

1 **Virally induced lipid droplets are a platform for innate immune**
2 **signalling complexes**

3
4 EA Monson¹, JL Laws^{1*}, Z Telikani^{1*}, AJ Milligan², AM Rozario², I Amarasinghe¹, ML
5 Smith¹, V Tran¹, Q Dinh¹, N Williamson³, A Mechler², C Johnson², MJ Hofer⁴, S Nie³, DR
6 Whelan² and KJ Helbig¹.

7
8 ¹ Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe
9 University, Melbourne, Australia.

10 ² La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.

11 ³ Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science &
12 Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.

13 ⁴ Charles Perkins Centre and School of Life and Environmental Sciences, The University of
14 Sydney.

15
16 *these authors contributed equally to the manuscript

17 Correspondence to be addressed to:

18 Prof. Karla Helbig

19 Department of Microbiology, Anatomy, Physiology and Pharmacology

20 La Trobe University

21 1 Kingsbury Drive, Bundoora, Vic

22 3083

23 Email: k.helbig@latrobe.edu.au

24

25 **Key words:** Lipid Droplet, Virus, Interferon, Organelle, Interferon Stimulated Gene.

36 **Abstract**

37 Lipid droplets (LDs) are upregulated by host cells in the face of pathogen infection, however,
38 the reason for this phenomenon remains largely unknown. Here, we demonstrate that virally
39 induced LDs house a distinct and dynamic proteome containing key antiviral signalling
40 pathway members, including the essential pattern recognition receptor; RIG-I, key adaptor
41 proteins; STAT1 and STAT2 and prominent interferon inducible proteins; viperin and MX1.
42 Changes in the LD proteome were underpinned by specific key changes in the lipidome of
43 virally driven LDs, particularly in the phospholipid membrane. Following virus infection,
44 key antiviral proteins formed complex protein-protein interactions on the LD surface,
45 positioning this organelle as a key antiviral signalling platform for the first time. It is clear
46 that dynamic regulation of both the proteome and the lipidome of LDs occurs rapidly
47 following viral infection towards the initiation of a successful innate immune response.

48

49 **Introduction**

50 Lipid droplets (LDs) were initially considered simply as a cellular energy source, but are now
51 recognised as dynamic, cytoplasmic organelles that are critical in many signalling events (1–
52 3). It has been well described that LDs are upregulated in the face of pathogen infection to
53 multiple bacteria, parasites and more recently, viruses (reviewed in (4)). LD upregulation
54 during virus infection is now known to be essential in supporting a successful innate immune
55 response in host cells (5, 6). In particular, during zika virus (ZIKV) and herpesvirus (HSV-1)
56 infection, LD upregulation has been linked to the production of type-I and III interferons
57 (IFNs) (IFN- β and IFN- λ) (5), however, the mechanism underpinning this increase in IFN
58 production still remains elusive, and could involve both changes in lipid and protein profiles.
59 Successful antiviral responses rely on complex protein interactions that require platforms for
60 their assembly (7–9). The LD is well described to house viperin, a key antiviral protein that
61 also regulates multiple antiviral signalling cascades (1, 2, 10), however, the role of the LD in
62 facilitating other protein complex formations remains unknown. The LD proteome is both
63 diverse and dynamic in nature, changing constantly to cellular cues; with its make-up also
64 being driven by changes in lipid species (11). Given the recent emergence of LDs as essential
65 organelles in host driven antiviral immunity, it is possible that these organelles play
66 undescribed roles as signalling platforms during host response to viral infection.

67

68 **Results**

69 **Antiviral innate immune signalling proteins are recruited to LDs during virus infection**

70 LDs are upregulated early following viral infection in mammalian cells and are essential for
71 the production of a heightened antiviral IFN state (5); however, the mechanisms that underpin
72 their ability to drive IFN production and limit early viral replication remain unknown. To
73 investigate this further we selected a well-established neural model of lymphocytic
74 choriomeningitis virus (LCMV) infection (12). Mice were infected intracranially with

75 LCMV, and their brains harvested at 2- and 4-days post infection (dpi), modelling early-stage
76 infection (Fig S1A-C), with virally infected mice displaying an enhanced level of LDs in their
77 brains at both 2 and 4 dpi (Fig 1A, B). (Fig 1C, S1D). To characterise the enhanced antiviral
78 capacity of virally driven LDs, we performed comparative mass spectrometry profiling of
79 proteins differentially associated with LCMV-LDs or SMAM-LDs isolated from the brain
80 tissues of mice. In the virally infected brains, 4324 proteins were identified on LDs (Fig 1D;
81 Table S1; S1E), with only 30 of these found to be differentially upregulated, and 24 of these
82 to be exclusively upregulated on LDs (0.5%; Fig 1E, S1E). Functional annotation enrichment
83 analysis revealed that most of the upregulated LD proteins at 4 dpi belonged to ‘cellular
84 defence response to viruses’ and ‘response to interferons’ (Fig 1F, G), the predominant
85 mammalian antiviral cytokines. The brain contains a very heterogenous mix of cell types, and
86 immunofluorescence analysis revealed that astrocytes were the largest contributor in the brain
87 to the upregulated LD response to virus (Fig 1H, S2).

88 To gain a cell type specific LD proteomic profile response to viral infection in the absence of
89 viral antagonism, we described the proteomic shift of LDs following viral mimic stimulation
90 (dsRNA) in primary immortalised astrocyte cells. *In vitro* analysis of an immortalised
91 primary astrocyte cell model following dsRNA stimulation at both 8 and 24 hrs revealed a
92 significant upregulation of LDs at both time points, as we have seen previously (Fig S3A)
93 (5). The proteomic profiles of isolated LDs revealed an upregulation of 10 and 56 proteins at
94 8 and 24 hrs respectively following stimulation of cells with dsRNA (Fig S3C and D).
95 Functional categorisation of the entire LD proteome in comparison to the differentially
96 regulated LD proteins following stimulation (24 hrs) revealed an increase in the distribution
97 of proteins belonging to the ‘immune response’ and ‘lipid metabolism’ functional categories
98 (Fig S3E, Fig 1I and Table 2); additionally, there were a significant number of enzymes
99 present on the LD that facilitate protein and lipid post-translational modifications (Fig S3F).
100 Further analysis revealed that protein members belonging to the ‘immune response’ cluster
101 had a high level of predicted protein-protein associations with each other, and members of
102 this cluster were also upregulated on the LD following an RNA viral infection (zika virus) at
103 the same time point (24 hrs: Fig 1J, K, Table S2 and S3). Immunoblotting of LD fractions
104 confirmed the presence of selected novel localised LD proteins, at steady state or upregulated
105 following dsRNA stimulation (Fig 1L).

106

107 **The LD lipidome dynamically changes following activation of antiviral early innate 108 signalling pathways**

109 It is well established that viruses alter the cellular lipidome, often to enhance their own
110 replication cycles (13). However, these changes are usually examined at later time points,
111 excluding the possibility that early cellular lipid changes may occur to facilitate a pro-host
112 response. Additionally, to our knowledge, the dynamics of lipids within the LD has never
113 been examined following viral infection, therefore we applied a dual-omics approach to
114 better understand the regulation of lipids and proteins on the LD during virus infection.
115 Although there was limited changes to lipids in whole cell lysates following dsRNA

116 stimulation of astrocyte cells, there was significant changes to the distribution of lipid
117 categories of the LD lipidome as early as 8 hrs, with the greatest changes observed at 24 hrs,
118 towards an increased abundance of glycerolipids, and a decrease in sterols (Fig 2A, S4A, B,
119 Table S4). Further analysis of individual lipid classes revealed that following activation of
120 antiviral pathways, LDs generally alter their lipidome to increase their distribution of long-
121 chain polyunsaturated triacylglycerols, whilst decreasing their abundance of saturated
122 cholesterol esters (Fig 2B, C, S4C-F). These lipid changes were underpinned by the LD
123 proteome with the presence of important metabolic enzymes, in particular those responsible
124 for the synthesis of long-chain polyunsaturated fatty acids (PUFAs), such as ACSL1, ACSL3
125 and ACSL4 (Fig 2D, E). A small but significant change was also observed in the structural
126 lipids making up the LD phospholipid membrane, with an increase in PE
127 (phosphatidylethanolamine) and PI (phosphatidylinositol) lipids (Fig 2F). Small changes in
128 these membrane phospholipids are known to alter membrane curvature, stability and their
129 ability to incorporate proteins (14–18); and additional analysis also revealed an increase of
130 ether linkages in these structural lipids upregulated between 8 and 24 hrs (Fig 2G), known to
131 support these functional changes, including support of cellular signalling at lipid membranes
132 (18). Collectively, simultaneous proteomic and lipidomic analysis revealed that changes in
133 the long and very long-chained PUFAs, as well as changes in the neutral lipids and
134 membrane lipids were underpinned by dynamic proteomic changes to include important
135 metabolic enzymes that drive these lipidomic alterations (Fig 2H).

136

137 **STAT proteins localise to LDs following virus infection**

138 To date the only antiviral protein shown to localise to LDs in human cells is viperin
139 (RSAD2), which is known to play roles in orchestrating a heightened antiviral environment
140 (2, 19, 20). Our proteomic analysis of LDs in primary immortalised astrocyte cells revealed
141 that multiple members of the early antiviral innate immune signalling pathways thought
142 previously to be cytoplasmic, were present in the LD proteome, with expression of selected
143 proteins being significantly upregulated following both pathway activation by dsRNA or
144 ZIKV infection (Fig 3A, Table S2,3). Confocal imaging revealed the known LD localised
145 protein, viperin (21, 22), to be highly abundant on the outside of LDs, with novel localised
146 proteins; STAT1 and STAT2 being less abundant on LDs, and colocalising to only a subset
147 of cytoplasmic LDs following activation of innate immune pathways by dsRNA (Fig 3B, S5).
148 To better visualise and enumerate the populations of LDs these antiviral proteins are localised
149 to, we isolated LDs from cells overexpressing proteins tagged with mCherry. Viperin was
150 observed to localise to 54.8% of LDs on average, in comparison to STAT1 localising to
151 44.9% and STAT2 24.9%, which was also confirmed via immunoblotting (Fig 3C-E and
152 S5A). Further confirmation of STAT1 localisation to the LD, and its phosphorylated forms
153 (STAT1-Tyrosine701; ph-STAT1(T) and STAT1-Serine 727; ph-STAT1(S)) was performed
154 using super resolution microscopy (single molecule localisation microscopy, SMLM), where
155 we tracked STAT1 movement in the cell over a timeframe of 72 hpi (Fig 3F, G and S5B, C).
156 There was a significant increase in colocalization events of LDs with STAT1 in all forms
157 following stimulation (Fig 3F, G). However, when normalised to the increased cellular

158 density of both LDs and STAT1 proteins, ph-STAT1 (T) demonstrated the most significantly
159 enhanced interaction with the LD from as early as 8 hrs post activation of early innate
160 antiviral signalling pathways (Fig 3G; S5B). This was further supported by a doubling of
161 non-random co-localisation events compared to control conditions in which the degree of
162 colocalization was equivalent to random levels of overlap (Fig S5B).

163

164 **LDs form contacts with mitochondria to form signalosome complexes**

165 LDs are dispersed throughout the cytoplasm of eukaryotic cells and move dynamically within
166 cells to interact and communicate with other organelles, such as the endoplasmic reticulum,
167 mitochondria, and peroxisomes, through the exchange of both lipids and proteins (23). There
168 have been several hypotheses for why LDs may form contacts with other organelles, for
169 example the delivery of LDs to lysosomes during autophagy to generate cholesterol (24), or
170 the channelling of fatty acids liberated from lipolysis to sites of oxidation. Given the presence
171 of both major viral RNA sensors; MDA5 at baseline, as well as upregulated RIG-I (DDX58)
172 following both ZIKV infection and dsRNA stimulation we hypothesised that LDs may assist
173 in signalosome formation to facilitate MAVS activation (Fig 3A, 1J, Supp Table 2 and 3). It
174 is well established that the adaptor protein, MAVS localises to mitochondria (as well as to
175 other organelles such as peroxisomes and the mitochondria-associated endoplasmic reticulum
176 membrane (MAM) (25) and we wanted to examine its localisation with RIG-I and their
177 potential to form a signalling complex at the LD. Confocal imaging analysis of astrocytes
178 following activation of early innate signalling pathways with an RNA viral mimic
179 demonstrated multiple instances of signalosome formation within individual cells, with RIG-I
180 localised to LDs, forming complexes with MAVS localised to the mitochondria (Fig 4B,
181 S6A). Live time imaging analysis of astrocytes also revealed that the frequency of LDs
182 interacting with mitochondria increased significantly during both dsRNA and ZIKV
183 infection, a phenomenon that did not occur when increasing LD numbers via oleic acid
184 treatment of the cells (Fig 4C-G, S6B). This increase in interactions was driven by transient
185 interactions of LD and mitochondria (Fig 4E, F), with some LDs interacting with
186 mitochondria up to 15 times in a 10-minute timeframe, with an average of 6 interactions in
187 virally infected cells compared to 1.8 in mock cells (Fig 4G).

188

189 **Discussion**

190 The role of LDs in viral infection has been dominantly studied from the point of view of viral
191 pathogens usurping this organelle as a platform for assembly and manipulating its lipolysis
192 and biogenesis to help enhance the viral life cycle (4). However, LD numbers are known to
193 rapidly increase following viral infection, a cellular function that is required for optimal
194 production of antiviral cytokines (5). Here we show that the LD proteome dynamically alters
195 its makeup towards an enhanced profile of antiviral proteins and directly related antiviral
196 signalling proteins, including the main RNA viral sensors, RIG-I and MDA5, as well as the
197 main adaptor proteins in production of antiviral interferon stimulated genes, STAT1 and

198 STAT2. Rapid proteomic changes to LDs following viral infection were underpinned by
199 alterations in the lipidome of LDs towards a dominantly long-chain fatty acid profile in core
200 lipids and small changes in the structural membrane lipids that likely facilitate a rapid
201 proteome change (26). Organelle platforms are known to facilitate the formation of multiple
202 signalosomes (1, 10, 25), and our analysis identified that at early time points following
203 antiviral signalling pathway activation, LDs accumulated phosphorylated STATs, and
204 interacted with mitochondria more frequently and for enhanced intervals, bringing together
205 LD localised RIG-I and mitochondrial localised MAVS.

206 LD proteomes are understood to be dynamic in nature, but with the limited availability of LD
207 proteome data, a better understanding of how these changes occurs is still to be established
208 (27, 28). Very recently the LD proteome has been shown to be highly sensitive to bacterial
209 LPS (29), however, the LPS changes driven in the LD proteome in this study have only a 17
210 protein overlap with those driven by viral RNA in our analysis, indicating that LD proteome
211 changes are pathogen specific and likely to underpin specific functional capacity of the LD
212 (Fig S7A,B). Overlapping proteome members were involved in organelle trafficking and lipid
213 metabolism changes, indicating a commonality in the ability of the LD to traffic
214 intracellularly and potentially mobilise altered lipid species as a core function of LDs in
215 pathogen infection (Fig S7B). To our knowledge this is the first study to utilise a dual-omics
216 approach to analyse the changing LD proteome simultaneously with its lipidomic changes in
217 mammalian cells. This powerful tool was able to couple changes in metabolic enzymes in the
218 LD proteome with changes seen in both the increases of lipids having long-chain fatty acyl
219 chains, and the smaller alterations observed in the structural lipids of the LD membrane; it
220 also highlighted the striking presence of multiple enzymes involved in post-translational
221 modification of proteins, and potentially lipids within the LD proteome. Lipid alterations in
222 virally driven LDs are likely to not only underpin the ability of the LD surface to alter its
223 protein cargo but could also drive the production of bioactive lipid mediators such as the
224 eicosanoid family, known to contribute to antipathogen immune defences (4, 30).

225 Signalosome formation is a requirement for efficient signalling intracellularly, to increase
226 local concentrations of signalling components and promote weak interactions that may be
227 required for enzyme activation. Signalosome formation often occurs at a cellular membrane
228 platform such as the ER for STING, and mitochondria and peroxisome for MAVS (25, 31,
229 32); Alternatively, signalling molecules such as cGAS can induce self-organising centres to
230 concentrate their reactions (33). Here we demonstrate that the LD can localise critical
231 signalling proteins essential for the production of both interferon, the main antiviral cytokine,
232 and interferon stimulated proteins, which underpin the successful antiviral cellular defences.
233 Although some of these proteins remain constant at the LD surface (MDA5, STAT2), others
234 accumulated transiently following viral infection (RIG-I, STAT1). Transient localisation of
235 proteins to the LD surface is not well understood, however, post-translational modifications
236 may underpin these events, and approximately 9% of our LD proteome following activation
237 of early innate signalling pathways is composed of enzymes that facilitate these functions (as
238 reviewed in (34)). Additionally, we were able to document small but significant changes to
239 the external phospholipid membrane lipids towards a signature that can significantly enhance

240 membrane curvature, protein binding capacity and cellular signalling at lipid membranes
241 (14–18).

242 LDs are rapidly upregulated following viral infection and are critical in the early innate
243 immune response facilitating a heightened antiviral environment (5). These studies highlight
244 that viral driven LD upregulation coincides with dynamic changes to the LD lipidome and
245 proteome to facilitate antiviral signalosome formation. Understanding the mechanism of LD
246 facilitated antiviral defences may offer opportunities to tailor next generation antiviral
247 therapeutics that may be more pan-antiviral in nature towards heightening the host cell
248 antiviral environment.

249

250 **Methods**

251 **Cells and culture conditions**

252 Primary Immortalised Human Foetal Astrocytes were used throughout this study (referred to
253 as primary immortalised astrocyte cells). These cells were maintained at 37°C in a 5% CO₂
254 air atmosphere in DMEM (Gibco, Cat; 12430054) containing 10% foetal bovine serum (FBS)
255 (Gibco, Cat; 10099141), 100 units/mL penicillin and 100 µg/mL streptomycin (Sigma-
256 Aldrich, cat; P0781).

257

258 **Lymphocytic Choriomeningitis Virus (LCMV) infection of mice**

259 C57BL/6 mice were obtained from Australian BioResources (Moss Vale, NSW 2577) and
260 housed under specific pathogen-free conditions in the animal facility at the University of
261 Sydney, Sydney, Australia. Animal experiments were performed in accordance with the
262 University of Sydney's Animal Ethics Committee (1738/2020) and Institutional Biosafety
263 Committee approval NLRD (22N004); mice were maintained under a 12 hr light/dark cycle
264 at an ambient temperature of 20–23°C and relative humidity of 40–60% and with ample
265 food and water. All experiments were done in accordance with the Institutional Animal Care
266 and Use Committee guidelines of the University of Sydney. All mice were aged between 8
267 and 16 weeks at the time of infection. Mice were anesthetized with 100 µg ketamine and 1 µg
268 xylazine per gram bodyweight and intracranial infection was performed by injecting 500 PFU
269 of LCMV (strain LCMV Armstrong 53b) diluted in 20 µL of phosphate-buffered saline
270 (PBS) with 1% fetal bovine serum (FBS). Sham-infected mice were used as controls and
271 received the same volume of PBS with 1% FBS but without virus. Mice were weighed at the
272 times indicated below, and percent weight change was calculated. Mice were euthanized at 2-
273 or 4-days post infection, and the brains were removed, flash frozen in optimum cutting
274 temperature (OCT) medium.

275

276 ***In vitro* viral infection, viral mimics stimulation and plasmid transfection**

277 Primary immortalised astrocyte cells were seeded at 5x10⁶ per T175cm² flask plates prior to
278 infection with Zika virus (MR766 strain) at an MOI of 1. Cells were washed once with PBS
279 then infected with virus in serum free media for 4 hrs, followed by 20 hrs in DMEM
280 supplemented with 10% foetal calf serum, at 37°C containing 5% CO₂. The viral mimic,

281 poly I:C (dsRNA) (Invivogen) and all plasmid constructs used throughout the study were
282 transfected into cells using PEI transfection reagent (Polyscience, Cat; 24765-1) at a
283 concentration of 1 μ g/ml. Viperin-mCherry and control mCherry plasmids were created as
284 described previously (35). STAT1- and STAT2-mCherry tagged plasmids were kindly gifted
285 to us from Associate Professor Greg Mosely (Monash University, Melbourne, VIC). RIG-I-
286 wt was kindly gifted to us from Professor Stephen Polyak (University of Washington, Seattle,
287 WA).

288

289 **Immunofluorescence microscopy**

290 For cultured cells, briefly, cells were grown in 24-well plates on 12 \times mm glass coverslips
291 coated with gelatine (0.2% [v/v]) were washed with PBS, fixed with 4% paraformaldehyde in
292 PBS for 15 \times min at room temperature and permeabilised with 0.1% Triton X-100 in PBS for
293 10 \times min. Cells were blocked with 5% BSA for 1 hr, before antibody staining with α RIG-I
294 (1:200; MA5-31715, Thermo Fisher Scientific), α MAVS (1:100; PA5-17256, Thermo Fisher
295 Scientific). Cells were then incubated with Alexa Fluor 647 (1:200; A21236, Thermo Fisher)
296 or Alexa Fluor 488 (1:200; A11008, Thermo Fisher Scientific) secondary antibody for 1 \times hr.
297 Mitochondria were stained by incubating live cells with MitoTracker® Red (Thermo Fisher
298 Scientific) at 100nM for 1 hr. LDs were stained by incubating cells with Bodipy (493/503) at
299 1 μ ng/mL for 1 \times hr and nuclei were stained with DAPI (Sigma-Aldrich, 1 μ g/ml) for 5 \times min
300 at room temperature. Samples were then washed with PBS and mounted with Vectashield
301 Antifade Mounting Medium (Vector Laboratories). Preparation and staining of murine frozen
302 brain sections were prepared following optimised protocols for tissue sections (36). Whole
303 heads were sectioned sagittally. One section was snap-frozen and the other mounted
304 immediately in OCT. Frozen sections were cut at 14 \times μ M with a Leica CM 3050 \times S cryostat
305 and mounted on microscope slides and stored at -80 \times °C. Sections were fixed with 4%
306 paraformaldehyde in PBS for 15 \times min at room temperature. Sections were then washed with
307 PBS, permeabilised with 0.1% Triton X-100 in PBS for 10 \times min, washed again and then
308 blocked with 1% BSA for 30 \times mins. Sections were stained for specific cell types; astrocytes
309 (α GFAP polyclonal antibody, 1:1000; PA3-16727, Invitrogen), neurons (α NeuN polyclonal
310 antibody, 1:2500; PA5-78639, Invitrogen) and microglia (α TMEM119 monoclonal antibody,
311 1:10000; MA5-35043, Invitrogen). Sections were then washed and incubated with Alexa
312 Fluor 555 secondary antibody at 1:200 for 1 \times hr. Bodipy (493/503) was used to stain for LDs
313 at 1 μ ng/mL for 1 \times hr at room temperature, and nuclei were stained with DAPI for 5 \times min at
314 room temperature. Images were then acquired using Zeiss 800 confocal microscope. Unless
315 otherwise indicated images were processed using ImageJ analysis software.

316

317 **Lipid Droplet Isolation and Validation**

318 *Preparation of Lipid Droplet Fractions*

319 Isolation of LD from cells and brain tissues was performed using a Lipid Droplet Isolation
320 Kit (Cell Biolabs; Cat; MET-5011). For cells, 5x T-175cm² flasks (5 x 10⁶ cells) of primary
321 immortalised astrocyte cells were trypsinised, pelleted at 1000 g for 5 mins, washed 2 times
322 with 1 x PBS. Mouse brain tissues were thawed on ice and 200mg of tissue surrounding the
323 hippocampus was minced and put into sterile 1.5 mL microcentrifuge tube. Both cells and

324 tissues were resuspended in 200 μ l of reagent A (Cell Biolabs; Cat; MET-5011) and
325 incubated on ice for 10 mins with occasional vortexing. 800 μ l of 1 x reagent B (Cell
326 Biolabs; Cat; MET-5011) was added to the cells/ tissues and further incubated on ice for 10
327 mins with occasional vortexing. Following incubation, cells/ tissues were carefully
328 homogenised by being passed through a one inch 27-gauge needle attached to a 3 mL syringe
329 five times. 600 μ l of 1x reagent B was layered on top of the homogenates. Lysates were
330 centrifuged for 3 hrs at 20,000 g at 4 °C. 100 μ L of the top layer containing the floating LDs
331 was taken per condition and stored at –80 °C for analysis of proteins and lipids.

332

333 ***Visualisation and analysis of LD- mCherry colocalization***

334 Primary immortalised astrocytes were seeded at 5×10^6 per T175cm² flask prior to transfection
335 with mCherry, viperin-mCherry, STAT1-mCherry and STAT2-mCherry. Cells were
336 trypsinised and LDs were isolated. Following LD isolation, LDs were stained with Bodipy
337 (493/503) at a concentration of 1 μ g/mL. 10uls of purified LDs were spotted on a Nunc Lab-
338 Tek II Chamber Slide System (Thermo Fisher Scientific) and were visualised via a Zeiss
339 LSM 780 high-sensitivity laser scanning confocal microscope at 63x to determine both LDs
340 stained with Bodipy (493/503) and mCherry expressing protein co-localisation. Image
341 analysis was carried out using ImageJ, with LDs segmented using the Find Maxima function
342 and a segmentation map was created. Segmentation maps were then used to separate
343 interacting LDs and the Particle Analyser plugin was used to count LDs, create ROIs, and
344 determine their sizes. To determine which LDs contained protein the LD area was isolated
345 using an intensity threshold, and a binary image was created. The same method was used to
346 find areas containing protein. The areas where both binaries overlapped was then determined
347 via image calculator. This mask was then used in combination with the created ROIs to
348 determine the presence or absence of protein in each LD.

349

350 ***Fluorescence and SMLM Image Acquisition and Processing***

351 Switching buffer was applied to cells containing 80 μ L 1M mercaptoethylamine (MEA), 20
352 μ L 1 M potassium hydroxide (KOH) and 0.8 μ L 1 mg/mL Bodipy (493/503) in PBS (pH 8.5)
353 immediately prior to imaging. 8-well chamber slides were mounted on a custom SMLM setup
354 based on (37). Briefly, the setup is built around an Olympus IX-83 inverted fluorescence
355 microscope equipped with a 100X 1.49 oil immersion objective and a Photometrics Prime-
356 95B sCMOS detector coupled to a pair of excitation lasers using appropriate dichroics and
357 focal lenses (Semrock, Thorlabs). Diffraction-limited epifluorescence images of LDs were
358 captured using 488 nm excitation at 8 mW (200 mW, Cobalt MLD), with 40 ms exposure.
359 SMLM images were constructed by capturing 10,000 frames at 100 Hz with 200 mW 640 nm
360 excitation (iBeam Smart, Toptica).

361

362 ***Lipid Droplet-STAT Protein Co-localisation Enumeration***

363 For each time point, at least 6 fields of view were imaged at 100X magnification from
364 varying locations across each well of the chamber slides. Images were imported to FIJI
365 (ImageJ) and the LD channel converted to 16-bit before being scaled to 3000x3000,
366 smoothed and binarized. The STAT channel was analysed using the ThunderSTORM plugin
367 (38) for FIJI (39) to determine molecular coordinates from raw TIFF stacks and normalised

368 gaussian renderings. These images were converted to 16-bit, smoothed and binarized before
369 being overlayed with the LD channel to form the final merged LD-STAT images. To
370 determine the number of colocalizations per cell, images were further analysed using the
371 interaction factor analysis plugin (40) which is specifically designed to assess dense SMLM
372 data and normalizes for coincidental co-localisation by generating Monte Carlo-based
373 random renderings. This analysis was used to generate a ratio of real co-localisation to the
374 number expected if only random interactions were present such that a ratio of 1 indicates
375 entirely random overlap, where 2 indicates twice as many interactions as randomly modelled.
376 These ratios are referred to throughout as ‘co-localisation factor’. Number of co-localisations
377 for each image were determined using this object co-localisation analysis plugin of ImageJ.
378

379 **Western Blotting**

380 Lysates were subjected to SDS-PAGE. The proteins were transferred to 0.2 µm nitrocellulose
381 membranes (Bio-Strategy, Campbellfield, VIC, Australia) and probed with primary
382 antibodies. The primary antibodies used were: mouse monoclonal α Calnexin (1:1000; sc-
383 23954, Santa Cruz Biotechnology), mouse monoclonal α mf1 (1:1000; sc-166644, Santa
384 Cruz Biotechnology), mouse monoclonal α ACOX1 (1:1000; sc-517306, Santa Cruz
385 Biotechnology), rabbit monoclonal α Perilipin-2 (1:2000; ab108323, Abcam), mouse
386 monoclonal α RIG-I (1:1000; sc-376845 Santa Cruz Biotechnology), rabbit monoclonal
387 α MX1 (1:2000; ab207414, Abcam), rabbit polyclonal α STAT1 (1:1000; 9172, Cell Signaling
388 Technology), rabbit monoclonal α STAT2 (1:1000; A3588, ABclonal), rabbit polyclonal
389 α ZC3HAV1 (1:5000; ab154680, Abcam), rabbit monoclonal α Phospho-STAT1 (Tyr701)
390 (1:1000; #7649, Cell Signaling Technology), rabbit polyclonal α mCherry (1:1000; 5993,
391 BioVision) and rabbit polyclonal α TRIM25 (1:1000; ab86365, Abcam). Following 3 x 5 min
392 washes with TBS wash buffer, the membrane was incubated with HRP conjugated secondary
393 antibodies (Goat α Mouse IgG (H+L) Secondary Antibody, HRP, 31430, Thermo Fisher
394 Scientific) and (Goat α Rabbit IgG (H+L) Secondary Antibody, HRP, 31460, Thermo Fisher
395 Scientific) for 1 hr diluted 1:10000. Following 5 x 10 min washes with TBS wash buffer, the
396 membrane was incubated with GE (Amersham) or Femto (Thermo-scientific) Western
397 Developer Reagent, dependent on the required sensitivity. The membranes were scanned
398 using Amersham 600 chemiluminescence imager.
399

400 **Protein sample preparation for mass spectrometry**

401 Proteins samples were precipitated from isolated LDs and whole cell via the S-trap micro
402 protocol. Briefly 70 µl 2x lysis buffer (10% SDS in 50 mM TEAB) to 70 µl liquid sample [at
403 a 1:1 ratio] so that final SDS is 5%. Samples were then sonicated for 5 mins to recover
404 absorbed protein. Samples were then centrifuged for 8 mins at 13,000g. 500mM TCEP was
405 added so that final concentration is 10 mM TCEP and incubate at 55 °C for 15 mins to reduce
406 thiol groups. 500 mM IAA was added to reach final 50 mM IAA and incubate at RT for 30
407 mins to alkylate disulphides. 27.5% H₂PO₄ was then added so that the concentration is
408 ~2.5% phosphoric acid. Samples were vortexed and had pH checked to ensure acidity. 6X
409 binding/wash buffer (100mM TEAB in 90% MeOH) was added to sample and mixed.
410 Samples were centrifuged through the S-trap column at 4,000g for 30 secs to trap proteins.
411 Protein was then cleaned by adding 150 µl of binding/washing buffer, and centrifuged 3 x at

412 4,000g for 30 secs discarding flowthrough. S-Trap column was then centrifuged at 4,000g for
413 1 min to fully remove binding/wash buffer. Protein was digested by adding 20 μ l of digestion
414 buffer (50mM TEAB + 1 μ g Trypsin per 50 μ g protein) and incubated at 37°C overnight.
415 Proteins were eluted by adding 40 μ l of 50 mM TEAB in water to the S-Trap and incubated
416 for 30 mins. 40 μ l of 0.2% formic acid in water was added to the S-Trap followed by
417 centrifugation at 4,000g for 1 min. 40 μ l of 50% acetonitrile (ACN) to the was added to the
418 S-Trap and centrifuged at 4,000g for 1 min. Sample was placed in speedy vac to remove
419 ACN and was followed by freeze drying the sample overnight.

420

421 **Lipid Extraction**

422 Lipids were purified according to a modified protocol (41). Briefly, 10 μ l of SPLASH
423 Lipidomix (Avanti Polar Lipids) was spiked in each sample as internal standards. Lipids from
424 the whole cell lysates and LD fractions were extracted by diluting lysates with methanol
425 (with 0.01% BHT) so that the final concentration of the sample was 60% v/v MeOH
426 containing 0.01% BHT. Lysates were further diluted with MeOH and CHCl_3 so ratio of total
427 $\text{H}_2\text{O}:\text{CHCl}_3$: MeOH was 0.74:1:2 and lysates were centrifuged at 14,000 x g for 15 mins to
428 separate phases. Supernatants were collected and dried via speedvac centrifugation prior to
429 analysis via LC-MS/MS.

430

431 **Quantitative proteomics and functional annotation analyses**

432 Proteins were identified by mass spectrometry and relatively quantified by a liquid
433 chromatography approach. Peptide samples were analysed by LC-MS/MS using an Ultimate
434 3000 UHPLC coupled to an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, San
435 Jose, CA). Solvent A is 0.1% formic acid (FA) / 5% dimethyl sulfoxide (DMSO) in water
436 and solvent B is 0.1% FA / 5% DMSO in acetonitrile (ACN). Each sample was injected onto
437 a PepMap C18 trap column (75 μ M X 2 cm, 3 μ M, 100 \AA , Thermo Fisher Scientific, San
438 Jose, CA) at 5 μ L/min for 6 min using 0.05% trifluoroacetic acid (TFA) / 3% ACN in water
439 and then separated through a PepMap C18 analytical column (75 μ M X 50 cm, 2 μ M, 100 \AA ,
440 Thermo Fisher Scientific, San Jose, CA) at a flow rate of 300 nL/min. The temperature of
441 both columns was maintained at 50°C. During separation, the percentage of solvent B in
442 mobile phase was increased from 3% to 23% in 89 min, from 23% to 40% in 10 min and
443 from 40% to 80% in 5 min. Then the columns were cleaned at 80% solvent B for 5 min
444 before decreasing the % B to 3% in 1 min and re-equilibrating for 8 min. The spray voltage,
445 temperature of ion transfer tube and S-lens of the Orbitrap Elite mass spectrometer were set
446 at 1.9 kV, 275 °C and 60% respectively. The full MS scans were acquired at m/z 300 – 1650,
447 a resolving power of 120,000 at m/z 200, an auto gain control (AGC) target value of $1.0 \times$
448 10^6 and a maximum injection time of 200 ms. The top 20 most abundant ions in the MS
449 spectra were subjected to linear ion trap rapid collision induced dissociation (CID) at q value
450 of 0.25, AGC target value of 5×10^3 , maximum injection time of 25 ms, isolation window of
451 m/z 2 and NCE of 30%. Dynamic exclusion of 30 s was enabled. Data was searched by
452 MaxQuant 1.4 against the UniProt homo sapien protein database. Trypsin was selected as
453 enzyme. LFQ quantification and match between run were enabled and all other settings were
454 default. The data sets (dsRNA, ZIKV, LCMV and respective controls) were imported into
455 Perseus software (version 1.6.12.0). Label-free quantification (LFQ)/ or MS2 values were

456 log₂ transformed. Reverse database hits, potential contaminants, proteins only identified by
457 site (a peptide carrying a modified residue), and proteins with 1 or less unique/razor peptides
458 were removed from the matrices prior to *t* test statistical analysis. The permutation FDR
459 corrected p- value less than 0.05 alongside a minimum of 3-5 measurements per group
460 required for significance allowed identification of significantly upregulated or downregulated
461 proteins following stimulation/infection of dsRNA, ZIKV or LCMV, and their respective
462 controls. The transformed and filtered data was exported into the web-based software
463 VolcanoR, to visualise significantly changed proteins with a criterion of having a log² fold
464 change < -2 or > 2 and an FDR corrected P-value < 0.05. Hierarchical clustering was
465 performed across all replicates and was visualised via the “ComplexHeatmap” package.
466 Functional enrichment analysis was performed on significantly enriched proteins via the R
467 package “Clusterprofiler” and visualised using “enrichplot” in the form of a tree-plot. The *t*
468 test significant protein lists from each condition were visualised via their interactions using
469 the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database. The
470 interaction data from STRING can be enhanced and adapted in cytoscape to produce
471 enhanced network visualisation. Clustering of the network was performed using ClusterONE
472 (Clustering with Overlapping Neighbourhood Expansion) with a p-value < 0.05 cut-off.

473

474 **Quantitative lipidomics**

475 Samples were analysed by ultrahigh performance liquid chromatography (UHPLC) coupled
476 to tandem mass spectrometry (MS/MS) employing a Vanquish UHPLC coupled to an
477 Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA),
478 with separate runs in positive and negative ion polarities. Solvent A was 6/4 (v/v)
479 acetonitrile/water with 5 mM medronic acid and solvent B was 9/1 (v/v)
480 isopropanol/acetonitrile. Both solvents A and B contained 10 mM ammonium acetate. 10 μ l
481 of each sample was injected into an Acquity UPLC HSS T3 C18 column (1 x 150 mm, 1.8
482 μ m: Waters, Milford, MA, USA) at 50 °C at a flow rate of 60 μ L/min for 3 min using 3%
483 solvent B. During separation, the percentage of solvent B was increased from 3% to 70% in 5
484 min and from 70% to 99% in 16 min. Subsequently, the percentage of solvent B was
485 maintained at 99% for 3 min. Finally, the percentage of solvent B was decreased to 3% in 0.1
486 min and maintained for 3.9 min. All MS experiments were performed using an electrospray
487 ionization source. The spray voltages were 3.5 kV in positive ionisation-mode and 3.0 kV in
488 negative ionisation-mode. In both polarities, the flow rates of sheath, auxiliary and sweep
489 gases were 25 and 5 and 0 arbitrary unit(s), respectively. The ion transfer tube and vaporizer
490 temperatures were maintained at 300 °C and 150 °C, respectively, and the ion funnel RF level
491 was set at 50%. In the positive ionisation-mode from 3 to 24 min, top speed data-dependent
492 scan with a cycle time of 1 s was used. Within each cycle, a full-scan MS-spectra were
493 acquired firstly in the Orbitrap at a mass resolving power of 120,000 (at m/z 200) across an
494 m/z range of 300–2000 using quadrupole isolation, an automatic gain control (AGC) target of
495 4e5 and a maximum injection time of 50 milliseconds, followed by higher-energy collisional
496 dissociation (HCD)-MS/MS at a mass resolving power of 15,000 (at m/z 200), a normalised
497 collision energy (NCE) of 27% at positive mode and 30% at negative mode, an m/z isolation
498 window of 1, a maximum injection time of 35 milliseconds and an AGC target of 5e4. For

499 the improved structural characterisation of glycerophosphocholine (PC) lipid cations, a data-
500 dependent product ion (m/z 184.0733)-triggered collision-induced dissociation (CID)-
501 MS/MS scan was performed in the cycle using a q-value of 0.25 and a NCE of 30%, with
502 other settings being the same as that for HCD-MS/MS. For the improved structural
503 characterisation of triacylglycerol (TG) lipid cations, the fatty acid + NH3 neutral loss
504 product ions observed by HCD-MS/MS were used to trigger the acquisition of the top-3 data-
505 dependent ion trap CID-MS3 scans in the cycle using a q-value of 0.25 and a NCE of 30%,
506 with other settings being the same as that for HCD-MS/MS. Dynamic exclusion of 15 s was
507 enabled and only ions with charge state of 1-3 were selected for fragmentation.

508

509 ***Lipid Identification and functional annotation analyses***

510 LC-MS/MS data was searched through MS Dial 4.90. The mass accuracy settings are 0.005
511 Da and 0.025 Da for MS1 and MS2. The minimum peak height is 50000 and mass slice width
512 is 0.05 Da. The identification score cut off is 80%. Post identification was done with a text
513 file containing name and m/z of each standard in SPLASH® LIPIDOMIX® Mass Spec
514 Standard (Cat. 330707, Avanti Polar Lipids, Birmingham, AL, USA). In positive mode,
515 [M+H]+, [M+NH4]+ and [M+H-H2O]+ were selected as ion forms. In negative mode, [M-
516 H]- and [M+CH3COO]- were selected as ion forms. All lipid classes available were selected
517 for the search. PC, LPC, DG, TG, CE, SM were identified and quantified at positive mode
518 while PE, LPE, PS, LPS, PG, LPG, PI, LPI, PA, LPA, Cer, CL were identified and quantified
519 at negative mode. The retention time tolerance for alignment is 0.1 min. Lipids with
520 maximum intensity less than 5-fold of average intensity in blank was removed. All other
521 settings were default. All lipid LC-MS features were manually inspected and re-integrated
522 when needed. These four types of lipids, 1) lipids with only sum composition except SM, 2)
523 lipid identification due to peak tailing, 3) retention time outliner within each lipid class, 4)
524 LPA and PA artifacts generated by in-source fragmentation of LPS and PS were also
525 removed. The shorthand notation used for lipid classification and structural representation
526 follows the nomenclature proposed previously (42). Quantification of lipid species in the unit
527 of pmol from each sample was achieved by comparison of the LC peak areas of identified
528 lipids against those of the corresponding internal lipid standards in the same lipid class and
529 the quantity of each lipid standard at pmol. Since the lipid class of analyte and internal
530 standard are identical but no co-ionization of analyte and IS are achieved, it's categorized as
531 level 3 quantification by Lipidomics Standards Initiative (lipidomicstandards.org/). Finally,
532 the lipid species at the class, subclass or molecular species levels were normalized to either
533 the total lipid concentration (i.e., mol% total lipid), or total lipid-class concentration (i.e.,
534 mol% total lipid class). For the lipid classes without correspondent stable isotope-labelled
535 lipid standards, the LC peak areas of individual molecular species within these classes were
536 normalised as follows: the MG species against the DG (18:1D7_15:0); the LPG against the
537 PG (18:1D7_15:0), the LPA against the PA (18:1D7_15:0) and the LPS against the PS
538 (18:1D7_15:0). All lipidomic data was imported to Excel for normalization and further
539 processing. Significant differences between relative abundance of individual lipid species in
540 two sample groups was acquired using unpaired two-tailed students *t* test (n= 3; biological
541 replicates). Stack bar charts comparing relative abundance of major lipid categories and
542 classes were made using Prism Version 8.4.3 software. Bubble plots of log2 fold changes in

543 relative abundance of individual lipid species were made using R packages “ggplot2”.
544 Relative quantification of fatty acids chain length among all 491 identified lipid species was
545 analysed and plotted using R packages “Heatmap” and relative intensities were compared
546 based on z-score. Principal component analysis (PCA) was performed using built in R
547 packages (“stats”, “prcomp()”, “t”, “tibble”).
548

549 **Statistical Analysis and Reproducibility**

550 Student’s *t* tests were used for statistical analysis between 2 groups, with experiments with 2
551 or more experimental groups statistically analysed using either an ordinary one, or two-way
552 multiple comparison ANOVA or multiple *t* tests using the Holm-Sidak method for
553 corrections for multiple comparisons with *P*< 0.05 considered to be significant. Omics data
554 was analysed and plotted using R packages Version 4.3.0 as stated in relevant sections. All
555 statistical analysis (unless otherwise indicated) was performed using Prism Version 8.4.3
556 software (GraphPad, La Jolla, United States). All experiments were performed in biological
557 triplicate (unless otherwise stated), and technical duplicates were also performed for RT-
558 PCRs. Error bars represent mean ± SEM, with a *P* value less than 0.05 considered to be
559 significant. * *P*<0.05, ** *P*<0.01, *** *P*<0.001, **** *P*<0.0001.
560

561 **Funding**

562 K.J.H and D.R.W are supported by a National Health and Medical Research Council
563 (NHMRC) New Ideas Grant (APP1181434). E.A.M has funding from the CASS foundation
564 and the Jack Brockhoff foundation. J.L.L currently holds an Australian Defence Scholarship.
565

566 **Acknowledgements**

567 We would like to thank the La Trobe University Bioimaging Facility for their assistance with
568 image acquisition, data collection and image analysis essential to this work. We also
569 acknowledge the use of the Bio21 Mass Spectrometry and Proteomics Facility at the
570 University of Melbourne and thank them for their continued support of our projects. We
571 would like to thank Associate Professor Greg Mosely from Monash University (Melbourne,
572 Australia) for gifting us the STAT1 and 2 mCherry constructs, Professor Stephen Polyak
573 from the University of Washington (Seattle, WA) for gifting us the RIG-I-wt construct and
574 Prof Paul Herzog from the Hudson Institute (Melbourne, Australia) for gifting us the MAVS
575 antibody. All schematic diagrams throughout this manuscript were created using BioRender.
576

577 **Data availability**

578 The data that support this study are available within the article and its Supplementary
579 Information files are available from the authors upon request.
580

581 **Author Contributions**

582 E.A.M. performed the majority of the experiments; with assistance from J.L.L, Z.T, M.L.S,
583 A.J.M, I.A and A.R. Mice experiments were performed by M.H. Extraction of LDs from
584 brain tissue was optimised by M.L.S with assistance from E.A.M, V.T and Q.D. E.A.M and
585 S.N designed methods to extract lipids and proteins from LDs and optimised the preparation
586 of samples. E.A.M and S.N assisted with proteomic and lipidomic analysis along with J.L.L,
587 Z.T, K.H and A.M. Super resolution microscopy and analysis of STAT-LD co-localisations
588 was performed by A.J.M with assistance from D.R.W and A.R. Image analysis of LD-
589 mitochondria contacts was developed by C.J and E.A.M performed the analysis. E.A.M and
590 K.J.H were responsible for the overall study design. E.A.M and K.J.H wrote the manuscript;
591 all authors commented on the manuscript.

592

593 **Competing Interests**

594 The authors declare no competing interests

595

596 **References**

- 597 1. K. M. Crosse, E. A. Monson, A. B. Dumbrepatil, Viperin binds STING and enhances
598 the type I interferon response following dsDNA detection. *Immunol. Cell Biol.* (available at <https://onlinelibrary.wiley.com/doi/abs/10.1111/imcb.12420>).
- 600 2. A. B. Dumbrepatil, S. Ghosh, K. A. Zegalia, P. A. Malec, J. D. Hoff, R. T. Kennedy, E.
601 N. G. Marsh, Viperin interacts with the kinase IRAK1 and the E3 ubiquitin ligase
602 TRAF6, coupling innate immune signaling to antiviral ribonucleotide synthesis. *J. Biol. Chem.* **294**, 6888–6898 (2019).
- 604 3. E. L. Arrese, F. Z. Saudale, J. L. Soulages, Lipid Droplets as Signaling Platforms
605 Linking Metabolic and Cellular Functions. *Lipid Insights*. **7**, 7–16 (2014).
- 606 4. E. A. Monson, A. M. Trenerry, J. L. Laws, J. M. Mackenzie, K. J. Helbig, Lipid droplets
607 and lipid mediators in viral infection and immunity. *FEMS Microbiol. Rev.* (2021),
608 doi:10.1093/femsre/fuua066.
- 609 5. E. A. Monson, K. M. Crosse, M. Duan, W. Chen, R. D. O’Shea, L. M. Wakim, J. M.
610 Carr, D. R. Whelan, K. J. Helbig, Intracellular lipid droplet accumulation occurs early
611 following viral infection and is required for an efficient interferon response. *Nat. Commun.* **12**, 4303 (2021).
- 613 6. A. B. F. Barletta, L. R. Alves, M. C. L. N. Silva, S. Sim, G. Dimopoulos, S. Liechocki,
614 C. M. Maya-Monteiro, M. H. F. Sorgine, Emerging role of lipid droplets in Aedes
615 aegypti immune response against bacteria and Dengue virus. *Sci. Rep.* **6**, 19928 (2016).
- 616 7. Y. Tan, J. C. Kagan, Innate Immune Signaling Organelles Display Natural and
617 Programmable Signaling Flexibility. *Cell*. **177**, 384–398.e11 (2019).
- 618 8. F. Hou, L. Sun, H. Zheng, B. Skaug, Q.-X. Jiang, Z. J. Chen, MAVS forms functional
619 prion-like aggregates to activate and propagate antiviral innate immune response. *Cell*.
620 **146**, 448–461 (2011).
- 621 9. X. Zhang, X.-C. Bai, Z. J. Chen, Structures and mechanisms in the cGAS-STING innate
622 immunity pathway. *Immunity*. **53**, 43–53 (2020).
- 623 10. O. Khantisithiporn, B. Shue, N. S. Eyre, C. W. Nash, L. Turnbull, C. B. Whitchurch, K.
624 H. Van der Hoek, K. J. Helbig, M. R. Beard, Viperin interacts with PEX19 to mediate

625 peroxisomal augmentation of the innate antiviral response. *Life Sci. Alliance.* **4**,
626 e202000915 (2021).

627 11. S. Rogers, L. Gui, A. Kovalenko, V. Zoni, M. Carpentier, K. Ramji, K. Ben Mbarek, A.
628 Bacle, P. Fuchs, P. Campomanes, E. Reetz, N. O. Speer, E. Reynolds, A. R. Thiam, S.
629 Vanni, D. Nicastro, W. M. Henne, Triglyceride lipolysis triggers liquid crystalline
630 phases in lipid droplets and alters the LD proteome. *J. Cell Biol.* **221** (2022),
631 doi:10.1083/jcb.202205053.

632 12. M. J. Hofer, W. Li, P. Manders, R. Terry, S. L. Lim, N. J. C. King, I. L. Campbell, Mice
633 deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4+ T-cell-mediated
634 disease following infection with lymphocytic choriomeningitis virus. *J. Virol.* **86**, 6932–
635 6946 (2012).

636 13. K. Girdhar, A. Powis, A. Raisingani, M. Chrudinová, R. Huang, T. Tran, K. Sevgi, Y.
637 Dogus Dogru, E. Altindis, Viruses and metabolism: The effects of viral infections and
638 viral insulins on host metabolism. *Annu. Rev. Virol.* **8**, 373–391 (2021).

639 14. J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of
640 hydrocarbon amphiphiles into micelles and bilayers. *J. Chem. Soc.* **72**, 1525 (1976).

641 15. A. Grabon, V. A. Bankaitis, M. I. McDermott, The interface between
642 phosphatidylinositol transfer protein function and phosphoinositide signaling in higher
643 eukaryotes. *J. Lipid Res.* **60**, 242–268 (2019).

644 16. X. Ma, Z. Zhi, S. Zhang, C. Zhou, A. Mechler, P. Liu, Validating an artificial organelle:
645 Studies of lipid droplet-specific proteins on adiposome platform. *iScience.* **24**, 102834
646 (2021).

647 17. J. C. Bozelli Jr, W. Jennings, S. Black, Y. H. Hou, D. Lameire, P. Chatha, T. Kimura, B.
648 Berno, A. Khondker, M. C. Rheinstädter, R. M. Epand, Membrane curvature
649 allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain
650 composition of its lipid intermediates. *J. Biol. Chem.* **293**, 17780–17791 (2018).

651 18. J. M. Dean, I. J. Lodhi, Structural and functional roles of ether lipids. *Protein Cell.* **9**,
652 196–206 (2018).

653 19. K. J. Helbig, D. T.-Y. Lau, L. Semendric, H. A. J. Harley, M. R. Beard, Analysis of ISG
654 expression in chronic hepatitis C identifies viperin as a potential antiviral effector.
655 *Hepatology.* **42**, 702–710 (2005).

656 20. K. M. Crosse, E. A. Monson, A. B. Dumbrepatil, M. Smith, Y.-Y. Tseng, K. H. Van der
657 Hoek, P. A. Revill, S. Saker, D. C. Tscharke, E. N. G Marsh, M. R. Beard, K. J. Helbig,
658 Viperin binds STING and enhances the type-I interferon response following dsDNA
659 detection. *Immunol. Cell Biol.* (2020), doi:10.1111/imcb.12420.

660 21. K. J. Helbig, N. S. Eyre, E. Yip, S. Narayana, K. Li, G. Fiches, E. M. McCartney, R. K.
661 Jangra, S. M. Lemon, M. R. Beard, The antiviral protein viperin inhibits hepatitis C
662 virus replication via interaction with nonstructural protein 5A. *Hepatology.* **54**, 1506–
663 1517 (2011).

664 22. E. R. Hinson, P. Cresswell, The antiviral protein, viperin, localizes to lipid droplets via
665 its N-terminal amphipathic alpha-helix. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 20452–
666 20457 (2009).

667 23. Q. Gao, J. M. Goodman, The lipid droplet-a well-connected organelle. *Front Cell Dev
668 Biol.* **3**, 49 (2015).

669 24. M. Ouimet, V. Franklin, E. Mak, X. Liao, I. Tabas, Y. L. Marcel, Autophagy regulates
670 cholesterol efflux from macrophage foam cells via lysosomal acid lipase. *Cell Metab.*
671 **13**, 655–667 (2011).

672 25. E. Dixit, S. Boulant, Y. Zhang, A. S. Y. Lee, C. Odendall, B. Shum, N. Hacohen, Z. J.
673 Chen, S. P. Whelan, M. Fransen, M. L. Nibert, G. Superti-Furga, J. C. Kagan,

674 Peroxisomes are signaling platforms for antiviral innate immunity. *Cell.* **141**, 668–681
675 (2010).

676 26. H. Vitrac, D. M. MacLean, V. Jayaraman, M. Bogdanov, W. Dowhan, Dynamic
677 membrane protein topological switching upon changes in phospholipid environment.
678 *Proc. Natl. Acad. Sci. U. S. A.* **112**, 13874–13879 (2015).

679 27. I. A. W. P. AF Hill L Cheng KJ Helbig E Willms and EA Monson, Cellular
680 communication through extracellular vesicles and lipid droplets. *Journal of*
681 *Extracellular Biology* (2023), doi:10.1002/jex2.77.

682 28. M.-J. Olarte, J. M. J. Swanson, T. C. Walther, R. V. Farese Jr, The CYTOLD and
683 ERTOLD pathways for lipid droplet-protein targeting. *Trends Biochem. Sci.* **47**, 39–51
684 (2022).

685 29. M. Bosch, M. Sánchez-Álvarez, A. Fajardo, R. Kapetanovic, B. Steiner, F. Dutra, L.
686 Moreira, J. A. López, R. Campo, M. Marí, F. Morales-Paytuví, O. Tort, A. Gubern, R.
687 M. Templin, J. E. B. Curson, N. Martel, C. Català, F. Lozano, F. Tebar, C. Enrich, J.
688 Vázquez, M. A. Del Pozo, M. J. Sweet, P. T. Bozza, S. P. Gross, R. G. Parton, A. Pol,
689 Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host
690 defense. *Science.* **370** (2020), doi:10.1126/science.aay8085.

691 30. A. E. F. Sheppe, M. J. Edelmann, Roles of eicosanoids in regulating inflammation and
692 neutrophil migration as an innate host response to bacterial infections. *Infect. Immun.* **89**,
693 e0009521 (2021).

694 31. H. Ishikawa, G. N. Barber, STING is an endoplasmic reticulum adaptor that facilitates
695 innate immune signalling. *Nature.* **455**, 674–678 (2008).

696 32. *Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling*
697 *Protein that Activates NF-κB and IRF3.*

698 33. M. Du, Z. J. Chen, DNA-induced liquid phase condensation of cGAS activates innate
699 immune signaling. *Science.* **361**, 704–709 (2018).

700 34. J. A. Olzmann, P. Carvalho, Dynamics and functions of lipid droplets. *Nat. Rev. Mol.*
701 *Cell Biol.* **20**, 137–155 (2019).

702 35. K. J. Helbig, J. M. Carr, J. K. Calvert, S. Wati, J. N. Clarke, N. S. Eyre, S. K. Narayana,
703 G. N. Fiches, E. M. McCartney, M. R. Beard, Viperin is induced following dengue virus
704 type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of
705 viperin. *PLoS Negl. Trop. Dis.* **7**, e2178 (2013).

706 36. X. Zhou, B. B. Moore, Lung Section Staining and Microscopy. *Bio Protoc.* **7** (2017),
707 doi:10.21769/BioProtoc.2286.

708 37. D. R. Whelan, T. Holm, M. Sauer, T. D. M. Bell, Focus on Super-Resolution Imaging
709 with Direct Stochastic Optical Reconstruction Microscopy (dSTORM). *Aust. J. Chem.*
710 **67**, 179–183 (2013).

711 38. M. Ovesný, P. Křížek, J. Borkovec, Z. Svindrych, G. M. Hagen, ThunderSTORM: a
712 comprehensive ImageJ plug-in for PALM and STORM data analysis and super-
713 resolution imaging. *Bioinformatics.* **30**, 2389–2390 (2014).

714 39. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
715 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein,
716 K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-
717 image analysis. *Nat. Methods.* **9**, 676–682 (2012).

718 40. K. Bermudez-Hernandez, S. Keegan, D. R. Whelan, D. A. Reid, J. Zagelbaum, Y. Yin,
719 S. Ma, E. Rothenberg, D. Fenyö, A Method for Quantifying Molecular Interactions
720 Using Stochastic Modelling and Super-Resolution Microscopy. *Sci. Rep.* **7**, 14882
721 (2017).

722 41. J. Folch, M. Lees, G. H. Sloane Stanley, A simple method for the isolation and
723 purification of total lipides from animal tissues. *J. Biol. Chem.* **226**, 497–509 (1957).

724 42. G. Liebisch, E. Fahy, J. Aoki, E. A. Dennis, T. Durand, C. S. Ejsing, M. Fedorova, I.
725 Feussner, W. J. Griffiths, H. Köfeler, A. H. Merrill Jr, R. C. Murphy, V. B. O'Donnell,
726 O. Oskolkova, S. Subramaniam, M. J. O. Wakelam, F. Spener, Update on LIPID MAPS
727 classification, nomenclature, and shorthand notation for MS-derived lipid structures. *J.
728 Lipid Res.* **61**, 1539–1555 (2020).

729

730

731 **Figure legends**

732 **Figure 1. The proteome of lipid droplets changes significantly during virus infection *in*
733 *vivo* and *in vitro***

734 (A) Mice were sham injected or intracranially infected with LCMV (500 PFU) for 2 or 4
735 days. Brains were harvested and sectioned for immunostaining. LDs were stained with
736 Bodipy (493/503) (green) and nuclei with DAPI (blue). (B) LD numbers were analysed via
737 ImageJ analysis software. Error bars represent \pm SEM, n = 6 replicate mice per condition. (C)
738 To confirm the purity of isolated LDs from mice brains western blot analysis of LD lysates
739 was performed probing for organelle markers for the endoplasmic reticulum (Calnexin),
740 mitochondria (MFN1), peroxisomes (ACOX1) and LDs (ADRP). Results indicate enrichment
741 of LDs and no contamination of other cellular organelles. (D) Comparative analysis of
742 protein ID and abundance were analysed by LC-MS/MS highlighting the number of proteins
743 significantly regulated from both whole brain lysate and isolated LD lysate derived from
744 mice brains following 4 dpi of LCMV. Red and blue tiles indicate up- and down regulated
745 proteins, respectively (E) Significantly upregulated proteins following LCMV infection were
746 compared with one another to highlight distinct proteomic profiles between LDs and whole
747 brain lysates. Red circle reflects proteins exclusive to the whole brain lysate, blue circle
748 reflects proteins exclusive to LDs 2dpi and the yellow circle reflects proteins exclusive to
749 LDs 4dpi. (F) Hierarchical clustering of the 18 significantly regulated LD resident proteins 4
750 dpi of LCMV across replicates and their respective z-scores from the groups: control 2 dpi,
751 control 4 dpi, LCMV 2dpi and LCMV 4dpi. Blue tiles refer to proteins with a z-score < 0
752 with red tiles referring to proteins with a z-score > 0. (G) Tree-plot displaying similarity
753 clusters of the top 15 significantly enriched annotations from the gene ontology categories:
754 Biological Process (BP), Molecular Function (MF) and Cellular Component (CC). Only
755 annotations that surpassed an adjusted p-value of less than 0.05 were included. (H) Analysis
756 of average number of LDs localised to each brain cell type with and without LCMV 4 dpi.
757 Error bars represent values \pm SEM. P values were determined by two-way ANOVA post-hoc
758 pairwise comparisons with Bonferroni correction (n= 64 tissue sections over 6 mice). (I)
759 Hierarchical clustering displaying the z-scores and gene ontology between replicates of the
760 92 significantly regulated astrocyte derived LD proteins following dsRNA stimulation at 24
761 hrs. Blue tiles refer to proteins with a z-score < 0 with red tiles referring to proteins with a z-
762 score > 0. Gene ontology was performed using the Uniprot database within Perseus. Proteins
763 were grouped into 5 main categories: cellular metabolism, immune response, lipid
764 metabolism, protein transport and other. (J) Interaction diagram of significantly changed
765 proteins following dsRNA viral mimic stimulation created using STRING confidence scores
766 and interactions in cytoscape. Nodes are coloured in a continuous scale based off their log2
767 fold change, with red coloured nodes having the highest fold change and blue nodes having
768 the greatest negative fold change. Proteins with no interactions with any other proteins were
769 not represented within the network. All clusters are clustered using the ClusterONE plugin

770 within cytoscape with a $p < 0.05$ significance threshold. **(K)** Similarities and differences
771 between significantly enriched proteins from astrocyte derived LDs infected with either
772 dsRNA or ZIKV at 24 hrs respectively. **(L)** Immunoblot analysis on whole cell lysate and
773 isolated LD lysate from both mock and dsRNA stimulated astrocytes at 24 hrs confirmed the
774 localisation of MX1, RIG-I, STAT1, STAT2, ZC3HAV1 and TRIM25 proteins on isolated
775 LDs derived from cells that have been stimulated with dsRNA for 24 hrs. ADRP was used to
776 confirm enrichment of purified LDs.

777

778 **Figure 2: The lipidome of LDs changed significantly following dsRNA stimulation in**
779 **primary immortalised astrocytes.**

780 **(A)** Relative abundance of major lipid categories identified in isolated whole cell lysates and
781 LD fractions following dsRNA stimulation at 8 hrs and 24 hrs. LD fractions and whole cell
782 lysates were analysed for changes in relative abundance of major lipid categories
783 (Glycerolipids, Glycerophospholipids, Sphingolipids and Sterols) in following groups; Whole
784 cell lysate post dsRNA stimulation at 8 and 24 hrs, LD fractions post dsRNA stimulation at 8
785 and 24 hrs. **(B)** Bubble plot of log₂ fold changes in abundance of individual lipid species post
786 dsRNA stimulation relative to mock at 24 hrs. Significance was determined by unpaired two-
787 tailed students *t* test (n=3). Individual lipid species are coloured by the class of lipid that they
788 belong to. PC phosphatidylcholine; PE phosphatidylethanolamine; PI phosphatidylinositol;
789 PS phosphatidylserine; LPC lysophosphatidylcholine; LPE lysophosphatidylethanolamine;
790 DAG diacylglycerol; TAG triacylglycerol; Cer ceramide; SM sphingomyelin; CE cholesterol
791 ester. **(C)** Comparison of changes in relative abundance of fatty acids of all analysed lipid
792 species in LD fraction isolated from dsRNA stimulated primary immortalized astrocytes;
793 arranged from shortest to longest fatty acid chain lengths. **(D)** Distribution of identified LD
794 resident proteins involved in lipid metabolism post dsRNA stimulation at 24 hrs based on the
795 percentage abundance. Gene ontology was performed using the Uniprot database within
796 Perseus. **(E)** Hierarchical clustering displaying the z-scores and gene ontology between
797 replicates of the significantly regulated astrocyte derived LD proteins following dsRNA
798 stimulation at 24 hrs. Blue tiles refer to proteins with a z-score < 0 with red tiles referring to
799 proteins with a z-score > 0. Gene ontology was performed using the Uniprot database within
800 Perseus. Proteins were grouped into 4 main categories (involved in regulating fatty acids
801 metabolism). **(F)** Relative abundance of structural membrane phospholipids in LD fractions
802 following dsRNA stimulation at 24 hrs. Changes in relative abundance of membrane
803 phospholipids (PC phosphatidylcholine; PE phosphatidylethanolamine; PI phosphatidylinositol;
804 PS phosphatidylserine; LPC lysophosphatidylcholine; LPE lysophosphatidylethanolamine)
805 following dsRNA stimulation at 24 hrs in isolated LDs. **(G)** Bubble plot of log₂ fold changes in relative abundance membrane phospholipids in isolated
806 LDs following dsRNA stimulation from 8 hrs to 24 hrs. Individual phospholipid species (PC
807 phosphatidylcholine; PE phosphatidylethanolamine; PI phosphatidylinositol; PS
808 phosphatidylserine; LPC lysophosphatidylcholine; LPE lysophosphatidylethanolamine)
809 characterized by abundance in LDs at 8 hrs relative to LDs at 24 hrs post dsRNA stimulation.
810 Significance was determined by unpaired two-tailed students *t* test (n = 3). **(H)** Overview of
811 changes in LD's lipidome complemented by upregulation of LD's proteins involved in lipid
812 metabolism. Proteins involved in lipid metabolism (long/very long/ poly unsaturated fatty
813 acids (PUFAs) metabolism) were identified as significantly upregulated post dsRNA
814 stimulation. These proteins could potentially play roles in LDs accumulation and protein
815 recruitment to LDs (SPG20 & AUP1), fatty acids elongation and poly unsaturation (e.g.,
816

817 ACSLs, CYBR5 & UBXD8), increase in Triglycerides (e.g., APOL1 & LDAH), decrease in
818 cholesterol esters (e.g., NSDHL) & also phospholipid synthesis (e.g., LPCAT), which were
819 the main alterations observed in LDs lipidomic profile post dsRNA stimulation in primary
820 immortalised astrocytes at 24 hrs.

821

822 **Figure 3. STAT proteins localise to LDs.**

823 (A) Schematic of the interferon signalling pathway following viral infection with proteins
824 absent from the LD proteome in white, proteins present on the LD proteome in grey and
825 proteins upregulated on the LD in red. (B) Astrocyte cells were transfected with a mCherry
826 tagged viperin, STAT1 and STAT2 (red) and cells were stained with Bodipy (493/503) to
827 visualise LDs (green) and DAPI to visualise cell nuclei (blue). The zoomed images indicate
828 interaction between the respective mCherry tagged proteins and LDs. Scale bar, 50 μ m. (C)
829 Confocal microscopy of astrocytes transfected with mCherry, viperin-mCherry, STAT1-
830 mCherry and STAT2-mCherry respectively, with LDs then isolated and purified. Purified
831 LDs were then imaged to determine the interaction between viperin, STAT1 and STAT2 with
832 LDs. The zoom panel highlights the localisation of the aforementioned proteins with isolated
833 and purified LDs. Scale bar, 400 μ m for transfection panel, 50 μ m for merge and 20 μ m for
834 zoom panels. (D) Isolated LDs were also imaged to allow the quantification of the percentage
835 of LDs that have mCherry co-localisation with each data point representing the average
836 percentage of co-localisation in a field of view of ~500-3000 LDs (n=18-25) over 2
837 independent experiments. Error bars represent \pm SEM. (E) To further validate the confocal
838 microscopy of isolated LDs the purified LDs and the whole cell protein from the transfected
839 astrocytes were immunoblotted for mCherry to show detection of mCherry tagged proteins
840 (F) LD-STAT1 co-localisation events were visualised post dsRNA transfection via super
841 resolution microscopy: Single-molecule localization microscopy (SMLM). The
842 epifluorescence images of LDs were merged with the SMLM images of STAT1 (STAT1,
843 phSTAT1 (S; serine)/ (T; tyrosine), and co-localisation events counted across a 72 hrs
844 dsRNA stimulation time course. Cells were immunolabelled and imaged for LDs (Bodipy
845 (493/503), epi, blue) and STAT1 (AlexaFluor647, SMLM, yellow). (n = 3 independent
846 biological replicates with >150 cells imaged). Scale bars represent 1 μ m, with zoom inserts
847 representing 1 μ m x 1 μ m in size. (G) LD-STAT1 co-localisation data was quantified as
848 number of co-localisation events per cell. Captured images were merged and analysed using
849 the ThunderSTORM plugin in ImageJ for co-localisation events. Error bars represent \pm SEM,
850 n= 6 cells over 3 independent assays.

851

852 **Figure 4: Lipid droplets form signalosomes with mitochondria**

853 (A) Schematic depiction of the potential signalosome interaction between RIG-I localised to
854 the LD surface and MAVS, localised to the mitochondria surface. (B) Primary immortalised
855 astrocyte cells were transfected with a RIG-I over expression plasmid and stimulated with
856 dsRNA for 24 hpi. Cells were live stained with MitoTracker Red prior to fixation and then all
857 cells were stained with Autodot LD dye to visualise LDs (green), α RIG-I antibody (1:200)
858 (purple) and α MAVS antibody (1:100) (blue). Scale bar, 50 μ m. (C) Primary immortalised
859 astrocyte cells were live stained with Bodipy (493/503) to visualise LDs (green) and
860 MitoTracker Red to visualise mitochondria (red) and were live imaged on a Zeiss800
861 confocal over a 10 min timeframe. White arrows indicate interactions between the two

862 organelles. Scale bar, 50 μ m. **(D-G)** Cells were live stained, and infected with either ZIKV
863 (MR766 strain) at an MOI1, stimulated with dsRNA viral mimic (Poly I:C) or treated with
864 oleic acid (OA, 500 μ M) for 8 hrs, and imaged for LD/mitochondria movement in live
865 stimulated cells for 10 mins (120 frames). Images were analysed via Imaris image software
866 for % interactions between LDs and mitochondria, and data was further analysed for numbers
867 of transient interactions between the two organelles. n= 100 cells across 6 fields of view over
868 3 biological replicates, scale bar, 50 μ m.

869

870 **Supplementary figures**

871 **Figure S1: The proteome of the brain changes following RNA virus infection**

872 **(A)** Study overview. Mice were sham injected or intracranially infected with LCMV (500
873 PFU) for 2 and 4 days. n= 6 replicates were taken from mice samples (SHAM 2dpi, LCMV
874 2dpi, SHAM 4dpi, LCMV 4dpi). **(B)** Monitoring changes in average body weight of mice
875 models. Intracranially injected SHAM or LCMV mice were monitored for periods of 2- and
876 4-dpi and changes in body (%) were compared to day 0 (day of injection). **(C)** RT-qPCR
877 analysis was used to quantify LCMV-NP, IFN- β and viperin in the brain tissues obtained post
878 LCMV infection at 2 dpi and 4 dpi, data is expressed as the change in induction at 2 dpi
879 relative to 4dpi. Error bars, mean values \pm SEM, P values determined by Student *t* test
880 (n=3 mice per group). **(D)** Representative images of LDs (Bodipy (493/503), green)
881 following isolation from the brain. Images were taken on Nikon TiE fluorescence
882 microscope; Scale bar represents 50 μ m. **(E)** Heatmap displaying protein intensities of all
883 identified proteins on LDs isolated from mice brain tissues from SHAM or LCMV infection
884 at 2 dpi and 4 dpi. High abundance is shown in red, and low abundance is shown in blue.

885 **Figure S2: Lipid droplets are significantly upregulated in astrocyte cells in LCMV 886 infected brains.**

887 Brain tissues were sectioned and stained for the major cell types; Astrocytes (α GFAP,
888 1:1000), Neurons (α NeuN, 1:2500) and Microglia (α TMEM119, 1:10000) all cell types are
889 shown in red, LDs stained with Bodipy (493/503) (green) and DAPI to visualise the cell
890 nuclei (blue). Tissues were imaged on a Zeiss 800 confocal microscope. Original
891 magnification is 10X. Scale bar represents 300 μ m, images representative of n=6.

892

893 **Figure S3: The LD proteome significantly changes in astrocyte cells following dsRNA 894 stimulation.**

895 **(A)** Primary immortalised human astrocyte cells stimulated with dsRNA tagged with
896 Rhodamine (red) for 8 and 24 hrs and stained with Bodipy (493/503) to visualise LDs
897 (green) and DAPI to visualise the cell nuclei (blue). Cells were imaged on a Zeiss 800
898 confocal microscope. Original magnification is 63X. Scale bar, 50 μ m. **(B)** The purity of
899 LDs isolated from primary immortalised astrocyte cells was assessed by immunoblot
900 analysis. Equal amounts of protein from LD fractions and whole cell lysates were separated
901 by SDS and blotted with indicated antibodies: perilipin 2 (ADRP) for LDs, MFN1 for
902 mitochondria, Calnexin for ER and ACOX1 for peroxisome contaminants. **(C & D)** Volcano
903 plot for differentially expressed genes when comparing dsRNA stimulated LDs for 8 hpi or

904 24 hpi with their respective controls. (n= 3 replicates per condition). **(E)** Hierarchical
905 clustering of the 3870 identified LD proteins from astrocyte cells and their respective
906 abundance in mock or dsRNA stimulation (24 hpi) conditions. Proteins are grouped
907 according to gene ontology annotations (n= 3 replicates per condition). **(F)** Hierarchical
908 clustering of the 325 identified Post-Translational Modification (PTM) regulatory enzymes in
909 the LD proteome and their respective abundance in mock or dsRNA stimulation (24 hpi)
910 conditions. Annotation reflects the PTM the protein regulates. (n= 3 replicates per condition).

911

912 **Figure S4: Changes in lipidome of LDs initiated early (8 hrs) following dsRNA**
913 **stimulation in primary immortalised astrocytes**

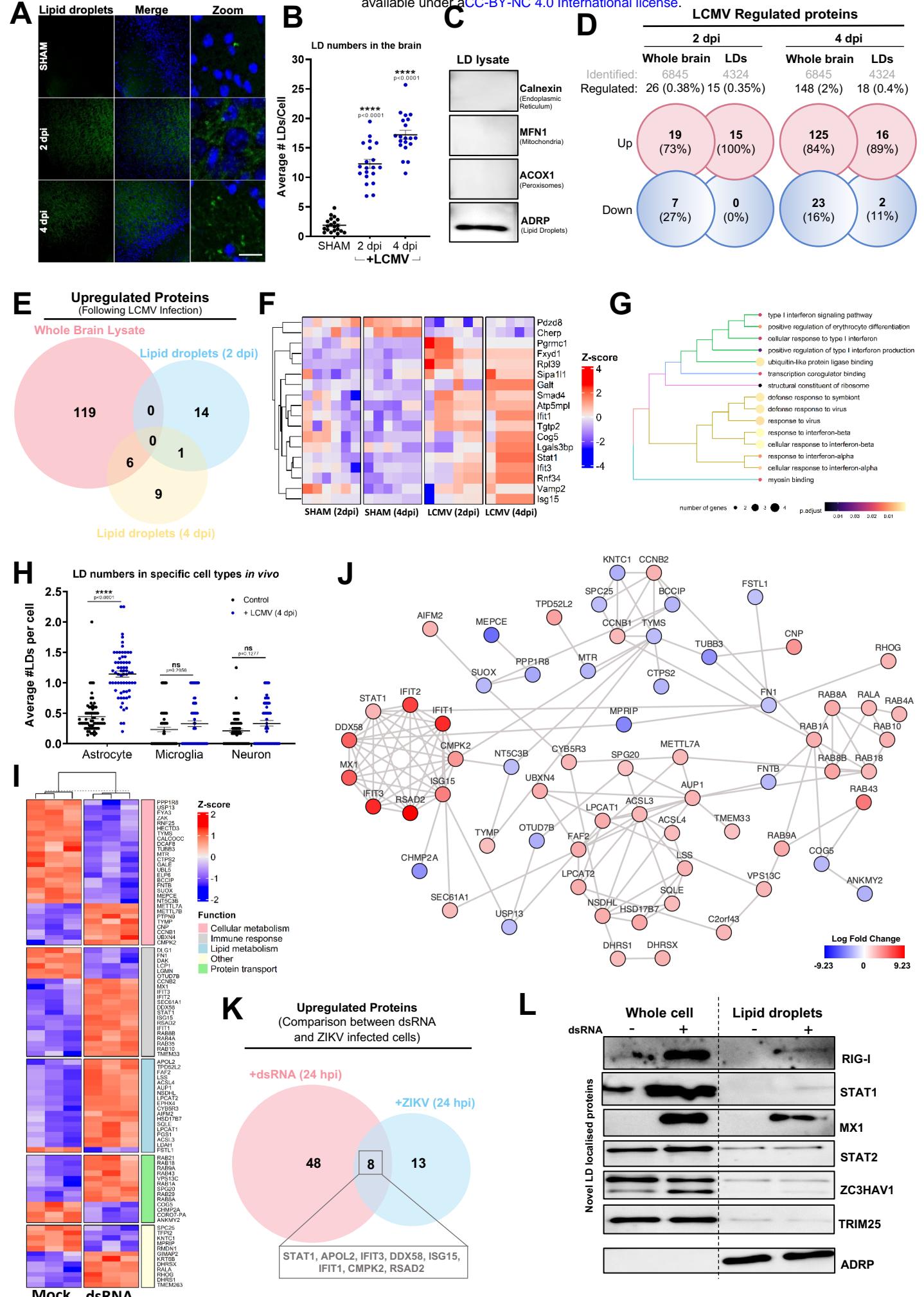
914 **(A) & (B)** Principal component analysis (PCA) of lipid species identified in whole cell
915 lysates and LD fractions isolated from primary immortalized astrocytes following dsRNA
916 stimulation at 8 hrs and 24 hrs, respectively (n= 3, biological replicates). **(C)** Bubble plot of
917 log2 fold changes in abundance of individual lipid species in dsRNA stimulated cells relative
918 to mock at 8 hpi. Significance was determined by unpaired two-tailed students *t* test (n= 3).
919 Individual lipid species are coloured by the class of lipid that they belong to. PC
920 phosphatidylcholine; PE phosphatidylethanolamine; PI phosphatidylinositol; PS
921 phosphatidylserine; LPC lysophosphatidylcholine; LPE lysophosphatidylethanolamine; DAG
922 diacylglycerol; TAG triacylglycerol; Cer ceramide; SM sphingomyelin; CE cholesterol ester.
923 **(D)** Bubble plot of log2 fold changes in abundance of side chain fatty acids in isolated LDs
924 following dsRNA stimulation 24 hpi. Fatty acid chain lengths were grouped based on carbon
925 number of side chain fatty acids. **(E)** Comparison of relative intensity of fatty acids in major
926 lipid classes identified in LD fraction isolated from dsRNA stimulated primary immortalized
927 astrocytes; arranged from shortest to longest fatty acid chain lengths. **(F)** Distribution of side-
928 chain fatty acids in isolated LDs from dsRNA stimulated primary immortalised astrocytes 24
929 hpi. Bar plot displaying distribution of fatty acids (number of carbons: number of double
930 bonds, calculated based on presence on fatty acids) in LD fractions. Data is arranged from
931 side chain fatty acids with highest to the lowest repeats.

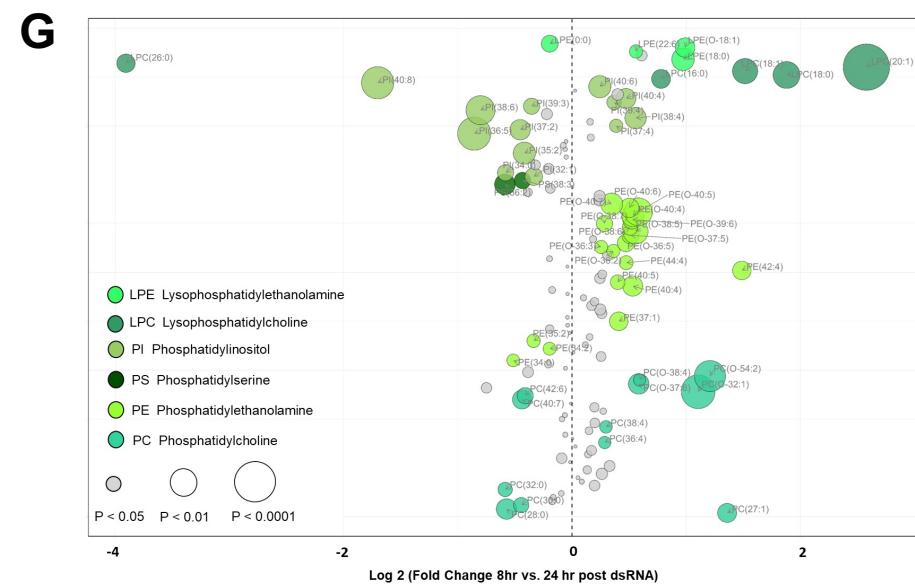
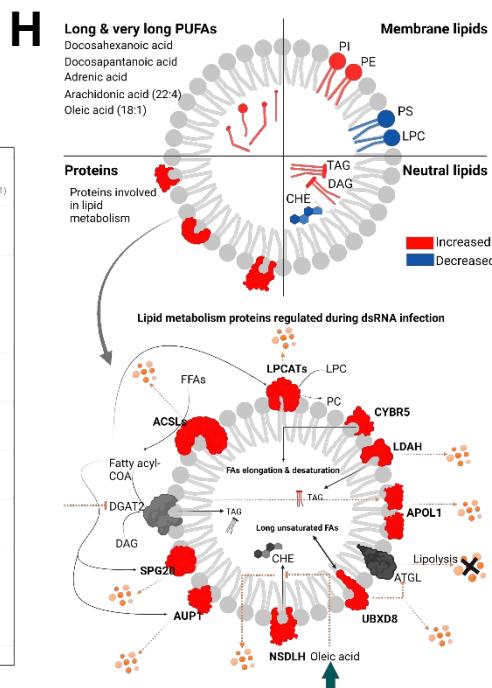
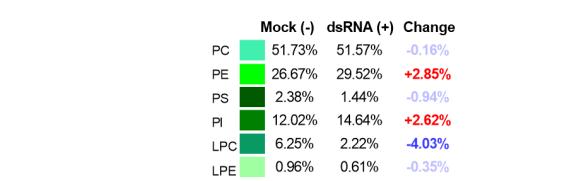
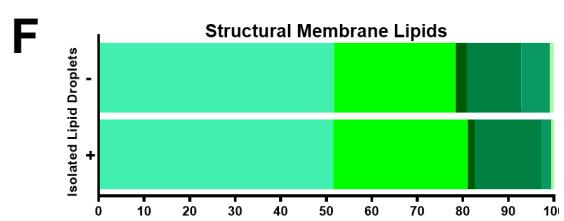
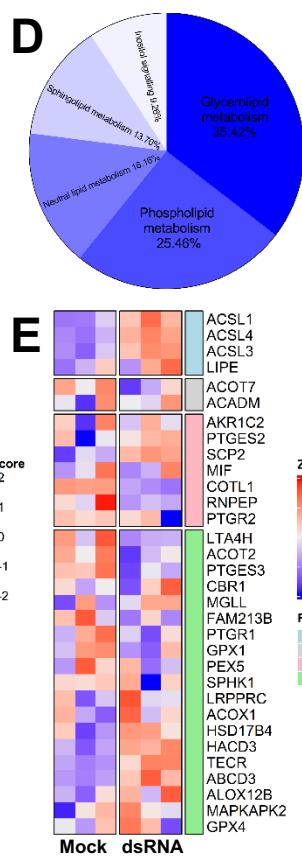
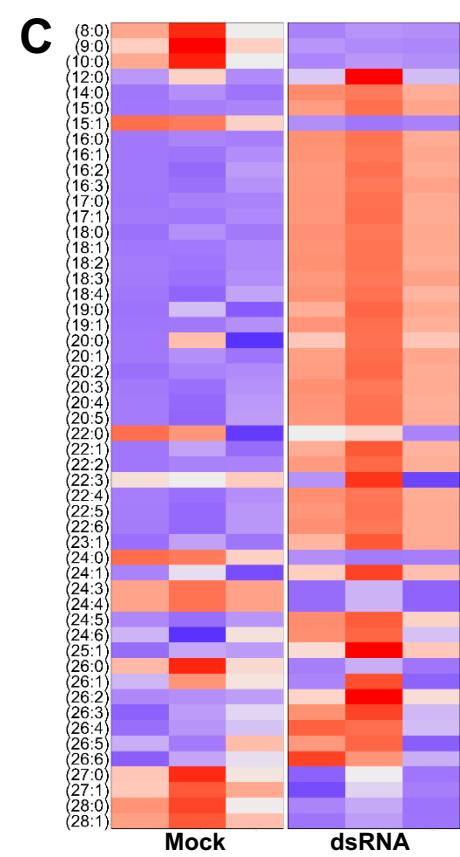
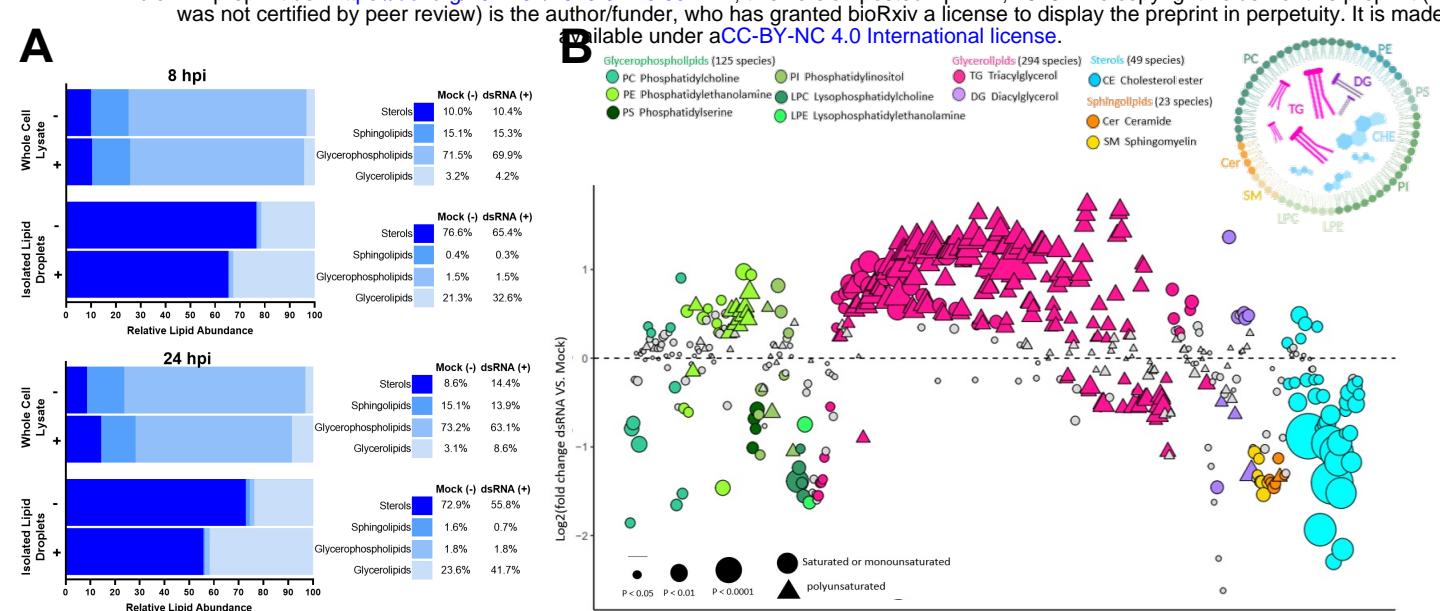
932

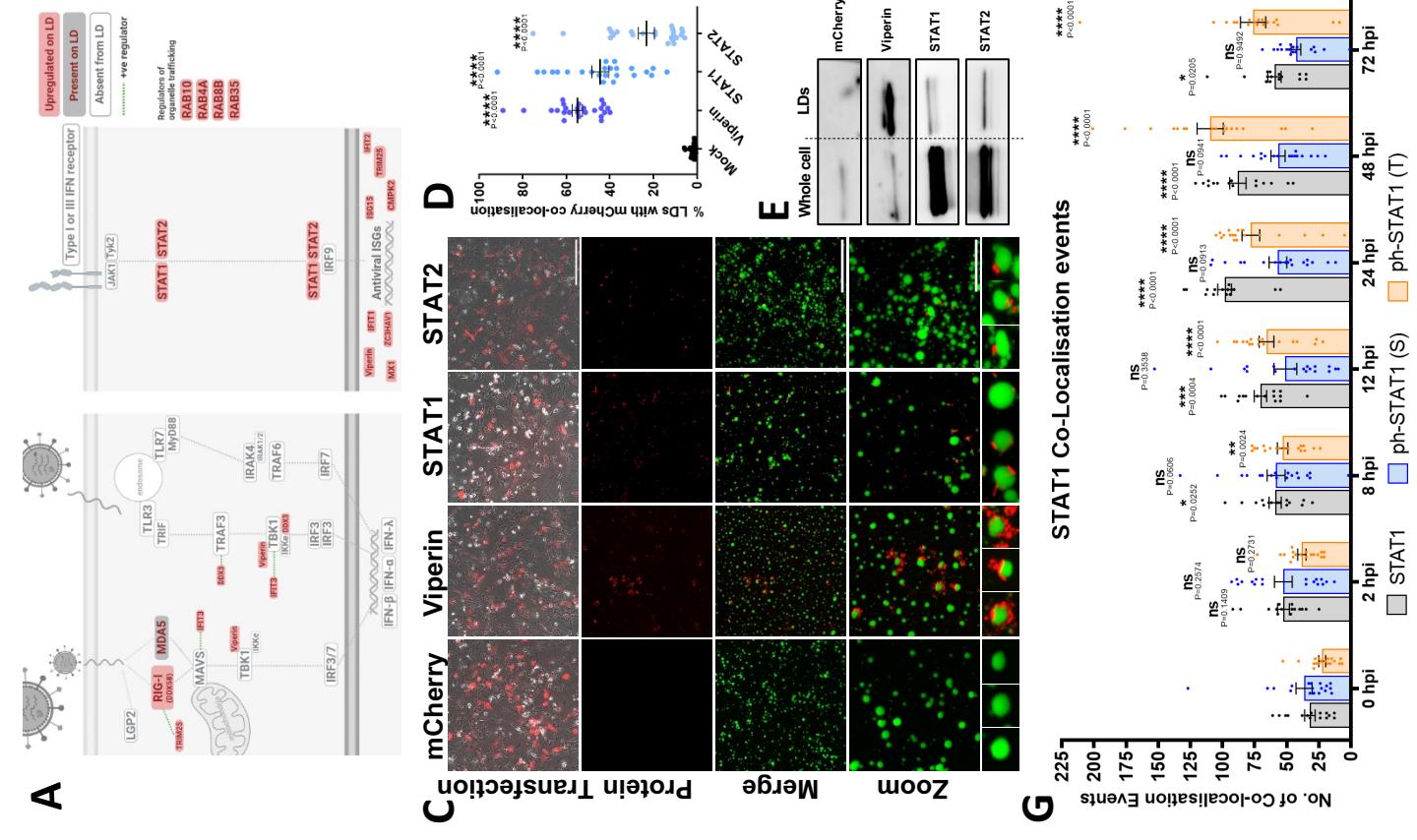
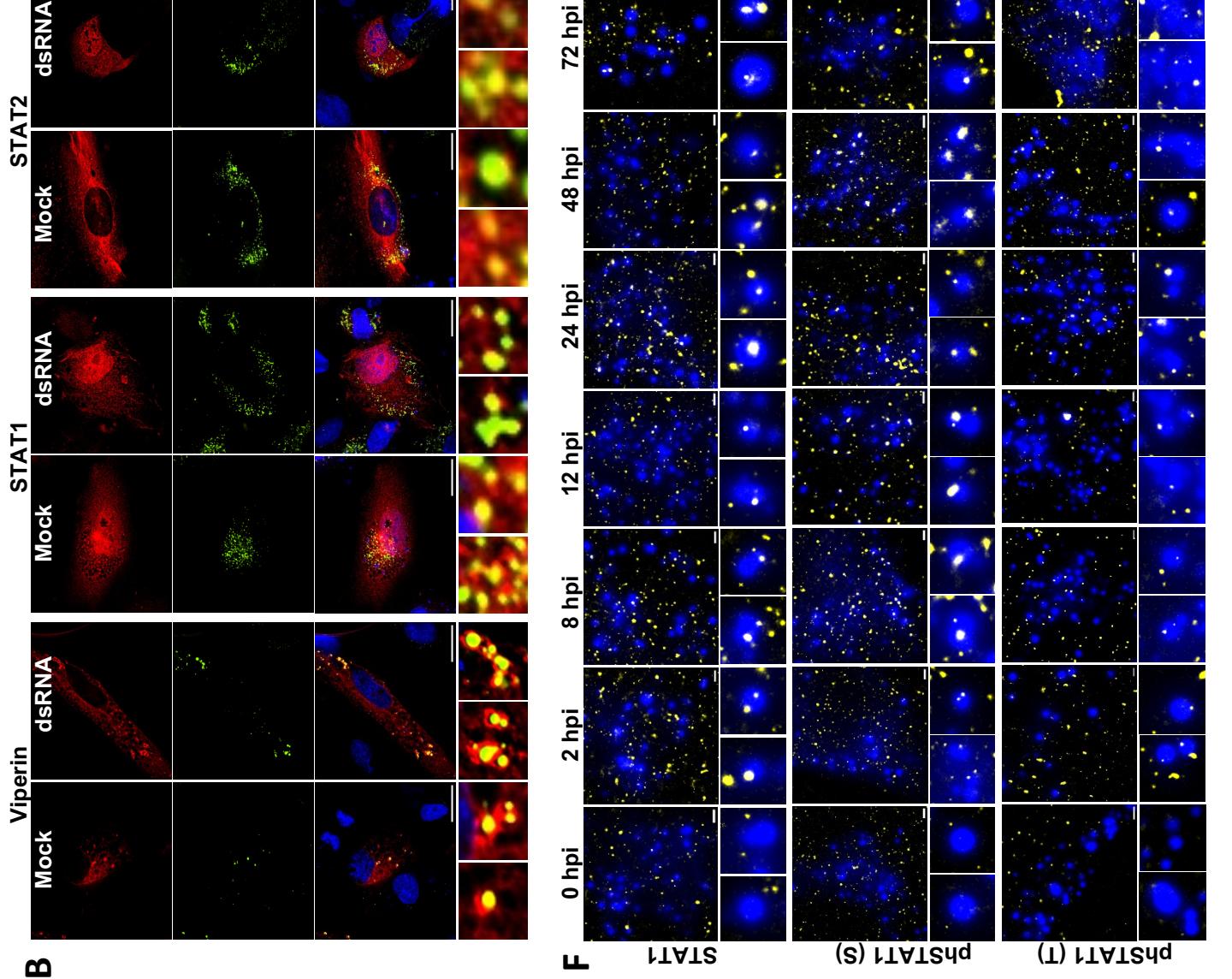
933 **Figure S5: Lipid droplets house STAT proteins following innate immune activation of**
934 **the cell by dsRNA.**

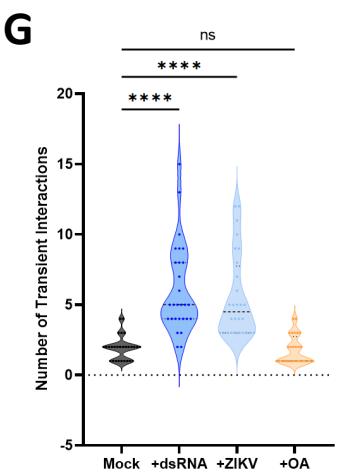
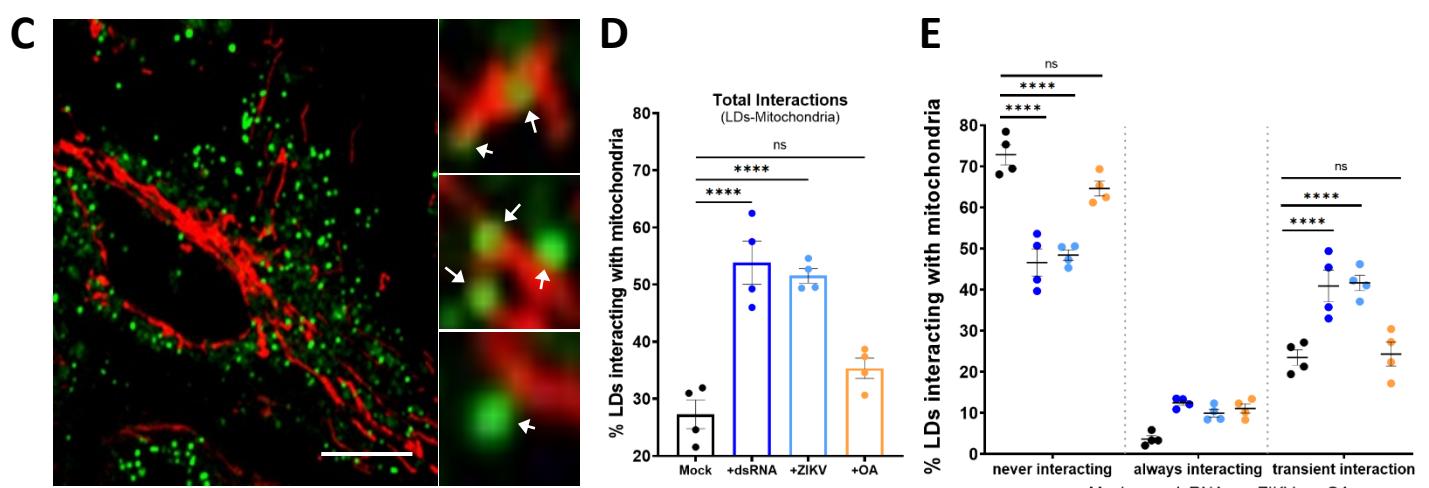
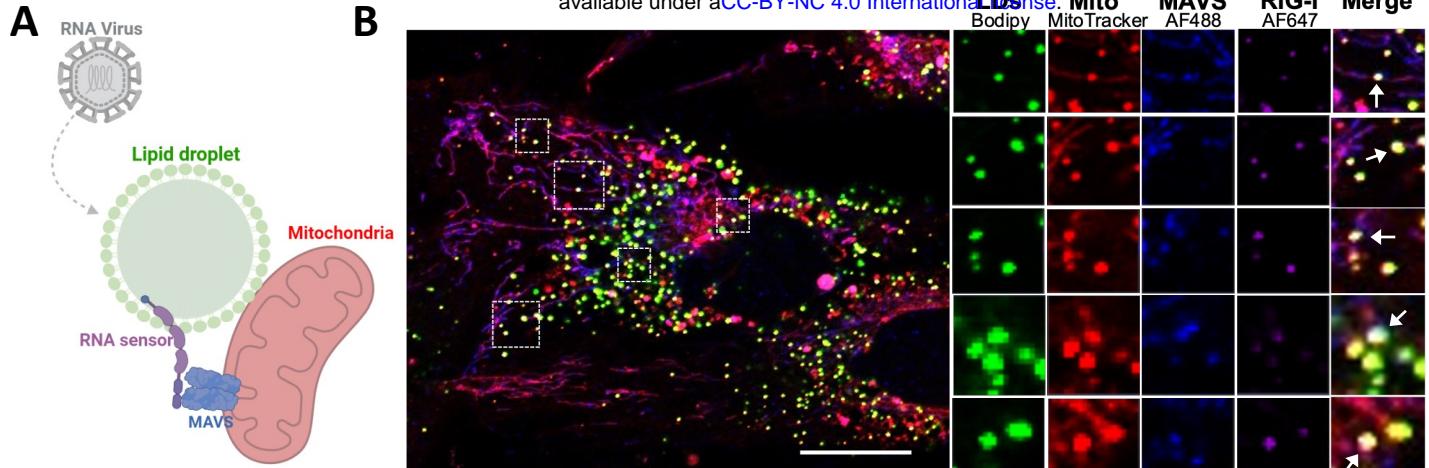
935 **(A)** Schematic diagram of experiments outlined in Fig 3C. Primary immortalised astrocyte
936 cells were transfected with mCherry labelled proteins (viperin, STAT1 and STAT2) or
937 mCherry control plasmid and their LDs were isolated. Isolated LD fractions were stained
938 with Bodipy (493/503) to visualise isolated LD and were imaged on a Zeiss 780 confocal. **(B)**
939 Quantification of the degree of randomness of STAT1 (STAT1, phSTAT1 (S; Serine 727, T;
940 Tyrosine 701) co-localisation events per LD in primary immortalised astrocytes following
941 dsRNA stimulation at 2, 8, 12, 24, 48 and 72 hpi. Images were analysed using the Object Co-
942 localisation plugin in ImageJ. n= 18 cells over 3 biological replicates, error bars represent \pm
943 SEM. **(C)** Isolated LD fractions before and following dsRNA stimulation (24 hpi) were
944 probed via immunoblot for the different activation states of STAT1 (STAT1 in all forms, ph-
945 STAT1 (S; serine 727) and (T; tyrosine 701).

946


947 **Figure S6: Virally driven LDs form more contacts with mitochondria during infection**








948 (A) Primary immortalised astrocyte cells were transfected with a RIG-I over expression
949 plasmid and stimulated with dsRNA for 24 hpi. Cells were live stained with MitoTracker Red
950 prior to fixation and all cells were stained with Autodot LD dye to visualise LDs (green),
951 α RIG-I antibody (1:200) (purple) and α MAVS antibody (1:100) (blue). Scale bar, 50 μ m.
952 (B) Schematic of the analysis pipeline. Primary immortalised astrocytes were stained live
953 with Bodipy (493/503) to visualise LDs, and Mito tracker Red to stain mitochondria prior to
954 live imaging in cells. A total of 120 FoV images were captured at 500 ms exposure rates
955 every 5 s (10 min in totally). Image stacks were aligned using linear stack alignment with
956 SIFT plugin. Mitochondria channels were binarised in ImageJ, and the LD/Mito image stack
957 was imported into Imaris image software. LDs were tracked using the “spots” function on
958 Imaris and were coloured based on their intensity interactions with the mitochondria (red=
959 interacting, purple= not interacting). Mean intensity (LDs to Mito), LD size and diameter
960 were extracted and imported into Excel. Data was cleaned up by the exclusion of any data
961 with large cell morphology shifts, >1 μ m gaps/missing frames in LD paths and tracks which
962 were < 10 frames. Interactions were analysed based on intensity (intensities over 100 were
963 counted as interacting; with interactions lasting the duration of the movie counted as
964 “always” interacting, intensities below 100 for the duration of the movie were counted as
965 “never” interacting and those that had intensities over 100 at multiple stages of the movie
966 were counted as “transient” interactions.



967




968 **Figure S7: Virally driven LDs house a specific proteome compared to LDs following
969 bacterial infection.**

970 (A) LPS-induced LD proteome changes from (29) Vs dsRNA- induced LD proteome
971 changes in this data set. (B) Of the 17 overlapped proteins, 6 were annotated to be involved
972 in lipid metabolism (LDAH, ACSL4, LPCAT2, LPCAT1, FAF2, AUP1), 6 in organelle
973 trafficking (RAB18, RAB21, RAB8A, RAB10, RAB1A, RAB35), 4 with diverse functions
974 labelled as “other” (UBXN4, CYB5R3, RALA, HSD17B7) and only 1 was involved in
975 immune signalling (RSAD2; viperin).

