 1a) to create a more extensive collection of MB templates
103  that could be used for training the LOCA-ULM, including those that have not been observed during

104  training. This strategy enables us to construct a more robust localization network that can detect various
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105  MBs with different shapes, leading to a enhance localization performance on in vivo ultrasound data at
106  inference stage.

107 LSGAN was initially trained on a large number of MB signals obtained from in vivo images using a
108 conventional localization algorithm based on normalized cross-correlation (NCC) 2'. Once trained, the
109 LSGANs were used to generate realistic MB PSFs that were stored in an MB PSF bank (i.e., collection of
110 MB templates that were later used by DECODE network for training). To create the ground truth MB
111  positions, a list of sub-wavelength coordinates was randomly sampled and assigned factors such as MB
112 brightness, lifetime, and velocity to emulate real MB behavior. The ground truth positions were then
113 convolved with the synthesized MB PSFs (randomly chosen from the MB PSF bank) to create ultrasound
114  images with realistic MB signals. A typical simulated image based on LSGAN-created MB signal is shown
115  in Fig. 1b (LSGAN-based PSF), which closely resembles real MB signals extracted from the in vivo CAM
116  image shown in Fig. 1d (Real image), as compared to other MB simulation methods such as bivariate
117  Gaussian and Field II. Finally, data-informed ultrasound noise was modeled and added to the simulated
118  image to create the final training datasets for the DECODE network (Fig. 1c, d) (Methods).

119  Inthis study, we adopted the principles of DECODE to solve the problem of localizing spatially overlapping
120  MB signals. We translated the cost functions of DECODE, including emitter count loss and localization
121 loss, to train the network for the tasks of estimating MB counts, MB detection probability, MB locations,
122 and MB brightness . The count loss and detection probability were jointly optimized with the localization
123 loss to provide more accurate estimation of MB locations. This is a more robust approach than directly
124  using MB location as loss terms (e.g., 1's for the center of MBs and O for otherwise), which can generate a
125  challenging condition for training '*-?*. We trained the network using simulated images using LSGAN-
126  generated MBs, and the count loss and localization loss were optimized to maximize the likelihood of the
127  ground truth MB positions under a Gaussian mixture model (LOCA-ULM). In the inference stage (Fig. le),
128  the network estimates the true distribution of MB locations and brightness from real ultrasound data used
129  as input. This strategy allows the network to output confident MB detection probability and accurate

130  localizations for spatially overlapping MB PSFs (Methods).
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Fig 1. Overview of the proposed LOCA-ULM MB localization pipeline. LOCA-ULM is a simulation-based
supervised learning method using MB PSFs generated by Least-squares Generative Adversarial Network (LSGAN)?°.
and DECODE localization'® a The LSGAN (G) was trained on a large set of MB PSFs identified by the conventional
normalized cross-correlation (NCC) localization algorithm?!. The LSGAN learns the distribution of real MB signals and
generates diverse and realistic synthetic MB PSFs. The LSGAN-generated MB PSFs are convolved with simulated
ground truth MB positions assigned with MB-specific characteristics (e.g., brightness, velocity, lifetime) to create
simulated images that closely resemble real data. The simulated images were used to train the DECODE network for
localization purposes. b Examples of simulated MB signals using different PSF simulation methods (2D Gaussian,
Field Il, and LSGAN). Red dots indicate the ground truth MB location. ¢ Examples of experimentally acquired electrical
noise from the ultrasound system, synthesized Rician noise using the proposed method (Methods). d Simulated image
with LSGAN-based MB PSFs with added Rician noise and real MB image extracted from the in vivo CAM dataset. e
DECODE-based ultrasound localization microscopy pipeline. Inference was performed by using in vivo ultrasound
data. 2D-DECODE outputs the probability of detecting a MB near pixel k (p;), sub-wavelength spatial coordinates
(Axy, Ayy) respect to center of the pixel k, MB brightness (I), and corresponding uncertainties (o, oy, 6;). MB pairing
and tracking were applied to predicted coordinates and the final super-resolved ULM images were generated

131

132 Simulation study

133 We first validated the proposed LOCA-ULM localization pipeline using simulation data. Using the
134  simulation pipeline described in Methods, the test dataset was created using the MB signals extracted from
135  invivo CAM data. Two-thousand imaging frames with an image size of 100 pixels X 100 pixels (12.3 um

136  pixel size) were generated for different MB concentrations. The concentration for the simulation was
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137  incremented with a 0.02 MBs/A? step size from 0.02 MBs/A? (low density) to 0.37 MBs/A? (high
138  density), where 4 is the wavelength of the ultrasound pulse used for imaging (Table 1). Fig. 2a shows
139  examples of MB localization using LOCA-ULM and conventional localization on simulation datasets with
140  different MB concentrations. At a low MB concentration (0.06 MBs/A?), both LOCA-ULM and
141  conventional MB localization methods provided MB locations that agree with the ground truth. As the
142 concentration increased (0.27 MBs/A?), conventional localization started to miss more MBs (blue arrows
143  in Fig 2a), and the miss-localizations tend to occur around the center of the clustered MB signals (yellow
144  arrows in Fig. 2a). In contrast, LOCA-ULM was able accurately separate and localize overlapping MB
145  signals with various shapes and brightness. LOCA-ULM localization is also in good agreement with the
146  ground truth.

147

148 LOCA-ULM achieves high MB localization accuracy and efficiency under high MB concentrations in

149  simulation data

150 The MB localization performance on simulation data was evaluated quantitatively using three metrics
151  (Methods). Fig. 2b shows the performance of LOCA-ULM versus conventional localization with respect to
152  increasing MB concentrations. LOCA-ULM consistently outperformed the conventional localization
153  algorithm in regard to MB detection accuracy and MB missing rate, especially for high concentration
154  conditions. LOCA-ULM achieved an average detection accuracy of 94.0%, as compared to an average
155  accuracy of 74.9% from conventional localization. LOCA-ULM also substantially decreased the missing
156  rate (13.2% vs 74.8%) over conventional localization. This improvement is essential for shortening the data
157  acquisition time for ULM because it allows higher concentration MBs to be administered in vivo while
158  maintaining a robust MB localization performance with high efficacy.

159  The localization error in Fig. 2b shows that LOCA-ULM consistently reduced the MB localization error
160  across all concentrations when comparing to conventional localization. The theoretical resolution limit of

161 ULM (i.e., localization error) can be estimated using the Cramér-Rao lower bound (CRLB)?. Following
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Fig 2. Results of the simulation study and in vivo chicken embryo CAM imaging study. a Simulation results of
LOCA-ULM and conventional localization with low (0.06 MBs/A?) and high (0.27 MBs/A?) MB concentrations. Ground
truth MB positions are marked by red x, LOCA-ULM localization by cyan x, and conventional localization by green x.
b Comparison between LOCA-ULM and conventional localization was performed on simulated images at increasing
MB concentrations, using three performance metrics: MB detection accuracy, MB missing rate, and localization error
(Methods). c-f Comparisons among conventional localization, LOCA-ULME, and LOCA-ULM MB localization in in vivo
chicken embryo CAM imaging. ¢ Optical microscopy image of the CAM surface microvessel, along with MB localization
images reconstructed by conventional localization and LOCA-ULM. d The ROI selected from the optical image and
the corresponding ground truth vessel segmentation. Magnified view of the MB localization images marked by the
white ROI for conventional localization, LOCA-ULME, and LOCA-ULM. e,f The vessel filling (VF) percentage of three
conventional localization, LOCA-ULME, and LOCA-ULM, as a function of the number of frames and localization time.

162  the theoretical CRLB model, we predicted a maximum resolution of 3.29 um with the CAM study
163  acquisition settings. In low-density conditions (0.02 MBs/A?), conventional localization achieved a
164  maximum localization resolution of 10.87 um, while LOCA-ULM achieved localization resolution of 6.74
165  wm, which is closer to the CRLB.

166

167 GAN-generated MB signals improved LOCA-ULM performance for MB localization in the in vivo CAM

168 imaging study

169 The performance of LOCA-ULM was further evaluated in an in vivo CAM microvessel model. To

170  demonstrate the effectiveness of using LSGAN-generated realistic MBs, we used two types of simulation
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171  data for network training. The first type (LOCA-ULME; LOCA-ULM Experimental) used MB signals
172 directly extracted from the CAM data; the second type (LOCA-ULM) used MB signals generated by the
173  LSGAN. Fig. 2e summarizes the vessel filling (VF) percentage for all the localization methods including
174  conventional localization, LOCA-ULME, and LOCA-ULM (Methods). LOCA-ULME and LOCA-ULM
175  achieved consistently higher VF percentage and faster vessel saturation rate than conventional localization.
176 At 6000 frames (total 6 seconds of acquisition) for MB accumulation, LOCA-ULM achieved the highest
177  VF percentage (90.25%), followed by LOCA-ULME (79.15%) and conventional localization (69.09%).
178  Notably, the VF percentage respect to optical image ground truth of conventional localization started to
179  plateau around 70%, while LOCA-ULM did not plateau until 90%. This result is consistent with the
180  observation of under-filling of the major vessels using conventional localization as indicated by the yellow
181  arrows in Fig. 2d. Both LOCA-ULM and LOCA-ULME filled the large vessels more completely and the
182  size of the vessel was closer to the ground truth (i.e., based on optical microscopy). In Fig. 2d the
183  reconstructed microvessels indicated by the blue arrows display higher intensity for LOCA-ULM, revealing
184  vessel structures that have not yet been fully reconstructed by conventional localization and LOCA-ULME.
185  These results suggest that the diverse MB signals generated by the LSGAN enhanced the network’s
186  capability of localization more MBs under high MB concentrations.

187

188 LOCA-ULM significantly improves computational performance of MB localization

189  In addition to faster and more robust vessel filling performance, LOCA-ULM also enjoys an accelerated
190  processing time over conventional localization, thanks to the high inference speed of deep neural networks.
191 The LOCA-ULM network took 78s to localize 1000 ultrasound imaging frames with the size of 720
192  pixelx 560 pixel (7.10 mm X 5.52 mm), representing a 4-fold speedup over conventional localization. To
193  achieve a 50% VF percentage, LOCA-ULM needed the least amount of ultrasound images (740 frames),
194  which translates to the fastest localization time (57.81 s) over LOCA-ULME (1000 frames, 78.13s) and

195  conventional (1620 frames, 546.75s) (Fig. 2f). These results indicate that LOCA-ULM greatly enhances
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196  the ULM performance by reducing both the data acquisition time (i.e., shorter MB accumulation) and post-
197  processing time while providing higher MB localization efficacy.

198

199 LOCA-ULM demonstrates superior in vivo ULM imaging performance in a rat brain

200  We demonstrated the generalizability of LOCA-ULM using in vivo rat imaging datasets. Fig 3. c-d shows
201  the final ULM images based on 20000 frames (a total of 20 seconds of data acquisition) of accumulation.
202  After localization, MB pairing and tracking were performed using uTrack®. As shown in Fig. 3d, the
203  vascular bed in the rat brain presents large variations of vessel sizes with wide distribution of MB
204  concentrations. As shown in Fig. 3¢, conventional localization suffered from poor localization performance
205  in regions with high MB concentrations, which manifest as disconnected and missing vessels in these
206  regions (red arrows in Fig. 3e). In contrast, LOCA-ULM revealed the dense cerebral vascular networks in
207  these regions, which were well-perfused and fully connected (red arrows in Fig. 3f).

208  Next, we designed a study to compare LOCA-ULM with the state-of-the-art MB localization method based
209  on MB separation ?. We used the MB separation filter to separate the ultrasound MB data into two subgroups:
210 flow away from the transducer (downward flow) and flow toward the transducer (upward flow), as shown
211  in Fig. 3b. Fig. 3g, h demonstrate that MB separation facilitated more robust MB localization and tracking
212 in high MB density regions for both conventional and LOCA-ULM. The improvement is most significant
213  for conventional localization, which suffered from poor MB localization performance in high density MB
214  regions. The intersecting and adjacent small vessels that were missing by conventional localization now
215  become clearly visible by using MB separation. For LOCA-ULM, the improvement was moderate because
216 LOCA-ULM was already efficient with localizing MBs in high density regions. This is evidenced by
217  comparing Fig. 3d and Fig. 3h where most of the cerebral vasculature was consistent before and after
218  applying MB separation for LOCA-ULM (indicated by yellow arrows). When comparing Fig. 3d and 3g,
219 it becomes clear that even with MB separation, conventional localization still could not achieve a similar

220  MB localization performance to LOCA-ULM without MB separation. This is an important finding because

10
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Fig 3. Comparison of LOCA-ULM and conventional localization to in vivo rat brain ultrasound data. a Power
Doppler image generated by accumulating 2500 frames (a total of 2.5 seconds of acquisition) of rat brain ultrasound
data. b in vivo rat brain localization workflow. The 1Q data after tissue clutter filtering was processed with and without
Fourier-based MB separation. For MB separation, the high concentration MB dataset was divided into subsets of
upward and downward flow towards the transducer using a directional filter °. Angle-based flow direction was used for
dataset without MB separation. For each dataset, MB locations was determined by performing normalized cross-
correlation with an empirically determined PSF function (i.e., conventional localization) or LOCA-ULM. The uTrack
algorithm was used to pair the localized MB centers and estimate their trajectories. c-j Each ULM directional flow maps
were generated by accumulating 20000 frames (a total of 20 seconds of acquisition), ¢,d without MB separation and
g,h with MB separation. e,f,i,j Improvement of vessel structures respect to the increasing number of frames is displayed
on the bottom, shown for the area marked with red rectangle. F indicates number of frames used for ULM reconstruction
and FRC indicates Fourier Ring Correlation.

222 it suggests that LOCA-ULM alone can already outperform the state-of-the-art MB localization technique
223  and does not require the help of post-processing methods such MB separation.

224 Finally, the spatial resolution of the ULM reconstructions were characterized by applying the Fourier Ring
225  Correlation (FRC) method, using the track splitting strategy and a 2-o threshold curve as proposed by
226  Hingot et al ». Our results showed that both LOCA-ULM and conventional localization produced spatial
227  resolution below a half wavelength at the imaging frequency 15.625 MHz (49.28um) with and without MB
228  separation (Supplementary Fig. 1). These findings suggest that LOCA-ULM can achieve a more complete
229  reconstruction of the vascular network and provide visualization of well-perfused vessels without
230  compromising spatial resolution.

231

232 LOCA-ULM-based MB localization automatically adapts to different MB concentrations

233  To further investigate the performance of LOCA-ULM under varying MB concentrations in vivo, we
234  conducted an experiment with increasing MB injection rate from 20 pL/min to 40 uL /min (Methods). Fig.
235 4 shows the reconstructed ULM images for 20 puL /min and 40 uL/min injection rate using conventional
236 and LOCA-ULM localization in a rat brain, where a total of 25000 frames (a total of 25 seconds of

237 acquisition) of ultrasound data were used for reconstruction. Similar to the observations in Fig. 3, LOCA-
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Fig 4. Effect of different MB injection rates (20 uL/min, 30 uL/min, 40 uL/min) on LOCA-ULM and
conventional localization for rat brain ULM imaging. a-h Each ULM image was generated by accumulating 25000
frames of ultrasound data (a total of 25 seconds of acquisition) for MB injection rate of 20 uL/min and 40 uL/min, a-
d ULM reconstruction without MB separation and e-h, with MB separation. i,j Comparison of total MB count per
acquisition (a total of 250 frames per acquisition) for LOCA-ULM and conventional localization at different MB injection
rates (20 uL/min, 30 uL/min, and 40 uL/min). Two datasets, i without MB separation and j with MB separation.
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239  ULM demonstrates much more complete cerebral vasculature reconstruction than conventional localization.
240  Notably, vessel areas with high MB concentrations suffered from the high MB missing rate of conventional
241  localization, which disappeared in the ULM image (red arrows in Fig. 4a, c). In contrast, LOCA-ULM
242  revealed large vessel structures that were missed by conventional localization (red arrows in Fig 4b, d).
243  Furthermore, in regions with moderate MB concentration, the intensity of reconstructed vessels with
244 conventional localization decreased with an increase in MB injection rate, leading to degraded vessel
245  delineation. For example, for conventional ULM, the two close-by vessels that were separable at an MB
246  injection rate of 20 uL/min (yellow arrows in Fig. 4a) became indistinguishable at an MB injection rate of
247 40 uL/min (yellow arrows in Fig. 4c). LOCA-ULM significantly improved the ability to resolve adjacent
248  structures, producing a clear separation of the vessels in both low (20 pL /min) and high (40 uL/min) MB
249  injection rates (yellow arrows in Fig. 4b, d, respectively). LOCA-ULM also revealed tiny vessels near the
250  cortical surface that cannot be reconstructed by conventional ULM, as indicated by green arrows in Fig.
251 4a-c.

252  The performance of LOCA-ULM localization was further evaluated by a quantitative analysis that used the
253  mean Power Doppler (PD) intensity as the reference. As shown in Fig. 4i, the MB count of LOCA-ULM
254  closely followed the trend of increasing PD intensity while conventional localization did not. This result
255  clearly indicates that conventional localization has already become saturated even at the lowest MB
256  injection rate (20 puL/min). With the addition of MB separation, as shown in Fig. 4j, conventional
257  localization improved the localization efficacy but was still saturated at the lowest injection rate. For
258 LOCA-ULM, MB separation also improved the MB count, which suggests that there was missed
259  localization for LOCA-ULM. Nevertheless, the improved MB count did not result in significant ULM
260  image quality improvement (e.g., Fig. 4d, h). Finally, the quantitative results provide a good agreement
261  with the ULM images, where LOCA-ULM reconstructed ULM images show increased microvessel
262  intensity with increased MB injection rate, while conventional localization shows constant microvessel

263  intensity despite the increased MB injection rate (white ROIs in Fig. 4 e-h).
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264  Discussion

265 In this study, we have presented LOCA-ULM, a context-aware deep learning-based MB localization
266  method along with an LSGAN-based MB simulation pipeline to facilitate high quality ULM imaging under
267  high MB concentrations. We adopted the principles of DECODE and designed a new simulation workflow
268  that incorporated MB characteristics and realistic ultrasound imaging noise. Compared with well-
269  established image formation processes of SMLM (e.g., blinking fluorophores, PSF modeling, noise and
270  camera model) *, there are several key differences to note in this study. First, the high variability of
271  ultrasound MB PSFs makes it challenging to construct effective PSF models that fully and accurately
272  capture the complexity of real MB signals. When trained with simple Gaussian PSF models, we
273  immediately observed suboptimal ULM imaging performance (e.g., gridding artifacts, poor vessel
274  reconstructions) (Supplementary Fig. 2). The proposed LSGAN-based MB generation implicitly learns the
275  complex MB PSF distributions that are present in the given ultrasound data, effectively minimizing the
276  discrepancy between real and modeled MB signal. We demonstrated the advantages of LSGAN-generated
277  PSFs in in vivo CAM imaging, where LOCA-ULM demonstrated significantly higher vessel filling (VF)
278  percentage and faster vessel saturation rate over LOCA-ULMF and conventional localization (Fig. 2e, f).
279  Secondly, we demonstrated the adaptiveness and robustness of LOCA-ULM with context-aware training
280  for varying MB concentrations. Unlike SMLM, where emitter density can be reduced using laser irradiation
281  or by adjusting chemical environment *, controlling MB concentration for ULM is challenging due to the
282  wide distribution of vessel sizes and hemodynamics in vivo. As a result, the high missing rate and
283  inaccuracy of conventional localization leads to incomplete ULM reconstructions with corrupted and

284  missing vessel structures (Fig. 3c, Fig. 4a, ¢). Deep learning offers a practical solution for learning the non-

285  linear mapping from ultrasound images with overlapping MB signals to sparse localization maps in a data-
286  driven manner. However, the sparse nature of localization maps hinders the direct training of deep networks
287  using common loss functions based on least-squares regression under the [, regularization '**’. In our study,

288  we leveraged the joint optimization of both MB count loss and localization loss into the training process to
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289  achieve accurate MB localization in both low and high MB densities. The count loss encourages the network
290  to output a sparse and high probability detection map, providing a complementary information about the
291  position of each MBs. In turn, the localization loss models the localized MB centers as the sum of Gaussian
292  distributions weighted by the detection probability. It was shown in the simulation study that LOCA-ULM
293  is highly capable of separating overlapping MB signals, resulting in the best match with the ground truth
294  positions at high MB concentration (Fig. 2a).

295  Furthermore, to provide the network with additional context of the MB signals, we integrated MB-specific
296 characteristics such as brightness, movement, lifetime, and ultrasound noise to our simulation framework
297  (Fig. la). This enables LOCA-ULM to comprehend the distinct features of real MB signals, which enhanced
298  the localization precision and ULM image quality. Our simulation study showed that LOCA-ULM yielded
299  superior MB localization efficiency compared to conventional localization, improving detection accuracy
300 (94.0% vs. 74.9%) and reducing the missing rate (13.2% vs 74.8%). In our in vivo CAM results, LOCA-
301 ULM achieved a more complete filling of larger vessels and reconstructed microvessels with higher
302 intensity, as validated by optical imaging (Fig. 2d). In in vivo rat brain study, LOCA-ULM was able to
303  maintain high localization accuracy even with considerable increase in MB injection rate (i.e., 40 uL/min),
304  with up to a three-fold increase in detected MB localizations compared to conventional localization (Fig.
305 4i). Likewise, LOCA-ULM reconstructed well-connected and perfused cerebral vasculature, including
306 large and densely populated vessels missed by the conventional ULM (Fig, 3d, Fig. 4b, d). LOCA-ULM
307  also reconstructed more vessels with higher fidelity at high MB concentration, especially the adjacent
308  microvessels that could not be resolved using conventional localization (Fig. 4b, d).

309  We have also demonstrated the effectiveness of LOCA-ULM in achieving both high-speed processing and
310  accelerated data acquisition for ULM. In theory, higher MB concentration is necessary for faster ULM
311  imaging because it accelerates vessel filling rate of smaller vessels of MBs, which translates to shorter data
312  acquisition time ®. Our results indicate that LOCA-ULM achieved increased MB count in line with

313  increased MB injection rate (Fig. 4i, j), enabling accelerated acquisition with faster MB perfusion.
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314  Moreover, we demonstrated that the quality of the reconstructed ULM images for LOCA-ULM was not
315  significantly affected by MB separation (Fig. 3d, h and Fig. 4 d, h). This result is significant because it
316  indicates that LOCA-ULM can substantially reduce the ULM post-processing time by eliminating the need
317  of dividing datasets into subsets with sparser MB concentration.

318  This study has another notable aspect, which is that LOCA-ULM can be easily applied to a broad range of
319  ultrasound imaging scenarios. Our proposed simulation pipeline does not require any prior knowledge of
320 the PSF model or the ultrasound image formation process to create the training dataset. This is not the case
321  for most deep-learning based localizations, which typically necessitate specific knowledge of imaging
322 factors, such as Field II simulation parameters '* or 2D Gaussian PSF model 7/, to generate simulated dataset.
323  Our method can be easily used to create simulated data, which can aid in robust training and reduce the
324  challenge of generalizing deep learning-based localization to in vivo ultrasound data.

325  Our study has some limitations. First, the DECODE network and LSGAN need to be retrained when the
326  ultrasound imaging settings are altered. In addition, a stable training of LSGAN requires a large collection
327  of spatially isolated MB signals extracted from experimental data. Also, the performance of LOCA-ULM
328 may be undermined by inaccurate simulation parameters (e.g., MB brightness, background noise, etc.),
329  resulting in suboptimal MB localization performance. Nevertheless, because LOCA-ULM outputs
330 uncertainties of localizations, one can use the predicted uncertainties to reject unreliable localizations.
331  Finally, the input ultrasound image to LOCA-ULM needs to be upsampled to avoid quantization artifacts.
332 This results in an overall increased computational cost for the proposed localization technique.

333

334  Methods

335

336 Simulation Pipeline

337  The simulated datasets for training are generated during the network training, creating 10000 frames per
338  epoch, and using each frame only once for training. Because LOCA-ULM is trained purely on simulated

339  data, it may fail to generalize to real ultrasound data if there is a discrepancy between the two datasets. To
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340  address this issue, we created a realistic model for the ultrasound image formation process that incorporates
341  PSF model based on LSGAN and data-informed ultrasound noise (Fig. 1a). Compared with the generic
342  GAN, LSGAN replaces the sigmoid cross entropy loss in the discriminator with a least squares loss,
343  facilitating the generator to create more realistic images and learn the distribution of the training data more
344  robustly *. LSGAN has been applied in medical imaging to improve spatial resolution and prevent mode
345  collapse (i.e., generator creating limited ranges of outputs)*=°. The training problem for the LSGAN can

346 be formulated as:

1 1
347 min £(D) = 2 Expyqyo0 (D) = D2 + 2 B | (DG ()]
348 min £(6) = 5 By, 0 [(D(G(2)) — 1] ™
349

350  where D denotes the discriminator, G represents the generator, z represents the input signal, which was
351 randomly sampled from a uniform distribution, and x represents the MB PSFs extracted from real
352  ultrasound images.

353  To collect the LSGAN training data, the in vivo ultrasound images were first interpolated by a factor of 5
354  (5X) in axial dimension and 10X in the lateral dimension. This corresponds to a 0.064 A pixel size for the
355 CAM images and 0.1 A pixel size for rat brain images (Table I, PSF pixel resolution). Square patches
356 (65 pixel x 65 pixel) were extracted from the in vivo ultrasound images and used to create the simulated
357  images for training. Each patch contains a single MB PSF that takes the peak location identified by the
358 normalized cross-correlation (NCC) localization algorithm as the true MB location 2!. A total of 3000
359  patches were manually selected from the in vivo ultrasound images to train the LSGAN and the mean
360  (u,,,) and standard deviation (o;__ ) of the maximum intensity were calculated. After training, the
361  synthetic PSFs generated from the LSGAN were saved into a bank of PSFs. To generate training data for
362  the network, a list of ground truth MB positions was sampled in sub-wavelength pixel resolution (Table I,

363 DECODE output pixel resolution) and convolved with randomly selected MB PSFs retrieved from the PSF
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bank. The brightness of MB PSFs was drawn from a Gaussian distribution N (y;, ., ). To generate

Olmax
diverse simulated frames, the first appearance of each MB was randomly selected from a continuous
distribution, and the lifetime of each MB is chosen at random. 80 pixel X 80 pixel sized simulated frames
were created and the images are down-sampled by a factor of 2 to create the final 40 pixel X 40 pixel
sized training frames (Fig. 2b, LSGAN-based PSF).

To add realistic electronic noise to the simulation, we used Rician distribution as the noise model in this

study. Assuming an additive Gaussian noise in both real and imaginary parts of the in-phase quadrature

(IQ) data, the B-mode signal I, , (i.e., magnitude of IQ at pixel (x, z)) satisfies the distribution:

I 12 i
Pl |Venr 62 ) :&inexp< (12, +v2, )) O<xf;/xz>’ @

~2
x,z 20%, Oyxz

where vy , is the magnitude of the B-mode signal at pixel (x, z) without noise, 6, , is the standard deviation
of the additive noise, and [, is the modified Bessel function of the first kind with order zero. In this study,
the 6, , was estimated experimentally by taking the temporal mean of the acquired electronic noise data

E(x,z,t) as,

PN 21
ze = ;NZ{‘;VZI E(‘xl Z, t)P (3)

where N is the number of samples considered for estimation. Electronic noise in ultrasound images were
obtained by performing the same ultrasound acquisition as the in vivo experiment without any imaging

target (e.g., in air) (Fig. 1c).

DECODE Architecture

Accurate and robust MB localization under a wide range of vessel sizes and MB concentrations is essential

for successful ULM. Inspired by the previous study by Speiser, A. et al ', we implemented the DECODE
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388  network that enables simultaneous detection and localization of MBs in a probabilistic framework. Several
389  key aspects allow DECODE to outperform conventional localization methods. First, DECODE can improve
390  detection and localization accuracy by capturing the temporal context of the MB flow. The architecture is
391  divided into two networks: a frame analysis network that comprises three separate U-Nets, where features
392  of three consecutive frames are extracted in each U-net. The frame analysis network is followed by a
393  temporal context network, where the final outputs of the three U-Nets are combined to capture the temporal
394  context information between neighboring frames (Fig. le).

395 Moreover, the DECODE network was trained to minimize the total loss that consists of three parts: an MB
396  count loss (L¢ount)» MB localization loss (Ljoc) and a background loss (Lpg)'”. The MB count loss is
397  represented by a Bernoulli distribution pj, that indicates the probability of detecting a bubble near pixel k.
398  Given that the probability pj varies among the pixels, the mean (U¢ouns) and variance (62),,;) of the
399  Poisson-binomial distribution is given as feount = Lk Pk » Olount = 2k pr (1 — py), where K is the total
400 number of pixels. When K is sufficiently large, the Poisson binomial distribution approximates the

401 Gaussian distribution defined as,

1 1(E—-u )?
402 P(Elﬂcount: Gczount ) = Wexp <_ Eo.z—count €))
count

count

403  where E is the true number of simulated MBs. The log probability of E is maximized when the fgoynt

404  approximates to E, equivalent to minimizing,

1(F — 2
405 Leount = — E(é{ﬂ + lOg( \ 27-’--O-Count) (5)
Ocount

406  The localization loss is designed jointly to optimize the output variables of the Gaussian mixture model
407 (GMM) to approximate to the true posterior with respect to MB locations and brightness. A GMM for each
408  pixel k, weighted by the detection probability is used to approximate the true posterior. The four-
409  dimensional Gaussian P (uy|ug, Zi) is modeled as a distribution over the coordinates and brightness of the

410 MBu=|[x,y,zI]:
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1 -
411 P(ulpto T1) = e exp (=3 o~ W5 (i — W), ©)

412 where py =[x + Axy, yi + Ayy, 2 + Az, I ] and X, = dlag( Xk yk,az k,a,k) The (X, Yk, Zk)
413  coordinate represents the center of pixel k, and (Axy, Ay, Az, ) is the sub-wavelength coordinates of the
414  MB respect to the center of pixel k. The distance between the inferred posterior and the true posterior is
415  minimized (i.e., by minimizing the forward KL divergence) by optimizing the log-likelihood of the

416  weighted Gaussian distributions over the ground truth (GT) MBs,

E
1
417 Lloc=——210g2< = )P(uﬁﬂuk.zk) @
E Z] ]

418  where e represents each MB present in the image. The localization loss maximizes the likelihood of the
419  ground truth positions and brightness uS” over all predicted detections. The DECODE network was
420  designed to output the 9 parameters of the weighted Gaussian distribution respect to the center frame of the
421  three consecutive imaging frames: (1) probability p; that a MB was detected near pixel k, (2) the relative
422  coordinates of the localized center Axy, Ay;, Az, respect to the pixel center (xi, Yy, Zr) (3) estimated
423  brightness of the MB (1) (4) the uncertainties oy x, 0y k, 05k, 01k » and (5) the background intensity (B). In
424  this study, we used a 2D variant of DECODE to process the 2D ultrasound data. Also, the background loss
425  (Lpg) in DECODE was removed since the background in ultrasound images was modeled separately using
426  the noise model.

427  The DECODE network in Fig. le reveals the detailed architecture, where the U-Nets in the frame analysis
428  and temporal context networks consist of two down-sampling and up-sampling layers. The convolution
429  blocks in both networks adopted a kernel of 3 X 3 size followed by an Exponential Linear Unit (ELU) as
430  an activation layer. The number of filters increases from 48, 96, and 192 for each down-sampling layer,
431  with the feature map size halved. The number of filters decreases from 192, 96, and 48 for each up-sampling

432  layer, with the feature map size doubled. The input of DECODE network were ultrasound images up-
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433  sampled to 2.5 X in axial dimension and 5 X in lateral dimension (Table I, DECODE network input pixel
434  resolution).
435

436 Evaluation Metrics

437  We compared three evaluation metrics to measure the MB localization performance of LOCA-ULM and
438  conventional localization on simulation study. MB detection accuracy measures the fraction of correct

439  localizations (within 5 pixels or 0.324 the ground truth position) among all localized MBs:

TP

440 MB Detection Accuracy = TP + FP’

®)
441  where TP is true positives and FP is false positives. The MB miss rate measures the fraction of missed

442  localizations among all ground truth positions:

_ FN
443 MB Miss Rate = TP+—F1V’ (9)

444  where FN is false negative. The localization error (L) computes the averaged root mean squared distance

445  between the correctly localized MBs (i.e., TP) and the corresponding ground truth MB positions.

446

TP
1 & —x)?+ (3, —yi)?
L= |— E 10
TP (10)

2 )
i€ETP

447  where x;, y; are the ground truth coordinates and X, 3, are the predicted coordinates.

448  For quantitative assessment of the localization performance in in vivo CAM imaging, we calculated the
449  vessel filling (VF) percentage using the method described by Kim, J. et al *'. First, a region of interest (ROI)
450  that provided matching microvascular images between optical microscopy and ULM was selected. The
451  optical image was resized with respect to the ULM image resolution to ensure accurate registration between
452  the two images. The vessel structures in the optical microscopy image were carefully labeled by manual

453  segmentation and used as the ground truth. The vessel filling (VF) percentage was calculated as

N,
454 VF (%) = — M o 100,  (11)
NGT
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455  where Ngr is the total number of pixels classified as the ground truth vessels in the optical image. NgtnuLm
456 s the total number of pixels correctly classified by ULM with respect to the ground truth Ngt.
457

458 ULM Implementations

459  For each ULM data, an SVD-based clutter filter was applied to extract the MB signal from the surrounding
460 tissue ***. To reduce the intensity variations of the MB signal, all frames were normalized to a scale of 0
461  to 1 with respect to the minimum and maximum intensity within each acquisition (1600 frames for CAM
462  study and 250 frames for rat brain study). Also, due to the hyperechogenicity of MBs, thresholding between
463  the values of 0.1 — 0.2 was selected empirically to remove low-intensity background and noise. After
464  image processing, the images were up-sampled to avoid the quantization artifacts associated with DECODE
465  localization . Then, the network was trained to output super-resolved locations with sub-wavelength
466  resolution (Table I, DECODE network output pixel resolution). For conventional ULM, normalized cross-
467  correlation based MB localization was employed using a pre-defined multivariate Gaussian PSF 2!. The
468  centroid coordinates were input into the uTrack algorithm ** for MB pairing and tracking, following a
469  similar process as in our recent studies **.

470

471 In vivo ULM data acquisition

472 1) Chicken Embryo Chorioallantoic Membrane (CAM) study

473  We used the CAM microvessel model with optical imaging as ground truth to study the performance of
474  different localization methods. Fertile chicken eggs were obtained by the University of Illinois Poultry
475 Research Farm and kept in tilting incubators (Digital Sportsman Cabinet Incubator 1502, GQF
476  Manufacturing Inc., Savannah, Georgia). After four days, the eggshells were removed, and the CAM

477  embryos were mounted into a plastic holder in a position suitable for imaging. Then, the embryos were
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478  incubated for an additional 13 days in a humidified incubator (Darwin Chambers HH09-DA) until the
479  desired developmental stage.

480 A borosilicate glass tube (B120-69-10, Sutter Instruments, Novato, CA, USA) was pulled at high
481  temperature and cut using a PC-100 glass puller (Narishige, Setagaya, Japan) to create a fine glass capillary
482  needle for MB injection. 50 pL boluses of Definity® solution (Lantheus, Bedford, MA) were injected into
483  the surface bloodstream of the CAM via the glass needle. A high-frequency linear array transducer (L35-
484  16vX, Verasonics Inc., Kirkland, WA) was placed at the side of the plastic holder to image the surface of
485  the CAM vasculature. Ultrasound data were obtained by using a 9-angle compounding plane-wave imaging
486  sequence (step size of 1°) with a center frequency of 20 MHz, pulse repetition frequency (PRF) of 40 kHz,
487  and a post-compounding frame rate of 1,000 Hz. IQ data of 1600 frames per acquisition with a total of 20
488  acquisitions were generated (total 32 seconds of acquisition). Ground truth optical images were obtained
489  using a Nikon SMZ800 stereomicroscope (Nikon, Tokyo, Japan) with A DS-Fi3 digital microscope camera
490  (5.9-Mpixel CMOS image sensor, Nikon).

491

492  2) Rat Brain Study

493  Ten-week-old Sprague Dawley rats (Charles River Laboratories, Inc.) were used in this study. Animals
494  were anesthetized with isoflurane (5% induction, 1.5% maintenance) throughout the experiment. Before
495  craniotomy, the jugular vein was catheterized and then the animal was fixed on a stereotaxic frame. The
496  scalp was removed, and the skull was thinned using a rotary micromotor with a 0.5mm drill bit (Foredom
497  K.1070, Bethel, CT). The skull was removed with the size of the cranial window of 12mm (left-right) by
498  6mm (rostral-caudal) below the bregma. To image the rat brain, Definity® MBs were diluted with saline to
499  yield an initial concentration of 1.44x 10° bubbles per ml. The diluted MBs were continuously infused
500 using a syringe pump (NE-300, New Era Pump Systems Inc., Farmingdale, NY).

501 For the study of comparing the performance of different localization methods in different MB

502 concentrations, we used an injection rate of 20, 30, 40 uL/min, and waited for 3 minutes after changing the
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injection rate to stabilize the systemic MB concentration. This corresponds to 1.8x 106, 2.7x 10°, and
3.6X 10° bubbles per ml of blood per minute, respectively. All rat brain data were acquired using a high-
frequency linear array transducer (L22-14vX Verasonics Inc., Kirkland, WA). Ultrasound data were
obtained by using a 5-angle compounding plane-wave imaging sequence (step size of 1°) with a center
frequency of 15.625MHz, PRF of 28.57 kHz, and post-compounding frame rate of 1,000 Hz. IQ data of
250 frames per acquisition with total of 100 acquisitions were generated (total 25 seconds of acquisition).
All procedures described above were approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Illinois Urbana-Champaign. Details of the in vivo data acquisition

specifications and image resolution are summarized in Table I.
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528  (https://github.com/Turagal.ab/DECODE). Custom code for deployment of the simulation pipeline,

529 LOCA-ULM training, and inference are available for research purposes from the corresponding author
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Supplementary Tables

Table I
In vivo study acquisition parameters and image resolution

CAM study Rat Brain Study
In vivo study acquisition parameters
Transducer type L35-16vX L22-14vX
Center Frequency 20 MHz 15.625 MHz
Sampling Frequency 125 MHz 62.5 MHz
Wavelength 77 um 98.56 um
Image resolution
PSF pixel resolution 4928 um 9.856 um
DECODE network input pixel resolution 9.856 um 19.712 ym
DECODE network output pixel resolution 4928 um 9.856 um
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