

1 **Context-Aware Deep Learning Enables High-Efficacy Localization 2 of High Concentration Microbubbles for Super-Resolution 3 Ultrasound Localization Microscopy**

4
5 YiRang Shin^{1,2}, Matthew R. Lowerison^{1,2}, Yike Wang^{1,2}, Xi Chen^{1,2}, Qi You^{1,3}, Zhijie Dong^{1,2}, Mark A.
6 Anastasio^{1,2,3,4}, Pengfei Song^{1,2,3,4,*}

7
8 ¹ Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL

9 ² Department of Electrical and Computer Engineering, University of Illinois Urbana–Champaign, Urbana, IL

10 ³ Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana, IL

11 ⁴ Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL

12 *Corresponding author: songp@illinois.edu

13 14 **Abstract**

15 Ultrasound localization microscopy (ULM) is an emerging super-resolution imaging technique for deep
16 tissue microvascular imaging. However, conventional localization methods are constrained by low
17 microbubble (MB) concentration, as accurate localization requires a strict separation of MB point spread
18 functions (PSFs). Furthermore, deep learning-based localization techniques are often limited in their ability
19 to generalize to *in vivo* ultrasound data due to challenges in accurately modeling highly variable MB PSF
20 distributions and ultrasound imaging conditions. To address these limitations, we propose a novel deep
21 learning-pipeline, LOcalization with Context Awareness (LOCA)-ULM, which employs simulation that
22 incorporates MB context to generate synthetic data that closely resemble real MB signals, and a loss
23 function that considers both MB count and localization loss. In *in silico* experiments, LOCA-ULM
24 outperformed conventional localization with superior MB detection accuracy (94.0% vs. 74.9%) and a
25 significantly lower MB missing rate (13.2% vs 74.8%). *In vivo*, LOCA-ULM achieved up to three-fold
26 increase in MB localization efficiency and a $\times 9.5$ faster vessel saturation rate than conventional ULM.

28 **Main**

29 Super-resolution optical microscopy is an established optical imaging technology that breaks the diffraction
30 barrier of light and offers an order-of-magnitude improvement in imaging spatial resolution. One of the
31 successful implementations of optical super-resolution, called single-molecule localization microscopy
32 (SMLM), uses the stochastic blinking of fluorophore emissions to avoid overlaps between PSFs of
33 individual molecules within a dense sample ^{1,2}. The sample is repeatedly illuminated, and a super-resolved
34 image is reconstructed by accumulating the localized positions of single emitters that were separated in
35 time. SMLM provides a nano-scale spatial resolution, which is essential for biological research at the
36 cellular and subcellular levels ³.

37 The concept of localization microscopy has been successfully adopted by the ultrasound community to
38 overcome the acoustic diffraction limit. As an acoustic analog to SMLM, ultrasound localization
39 microscopy (ULM) uses ultrasound contrast agents (i.e., microbubbles or MBs) that flow within the blood
40 vessels as individual point targets to achieve super-resolution ^{4,5}. By localizing each MB, ULM increases
41 the ultrasound imaging spatial resolution by an approximate factor of ten ⁶. Because ULM uses the strong
42 backscattering signal from MBs, it does not sacrifice imaging depth of penetration to gain spatial resolution.
43 This key advantage makes ULM a powerful tool that allows noninvasive probing of deep tissue
44 microvasculature for many preclinical and clinical applications ⁷.

45 As with all imaging techniques, ULM is not without limitations. At present, a key limitation of ULM is the
46 long data acquisition time, which is the result of the inherent compromise between MB concentration and
47 MB localization efficiency/accuracy. For example, to achieve accurate MB localization, ULM requires
48 limited number of MBs per imaging frame (e.g., by using low MB concentration) so that MBs are spatially
49 separated and localizable. However, lower MB concentration also makes it slower to accumulate adequate
50 MB localizations to fill the lumen of the vessel, which can take several to tens of minutes ⁸. In contrast, a
51 higher MB concentration speeds up the MB filling process in theory, but in practice it also increases MB
52 signal overlap and reduces MB localization efficiency. As a result, increased MB concentration does not
53 necessarily translate to faster ULM imaging speed. As such, improving MB localization efficiency under

54 high MB concentrations remains a challenging yet essential task for improving the imaging speed (i.e.,
55 temporal resolution) of ULM.

56 Various methods have been proposed to improve MB localization under high-density MB conditions.
57 Earlier studies focused on using Fourier-based filters to separate overlapping MBs into subgroups,
58 leveraging the diverse spatiotemporal flow characteristics of MBs ⁹. Assuming a sparse distribution of MBs
59 in each imaging frame, localization algorithms based on sparse image recovery and compressed sensing
60 (CS) have been proposed to separate overlapping MB signals ¹⁰⁻¹². However, the effectiveness of these
61 methods depends on constructing an accurate MB PSF forward model, which is challenging due to the
62 nonlinear response of MBs as well as other complexities involving frequency-dependent ultrasound
63 attenuation, phase aberration, multi-scattering, and multi-path reverberation. In addition, the assumption of
64 sparsity does not necessarily hold in areas with high MB density, which hampers the performance of these
65 methods.

66 Deep learning has emerged as a promising solution for robustly localizing high-density MBs in ULM. One
67 major limitation of deep learning-based MB localization is the lack of ground truth for the MB PSF in *in*
68 *vivo* imaging settings. As a result, different MB PSF modeling techniques (e.g., using bivariate Gaussian
69 models ¹³ and Field II simulations ¹⁴) have been proposed and commonly used to generate simulation
70 datasets to train deep networks for MB localization. However, the complex MB acoustic responses *in vivo*
71 ¹⁵⁻¹⁷ make it difficult to generate MB PSFs that closely resemble real MB signal characteristics (e.g., size,
72 shape, brightness). Since the performance of deep learning localization heavily depends on the dataset that
73 it is trained on, inaccurate estimation of the MB PSF can introduce biases in the model. Furthermore,
74 existing simulation pipelines do not incorporate the appropriate MB signal properties and ultrasound system
75 characteristics that are frequently observed from *in vivo* ultrasound data. As a result, the performance of
76 existing deep learning-based ULM techniques is greatly undermined by the inaccurate modeling of the MB
77 PSF and ultrasound imaging system.

78 In this work, we present LOcalization with Context Awareness (LOCA)-ULM, which leverages deep
79 learning and contextual information to achieve robust localization under high MB concentrations. We first

80 address the challenge of creating realistic synthetic datasets by constructing an MB PSF model informed
81 by real ultrasound data. Considering the need for a flexible PSF simulator that can describe the high
82 variability of MB PSFs, we utilize a generative adversarial network (GAN)¹⁸ to directly learn the
83 underlying properties of real *in vivo* MB signals. GANs are powerful tools for generating realistic samples
84 without requiring domain-specific knowledge to model real data distributions. As a result, they are well-
85 suited for capturing the complex properties of MB signals and creating realistic MB PSFs. Moreover, our
86 simulation includes modeling of both ultrasound system noise and MB behavior. To accurately represent
87 MB behavior, we assigned parameters related to factors such as brightness, lifetime, and velocity, to create
88 ground truth positions. Overall, by simulating GAN-based MB signals that also reflect the *in vivo* MB
89 behavior, we can better train the network to identify MB signals present in ultrasound images, leading to
90 improved performance. The second method aims to address the challenges associated with high MB
91 concentration that are present in practice. We translated the Deep Context Dependent (DECODE)¹⁹ neural
92 network into the ULM framework, in which the DECODE architecture and loss functions were optimized
93 to achieve robust MB localization across a wide range of MB concentrations. In this paper, we
94 systematically evaluated the performance of the proposed methods with both simulation and *in vivo* data
95 that include chicken embryo chorioallantoic membranes (CAMs) and rat brains.

96

97 **Results**

98 Fig. 1a illustrates the simulation pipeline designed to simulate realistic MB response and ultrasound
99 imaging conditions. The simulation used MB PSFs generated by a Least-squares Generative Adversarial
100 Network (LSGAN)²⁰. Conventional localization techniques have limitations in creating a complete set of
101 MB PSFs that accurately represent the distribution of real MB PSFs. To overcome this challenge, we
102 employed LSGAN (as depicted by "G" in Fig. 1a) to create a more extensive collection of MB templates
103 that could be used for training the LOCA-ULM, including those that have not been observed during
104 training. This strategy enables us to construct a more robust localization network that can detect various

105 MBs with different shapes, leading to a enhance localization performance on *in vivo* ultrasound data at
106 inference stage.

107 LSGAN was initially trained on a large number of MB signals obtained from *in vivo* images using a
108 conventional localization algorithm based on normalized cross-correlation (NCC) ²¹. Once trained, the
109 LSGANs were used to generate realistic MB PSFs that were stored in an MB PSF bank (i.e., collection of
110 MB templates that were later used by DECODE network for training). To create the ground truth MB
111 positions, a list of sub-wavelength coordinates was randomly sampled and assigned factors such as MB
112 brightness, lifetime, and velocity to emulate real MB behavior. The ground truth positions were then
113 convolved with the synthesized MB PSFs (randomly chosen from the MB PSF bank) to create ultrasound
114 images with realistic MB signals. A typical simulated image based on LSGAN-created MB signal is shown
115 in Fig. 1b (LSGAN-based PSF), which closely resembles real MB signals extracted from the *in vivo* CAM
116 image shown in Fig. 1d (Real image), as compared to other MB simulation methods such as bivariate
117 Gaussian and Field II. Finally, data-informed ultrasound noise was modeled and added to the simulated
118 image to create the final training datasets for the DECODE network (Fig. 1c, d) (Methods).

119 In this study, we adopted the principles of DECODE to solve the problem of localizing spatially overlapping
120 MB signals. We translated the cost functions of DECODE, including emitter count loss and localization
121 loss, to train the network for the tasks of estimating MB counts, MB detection probability, MB locations,
122 and MB brightness ¹⁹. The count loss and detection probability were jointly optimized with the localization
123 loss to provide more accurate estimation of MB locations. This is a more robust approach than directly
124 using MB location as loss terms (e.g., 1's for the center of MBs and 0 for otherwise), which can generate a
125 challenging condition for training ^{13, 22}. We trained the network using simulated images using LSGAN-
126 generated MBs, and the count loss and localization loss were optimized to maximize the likelihood of the
127 ground truth MB positions under a Gaussian mixture model (LOCA-ULM). In the inference stage (Fig. 1e),
128 the network estimates the true distribution of MB locations and brightness from real ultrasound data used
129 as input. This strategy allows the network to output confident MB detection probability and accurate
130 localizations for spatially overlapping MB PSFs (Methods).

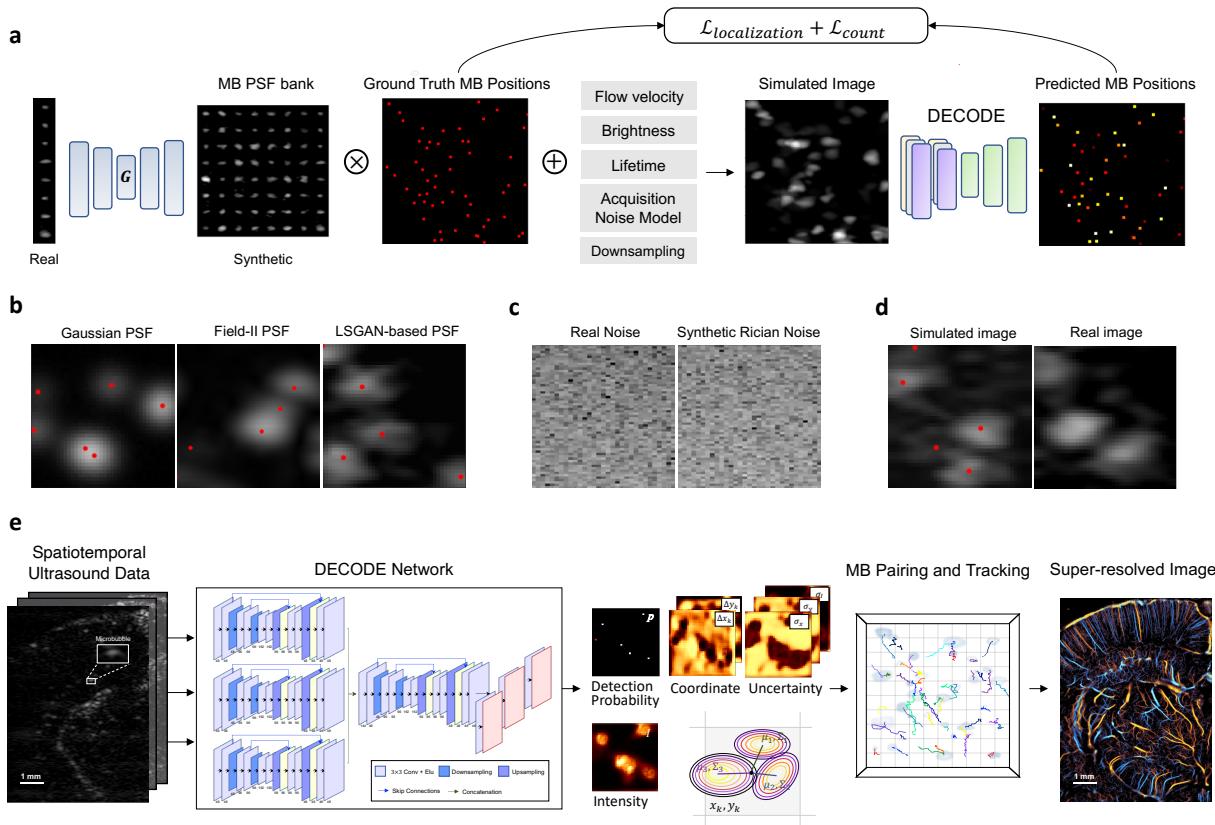


Fig 1. Overview of the proposed LOCA-ULM MB localization pipeline. LOCA-ULM is a simulation-based supervised learning method using MB PSFs generated by Least-squares Generative Adversarial Network (LSGAN)²⁰, and DECODE localization¹⁹. **a** The LSGAN (G) was trained on a large set of MB PSFs identified by the conventional normalized cross-correlation (NCC) localization algorithm²¹. The LSGAN learns the distribution of real MB signals and generates diverse and realistic synthetic MB PSFs. The LSGAN-generated MB PSFs are convolved with simulated ground truth MB positions assigned with MB-specific characteristics (e.g., brightness, velocity, lifetime) to create simulated images that closely resemble real data. The simulated images were used to train the DECODE network for localization purposes. **b** Examples of simulated MB signals using different PSF simulation methods (2D Gaussian, Field II, and LSGAN). Red dots indicate the ground truth MB location. **c** Examples of experimentally acquired electrical noise from the ultrasound system, synthesized Rician noise using the proposed method (Methods). **d** Simulated image with LSGAN-based MB PSFs with added Rician noise and real MB image extracted from the *in vivo* CAM dataset. **e** DECODE-based ultrasound localization microscopy pipeline. Inference was performed by using *in vivo* ultrasound data. 2D-DECODE outputs the probability of detecting a MB near pixel k (p_k), sub-wavelength spatial coordinates ($\Delta x_k, \Delta y_k$) respect to center of the pixel k , MB brightness (I), and corresponding uncertainties ($\sigma_x, \sigma_y, \sigma_I$). MB pairing and tracking were applied to predicted coordinates and the final super-resolved ULM images were generated.

131

132 Simulation study

133 We first validated the proposed LOCA-ULM localization pipeline using simulation data. Using the
 134 simulation pipeline described in Methods, the test dataset was created using the MB signals extracted from
 135 *in vivo* CAM data. Two-thousand imaging frames with an image size of 100 pixels \times 100 pixels (12.3 μm
 136 pixel size) were generated for different MB concentrations. The concentration for the simulation was

137 incremented with a $0.02 \text{ MBs}/\lambda^2$ step size from $0.02 \text{ MBs}/\lambda^2$ (low density) to $0.37 \text{ MBs}/\lambda^2$ (high
138 density), where λ is the wavelength of the ultrasound pulse used for imaging (Table 1). Fig. 2a shows
139 examples of MB localization using LOCA-ULM and conventional localization on simulation datasets with
140 different MB concentrations. At a low MB concentration ($0.06 \text{ MBs}/\lambda^2$), both LOCA-ULM and
141 conventional MB localization methods provided MB locations that agree with the ground truth. As the
142 concentration increased ($0.27 \text{ MBs}/\lambda^2$), conventional localization started to miss more MBs (blue arrows
143 in Fig 2a), and the miss-localizations tend to occur around the center of the clustered MB signals (yellow
144 arrows in Fig. 2a). In contrast, LOCA-ULM was able accurately separate and localize overlapping MB
145 signals with various shapes and brightness. LOCA-ULM localization is also in good agreement with the
146 ground truth.

147

148 *LOCA-ULM achieves high MB localization accuracy and efficiency under high MB concentrations in*
149 *simulation data*

150 The MB localization performance on simulation data was evaluated quantitatively using three metrics
151 (Methods). Fig. 2b shows the performance of LOCA-ULM versus conventional localization with respect to
152 increasing MB concentrations. LOCA-ULM consistently outperformed the conventional localization
153 algorithm in regard to MB detection accuracy and MB missing rate, especially for high concentration
154 conditions. LOCA-ULM achieved an average detection accuracy of 94.0%, as compared to an average
155 accuracy of 74.9% from conventional localization. LOCA-ULM also substantially decreased the missing
156 rate (13.2% vs 74.8%) over conventional localization. This improvement is essential for shortening the data
157 acquisition time for ULM because it allows higher concentration MBs to be administered *in vivo* while
158 maintaining a robust MB localization performance with high efficacy.

159 The localization error in Fig. 2b shows that LOCA-ULM consistently reduced the MB localization error
160 across all concentrations when comparing to conventional localization. The theoretical resolution limit of
161 ULM (i.e., localization error) can be estimated using the Cramér-Rao lower bound (CRLB)²³. Following

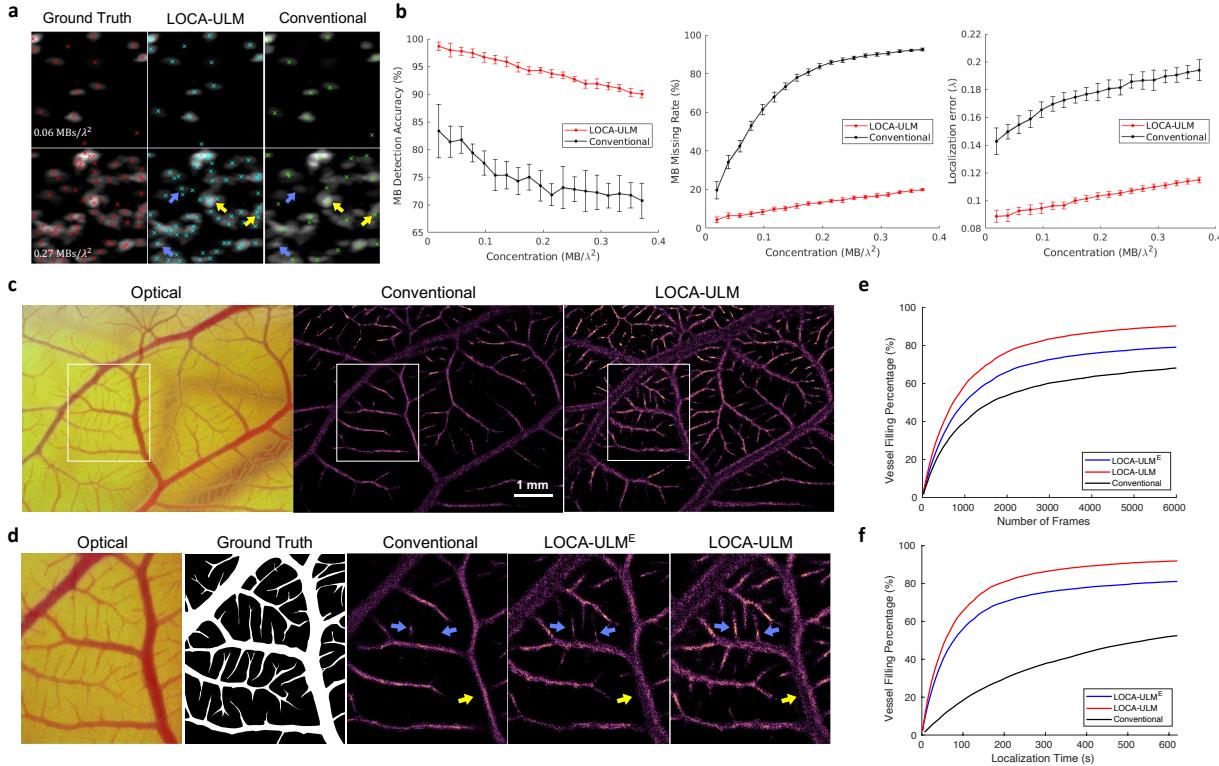


Fig 2. Results of the simulation study and in vivo chicken embryo CAM imaging study. **a** Simulation results of LOCA-ULM and conventional localization with low ($0.06 \text{ MBs}/\lambda^2$) and high ($0.27 \text{ MBs}/\lambda^2$) MB concentrations. Ground truth MB positions are marked by red \times , LOCA-ULM localization by cyan \times , and conventional localization by green \times . **b** Comparison between LOCA-ULM and conventional localization was performed on simulated images at increasing MB concentrations, using three performance metrics: MB detection accuracy, MB missing rate, and localization error (Methods). **c-f** Comparisons among conventional localization, LOCA-ULM^E, and LOCA-ULM MB localization in *in vivo* chicken embryo CAM imaging. **c** Optical microscopy image of the CAM surface microvessel, along with MB localization images reconstructed by conventional localization and LOCA-ULM. **d** The ROI selected from the optical image and the corresponding ground truth vessel segmentation. Magnified view of the MB localization images marked by the white ROI for conventional localization, LOCA-ULM^E, and LOCA-ULM. **e,f** The vessel filling (VF) percentage of three conventional localization, LOCA-ULM^E, and LOCA-ULM, as a function of the number of frames and localization time.

162 the theoretical CRLB model, we predicted a maximum resolution of $3.29 \mu\text{m}$ with the CAM study
 163 acquisition settings. In low-density conditions ($0.02 \text{ MBs}/\lambda^2$), conventional localization achieved a
 164 maximum localization resolution of $10.87 \mu\text{m}$, while LOCA-ULM achieved localization resolution of $6.74 \mu\text{m}$, which is closer to the CRLB.

166

167 *GAN-generated MB signals improved LOCA-ULM performance for MB localization in the in vivo CAM*
 168 *imaging study*

169 The performance of LOCA-ULM was further evaluated in an *in vivo* CAM microvessel model. To
 170 demonstrate the effectiveness of using LSGAN-generated realistic MBs, we used two types of simulation

171 data for network training. The first type (LOCA-ULM^E; LOCA-ULM Experimental) used MB signals
172 directly extracted from the CAM data; the second type (LOCA-ULM) used MB signals generated by the
173 LSGAN. Fig. 2e summarizes the vessel filling (VF) percentage for all the localization methods including
174 conventional localization, LOCA-ULM^E, and LOCA-ULM (Methods). LOCA-ULM^E and LOCA-ULM
175 achieved consistently higher VF percentage and faster vessel saturation rate than conventional localization.
176 At 6000 frames (total 6 seconds of acquisition) for MB accumulation, LOCA-ULM achieved the highest
177 VF percentage (90.25%), followed by LOCA-ULM^E (79.15%) and conventional localization (69.09%).
178 Notably, the VF percentage respect to optical image ground truth of conventional localization started to
179 plateau around 70%, while LOCA-ULM did not plateau until 90%. This result is consistent with the
180 observation of under-filling of the major vessels using conventional localization as indicated by the yellow
181 arrows in Fig. 2d. Both LOCA-ULM and LOCA-ULM^E filled the large vessels more completely and the
182 size of the vessel was closer to the ground truth (i.e., based on optical microscopy). In Fig. 2d the
183 reconstructed microvessels indicated by the blue arrows display higher intensity for LOCA-ULM, revealing
184 vessel structures that have not yet been fully reconstructed by conventional localization and LOCA-ULM^E.
185 These results suggest that the diverse MB signals generated by the LSGAN enhanced the network's
186 capability of localization more MBs under high MB concentrations.

187

188 *LOCA-ULM significantly improves computational performance of MB localization*

189 In addition to faster and more robust vessel filling performance, LOCA-ULM also enjoys an accelerated
190 processing time over conventional localization, thanks to the high inference speed of deep neural networks.
191 The LOCA-ULM network took 78s to localize 1000 ultrasound imaging frames with the size of 720
192 pixel × 560 pixel (7.10 mm × 5.52 mm), representing a 4-fold speedup over conventional localization. To
193 achieve a 50% VF percentage, LOCA-ULM needed the least amount of ultrasound images (740 frames),
194 which translates to the fastest localization time (57.81 s) over LOCA-ULM^E (1000 frames, 78.13s) and
195 conventional (1620 frames, 546.75s) (Fig. 2f). These results indicate that LOCA-ULM greatly enhances

196 the ULM performance by reducing both the data acquisition time (i.e., shorter MB accumulation) and post-
197 processing time while providing higher MB localization efficacy.

198

199 *LOCA-ULM demonstrates superior *in vivo* ULM imaging performance in a rat brain*

200 We demonstrated the generalizability of LOCA-ULM using *in vivo* rat imaging datasets. Fig 3. c-d shows
201 the final ULM images based on 20000 frames (a total of 20 seconds of data acquisition) of accumulation.
202 After localization, MB pairing and tracking were performed using uTrack²⁴. As shown in Fig. 3d, the
203 vascular bed in the rat brain presents large variations of vessel sizes with wide distribution of MB
204 concentrations. As shown in Fig. 3c, conventional localization suffered from poor localization performance
205 in regions with high MB concentrations, which manifest as disconnected and missing vessels in these
206 regions (red arrows in Fig. 3e). In contrast, LOCA-ULM revealed the dense cerebral vascular networks in
207 these regions, which were well-perfused and fully connected (red arrows in Fig. 3f).

208 Next, we designed a study to compare LOCA-ULM with the *state-of-the-art* MB localization method based
209 on MB separation⁹. We used the MB separation filter to separate the ultrasound MB data into two subgroups:
210 flow away from the transducer (downward flow) and flow toward the transducer (upward flow), as shown
211 in Fig. 3b. Fig. 3g, h demonstrate that MB separation facilitated more robust MB localization and tracking
212 in high MB density regions for both conventional and LOCA-ULM. The improvement is most significant
213 for conventional localization, which suffered from poor MB localization performance in high density MB
214 regions. The intersecting and adjacent small vessels that were missing by conventional localization now
215 become clearly visible by using MB separation. For LOCA-ULM, the improvement was moderate because
216 LOCA-ULM was already efficient with localizing MBs in high density regions. This is evidenced by
217 comparing Fig. 3d and Fig. 3h where most of the cerebral vasculature was consistent before and after
218 applying MB separation for LOCA-ULM (indicated by yellow arrows). When comparing Fig. 3d and 3g,
219 it becomes clear that even with MB separation, conventional localization still could not achieve a similar
220 MB localization performance to LOCA-ULM without MB separation. This is an important finding because

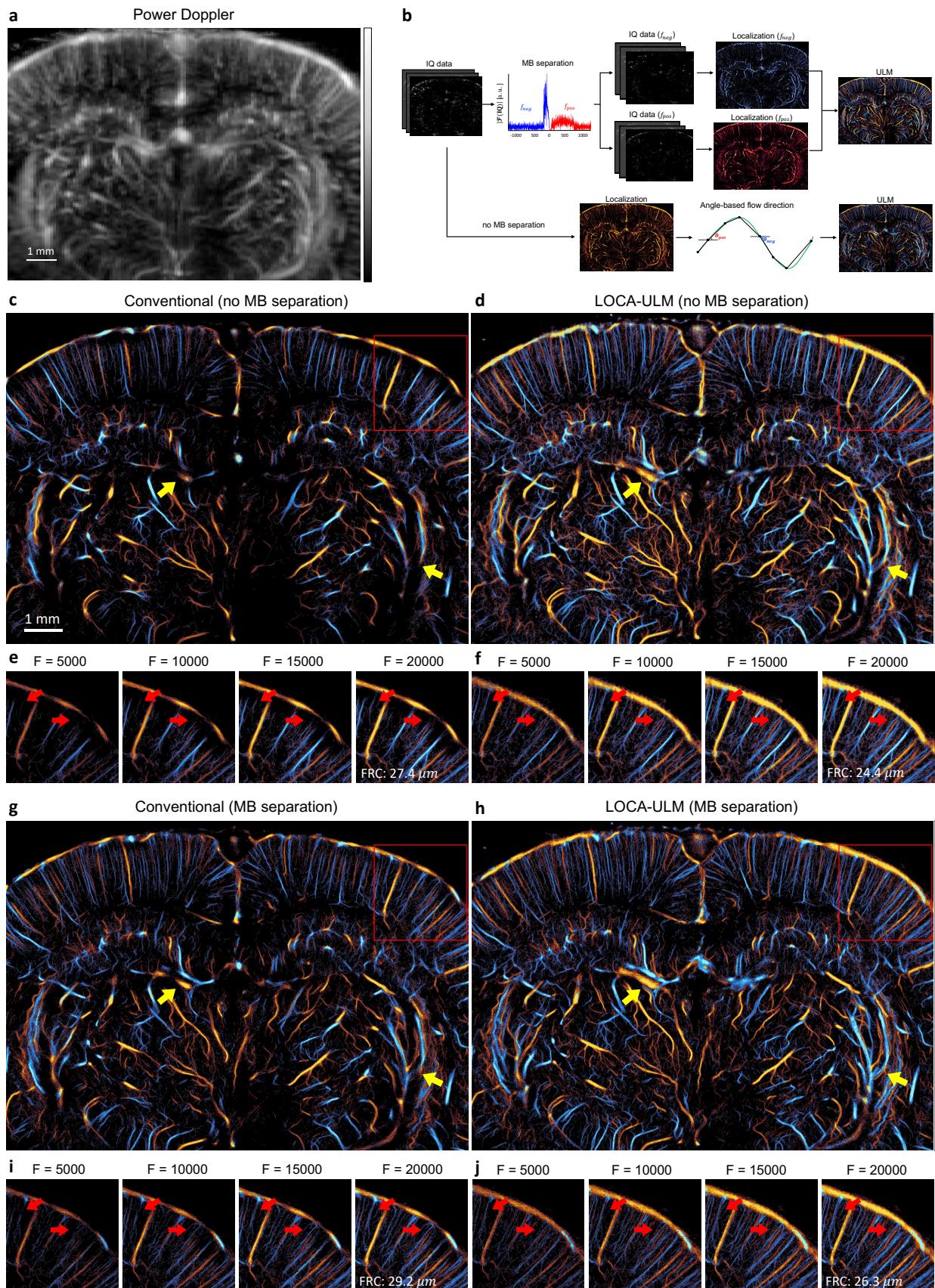


Fig 3. Comparison of LOCA-ULM and conventional localization to *in vivo* rat brain ultrasound data. **a** Power Doppler image generated by accumulating 2500 frames (a total of 2.5 seconds of acquisition) of rat brain ultrasound data. **b** *in vivo* rat brain localization workflow. The IQ data after tissue clutter filtering was processed with and without Fourier-based MB separation. For MB separation, the high concentration MB dataset was divided into subsets of upward and downward flow towards the transducer using a directional filter⁹. Angle-based flow direction was used for dataset without MB separation. For each dataset, MB locations was determined by performing normalized cross-correlation with an empirically determined PSF function (i.e., conventional localization) or LOCA-ULM. The uTrack algorithm was used to pair the localized MB centers and estimate their trajectories. **c-j** Each ULM directional flow maps were generated by accumulating 20000 frames (a total of 20 seconds of acquisition), **c,d** without MB separation and **g,h** with MB separation. **e,f,i,j** Improvement of vessel structures respect to the increasing number of frames is displayed on the bottom, shown for the area marked with red rectangle. F indicates number of frames used for ULM reconstruction and FRC indicates Fourier Ring Correlation.

222 it suggests that LOCA-ULM alone can already outperform the state-of-the-art MB localization technique
223 and does not require the help of post-processing methods such MB separation.
224 Finally, the spatial resolution of the ULM reconstructions were characterized by applying the Fourier Ring
225 Correlation (FRC) method, using the track splitting strategy and a 2σ threshold curve as proposed by
226 Hingot et al²⁵. Our results showed that both LOCA-ULM and conventional localization produced spatial
227 resolution below a half wavelength at the imaging frequency 15.625 MHz (49.28 μm) with and without MB
228 separation (Supplementary Fig. 1). These findings suggest that LOCA-ULM can achieve a more complete
229 reconstruction of the vascular network and provide visualization of well-perfused vessels without
230 compromising spatial resolution.

231
232 ***LOCA-ULM-based MB localization automatically adapts to different MB concentrations***
233 To further investigate the performance of LOCA-ULM under varying MB concentrations *in vivo*, we
234 conducted an experiment with increasing MB injection rate from 20 $\mu\text{L}/\text{min}$ to 40 $\mu\text{L}/\text{min}$ (Methods). Fig.
235 4 shows the reconstructed ULM images for 20 $\mu\text{L}/\text{min}$ and 40 $\mu\text{L}/\text{min}$ injection rate using conventional
236 and LOCA-ULM localization in a rat brain, where a total of 25000 frames (a total of 25 seconds of
237 acquisition) of ultrasound data were used for reconstruction. Similar to the observations in Fig. 3, LOCA-

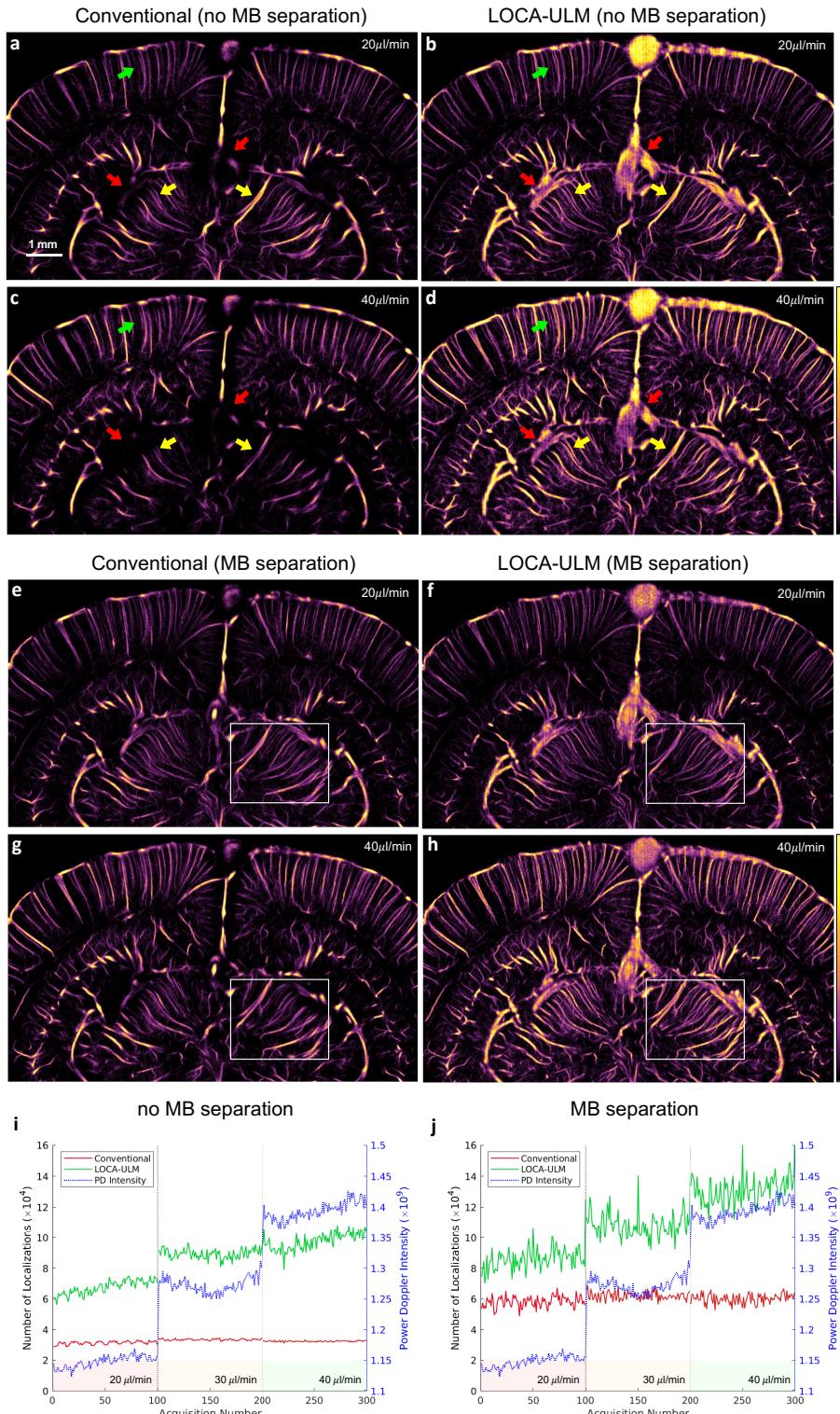


Fig 4. Effect of different MB injection rates (20 $\mu\text{L}/\text{min}$, 30 $\mu\text{L}/\text{min}$, 40 $\mu\text{L}/\text{min}$) on LOCA-ULM and conventional localization for rat brain ULM imaging. a-h Each ULM image was generated by accumulating 25000 frames of ultrasound data (a total of 25 seconds of acquisition) for MB injection rate of 20 $\mu\text{L}/\text{min}$ and 40 $\mu\text{L}/\text{min}$, **a-d** ULM reconstruction without MB separation and **e-h**, with MB separation. **i,j** Comparison of total MB count per acquisition (a total of 250 frames per acquisition) for LOCA-ULM and conventional localization at different MB injection rates (20 $\mu\text{L}/\text{min}$, 30 $\mu\text{L}/\text{min}$, and 40 $\mu\text{L}/\text{min}$). Two datasets, **i** without MB separation and **j** with MB separation.

239 ULM demonstrates much more complete cerebral vasculature reconstruction than conventional localization.

240 Notably, vessel areas with high MB concentrations suffered from the high MB missing rate of conventional

241 localization, which disappeared in the ULM image (red arrows in Fig. 4a, c). In contrast, LOCA-ULM

242 revealed large vessel structures that were missed by conventional localization (red arrows in Fig 4b, d).

243 Furthermore, in regions with moderate MB concentration, the intensity of reconstructed vessels with

244 conventional localization decreased with an increase in MB injection rate, leading to degraded vessel

245 delineation. For example, for conventional ULM, the two close-by vessels that were separable at an MB

246 injection rate of 20 $\mu\text{L}/\text{min}$ (yellow arrows in Fig. 4a) became indistinguishable at an MB injection rate of

247 40 $\mu\text{L}/\text{min}$ (yellow arrows in Fig. 4c). LOCA-ULM significantly improved the ability to resolve adjacent

248 structures, producing a clear separation of the vessels in both low (20 $\mu\text{L}/\text{min}$) and high (40 $\mu\text{L}/\text{min}$) MB

249 injection rates (yellow arrows in Fig. 4b, d, respectively). LOCA-ULM also revealed tiny vessels near the

250 cortical surface that cannot be reconstructed by conventional ULM, as indicated by green arrows in Fig.

251 4a-c.

252 The performance of LOCA-ULM localization was further evaluated by a quantitative analysis that used the

253 mean Power Doppler (PD) intensity as the reference. As shown in Fig. 4i, the MB count of LOCA-ULM

254 closely followed the trend of increasing PD intensity while conventional localization did not. This result

255 clearly indicates that conventional localization has already become saturated even at the lowest MB

256 injection rate (20 $\mu\text{L}/\text{min}$). With the addition of MB separation, as shown in Fig. 4j, conventional

257 localization improved the localization efficacy but was still saturated at the lowest injection rate. For

258 LOCA-ULM, MB separation also improved the MB count, which suggests that there was missed

259 localization for LOCA-ULM. Nevertheless, the improved MB count did not result in significant ULM

260 image quality improvement (e.g., Fig. 4d, h). Finally, the quantitative results provide a good agreement

261 with the ULM images, where LOCA-ULM reconstructed ULM images show increased microvessel

262 intensity with increased MB injection rate, while conventional localization shows constant microvessel

263 intensity despite the increased MB injection rate (white ROIs in Fig. 4 e-h).

264 **Discussion**

265 In this study, we have presented LOCA-ULM, a context-aware deep learning-based MB localization
266 method along with an LSGAN-based MB simulation pipeline to facilitate high quality ULM imaging under
267 high MB concentrations. We adopted the principles of DECODE and designed a new simulation workflow
268 that incorporated MB characteristics and realistic ultrasound imaging noise. Compared with well-
269 established image formation processes of SMLM (e.g., blinking fluorophores, PSF modeling, noise and
270 camera model)²⁶, there are several key differences to note in this study. First, the high variability of
271 ultrasound MB PSFs makes it challenging to construct effective PSF models that fully and accurately
272 capture the complexity of real MB signals. When trained with simple Gaussian PSF models, we
273 immediately observed suboptimal ULM imaging performance (e.g., gridding artifacts, poor vessel
274 reconstructions) (Supplementary Fig. 2). The proposed LSGAN-based MB generation implicitly learns the
275 complex MB PSF distributions that are present in the given ultrasound data, effectively minimizing the
276 discrepancy between real and modeled MB signal. We demonstrated the advantages of LSGAN-generated
277 PSFs in *in vivo* CAM imaging, where LOCA-ULM demonstrated significantly higher vessel filling (VF)
278 percentage and faster vessel saturation rate over LOCA-ULM^E and conventional localization (Fig. 2e, f).
279 Secondly, we demonstrated the adaptiveness and robustness of LOCA-ULM with context-aware training
280 for varying MB concentrations. Unlike SMLM, where emitter density can be reduced using laser irradiation
281 or by adjusting chemical environment²⁶, controlling MB concentration for ULM is challenging due to the
282 wide distribution of vessel sizes and hemodynamics *in vivo*. As a result, the high missing rate and
283 inaccuracy of conventional localization leads to incomplete ULM reconstructions with corrupted and
284 missing vessel structures (Fig. 3c, Fig. 4a, c). Deep learning offers a practical solution for learning the non-
285 linear mapping from ultrasound images with overlapping MB signals to sparse localization maps in a data-
286 driven manner. However, the sparse nature of localization maps hinders the direct training of deep networks
287 using common loss functions based on least-squares regression under the l_1 regularization^{13,27}. In our study,
288 we leveraged the joint optimization of both MB count loss and localization loss into the training process to

289 achieve accurate MB localization in both low and high MB densities. The count loss encourages the network
290 to output a sparse and high probability detection map, providing a complementary information about the
291 position of each MBs. In turn, the localization loss models the localized MB centers as the sum of Gaussian
292 distributions weighted by the detection probability. It was shown in the simulation study that LOCA-ULM
293 is highly capable of separating overlapping MB signals, resulting in the best match with the ground truth
294 positions at high MB concentration (Fig. 2a).

295 Furthermore, to provide the network with additional context of the MB signals, we integrated MB-specific
296 characteristics such as brightness, movement, lifetime, and ultrasound noise to our simulation framework
297 (Fig. 1a). This enables LOCA-ULM to comprehend the distinct features of real MB signals, which enhanced
298 the localization precision and ULM image quality. Our simulation study showed that LOCA-ULM yielded
299 superior MB localization efficiency compared to conventional localization, improving detection accuracy
300 (94.0% vs. 74.9%) and reducing the missing rate (13.2% vs 74.8%). In our *in vivo* CAM results, LOCA-
301 ULM achieved a more complete filling of larger vessels and reconstructed microvessels with higher
302 intensity, as validated by optical imaging (Fig. 2d). In *in vivo* rat brain study, LOCA-ULM was able to
303 maintain high localization accuracy even with considerable increase in MB injection rate (i.e., 40 μ L/min),
304 with up to a three-fold increase in detected MB localizations compared to conventional localization (Fig.
305 4i). Likewise, LOCA-ULM reconstructed well-connected and perfused cerebral vasculature, including
306 large and densely populated vessels missed by the conventional ULM (Fig. 3d, Fig. 4b, d). LOCA-ULM
307 also reconstructed more vessels with higher fidelity at high MB concentration, especially the adjacent
308 microvessels that could not be resolved using conventional localization (Fig. 4b, d).

309 We have also demonstrated the effectiveness of LOCA-ULM in achieving both high-speed processing and
310 accelerated data acquisition for ULM. In theory, higher MB concentration is necessary for faster ULM
311 imaging because it accelerates vessel filling rate of smaller vessels of MBs, which translates to shorter data
312 acquisition time ⁸. Our results indicate that LOCA-ULM achieved increased MB count in line with
313 increased MB injection rate (Fig. 4i, j), enabling accelerated acquisition with faster MB perfusion.

314 Moreover, we demonstrated that the quality of the reconstructed ULM images for LOCA-ULM was not
315 significantly affected by MB separation (Fig. 3d, h and Fig. 4 d, h). This result is significant because it
316 indicates that LOCA-ULM can substantially reduce the ULM post-processing time by eliminating the need
317 of dividing datasets into subsets with sparser MB concentration.

318 This study has another notable aspect, which is that LOCA-ULM can be easily applied to a broad range of
319 ultrasound imaging scenarios. Our proposed simulation pipeline does not require any prior knowledge of
320 the PSF model or the ultrasound image formation process to create the training dataset. This is not the case
321 for most deep-learning based localizations, which typically necessitate specific knowledge of imaging
322 factors, such as Field II simulation parameters ¹⁴ or 2D Gaussian PSF model ²⁷, to generate simulated dataset.
323 Our method can be easily used to create simulated data, which can aid in robust training and reduce the
324 challenge of generalizing deep learning-based localization to *in vivo* ultrasound data.

325 Our study has some limitations. First, the DECODE network and LSGAN need to be retrained when the
326 ultrasound imaging settings are altered. In addition, a stable training of LSGAN requires a large collection
327 of spatially isolated MB signals extracted from experimental data. Also, the performance of LOCA-ULM
328 may be undermined by inaccurate simulation parameters (e.g., MB brightness, background noise, etc.),
329 resulting in suboptimal MB localization performance. Nevertheless, because LOCA-ULM outputs
330 uncertainties of localizations, one can use the predicted uncertainties to reject unreliable localizations.
331 Finally, the input ultrasound image to LOCA-ULM needs to be upsampled to avoid quantization artifacts.
332 This results in an overall increased computational cost for the proposed localization technique.

333

334 **Methods**

335

336 Simulation Pipeline

337 The simulated datasets for training are generated during the network training, creating 10000 frames per
338 epoch, and using each frame only once for training. Because LOCA-ULM is trained purely on simulated
339 data, it may fail to generalize to real ultrasound data if there is a discrepancy between the two datasets. To

340 address this issue, we created a realistic model for the ultrasound image formation process that incorporates
341 PSF model based on LSGAN and data-informed ultrasound noise (Fig. 1a). Compared with the generic
342 GAN, LSGAN replaces the sigmoid cross entropy loss in the discriminator with a least squares loss,
343 facilitating the generator to create more realistic images and learn the distribution of the training data more
344 robustly²⁰. LSGAN has been applied in medical imaging to improve spatial resolution and prevent mode
345 collapse (i.e., generator creating limited ranges of outputs)²⁸⁻³⁰. The training problem for the LSGAN can
346 be formulated as:

$$\begin{aligned} 347 \quad \min_D \mathcal{L}(D) &= \frac{1}{2} \mathbb{E}_{x \sim p_{data}(x)} [(D(x) - 1)^2] + \frac{1}{2} \mathbb{E}_{z \sim p_z(z)} [(D(G(z))^2)] \\ 348 \quad \min_G \mathcal{L}(G) &= \frac{1}{2} \mathbb{E}_{z \sim p_z(z)} [(D(G(z)) - 1)^2] \end{aligned} \quad (1)$$

349
350 where D denotes the discriminator, G represents the generator, z represents the input signal, which was
351 randomly sampled from a uniform distribution, and x represents the MB PSFs extracted from real
352 ultrasound images.

353 To collect the LSGAN training data, the in vivo ultrasound images were first interpolated by a factor of 5
354 (5X) in axial dimension and 10X in the lateral dimension. This corresponds to a 0.064λ pixel size for the
355 CAM images and 0.1λ pixel size for rat brain images (Table I, PSF pixel resolution). Square patches
356 ($65 \text{ pixel} \times 65 \text{ pixel}$) were extracted from the in vivo ultrasound images and used to create the simulated
357 images for training. Each patch contains a single MB PSF that takes the peak location identified by the
358 normalized cross-correlation (NCC) localization algorithm as the true MB location²¹. A total of 3000
359 patches were manually selected from the in vivo ultrasound images to train the LSGAN and the mean
360 ($\mu_{I_{max}}$) and standard deviation ($\sigma_{I_{max}}$) of the maximum intensity were calculated. After training, the
361 synthetic PSFs generated from the LSGAN were saved into a bank of PSFs. To generate training data for
362 the network, a list of ground truth MB positions was sampled in sub-wavelength pixel resolution (Table I,
363 DECODE output pixel resolution) and convolved with randomly selected MB PSFs retrieved from the PSF

364 bank. The brightness of MB PSFs was drawn from a Gaussian distribution $N(\mu_{I_{max}}, \sigma_{I_{max}})$. To generate
365 diverse simulated frames, the first appearance of each MB was randomly selected from a continuous
366 distribution, and the lifetime of each MB is chosen at random. $80 \text{ pixel} \times 80 \text{ pixel}$ sized simulated frames
367 were created and the images are down-sampled by a factor of 2 to create the final $40 \text{ pixel} \times 40 \text{ pixel}$
368 sized training frames (Fig. 2b, LSGAN-based PSF).

369 To add realistic electronic noise to the simulation, we used Rician distribution as the noise model in this
370 study. Assuming an additive Gaussian noise in both real and imaginary parts of the in-phase quadrature
371 (IQ) data, the B-mode signal $I_{x,z}$ (i.e., magnitude of IQ at pixel (x, z)) satisfies the distribution:

372

$$373 P(I_{x,z} | v_{x,z}, \hat{\sigma}_{x,z}) = \frac{I_{x,z}}{\hat{\sigma}_{x,z}} \exp\left(\frac{-(I_{x,z}^2 + v_{x,z}^2)}{2\hat{\sigma}_{x,z}^2}\right) I_0\left(\frac{I_{x,z} v_{x,z}}{\hat{\sigma}_{x,z}^2}\right), \quad (2)$$

374

375 where $v_{x,z}$ is the magnitude of the B-mode signal at pixel (x, z) without noise, $\hat{\sigma}_{x,z}$ is the standard deviation
376 of the additive noise, and I_0 is the modified Bessel function of the first kind with order zero. In this study,
377 the $\hat{\sigma}_{x,z}$ was estimated experimentally by taking the temporal mean of the acquired electronic noise data
378 $E(x, z, t)$ as,

$$379 \hat{\sigma}_{xz} = \sqrt{\frac{2}{\pi} \frac{1}{N} \sum_{t=1}^N E(x, z, t)}, \quad (3)$$

380

381 where N is the number of samples considered for estimation. Electronic noise in ultrasound images were
382 obtained by performing the same ultrasound acquisition as the in vivo experiment without any imaging
383 target (e.g., in air) (Fig. 1c).

384

385 DECODE Architecture

386 Accurate and robust MB localization under a wide range of vessel sizes and MB concentrations is essential
387 for successful ULM. Inspired by the previous study by Speiser, A. et al ¹⁹, we implemented the DECODE

388 network that enables simultaneous detection and localization of MBs in a probabilistic framework. Several
389 key aspects allow DECODE to outperform conventional localization methods. First, DECODE can improve
390 detection and localization accuracy by capturing the temporal context of the MB flow. The architecture is
391 divided into two networks: a *frame analysis network* that comprises three separate U-Nets, where features
392 of three consecutive frames are extracted in each U-net. The frame analysis network is followed by a
393 *temporal context network*, where the final outputs of the three U-Nets are combined to capture the temporal
394 context information between neighboring frames (Fig. 1e).

395 Moreover, the DECODE network was trained to minimize the total loss that consists of three parts: an MB
396 count loss ($\mathcal{L}_{\text{count}}$), MB localization loss (\mathcal{L}_{loc}) and a background loss (\mathcal{L}_{bg})¹⁹. The MB count loss is
397 represented by a Bernoulli distribution p_k that indicates the probability of detecting a bubble near pixel k .
398 Given that the probability p_k varies among the pixels, the mean (μ_{count}) and variance (σ_{count}^2) of the
399 Poisson-binomial distribution is given as $\mu_{\text{count}} = \sum_k^K p_k$, $\sigma_{\text{count}}^2 = \sum_k^K p_k (1 - p_k)$, where K is the total
400 number of pixels. When K is sufficiently large, the Poisson binomial distribution approximates the
401 Gaussian distribution defined as,

$$402 P(E|\mu_{\text{count}}, \sigma_{\text{count}}^2) = \frac{1}{\sqrt{2\pi}\sigma_{\text{count}}} \exp\left(-\frac{1}{2}\frac{(E - \mu_{\text{count}})^2}{\sigma_{\text{count}}^2}\right) \quad (4)$$

403 where E is the true number of simulated MBs. The log probability of E is maximized when the μ_{count}
404 approximates to E , equivalent to minimizing,

$$405 \mathcal{L}_{\text{count}} = -\frac{1}{2} \frac{(E - \mu_{\text{count}})^2}{\sigma_{\text{count}}^2} + \log(\sqrt{2\pi}\sigma_{\text{count}}) \quad (5)$$

406 The localization loss is designed jointly to optimize the output variables of the Gaussian mixture model
407 (GMM) to approximate to the true posterior with respect to MB locations and brightness. A GMM for each
408 pixel k , weighted by the detection probability is used to approximate the true posterior. The four-
409 dimensional Gaussian $P(u_k|\mu_k, \Sigma_k)$ is modeled as a distribution over the coordinates and brightness of the
410 MB $\mathbf{u} = [x, y, z, I]$:

411
$$P(\mathbf{u}|\boldsymbol{\mu}_k, \Sigma_k) = \frac{1}{\sqrt{2\pi^4 \det(\Sigma_k)}} \exp\left(-\frac{1}{2}(\boldsymbol{\mu}_k - \mathbf{u})^T \Sigma_k^{-1} (\boldsymbol{\mu}_k - \mathbf{u})\right), \quad (6)$$

412 where $\boldsymbol{\mu}_k = [x_k + \Delta x_k, y_k + \Delta y_k, z_k + \Delta z_k, I_k]$ and $\Sigma_k = \text{diag}(\sigma_{x,k}^2, \sigma_{y,k}^2, \sigma_{z,k}^2, \sigma_{I,k}^2)$. The (x_k, y_k, z_k)
 413 coordinate represents the center of pixel k , and $(\Delta x_k, \Delta y_k, \Delta z_k)$ is the sub-wavelength coordinates of the
 414 MB respect to the center of pixel k . The distance between the inferred posterior and the true posterior is
 415 minimized (i.e., by minimizing the forward KL divergence) by optimizing the log-likelihood of the
 416 weighted Gaussian distributions over the ground truth (GT) MBs,

417
$$\mathcal{L}_{loc} = -\frac{1}{E} \sum_{e=1}^E \log \sum_{k=0}^{K-1} \left(\frac{p_k}{\sum_j p_j} \right) P(u_e^{GT} | \boldsymbol{\mu}_k, \Sigma_k), \quad (7)$$

418 where e represents each MB present in the image. The localization loss maximizes the likelihood of the
 419 ground truth positions and brightness u_e^{GT} over all predicted detections. The DECODE network was
 420 designed to output the 9 parameters of the weighted Gaussian distribution respect to the center frame of the
 421 three consecutive imaging frames: (1) probability p_k that a MB was detected near pixel k , (2) the relative
 422 coordinates of the localized center $\Delta x_k, \Delta y_k, \Delta z_k$ respect to the pixel center (x_k, y_k, z_k) (3) estimated
 423 brightness of the MB (I) (4) the uncertainties $\sigma_{x,k}, \sigma_{y,k}, \sigma_{z,k}, \sigma_{I,k}$, and (5) the background intensity (B). In
 424 this study, we used a 2D variant of DECODE to process the 2D ultrasound data. Also, the background loss
 425 (\mathcal{L}_{bg}) in DECODE was removed since the background in ultrasound images was modeled separately using
 426 the noise model.

427 The DECODE network in Fig. 1e reveals the detailed architecture, where the U-Nets in the frame analysis
 428 and temporal context networks consist of two down-sampling and up-sampling layers. The convolution
 429 blocks in both networks adopted a kernel of 3×3 size followed by an Exponential Linear Unit (ELU) as
 430 an activation layer. The number of filters increases from 48, 96, and 192 for each down-sampling layer,
 431 with the feature map size halved. The number of filters decreases from 192, 96, and 48 for each up-sampling
 432 layer, with the feature map size doubled. The input of DECODE network were ultrasound images up-

433 sampled to 2.5 X in axial dimension and 5 X in lateral dimension (Table I, DECODE network input pixel
434 resolution).

435

436 Evaluation Metrics

437 We compared three evaluation metrics to measure the MB localization performance of LOCA-ULM and
438 conventional localization on simulation study. MB detection accuracy measures the fraction of correct
439 localizations (within 5 pixels or 0.32λ the ground truth position) among all localized MBs:

440
$$MB\ Detection\ Accuracy = \frac{TP}{TP + FP}, \quad (8)$$

441 where TP is true positives and FP is false positives. The MB miss rate measures the fraction of missed
442 localizations among all ground truth positions:

443
$$MB\ Miss\ Rate = \frac{FN}{TP + FN}, \quad (9)$$

444 where FN is false negative. The localization error (L) computes the averaged root mean squared distance
445 between the correctly localized MBs (i.e., TP) and the corresponding ground truth MB positions.

446
$$L = \sqrt{\frac{1}{TP} \sum_{i \in TP} \frac{(\hat{x}_i - x_i)^2 + (\hat{y}_i - y_i)^2}{2}}, \quad (10)$$

447 where x_i, y_i are the ground truth coordinates and \hat{x}_i, \hat{y}_i are the predicted coordinates.

448 For quantitative assessment of the localization performance in *in vivo* CAM imaging, we calculated the
449 vessel filling (VF) percentage using the method described by Kim, J. et al³¹. First, a region of interest (ROI)
450 that provided matching microvascular images between optical microscopy and ULM was selected. The
451 optical image was resized with respect to the ULM image resolution to ensure accurate registration between
452 the two images. The vessel structures in the optical microscopy image were carefully labeled by manual
453 segmentation and used as the ground truth. The vessel filling (VF) percentage was calculated as

454
$$VF\ (\%) = \frac{N_{GT \cap ULM}}{N_{GT}} \times 100, \quad (11)$$

455 where N_{GT} is the total number of pixels classified as the ground truth vessels in the optical image. $N_{GT \cap ULM}$
456 is the total number of pixels correctly classified by ULM with respect to the ground truth N_{GT} .

457

458 *ULM Implementations*

459 For each ULM data, an SVD-based clutter filter was applied to extract the MB signal from the surrounding
460 tissue ^{32,33}. To reduce the intensity variations of the MB signal, all frames were normalized to a scale of 0
461 to 1 with respect to the minimum and maximum intensity within each acquisition (1600 frames for CAM
462 study and 250 frames for rat brain study). Also, due to the hyperechogenicity of MBs, thresholding between
463 the values of 0.1 – 0.2 was selected empirically to remove low-intensity background and noise. After
464 image processing, the images were up-sampled to avoid the quantization artifacts associated with DECODE
465 localization ¹⁹. Then, the network was trained to output super-resolved locations with sub-wavelength
466 resolution (Table I, DECODE network output pixel resolution). For conventional ULM, normalized cross-
467 correlation based MB localization was employed using a pre-defined multivariate Gaussian PSF ²¹. The
468 centroid coordinates were input into the uTrack algorithm ²⁴ for MB pairing and tracking, following a
469 similar process as in our recent studies ³⁴.

470

471 *In vivo ULM data acquisition*

472 1) *Chicken Embryo Chorioallantoic Membrane (CAM) study*

473 We used the CAM microvessel model with optical imaging as ground truth to study the performance of
474 different localization methods. Fertile chicken eggs were obtained by the University of Illinois Poultry
475 Research Farm and kept in tilting incubators (Digital Sportsman Cabinet Incubator 1502, GQF
476 Manufacturing Inc., Savannah, Georgia). After four days, the eggshells were removed, and the CAM
477 embryos were mounted into a plastic holder in a position suitable for imaging. Then, the embryos were

478 incubated for an additional 13 days in a humidified incubator (Darwin Chambers HH09-DA) until the
479 desired developmental stage.

480 A borosilicate glass tube (B120-69-10, Sutter Instruments, Novato, CA, USA) was pulled at high
481 temperature and cut using a PC-100 glass puller (Narishige, Setagaya, Japan) to create a fine glass capillary
482 needle for MB injection. 50 μ L boluses of Definity[®] solution (Lantheus, Bedford, MA) were injected into
483 the surface bloodstream of the CAM via the glass needle. A high-frequency linear array transducer (L35-
484 16vX, Verasonics Inc., Kirkland, WA) was placed at the side of the plastic holder to image the surface of
485 the CAM vasculature. Ultrasound data were obtained by using a 9-angle compounding plane-wave imaging
486 sequence (step size of 1°) with a center frequency of 20 MHz, pulse repetition frequency (PRF) of 40 kHz,
487 and a post-compounding frame rate of 1,000 Hz. IQ data of 1600 frames per acquisition with a total of 20
488 acquisitions were generated (total 32 seconds of acquisition). Ground truth optical images were obtained
489 using a Nikon SMZ800 stereomicroscope (Nikon, Tokyo, Japan) with A DS-Fi3 digital microscope camera
490 (5.9-Mpixel CMOS image sensor, Nikon).

491

492 2) *Rat Brain Study*

493 Ten-week-old Sprague Dawley rats (Charles River Laboratories, Inc.) were used in this study. Animals
494 were anesthetized with isoflurane (5% induction, 1.5% maintenance) throughout the experiment. Before
495 craniotomy, the jugular vein was catheterized and then the animal was fixed on a stereotaxic frame. The
496 scalp was removed, and the skull was thinned using a rotary micromotor with a 0.5mm drill bit (Foredom
497 K.1070, Bethel, CT). The skull was removed with the size of the cranial window of 12mm (left-right) by
498 6mm (rostral-caudal) below the bregma. To image the rat brain, Definity[®] MBs were diluted with saline to
499 yield an initial concentration of 1.44×10^9 bubbles per ml. The diluted MBs were continuously infused
500 using a syringe pump (NE-300, New Era Pump Systems Inc., Farmingdale, NY).

501 For the study of comparing the performance of different localization methods in different MB
502 concentrations, we used an injection rate of 20, 30, 40 μ L/min, and waited for 3 minutes after changing the

503 injection rate to stabilize the systemic MB concentration. This corresponds to 1.8×10^6 , 2.7×10^6 , and
504 3.6×10^6 bubbles per ml of blood per minute, respectively. All rat brain data were acquired using a high-
505 frequency linear array transducer (L22-14vX Verasonics Inc., Kirkland, WA). Ultrasound data were
506 obtained by using a 5-angle compounding plane-wave imaging sequence (step size of 1°) with a center
507 frequency of 15.625MHz, PRF of 28.57 kHz, and post-compounding frame rate of 1,000 Hz. IQ data of
508 250 frames per acquisition with total of 100 acquisitions were generated (total 25 seconds of acquisition).
509 All procedures described above were approved by the Institutional Animal Care and Use Committee
510 (IACUC) at the University of Illinois Urbana-Champaign. Details of the *in vivo* data acquisition
511 specifications and image resolution are summarized in Table I.

512

513 **Author contributions**

514 YS and PS designed and wrote the paper. YS and XC designed the simulation study. YW, QY, and PS
515 prepared the rat model and performed craniotomies and ultrasound imaging on rat. MRL prepared the
516 CAM model and performed ultrasound imaging. MRL designed the noise model. ZD designed the
517 ultrasound transducer holder and programmed the motorized imaging stage. YS, MAA, and PS developed
518 and applied the super-resolution ULM algorithm.

519

520 **Competing Interests:** The authors declare no competing interests.

521

522 **Materials & Correspondence:** Correspondence to Pengfei Song

523

524 **Data Availability:** The data that support the findings of this study are available from the corresponding
525 authors on request.

526

527 **Code Availability:** The deep-learning models were developed based on DECODE available in Pytorch
528 (<https://github.com/TuragaLab/DECODE>). Custom code for deployment of the simulation pipeline,
529 LOCA-ULM training, and inference are available for research purposes from the corresponding author
530 upon request.

531

532 **Funding:** The study was partially supported by National Institutes of Health under grant numbers
533 R21EB030072, R21AG077173, and by National Science Foundation under award number 2237166. The
534 content is solely the responsibility of the authors and does not necessarily represent the official views of
535 the NIH and NSF.

536

Reference

1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. *science* **313**, 1642-1645 (2006).
2. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). *Nature methods* **3**, 793-796 (2006).
3. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. *Annual review of biochemistry* **78**, 993-1016 (2009).
4. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. *Nature* **527**, 499-502 (2015).
5. Viessmann, O., Eckersley, R., Christensen-Jeffries, K., Tang, M.-X. & Dunsby, C. Acoustic super-resolution with ultrasound and microbubbles. *Physics in Medicine & Biology* **58**, 6447 (2013).
6. Desailly, Y., Couture, O., Fink, M. & Tanter, M. Sono-activated ultrasound localization microscopy. *Applied Physics Letters* **103**, 174107 (2013).
7. Yi, H.-m., Lowerison, M.R., Song, P.-f. & Zhang, W. A review of clinical applications for super-resolution ultrasound localization microscopy. *Current Medical Science* **42**, 1-16 (2022).
8. Hingot, V. et al. Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy. *Scientific reports* **9**, 1-10 (2019).
9. Huang, C. et al. Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation. *Scientific reports* **10**, 1-13 (2020).
10. Shu, Y., Han, C., Lv, M. & Liu, X. Fast super-resolution ultrasound imaging with compressed sensing reconstruction method and single plane wave transmission. *IEEE Access* **6**, 39298-39306 (2018).
11. Kim, J., Wang, Q., Zhang, S. & Yoon, S. Compressed sensing-based super-resolution ultrasound imaging for faster acquisition and high quality images. *IEEE Transactions on Biomedical Engineering* **68**, 3317-3326 (2021).
12. Bar-Zion, A., Solomon, O., Tremblay-Darveau, C., Adam, D. & Eldar, Y.C. SUSHI: Sparsity-based ultrasound super-resolution hemodynamic imaging. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control* **65**, 2365-2380 (2018).
13. van Sloun, R.J. et al. Super-resolution ultrasound localization microscopy through deep learning. *IEEE transactions on medical imaging* **40**, 829-839 (2020).
14. Chen, X., Lowerison, M.R., Dong, Z., Han, A. & Song, P. Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **69**, 1312-1325 (2022).
15. Qin, S., Caskey, C.F. & Ferrara, K.W. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. *Physics in medicine & biology* **54**, R27 (2009).
16. Christensen-Jeffries, K. et al. Microbubble axial localization errors in ultrasound super-resolution imaging. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control* **64**, 1644-1654 (2017).
17. Versluis, M., Stride, E., Lajoinie, G., Dollet, B. & Segers, T. Ultrasound contrast agent modeling: a review. *Ultrasound in medicine & biology* **46**, 2117-2144 (2020).

18. Goodfellow, I. et al. Generative adversarial networks. *Communications of the ACM* **63**, 139-144 (2020).
19. Speiser, A. et al. Deep learning enables fast and dense single-molecule localization with high accuracy. *Nature methods* **18**, 1082-1090 (2021).
20. Mao, X. et al. Least squares generative adversarial networks. *Proceedings of the IEEE international conference on computer vision*, 2794-2802 (2017).
21. Song, P. et al. Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control* **65**, 149-167 (2017).
22. Li, Y. et al. Localization of high-concentration microbubbles for ultrasound localization microscopy by self-supervised deep learning. *2021 IEEE International Ultrasonics Symposium (IUS)*, 1-4 (2021).
23. Desailly, Y., Pierre, J., Couture, O. & Tanter, M. Resolution limits of ultrafast ultrasound localization microscopy. *Physics in medicine & biology* **60**, 8723 (2015).
24. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. *Nature methods* **5**, 695-702 (2008).
25. Hingot, V., Chavignon, A., Heiles, B. & Couture, O. Measuring image resolution in ultrasound localization microscopy. *IEEE transactions on medical imaging* **40**, 3812-3819 (2021).
26. Lelek, M. et al. Single-molecule localization microscopy. *Nature Reviews Methods Primers* **1**, 39 (2021).
27. Liu, X. et al. Deep learning for ultrasound localization microscopy. *IEEE transactions on medical imaging* **39**, 3064-3078 (2020).
28. Xue, H. et al. A 3D attention residual encoder-decoder least-square GAN for low-count PET denoising. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **983**, 164638 (2020).
29. Mardani, M. et al. Deep generative adversarial neural networks for compressive sensing MRI. *IEEE transactions on medical imaging* **38**, 167-179 (2018).
30. Emami, H., Dong, M., Nejad-Davarani, S.P. & Glide-Hurst, C.K. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. *Medical physics* **45**, 3627-3636 (2018).
31. Kim, J. et al. Improved Ultrasound Localization Microscopy Based on Microbubble Uncoupling via Transmit Excitation. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control* **69**, 1041-1052 (2022).
32. Demené, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. *IEEE transactions on medical imaging* **34**, 2271-2285 (2015).
33. Song, P., Manduca, A., Trzasko, J.D. & Chen, S. Ultrasound small vessel imaging with block-wise adaptive local clutter filtering. *IEEE transactions on medical imaging* **36**, 251-262 (2016).
34. Lowerison, M.R. et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. *Scientific reports* **12**, 1-11 (2022).

Supplementary Tables

Table I
In vivo study acquisition parameters and image resolution

	CAM study	Rat Brain Study
In vivo study acquisition parameters		
Transducer type	L35-16vX	L22-14vX
Center Frequency	20 MHz	15.625 MHz
Sampling Frequency	125 MHz	62.5 MHz
Wavelength	$77 \mu m$	$98.56 \mu m$
Image resolution		
PSF pixel resolution	$4.928 \mu m$	$9.856 \mu m$
DECODE network input pixel resolution	$9.856 \mu m$	$19.712 \mu m$
DECODE network output pixel resolution	$4.928 \mu m$	$9.856 \mu m$