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Abstract 14 

Ultrasound localization microscopy (ULM) is an emerging super-resolution imaging technique for deep 15 

tissue microvascular imaging. However, conventional localization methods are constrained by low 16 

microbubble (MB) concentration, as accurate localization requires a strict separation of MB point spread 17 

functions (PSFs). Furthermore, deep learning-based localization techniques are often limited in their ability 18 

to generalize to in vivo ultrasound data due to challenges in accurately modeling highly variable MB PSF 19 

distributions and ultrasound imaging conditions. To address these limitations, we propose a novel deep 20 

learning-pipeline, LOcalization with Context Awareness (LOCA)-ULM, which employs simulation that 21 

incorporates MB context to generate synthetic data that closely resemble real MB signals, and a loss 22 

function that considers both MB count and localization loss. In in silico experiments, LOCA-ULM 23 

outperformed conventional localization with superior MB detection accuracy (94.0% vs. 74.9%) and a 24 

significantly lower MB missing rate (13.2% vs 74.8%). In vivo, LOCA-ULM achieved up to three-fold 25 

increase in MB localization efficiency and a × 9.5 faster vessel saturation rate than conventional ULM. 26 

 27 
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 2 

Main 28 

Super-resolution optical microscopy is an established optical imaging technology that breaks the diffraction 29 

barrier of light and offers an order-of-magnitude improvement in imaging spatial resolution. One of the 30 

successful implementations of optical super-resolution, called single-molecule localization microscopy 31 

(SMLM), uses the stochastic blinking of fluorophore emissions to avoid overlaps between PSFs of 32 

individual molecules within a dense sample 1, 2. The sample is repeatedly illuminated, and a super-resolved 33 

image is reconstructed by accumulating the localized positions of single emitters that were separated in 34 

time. SMLM provides a nano-scale spatial resolution, which is essential for biological research at the 35 

cellular and subcellular levels 3. 36 

The concept of localization microscopy has been successfully adopted by the ultrasound community to 37 

overcome the acoustic diffraction limit. As an acoustic analog to SMLM, ultrasound localization 38 

microscopy (ULM)  uses ultrasound contrast agents (i.e., microbubbles or MBs) that flow within the blood 39 

vessels as individual point targets to achieve super-resolution 4, 5. By localizing each MB, ULM increases 40 

the ultrasound imaging spatial resolution by an approximate factor of ten 6. Because ULM uses the strong 41 

backscattering signal from MBs, it does not sacrifice imaging depth of penetration to gain spatial resolution. 42 

This key advantage makes ULM a powerful tool that allows noninvasive probing of deep tissue 43 

microvasculature for many preclinical and clinical applications 7. 44 

As with all imaging techniques, ULM is not without limitations. At present, a key limitation of ULM is the 45 

long data acquisition time, which is the result of the inherent compromise between MB concentration and 46 

MB localization efficiency/accuracy. For example, to achieve accurate MB localization, ULM requires 47 

limited number of MBs per imaging frame (e.g., by using low MB concentration) so that MBs are spatially 48 

separated and localizable. However, lower MB concentration also makes it slower to accumulate adequate 49 

MB localizations to fill the lumen of the vessel, which can take several to tens of minutes 8. In contrast, a 50 

higher MB concentration speeds up the MB filling process in theory, but in practice it also increases MB 51 

signal overlap and reduces MB localization efficiency. As a result, increased MB concentration does not 52 

necessarily translate to faster ULM imaging speed. As such, improving MB localization efficiency under 53 
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high MB concentrations remains a challenging yet essential task for improving the imaging speed (i.e., 54 

temporal resolution) of ULM.  55 

Various methods have been proposed to improve MB localization under high-density MB conditions. 56 

Earlier studies focused on using Fourier-based filters to separate overlapping MBs into subgroups, 57 

leveraging the diverse spatiotemporal flow characteristics of MBs 9. Assuming a sparse distribution of MBs 58 

in each imaging frame, localization algorithms based on sparse image recovery and compressed sensing 59 

(CS) have been proposed to separate overlapping MB signals 10-12. However, the effectiveness of these 60 

methods depends on constructing an accurate MB PSF forward model, which is challenging due to the 61 

nonlinear response of MBs as well as other complexities involving frequency-dependent ultrasound 62 

attenuation, phase aberration, multi-scattering, and multi-path reverberation. In addition, the assumption of 63 

sparsity does not necessarily hold in areas with high MB density, which hampers the performance of these 64 

methods. 65 

Deep learning has emerged as a promising solution for robustly localizing high-density MBs in ULM. One 66 

major limitation of deep learning-based MB localization is the lack of ground truth for the MB PSF in in 67 

vivo imaging settings. As a result, different MB PSF modeling techniques (e.g., using bivariate Gaussian 68 

models 13 and Field II simulations 14) have been proposed and commonly used to generate simulation 69 

datasets to train deep networks for MB localization. However, the complex MB acoustic responses in vivo  70 

15-17 make it difficult to generate MB PSFs that closely resemble real MB signal characteristics (e.g., size, 71 

shape, brightness). Since the performance of deep learning localization heavily depends on the dataset that 72 

it is trained on, inaccurate estimation of the MB PSF can introduce biases in the model. Furthermore, 73 

existing simulation pipelines do not incorporate the appropriate MB signal properties and ultrasound system 74 

characteristics that are frequently observed from in vivo ultrasound data. As a result, the performance of 75 

existing deep learning-based ULM techniques is greatly undermined by the inaccurate modeling of the MB 76 

PSF and ultrasound imaging system. 77 

In this work, we present LOcalization with Context Awareness (LOCA)-ULM, which leverages deep 78 

learning and contextual information to achieve robust localization under high MB concentrations. We first 79 
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address the challenge of creating realistic synthetic datasets by constructing an MB PSF model informed 80 

by real ultrasound data. Considering the need for a flexible PSF simulator that can describe the high 81 

variability of MB PSFs, we utilize a generative adversarial network (GAN) 18 to directly learn the 82 

underlying properties of real in vivo MB signals. GANs are powerful tools for generating realistic samples 83 

without requiring domain-specific knowledge to model real data distributions. As a result, they are well-84 

suited for capturing the complex properties of MB signals and creating realistic MB PSFs. Moreover, our 85 

simulation includes modeling of both ultrasound system noise and MB behavior. To accurately represent 86 

MB behavior, we assigned parameters related to factors such as brightness, lifetime, and velocity, to create 87 

ground truth positions. Overall, by simulating GAN-based MB signals that also reflect the in vivo MB 88 

behavior, we can better train the network to identify MB signals present in ultrasound images, leading to 89 

improved performance. The second method aims to address the challenges associated with high MB 90 

concentration that are present in practice. We translated the Deep Context Dependent (DECODE) 19 neural 91 

network into the ULM framework, in which the DECODE architecture and loss functions were optimized 92 

to achieve robust MB localization across a wide range of MB concentrations. In this paper, we 93 

systematically evaluated the performance of the proposed methods with both simulation and in vivo data 94 

that include chicken embryo chorioallantoic membranes (CAMs) and rat brains.   95 

 96 

Results  97 

Fig. 1a illustrates the simulation pipeline designed to simulate realistic MB response and ultrasound 98 

imaging conditions. The simulation used MB PSFs generated by a Least-squares Generative Adversarial 99 

Network (LSGAN) 20. Conventional localization techniques have limitations in creating a complete set of 100 

MB PSFs that accurately represent the distribution of real MB PSFs. To overcome this challenge, we 101 

employed LSGAN (as depicted by "𝐺" in Fig. 1a) to create a more extensive collection of MB templates 102 

that could be used for training the LOCA-ULM, including those that have not been observed during 103 

training. This strategy enables us to construct a more robust localization network that can detect various 104 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2023. ; https://doi.org/10.1101/2023.04.21.536599doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.21.536599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

MBs with different shapes, leading to a enhance localization performance on in vivo ultrasound data at 105 

inference stage.   106 

LSGAN was initially trained on a large number of MB signals obtained from in vivo images using a 107 

conventional localization algorithm based on normalized cross-correlation (NCC) 21. Once trained, the 108 

LSGANs were used to generate realistic MB PSFs that were stored in an MB PSF bank (i.e., collection of 109 

MB templates that were later used by DECODE network for training). To create the ground truth MB 110 

positions, a list of sub-wavelength coordinates was randomly sampled and assigned factors such as MB 111 

brightness, lifetime, and velocity to emulate real MB behavior. The ground truth positions were then 112 

convolved with the synthesized MB PSFs (randomly chosen from the MB PSF bank) to create ultrasound 113 

images with realistic MB signals. A typical simulated image based on LSGAN-created MB signal is shown 114 

in Fig. 1b (LSGAN-based PSF), which closely resembles real MB signals extracted from the in vivo CAM 115 

image shown in Fig. 1d (Real image), as compared to other MB simulation methods such as bivariate 116 

Gaussian and Field II. Finally, data-informed ultrasound noise was modeled and added to the simulated 117 

image to create the final training datasets for the DECODE network (Fig. 1c, d) (Methods).  118 

In this study, we adopted the principles of DECODE to solve the problem of localizing spatially overlapping 119 

MB signals. We translated the cost functions of DECODE, including emitter count loss and localization 120 

loss, to train the network for the tasks of estimating MB counts, MB detection probability, MB locations, 121 

and MB brightness 19. The count loss and detection probability were jointly optimized with the localization 122 

loss to provide more accurate estimation of MB locations. This is a more robust approach than directly 123 

using MB location as loss terms (e.g., 1's for the center of MBs and 0 for otherwise), which can generate a 124 

challenging condition for training 13, 22. We trained the network using simulated images using LSGAN-125 

generated MBs, and the count loss and localization loss were optimized to maximize the likelihood of the 126 

ground truth MB positions under a Gaussian mixture model (LOCA-ULM). In the inference stage (Fig. 1e), 127 

the network estimates the true distribution of MB locations and brightness from real ultrasound data used 128 

as input. This strategy allows the network to output confident MB detection probability and accurate 129 

localizations for spatially overlapping MB PSFs (Methods).  130 
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 131 

Simulation study 132 

We first validated the proposed LOCA-ULM localization pipeline using simulation data. Using the 133 

simulation pipeline described in Methods, the test dataset was created using the MB signals extracted from 134 

in vivo CAM data. Two-thousand imaging frames with an image size of 100 pixels × 100 pixels (12.3 𝜇𝑚 135 

pixel size) were generated for different MB concentrations. The concentration for the simulation was 136 

 
 
Fig 1. Overview of the proposed LOCA-ULM MB localization pipeline. LOCA-ULM is a simulation-based 
supervised learning method using MB PSFs generated by Least-squares Generative Adversarial Network (LSGAN)20. 
and DECODE localization19 a The LSGAN (𝑮) was trained on a large set of MB PSFs identified by the conventional 
normalized cross-correlation (NCC) localization algorithm21. The LSGAN learns the distribution of real MB signals and 
generates diverse and realistic synthetic MB PSFs. The LSGAN-generated MB PSFs are convolved with simulated 
ground truth MB positions assigned with MB-specific characteristics (e.g., brightness, velocity, lifetime) to create 
simulated images that closely resemble real data. The simulated images were used to train the DECODE network for 
localization purposes. b Examples of simulated MB signals using different PSF simulation methods (2D Gaussian, 
Field II, and LSGAN). Red dots indicate the ground truth MB location. c Examples of experimentally acquired electrical 
noise from the ultrasound system, synthesized Rician noise using the proposed method (Methods). d Simulated image 
with LSGAN-based MB PSFs with added Rician noise and real MB image extracted from the in vivo CAM dataset. e 
DECODE-based ultrasound localization microscopy pipeline. Inference was performed by using in vivo ultrasound 
data. 2D-DECODE outputs the probability of detecting a MB near pixel 𝑘 (𝑝!), sub-wavelength spatial coordinates 
(∆𝑥! , ∆𝑦!) respect to center of the pixel 𝑘, MB brightness (𝐼), and corresponding uncertainties (𝜎", 𝜎#, 𝜎$). MB pairing 
and tracking were applied to predicted coordinates and the final super-resolved ULM images were generated. 
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incremented with a 0.02	MBs/𝜆!  step size from 0.02	MBs/𝜆!  (low density) to 0.37	MBs/𝜆!  (high 137 

density), where	𝜆 is the wavelength of the ultrasound pulse used for imaging (Table 1). Fig. 2a shows 138 

examples of MB localization using LOCA-ULM and conventional localization on simulation datasets with 139 

different MB concentrations. At a low MB concentration ( 0.06	MBs/𝜆! ), both LOCA-ULM and 140 

conventional MB localization methods provided MB locations that agree with the ground truth. As the 141 

concentration increased (0.27	MBs/𝜆!), conventional localization started to miss more MBs (blue arrows 142 

in Fig 2a), and the miss-localizations tend to occur around the center of the clustered MB signals (yellow 143 

arrows in Fig. 2a). In contrast, LOCA-ULM was able accurately separate and localize overlapping MB 144 

signals with various shapes and brightness. LOCA-ULM localization is also in good agreement with the 145 

ground truth.  146 

 147 

LOCA-ULM achieves high MB localization accuracy and efficiency under high MB concentrations in 148 

simulation data  149 

The MB localization performance on simulation data was evaluated quantitatively using three metrics 150 

(Methods). Fig. 2b shows the performance of LOCA-ULM versus conventional localization with respect to 151 

increasing MB concentrations. LOCA-ULM consistently outperformed the conventional localization 152 

algorithm in regard to MB detection accuracy and MB missing rate, especially for high concentration 153 

conditions. LOCA-ULM achieved an average detection accuracy of 94.0%, as compared to an average 154 

accuracy of 74.9% from conventional localization. LOCA-ULM also substantially decreased the missing 155 

rate (13.2% vs 74.8%) over conventional localization. This improvement is essential for shortening the data 156 

acquisition time for ULM because it allows higher concentration MBs to be administered in vivo while 157 

maintaining a robust MB localization performance with high efficacy.  158 

The localization error in Fig. 2b shows that LOCA-ULM consistently reduced the MB localization error 159 

across all concentrations when comparing to conventional localization. The theoretical resolution limit of 160 

ULM (i.e., localization error) can be estimated using the Cramér-Rao lower bound (CRLB)23. Following 161 
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 8 

the theoretical CRLB model, we predicted a maximum resolution of 3.29	𝜇𝑚  with the CAM study 162 

acquisition settings. In low-density conditions (0.02	MBs/𝜆!) , conventional localization achieved a 163 

maximum localization resolution of 10.87 𝜇𝑚, while LOCA-ULM achieved localization resolution of 6.74 164 

𝜇𝑚, which is closer to the CRLB.   165 

 166 

GAN-generated MB signals improved LOCA-ULM performance for MB localization in the in vivo CAM 167 

imaging study 168 

The performance of LOCA-ULM was further evaluated in an in vivo CAM microvessel model. To 169 

demonstrate the effectiveness of using LSGAN-generated realistic MBs, we used two types of simulation 170 

 
Fig 2. Results of the simulation study and in vivo chicken embryo CAM imaging study. a Simulation results of 
LOCA-ULM and conventional localization with low (0.06	𝑀𝐵𝑠/𝜆%) and high (0.27	𝑀𝐵𝑠/𝜆%) MB concentrations. Ground 
truth MB positions are marked by red ×, LOCA-ULM localization by cyan ×, and conventional localization by green ×. 
b Comparison between LOCA-ULM and conventional localization was performed on simulated images at increasing 
MB concentrations, using three performance metrics: MB detection accuracy, MB missing rate, and localization error 
(Methods). c-f Comparisons among conventional localization, LOCA-ULME, and LOCA-ULM MB localization in in vivo 
chicken embryo CAM imaging. c Optical microscopy image of the CAM surface microvessel, along with MB localization 
images reconstructed by conventional localization and LOCA-ULM. d The ROI selected from the optical image and 
the corresponding ground truth vessel segmentation. Magnified view of the MB localization images marked by the 
white ROI for conventional localization, LOCA-ULME, and LOCA-ULM. e,f The vessel filling (VF) percentage of three 
conventional localization, LOCA-ULME, and LOCA-ULM, as a function of the number of frames and localization time.  
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data for network training. The first type (LOCA-ULME; LOCA-ULM Experimental) used MB signals 171 

directly extracted from the CAM data; the second type (LOCA-ULM) used MB signals generated by the 172 

LSGAN. Fig. 2e summarizes the vessel filling (VF) percentage for all the localization methods including 173 

conventional localization, LOCA-ULME, and LOCA-ULM (Methods). LOCA-ULME and LOCA-ULM 174 

achieved consistently higher VF percentage and faster vessel saturation rate than conventional localization. 175 

At 6000 frames (total 6 seconds of acquisition) for MB accumulation, LOCA-ULM achieved the highest 176 

VF percentage (90.25%), followed by LOCA-ULME (79.15%) and conventional localization (69.09%). 177 

Notably, the VF percentage respect to optical image ground truth of conventional localization started to 178 

plateau around 70%, while LOCA-ULM did not plateau until 90%. This result is consistent with the 179 

observation of under-filling of the major vessels using conventional localization as indicated by the yellow 180 

arrows in Fig. 2d. Both LOCA-ULM and LOCA-ULME filled the large vessels more completely and the 181 

size of the vessel was closer to the ground truth (i.e., based on optical microscopy). In Fig. 2d the 182 

reconstructed microvessels indicated by the blue arrows display higher intensity for LOCA-ULM, revealing 183 

vessel structures that have not yet been fully reconstructed by conventional localization and LOCA-ULME. 184 

These results suggest that the diverse MB signals generated by the LSGAN enhanced the network’s 185 

capability of localization more MBs under high MB concentrations.  186 

 187 

LOCA-ULM significantly improves computational performance of MB localization  188 

In addition to faster and more robust vessel filling performance, LOCA-ULM also enjoys an accelerated 189 

processing time over conventional localization, thanks to the high inference speed of deep neural networks. 190 

The LOCA-ULM network took 78s to localize 1000 ultrasound imaging frames with the size of 720 191 

pixel×	560 pixel (7.10 mm×	5.52 mm), representing a 4-fold speedup over conventional localization. To 192 

achieve a 50% VF percentage, LOCA-ULM needed the least amount of ultrasound images (740 frames), 193 

which translates to the fastest localization time (57.81 s) over LOCA-ULME (1000 frames, 78.13s) and 194 

conventional (1620 frames, 546.75s) (Fig. 2f). These results indicate that LOCA-ULM greatly enhances 195 
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the ULM performance by reducing both the data acquisition time (i.e., shorter MB accumulation) and post-196 

processing time while providing higher MB localization efficacy.  197 

 198 

LOCA-ULM demonstrates superior in vivo ULM imaging performance in a rat brain  199 

We demonstrated the generalizability of LOCA-ULM using in vivo rat imaging datasets. Fig 3. c-d shows 200 

the final ULM images based on 20000 frames (a total of 20 seconds of data acquisition) of accumulation. 201 

After localization, MB pairing and tracking were performed using uTrack24. As shown in Fig. 3d, the 202 

vascular bed in the rat brain presents large variations of vessel sizes with wide distribution of MB 203 

concentrations. As shown in Fig. 3c, conventional localization suffered from poor localization performance 204 

in regions with high MB concentrations, which manifest as disconnected and missing vessels in these 205 

regions (red arrows in Fig. 3e). In contrast, LOCA-ULM revealed the dense cerebral vascular networks in 206 

these regions, which were well-perfused and fully connected (red arrows in Fig. 3f).  207 

Next, we designed a study to compare LOCA-ULM with the state-of-the-art MB localization method based 208 

on MB separation 9. We used the MB separation filter to separate the ultrasound MB data into two subgroups: 209 

flow away from the transducer (downward flow) and flow toward the transducer (upward flow), as shown 210 

in Fig. 3b. Fig. 3g, h demonstrate that MB separation facilitated more robust MB localization and tracking 211 

in high MB density regions for both conventional and LOCA-ULM. The improvement is most significant 212 

for conventional localization, which suffered from poor MB localization performance in high density MB 213 

regions. The intersecting and adjacent small vessels that were missing by conventional localization now 214 

become clearly visible by using MB separation. For LOCA-ULM, the improvement was moderate because 215 

LOCA-ULM was already efficient with localizing MBs in high density regions. This is evidenced by 216 

comparing Fig. 3d and Fig. 3h where most of the cerebral vasculature was consistent before and after 217 

applying MB separation for LOCA-ULM (indicated by yellow arrows). When comparing Fig. 3d and 3g, 218 

it becomes clear that even with MB separation, conventional localization still could not achieve a similar 219 

MB localization performance to LOCA-ULM without MB separation. This is an important finding because 220 
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it suggests that LOCA-ULM alone can already outperform the state-of-the-art MB localization technique 222 

and does not require the help of post-processing methods such MB separation.  223 

Finally, the spatial resolution of the ULM reconstructions were characterized by applying the Fourier Ring 224 

Correlation (FRC) method, using the track splitting strategy and a 2-𝜎 threshold curve as proposed by 225 

Hingot et al 25. Our results showed that both LOCA-ULM and conventional localization produced spatial 226 

resolution below a half wavelength at the imaging frequency 15.625 MHz (49.28𝜇𝑚) with and without MB 227 

separation (Supplementary Fig. 1). These findings suggest that LOCA-ULM can achieve a more complete 228 

reconstruction of the vascular network and provide visualization of well-perfused vessels without 229 

compromising spatial resolution.  230 

 231 

LOCA-ULM-based MB localization automatically adapts to different MB concentrations 232 

To further investigate the performance of LOCA-ULM under varying MB concentrations in vivo, we 233 

conducted an experiment with increasing MB injection rate from 20	𝜇𝐿/min to 40	𝜇𝐿/min (Methods). Fig. 234 

4 shows the reconstructed ULM images for 20	𝜇𝐿/min and 40	𝜇𝐿/min injection rate using conventional 235 

and LOCA-ULM localization in a rat brain, where a total of 25000 frames (a total of 25 seconds of 236 

acquisition) of ultrasound data were used for reconstruction. Similar to the observations in Fig. 3, LOCA-237 

Fig 3. Comparison of LOCA-ULM and conventional localization to in vivo rat brain ultrasound data. a Power 
Doppler image generated by accumulating 2500 frames (a total of 2.5 seconds of acquisition) of rat brain ultrasound 
data. b in vivo rat brain localization workflow. The IQ data after tissue clutter filtering was processed with and without 
Fourier-based MB separation. For MB separation, the high concentration MB dataset was divided into subsets of 
upward and downward flow towards the transducer using a directional filter 9. Angle-based flow direction was used for 
dataset without MB separation. For each dataset, MB locations was determined by performing normalized cross-
correlation with an empirically determined PSF function (i.e., conventional localization) or LOCA-ULM. The uTrack 
algorithm was used to pair the localized MB centers and estimate their trajectories. c-j Each ULM directional flow maps 
were generated by accumulating 20000 frames (a total of 20 seconds of acquisition), c,d without MB separation and 
g,h with MB separation. e,f,i,j Improvement of vessel structures respect to the increasing number of frames is displayed 
on the bottom, shown for the area marked with red rectangle. F indicates number of frames used for ULM reconstruction 
and FRC indicates Fourier Ring Correlation.  
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238 

 
Fig 4.  Effect of different MB injection rates (𝟐𝟎	𝝁𝑳/𝒎𝒊𝒏 ,	 𝟑𝟎	𝝁𝑳/𝒎𝒊𝒏,  𝟒𝟎	𝝁𝑳/𝒎𝒊𝒏 ) on LOCA-ULM and 
conventional localization for rat brain ULM imaging. a-h Each ULM image was generated by accumulating 25000 
frames of ultrasound data (a total of 25 seconds of acquisition) for MB injection rate of 20	𝜇𝐿/𝑚𝑖𝑛 and 40	𝜇𝐿/𝑚𝑖𝑛, a-
d ULM reconstruction without MB separation and e-h, with MB separation. i,j Comparison of total MB count per 
acquisition (a total of 250 frames per acquisition) for LOCA-ULM and conventional localization at different MB injection 
rates (20	𝜇𝐿/𝑚𝑖𝑛, 30	𝜇𝐿/𝑚𝑖𝑛, and 40	𝜇𝐿/𝑚𝑖𝑛). Two datasets, i without MB separation and j with MB separation.  
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ULM demonstrates much more complete cerebral vasculature reconstruction than conventional localization. 239 

Notably, vessel areas with high MB concentrations suffered from the high MB missing rate of conventional 240 

localization, which disappeared in the ULM image (red arrows in Fig. 4a, c). In contrast, LOCA-ULM 241 

revealed large vessel structures that were missed by conventional localization (red arrows in Fig 4b, d). 242 

Furthermore, in regions with moderate MB concentration, the intensity of reconstructed vessels with 243 

conventional localization decreased with an increase in MB injection rate, leading to degraded vessel 244 

delineation. For example, for conventional ULM, the two close-by vessels that were separable at an MB 245 

injection rate of 20	𝜇𝐿/min (yellow arrows in Fig. 4a) became indistinguishable at an MB injection rate of 246 

40	𝜇𝐿/min (yellow arrows in Fig. 4c). LOCA-ULM significantly improved the ability to resolve adjacent 247 

structures, producing a clear separation of the vessels in both low (20	𝜇𝐿/min) and high (40	𝜇𝐿/min) MB 248 

injection rates (yellow arrows in Fig. 4b, d, respectively). LOCA-ULM also revealed tiny vessels near the 249 

cortical surface that cannot be reconstructed by conventional ULM, as indicated by green arrows in Fig. 250 

4a-c. 251 

The performance of LOCA-ULM localization was further evaluated by a quantitative analysis that used the 252 

mean Power Doppler (PD) intensity as the reference. As shown in Fig. 4i, the MB count of LOCA-ULM 253 

closely followed the trend of increasing PD intensity while conventional localization did not. This result 254 

clearly indicates that conventional localization has already become saturated even at the lowest MB 255 

injection rate (20 𝜇𝐿/min).  With the addition of MB separation, as shown in Fig. 4j, conventional 256 

localization improved the localization efficacy but was still saturated at the lowest injection rate. For 257 

LOCA-ULM, MB separation also improved the MB count, which suggests that there was missed 258 

localization for LOCA-ULM. Nevertheless, the improved MB count did not result in significant ULM 259 

image quality improvement (e.g., Fig. 4d, h). Finally, the quantitative results provide a good agreement 260 

with the ULM images, where LOCA-ULM reconstructed ULM images show increased microvessel 261 

intensity with increased MB injection rate, while conventional localization shows constant microvessel 262 

intensity despite the increased MB injection rate (white ROIs in Fig. 4 e-h).  263 
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Discussion 264 

In this study, we have presented LOCA-ULM, a context-aware deep learning-based MB localization 265 

method along with an LSGAN-based MB simulation pipeline to facilitate high quality ULM imaging under 266 

high MB concentrations. We adopted the principles of DECODE and designed a new simulation workflow 267 

that incorporated MB characteristics and realistic ultrasound imaging noise. Compared with well-268 

established image formation processes of SMLM (e.g., blinking fluorophores, PSF modeling, noise and 269 

camera model) 26, there are several key differences to note in this study. First, the high variability of 270 

ultrasound MB PSFs makes it challenging to construct effective PSF models that fully and accurately 271 

capture the complexity of real MB signals. When trained with simple Gaussian PSF models, we 272 

immediately observed suboptimal ULM imaging performance (e.g., gridding artifacts, poor vessel 273 

reconstructions) (Supplementary Fig. 2). The proposed LSGAN-based MB generation implicitly learns the 274 

complex MB PSF distributions that are present in the given ultrasound data, effectively minimizing the 275 

discrepancy between real and modeled MB signal. We demonstrated the advantages of LSGAN-generated 276 

PSFs in in vivo CAM imaging, where LOCA-ULM demonstrated significantly higher vessel filling (VF) 277 

percentage and faster vessel saturation rate over LOCA-ULME and conventional localization (Fig. 2e, f). 278 

Secondly, we demonstrated the adaptiveness and robustness of LOCA-ULM with context-aware training 279 

for varying MB concentrations. Unlike SMLM, where emitter density can be reduced using laser irradiation 280 

or by adjusting chemical environment 26, controlling MB concentration for ULM is challenging due to the 281 

wide distribution of vessel sizes and hemodynamics in vivo. As a result, the high missing rate and 282 

inaccuracy of conventional localization leads to incomplete ULM reconstructions with corrupted and 283 

missing vessel structures (Fig. 3c, Fig. 4a, c). Deep learning offers a practical solution for learning the non-284 

linear mapping from ultrasound images with overlapping MB signals to sparse localization maps in a data-285 

driven manner. However, the sparse nature of localization maps hinders the direct training of deep networks 286 

using common loss functions based on least-squares regression under the 𝑙" regularization 13, 27.  In our study, 287 

we leveraged the joint optimization of both MB count loss and localization loss into the training process to 288 
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achieve accurate MB localization in both low and high MB densities. The count loss encourages the network 289 

to output a sparse and high probability detection map, providing a complementary information about the 290 

position of each MBs. In turn, the localization loss models the localized MB centers as the sum of Gaussian 291 

distributions weighted by the detection probability. It was shown in the simulation study that LOCA-ULM 292 

is highly capable of separating overlapping MB signals, resulting in the best match with the ground truth 293 

positions at high MB concentration (Fig. 2a).  294 

Furthermore, to provide the network with additional context of the MB signals, we integrated MB-specific 295 

characteristics such as brightness, movement, lifetime, and ultrasound noise to our simulation framework 296 

(Fig. 1a). This enables LOCA-ULM to comprehend the distinct features of real MB signals, which enhanced 297 

the localization precision and ULM image quality. Our simulation study showed that LOCA-ULM yielded 298 

superior MB localization efficiency compared to conventional localization, improving detection accuracy 299 

(94.0% vs. 74.9%) and reducing the missing rate (13.2% vs 74.8%). In our in vivo CAM results, LOCA-300 

ULM achieved a more complete filling of larger vessels and reconstructed microvessels with higher 301 

intensity, as validated by optical imaging (Fig. 2d). In in vivo rat brain study, LOCA-ULM was able to 302 

maintain high localization accuracy even with considerable increase in MB injection rate (i.e., 40 𝜇𝐿/min), 303 

with up to a three-fold increase in detected MB localizations compared to conventional localization (Fig. 304 

4i). Likewise, LOCA-ULM reconstructed well-connected and perfused cerebral vasculature, including 305 

large and densely populated vessels missed by the conventional ULM (Fig, 3d, Fig. 4b, d). LOCA-ULM 306 

also reconstructed more vessels with higher fidelity at high MB concentration, especially the adjacent 307 

microvessels that could not be resolved using conventional localization (Fig. 4b, d).  308 

We have also demonstrated the effectiveness of LOCA-ULM in achieving both high-speed processing and 309 

accelerated data acquisition for ULM. In theory, higher MB concentration is necessary for faster ULM 310 

imaging because it accelerates vessel filling rate of smaller vessels of MBs, which translates to shorter data 311 

acquisition time 8. Our results indicate that LOCA-ULM achieved increased MB count in line with 312 

increased MB injection rate (Fig. 4i, j), enabling accelerated acquisition with faster MB perfusion. 313 
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Moreover, we demonstrated that the quality of the reconstructed ULM images for LOCA-ULM was not 314 

significantly affected by MB separation (Fig. 3d, h and Fig. 4 d, h). This result is significant because it 315 

indicates that LOCA-ULM can substantially reduce the ULM post-processing time by eliminating the need 316 

of dividing datasets into subsets with sparser MB concentration.  317 

This study has another notable aspect, which is that LOCA-ULM can be easily applied to a broad range of 318 

ultrasound imaging scenarios. Our proposed simulation pipeline does not require any prior knowledge of 319 

the PSF model or the ultrasound image formation process to create the training dataset. This is not the case 320 

for most deep-learning based localizations, which typically necessitate specific knowledge of imaging 321 

factors, such as Field II simulation parameters 14 or 2D Gaussian PSF model 27, to generate simulated dataset. 322 

Our method can be easily used to create simulated data, which can aid in robust training and reduce the 323 

challenge of generalizing deep learning-based localization to in vivo ultrasound data.  324 

Our study has some limitations. First, the DECODE network and LSGAN need to be retrained when the 325 

ultrasound imaging settings are altered. In addition, a stable training of LSGAN requires a large collection 326 

of spatially isolated MB signals extracted from experimental data. Also, the performance of LOCA-ULM 327 

may be undermined by inaccurate simulation parameters (e.g., MB brightness, background noise, etc.), 328 

resulting in suboptimal MB localization performance. Nevertheless, because LOCA-ULM outputs 329 

uncertainties of localizations, one can use the predicted uncertainties to reject unreliable localizations. 330 

Finally, the input ultrasound image to LOCA-ULM needs to be upsampled to avoid quantization artifacts. 331 

This results in an overall increased computational cost for the proposed localization technique. 332 

 333 

Methods  334 

 335 

Simulation Pipeline 336 

The simulated datasets for training are generated during the network training, creating 10000 frames per 337 

epoch, and using each frame only once for training. Because LOCA-ULM is trained purely on simulated 338 

data, it may fail to generalize to real ultrasound data if there is a discrepancy between the two datasets. To 339 
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address this issue, we created a realistic model for the ultrasound image formation process that incorporates 340 

PSF model based on LSGAN and data-informed ultrasound noise (Fig. 1a). Compared with the generic 341 

GAN, LSGAN replaces the sigmoid cross entropy loss in the discriminator with a least squares loss, 342 

facilitating the generator to create more realistic images and learn the distribution of the training data more 343 

robustly 20. LSGAN has been applied in medical imaging to improve spatial resolution and prevent mode 344 

collapse (i.e., generator creating limited ranges of outputs)28-30. The training problem for the LSGAN can 345 

be formulated as: 346 

min
#
ℒ(𝐷) =

1
2
𝔼$~&&'('($)[(𝐷(𝑥) − 1)

!] +
1
2
𝔼)~&)()) FG𝐷(𝐺(𝑧)I

!J		 347 

min
*
ℒ(𝐺) =

1
2
𝔼)~&)())[(𝐷(𝐺(𝑧)) − 1)

!]																																										(1) 348 

 349 

where 𝐷 denotes the discriminator, 𝐺 represents the generator, 𝑧 represents the input signal, which was 350 

randomly sampled from a uniform distribution, and 𝑥  represents the MB PSFs extracted from real 351 

ultrasound images.  352 

To collect the LSGAN training data, the in vivo ultrasound images were first interpolated by a factor of 5 353 

(5X) in axial dimension and 10X in the lateral dimension. This corresponds to a 0.064 𝜆 pixel size for the 354 

CAM images and 0.1 𝜆 pixel size for rat brain images (Table I, PSF pixel resolution). Square		patches 355 

(65	𝑝𝑖𝑥𝑒𝑙	 × 	65	𝑝𝑖𝑥𝑒𝑙) were extracted from the in vivo ultrasound images and used to create the simulated 356 

images for training.  Each patch contains a single MB PSF that takes the peak location identified by the 357 

normalized cross-correlation (NCC) localization algorithm as the true MB location 21. A total of 3000 358 

patches were manually selected from the in vivo ultrasound images to train the LSGAN and the mean 359 

(𝜇+*'+) and standard deviation (𝜎+*'+ ) of the maximum intensity were calculated. After training, the 360 

synthetic PSFs generated from the LSGAN were saved into a bank of PSFs. To generate training data for 361 

the network, a list of ground truth MB positions was sampled in sub-wavelength pixel resolution (Table I, 362 

DECODE output pixel resolution) and convolved with randomly selected MB PSFs retrieved from the PSF 363 
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bank. The brightness of MB PSFs was drawn from a Gaussian distribution 𝑁(𝜇+*'+ , 𝜎+*'+). To generate 364 

diverse simulated frames, the first appearance of each MB was randomly selected from a continuous 365 

distribution, and the lifetime of each MB is chosen at random. 80	𝑝𝑖𝑥𝑒𝑙	 × 	80	𝑝𝑖𝑥𝑒𝑙 sized simulated frames 366 

were created and the images are down-sampled by a factor of 2 to create the final 40	𝑝𝑖𝑥𝑒𝑙	 × 	40	𝑝𝑖𝑥𝑒𝑙 367 

sized training frames (Fig. 2b, LSGAN-based PSF).  368 

To add realistic electronic noise to the simulation, we used Rician distribution as the noise model in this 369 

study. Assuming an additive Gaussian noise in both real and imaginary parts of the in-phase quadrature 370 

(IQ) data, the B-mode signal 𝐼$,) (i.e., magnitude of IQ at pixel (𝑥, 𝑧)) satisfies the distribution:   371 

 372 

𝑃G𝐼$,)S𝜈$,), 𝜎U$,)	I 				=
𝐼$,)
𝜎U$,)

𝑒𝑥𝑝 V
−G𝐼$,)! + 𝜈$,)! I

2𝜎U$,)!
W 𝐼- V

𝐼$,)𝜈$,)
𝜎U$,)!

W,							(2) 373 

 374 

where ν.,/ is the magnitude of the B-mode signal at pixel (𝑥, 𝑧) without noise, 𝜎U$,) is the standard deviation 375 

of the additive noise, and 𝐼- is the modified Bessel function of the first kind with order zero. In this study, 376 

the 𝜎U$,) was estimated experimentally by taking the temporal mean of the acquired electronic noise data 377 

𝐸(𝑥, 𝑧, 𝑡) as, 378 

𝜎U$) = [!
0
"
1
∑ 𝐸(𝑥, 𝑧, 𝑡),1
23"            (3) 379 

 380 

where 𝑁 is the number of samples considered for estimation. Electronic noise in ultrasound images were 381 

obtained by performing the same ultrasound acquisition as the in vivo experiment without any imaging 382 

target (e.g., in air) (Fig. 1c). 383 

 384 

DECODE Architecture 385 

Accurate and robust MB localization under a wide range of vessel sizes and MB concentrations is essential 386 

for successful ULM. Inspired by the previous study by Speiser, A. et al 19, we implemented the DECODE 387 
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network that enables simultaneous detection and localization of MBs in a probabilistic framework. Several 388 

key aspects allow DECODE to outperform conventional localization methods. First, DECODE can improve 389 

detection and localization accuracy by capturing the temporal context of the MB flow. The architecture is 390 

divided into two networks: a frame analysis network that comprises three separate U-Nets, where features 391 

of three consecutive frames are extracted in each U-net. The frame analysis network is followed by a 392 

temporal context network, where the final outputs of the three U-Nets are combined to capture the temporal 393 

context information between neighboring frames (Fig. 1e).  394 

Moreover, the DECODE network was trained to minimize the total loss that consists of three parts: an MB 395 

count loss (ℒ45678), MB localization loss (ℒ954) and a background loss (ℒ:;)19. The MB count loss is 396 

represented by a Bernoulli distribution 𝑝< that indicates the probability of detecting a bubble near pixel 𝑘. 397 

Given that the probability 𝑝<  varies among the pixels, the mean (𝜇=->?2) and variance (𝜎=->?2! ) of the 398 

Poisson-binomial distribution is given as 𝜇=->?2 = ∑ 𝑝<@
< , 𝜎=->?2! = ∑ 𝑝<@

< (1 − 𝑝<), where 𝐾 is the total 399 

number of pixels.  When 𝐾  is sufficiently large, the Poisson binomial distribution approximates the 400 

Gaussian distribution defined as, 401 

𝑃(𝐸|𝜇=->?2 , 𝜎=->?2! 	) =
1

√2𝜋𝜎=->?2
exp V−

1
2
(𝐸 − 𝜇=->?2)!

𝜎=->?2! W		(4) 402 

where 𝐸 is the true number of simulated MBs. The log probability of 𝐸 is maximized when the 𝜇=->?2 403 

approximates to 𝐸, equivalent to minimizing,  404 

ℒ=->?2 = −
1
2
(𝐸 − 𝜇=->?2)!

𝜎=->?2! + logG√2𝜋𝜎=->?2I								(5) 405 

The localization loss is designed jointly to optimize the output variables of the Gaussian mixture model 406 

(GMM) to approximate to the true posterior with respect to MB locations and brightness. A GMM for each 407 

pixel 𝑘 , weighted by the detection probability is used to approximate the true posterior. The four-408 

dimensional Gaussian 𝑃(𝑢<|𝜇@ , Σ<) is modeled as a distribution over the coordinates and brightness of the 409 

MB 𝒖 = [𝑥, 𝑦, 𝑧, 𝐼]: 410 
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𝑃(𝒖|𝝁𝒌, Σ<) =
"

B!0,CD8	(F-)
exp m− "

!
(𝝁𝒌 − 𝒖)GΣ<H"(𝝁𝒌 − 𝒖)n,   (6) 411 

where 𝝁𝒌 = [𝑥< + Δ𝑥< , 𝑦< + Δ𝑦< , 𝑧< + Δ𝑧< , 𝐼<] and Σ< = diagG𝜎$,<! , 𝜎I,<! , 𝜎),<! , 𝜎+,<! I.  The (𝑥< , 𝑦< , 𝑧<) 412 

coordinate represents the center of pixel 𝑘,	and (∆𝑥< , ∆𝑦< , ∆𝑧<) is the sub-wavelength coordinates of the 413 

MB respect to the center of pixel 𝑘. The distance between the inferred posterior and the true posterior is 414 

minimized (i.e., by minimizing the forward KL divergence) by optimizing the log-likelihood of the 415 

weighted Gaussian distributions over the ground truth (GT) MBs,  416 

ℒJ-= = −
1
𝐸
slogs V

𝑝<
∑ 𝑝KK

W
@H"

<3L

𝑃(𝑢M*G|𝝁𝒌, Σ<),
N

M3"

							(7) 417 

where 𝑒 represents each MB present in the image. The localization loss maximizes the likelihood of the 418 

ground truth positions and brightness 𝑢M*G  over all predicted detections. The DECODE network was 419 

designed to output the 9 parameters of the weighted Gaussian distribution respect to the center frame of the 420 

three consecutive imaging frames: (1) probability 𝑝< that a MB was detected near pixel 𝑘, (2) the relative 421 

coordinates of the localized center ∆𝑥< , ∆𝑦< , ∆𝑧<  respect to the pixel center (𝑥< , 𝑦< , 𝑧< ) (3) estimated 422 

brightness of the MB (𝐼) (4) the uncertainties 𝜎$,< , 𝜎I,< , 𝜎),< , 𝜎+,<, and (5) the background intensity (𝐵). In 423 

this study, we used a 2D variant of DECODE to process the 2D ultrasound data. Also, the background loss 424 

(ℒ:;) in DECODE was removed since the background in ultrasound images was modeled separately using 425 

the noise model.  426 

The DECODE network in Fig. 1e reveals the detailed architecture, where the U-Nets in the frame analysis 427 

and temporal context networks consist of two down-sampling and up-sampling layers. The convolution 428 

blocks in both networks adopted a kernel of 3 × 3 size followed by an Exponential Linear Unit (ELU) as 429 

an activation layer. The number of filters increases from 48, 96, and 192 for each down-sampling layer, 430 

with the feature map size halved. The number of filters decreases from 192, 96, and 48 for each up-sampling 431 

layer, with the feature map size doubled. The input of DECODE network were ultrasound images up-432 
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sampled to 2.5 X in axial dimension and 5 X in lateral dimension (Table I, DECODE network input pixel 433 

resolution). 434 

 435 

Evaluation Metrics 436 

We compared three evaluation metrics to measure the MB localization performance of LOCA-ULM and 437 

conventional localization on simulation study. MB detection accuracy measures the fraction of correct 438 

localizations (within 5 pixels or 0.32𝜆 the ground truth position) among all localized MBs:  439 

𝑀𝐵	𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,													(8) 440 

where TP is true positives and FP is false positives. The MB miss rate measures the fraction of missed 441 

localizations among all ground truth positions: 442 

𝑀𝐵	𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 = 	
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
,												(9) 443 

where FN is false negative. The localization error (𝐿) computes the averaged root mean squared distance 444 

between the correctly localized MBs (i.e., TP) and the corresponding ground truth MB positions.  445 

𝐿 = 	�
1
𝑇𝑃

s
(𝑥O� − 𝑥P)! + (𝑦O� − 𝑦P)!

2

GQ

P∈GQ

,											(10) 446 

where 𝑥P , 𝑦P are the ground truth coordinates and 𝑥O� , 𝑦O�  are the predicted coordinates. 447 

For quantitative assessment of the localization performance in in vivo CAM imaging, we calculated the 448 

vessel filling (VF) percentage using the method described by Kim, J. et al 31. First, a region of interest (ROI) 449 

that provided matching microvascular images between optical microscopy and ULM was selected. The 450 

optical image was resized with respect to the ULM image resolution to ensure accurate registration between 451 

the two images. The vessel structures in the optical microscopy image were carefully labeled by manual 452 

segmentation and used as the ground truth. The vessel filling (VF) percentage was calculated as 453 

VF	(%) =
𝑁ST⋂VWX
𝑁ST

× 100,								(11) 454 
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where 𝑁ST is the total number of pixels classified as the ground truth vessels in the optical image. 𝑁ST⋂VWX 455 

is the total number of pixels correctly classified by ULM with respect to the ground truth 𝑁ST.  456 

 457 

ULM Implementations 458 

For each ULM data, an SVD-based clutter filter was applied to extract the MB signal from the surrounding 459 

tissue 32, 33. To reduce the intensity variations of the MB signal, all frames were normalized to a scale of 0 460 

to 1 with respect to the minimum and maximum intensity within each acquisition (1600 frames for CAM 461 

study and 250 frames for rat brain study). Also, due to the hyperechogenicity of MBs, thresholding between 462 

the values of 0.1 − 0.2 was selected empirically to remove low-intensity background and noise. After 463 

image processing, the images were up-sampled to avoid the quantization artifacts associated with DECODE 464 

localization 19. Then, the network was trained to output super-resolved locations with sub-wavelength 465 

resolution (Table I, DECODE network output pixel resolution). For conventional ULM, normalized cross-466 

correlation based MB localization was employed using a pre-defined multivariate Gaussian PSF 21. The 467 

centroid coordinates were input into the uTrack algorithm 24 for MB pairing and tracking, following a 468 

similar process as in our recent studies 34. 469 

 470 

In vivo ULM data acquisition 471 

1) Chicken Embryo Chorioallantoic Membrane (CAM) study 472 

We used the CAM microvessel model with optical imaging as ground truth to study the performance of 473 

different localization methods. Fertile chicken eggs were obtained by the University of Illinois Poultry 474 

Research Farm and kept in tilting incubators (Digital Sportsman Cabinet Incubator 1502, GQF 475 

Manufacturing Inc., Savannah, Georgia). After four days, the eggshells were removed, and the CAM 476 

embryos were mounted into a plastic holder in a position suitable for imaging. Then, the embryos were 477 
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incubated for an additional 13 days in a humidified incubator (Darwin Chambers HH09-DA) until the 478 

desired developmental stage.  479 

A borosilicate glass tube (B120-69-10, Sutter Instruments, Novato, CA, USA) was pulled at high 480 

temperature and cut using a PC-100 glass puller (Narishige, Setagaya, Japan) to create a fine glass capillary 481 

needle for MB injection. 50 μL boluses of Definityâ solution (Lantheus, Bedford, MA) were injected into 482 

the surface bloodstream of the CAM via the glass needle. A high-frequency linear array transducer (L35-483 

16vX, Verasonics Inc., Kirkland, WA) was placed at the side of the plastic holder to image the surface of 484 

the CAM vasculature. Ultrasound data were obtained by using a 9-angle compounding plane-wave imaging 485 

sequence (step size of 1°) with a center frequency of 20 MHz, pulse repetition frequency (PRF) of 40 kHz, 486 

and a post-compounding frame rate of 1,000 Hz. IQ data of 1600 frames per acquisition with a total of 20 487 

acquisitions were generated (total 32 seconds of acquisition). Ground truth optical images were obtained 488 

using a Nikon SMZ800 stereomicroscope (Nikon, Tokyo, Japan) with A DS-Fi3 digital microscope camera 489 

(5.9-Mpixel CMOS image sensor, Nikon).  490 

 491 

2) Rat Brain Study 492 

Ten-week-old Sprague Dawley rats (Charles River Laboratories, Inc.) were used in this study. Animals 493 

were anesthetized with isoflurane (5% induction, 1.5% maintenance) throughout the experiment. Before 494 

craniotomy, the jugular vein was catheterized and then the animal was fixed on a stereotaxic frame. The 495 

scalp was removed, and the skull was thinned using a rotary micromotor with a 0.5mm drill bit (Foredom 496 

K.1070, Bethel, CT). The skull was removed with the size of the cranial window of 12mm (left-right) by 497 

6mm (rostral-caudal) below the bregma. To image the rat brain, Definityâ MBs were diluted with saline to 498 

yield an initial concentration of 1.44× 10Y bubbles per ml. The diluted MBs were continuously infused 499 

using a syringe pump (NE-300, New Era Pump Systems Inc., Farmingdale, NY). 500 

For the study of comparing the performance of different localization methods in different MB 501 

concentrations, we used an injection rate of 20, 30, 40 𝜇𝐿/min, and waited for 3 minutes after changing the 502 
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injection rate to stabilize the systemic MB concentration. This corresponds to 1.8× 10Z, 2.7× 10Z, and 503 

3.6× 10Z bubbles per ml of blood per minute, respectively. All rat brain data were acquired using a high-504 

frequency linear array transducer (L22-14vX Verasonics Inc., Kirkland, WA). Ultrasound data were 505 

obtained by using a 5-angle compounding plane-wave imaging sequence (step size of 1°) with a center 506 

frequency of 15.625MHz, PRF of 28.57 kHz, and post-compounding frame rate of 1,000 Hz. IQ data of 507 

250 frames per acquisition with total of 100 acquisitions were generated (total 25 seconds of acquisition). 508 

All procedures described above were approved by the Institutional Animal Care and Use Committee 509 

(IACUC) at the University of Illinois Urbana-Champaign. Details of the in vivo data acquisition 510 

specifications and image resolution are summarized in Table I. 511 
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Supplementary Tables 
 
Table I 
In vivo study acquisition parameters and image resolution 
 
 CAM study Rat Brain Study 
In vivo study acquisition parameters 
Transducer type L35-16vX L22-14vX 
Center Frequency 20 MHz 15.625 MHz  
Sampling Frequency  125 MHz 62.5 MHz 
Wavelength 77 𝜇𝑚 98.56 𝜇𝑚 
Image resolution 
PSF pixel resolution   4.928 𝜇𝑚 9.856 𝜇𝑚 
DECODE network input pixel resolution 9.856 𝜇𝑚 19.712 𝜇𝑚 
DECODE network output pixel resolution 4.928 𝜇𝑚 9.856 𝜇𝑚 
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