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Abstract

The flagellar movement of the mammalian sperm is es-
sential for male fertility as it enables this cell to reach
and fertilize an egg. In the female reproductive tract, hu-
man spermatozoa undergo a process called capacitation
which promotes changes in their motility. Only those
spermatozoa that change to hyperactivated (HA) motil-
ity are capable of fertilizing the egg; this type of motility
is characterized by asymmetric flagellar bends of greater
amplitude and lower frequency. Historically, clinical
fertilization studies have used two-dimensional analysis
to classify sperm motility, although, sperm motility is
three-dimensional (3D). Recent studies have described
several 3D beating features of sperm flagella, includ-
ing curvature, torsion, and asymmetries. However, the
3D motility pattern of hyperactivated spermatozoa has
not yet been characterized. One of the main difficul-
ties in classifying these patterns in 3D is the lack of
a ground-truth reference, as it can be difficult to visu-
ally assess differences in flagellar beat patterns. Addi-
tionally, only about 10 − 20% of sperm that have been
induced to capacitate are truly capacitated (i.e., hyper-
activated). In this work, we used an image acquisition
system that can acquire, segment, and track sperm flag-
ella in 3D+t. We developed a feature-based vector that
describes the spatio-temporal flagellar sperm motility
patterns by an envelope of ellipses. Our results demon-
strate that the proposed descriptors can effectively be
used to distinguish between hyperactivated and non-
hyperactivated spermatozoa, providing a tool to char-
acterize the 3D sperm flagellar beat motility patterns
without prior training or supervision. We demonstrated
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the effectiveness of the descriptors by applying them to
a dataset of human sperm cells and showing that they
can accurately classify the motility patterns of the sperm
cells. This work is potentially useful for assessing male
fertility or for diagnosing.

1 Introduction

Human fertilization requires sperm motility, the ability
of the sperm to move and swim through the female
reproductive tract to reach the egg. During this jour-
ney, the sperm undergoes a process called capacitation,
which involves certain biochemical and biophysical
changes that enable it to fertilize the egg. Naturally,
sperm movement is within a three-dimensional (3D)
space in certain regions of the female reproductive
tract. However, both research and clinical analysis
have been limited to capturing their movement through
two-dimensional (2D) images [1–5]. Previous 2D
analyses have shown that capacitated sperm exhibit
several types of motility [6], including hyperactivated
motility, which is characterized by high, asymmetrical
flagellar bends, as well as an increase in amplitude and
a decrease in the frequency of beating [7, 8]. Only a
small percentage (around 10 − 20%) of the millions
of ejaculated sperm are truly capacitated showing an
hyperactivated motility [9].

The first test used to determine the infertility of a
couple is semen analysis, which involves evaluating
sperm concentration, motility, morphology, and semen
viscosity [10]. In the past, sperm analysis was typically
performed visually by a trained technician or scientist
using a microscope by tracking the heads of spermato-
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zoa in 2D images, which was often subjective and could
produce inconsistent results. To improve accuracy and
reduce subjectivity, various classification systems have
been developed for this purpose. Computer Assisted
Semen Analysis (CASA) has become the gold-standard
method for analyzing and classifying sperm motility in
2D, nevertheless, it has been shown that it can produce
inconsistent and subjective results as it depends largely
on the expertise and training of the user [1, 2]. In recent
years, efforts have been made to automate and remove
subjectivity from this type of analysis using machine
learning and deep learning techniques [6, 11–14]. How-
ever, most of these efforts have focused on analyzing
sperm head trajectory and CASA parameters extracted
from 2D images, leaving the analysis of 3D flagella
movement largely unexplored. In the past, imaging the
flagella of freely swimming sperm was challenging due
to their high beating frequency of up to 25 Hz. Due to
the progress of 2D imaging systems, it has been possible
to acquire images of the flagellum, for which software
systems have been developed to analyze the flagellum
in 2D [14], as is the Computer-Assisted Beat-pattern
Analysis (CABA) [15]. Even though they are not
capable to classify sperm motility even in 2D. The
3D imaging and analysis of sperm flagella kinematics
implies several computational challenges, including
acquisition, detection, segmentation, tracking, and
classification [16], but it provides more information that
can help remove subjectivity in the analysis. Despite
some recent progress in understanding the 3D flagellar
kinematics of single sperm, the classification of 3D
flagellar beating patterns in capacitated sperm remains
an open research area [14, 16–20].

In this work, we present a new unsupervised classifica-
tion methodology for 3D flagellar beating patterns. The
dataset included both non-capacitated sperm (as a con-
trol) and sperm that had been exposed to capacitating
conditions, some of which must display hyperactivated
motility. There have been different methods developed
to classify 3D dynamic patterns [21, 22], but compar-
ing shapes that change over time is a challenging task,
especially in the context of motion recognition or video
classification [23]. Classifying 3D dynamical patterns is
difficult because it requires a deep understanding of the
movement and behavior of objects over time and space.
There are a variety of techniques that can be used to
classify 3D dynamic patterns, including traditional ma-
chine learning methods, such as decision trees and sup-
port vector machines, as well as more recent techniques
based on deep learning, such as convolutional neural net-

works (CNNs). These techniques require a large amount
of labeled data. Our dataset was unlabeled, because it
was not possible to visually identify the different beat-
ing patterns by an expert. Additionally, the absence of
3D sperm datasets restricts the capacity to characterize
sperm behavior or label 3D sperm data. Hence, we used
a different approach for 3D dynamic pattern classifica-
tion, namely feature extraction, from the 3D+t data fol-
lowed by an unsupervised classification technique, called
hierarchical clustering [24]. We introduce novel descrip-
tors for dynamic motility that are based on a set of
ellipses properties enveloping the flagella, which allows
to compactly describe the beating information of the
flagella from 3D+t. We tested our descriptors using a
dataset of 147 free-swimming sperm, experimentally ac-
quired in 3D, that were recorded in a time interval of 1-3
seconds. The dataset was obtained by our group, as de-
scribed in [16, 18, 25]. We successfully distinguished be-
tween non-capacitated and hyperactivated sperm using
our proposed dynamic flagella descriptors, which charac-
terize the 3D spatio-temporal flagellar sperm movement
patterns by an envelope of ellipses. The shape and sim-
ilarities between the samples were grouped using hierar-
chical clustering, resulting in distinct clusters of beating
patterns. This is the first time that hyperactivation has
been described in 3D, and our study provides the first
precedent for future 3D studies.

2 Materials and methods

2.1 Biological preparations and ethical ap-
proval

Under informed written consent and the supervision
of the Bioethics committee of the Instituto de Biotec-
noloǵıa, UNAM, young healthy donors supplied human
spermatozoa samples by masturbation, after at least 48
hours of sexual abstinence. The semen samples fulfilled
the World Health Organization (WHO) requirements
[26]. Through a swim up separation, highly motile cells
were recovered from the sample that was incubated for
1 hour in Ham’s F-10 medium at 37◦C in a humidified
chamber with a 5% CO2 concentration. After recovery,
cells were centrifuged 5 min at 3000 rpm and half of them
were resuspended in a non-capacitating media and the
other half in capacitating media. The non-capacitating
physiological media consisted of 94 mM NaCl, 4 mM
KCl, 2 mM CaCl2, 1 mM MgCl2, 1 mM Na pyruvate,
25 mM NaHCO3, 5 mM glucose, 30 mM Hepes, and 10
mM lactate at pH 7.4. Five mg/ml of Bovine Serum
Albumin (BSA) and 2 mg/ml NaHCO3 was added to
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obtain the capacitating media.

2.2 Experimental set-up

The 3D + t acquisition system consisted of an inverted
Olympus IX71 microscope mounted on an optical ta-
ble [TMC (GMP SA, Switzerland)]. A 60X water im-
mersion objective with N.A. = 1.00 (Olympus UIS2
LUMPLFLN 60X W) attached to a piezoelectric device
P-725 (Physik Instruments, MA, USA) was mounted on
the microscope. The piezoelectric along with the objec-
tive oscillated with a frequency of 90 Hz and an ampli-
tude of 20 µm. A servo-controller E501 via a high cur-
rent amplifier E-55 (Physik Instruments, MA, USA) was
used to fine tune the piezoelectric oscillations. A high
speed camera (NAC Q1v) with 8 GB of internal memory
was set to record at 8000 fps with a resolution of 640 x
480 pixels. At this speed and resolution, the camera was
able to acquire 3.5 seconds. The acquisition system was
synchronized via an E-506 function generator (NI USB-
6211, National Instruments, USA). Temperature of the
samples was maintained constant at 37◦C with a ther-
mal controller (Warner Instruments, TCM/CL100).

2.3 Dataset

The dataset consisted of 147 human spermatozoa, 60
were exposed to a non-capacitating media and 87 to ca-
pacitating media. The data were collected using the sys-
tem described by Corkidi et al. [16] and the flagellum
centerline was reconstructed using the segmentation pro-
cess described by Hernández-Herrera et al. [18]. From
the dataset, it is expected that 10 − 20% of sperm in-
duced to capacitate will display hyperactivated motility
[9]. Let (xitn, y

i
tn, z

i
tn) be n = 1, 2, . . . , N a set of points

of the flagellum’s centerline in a 3D coordinate system
at time t = 1, 2, . . . , T for each spermatozoa, i, in the
dataset.

The number of detected flagella and points per single
beat may vary over time due to the segmentation pro-
cess. A complete set of these points for an experiment
i are shown in Figure 1, each line corresponds to a flag-
ellum reconstruction at a specific time, and the black
dots represent the first point in the middle head at each
time. The original data was in the laboratory frame
of reference. To place all sperm trajectories within the
same frame of reference, the flagella were then rotated
and translated to align with the x−axis starting from
the origin, (see Figure 1).

Figure 1: Representation of a tracked and segmented
spermatozoon, with the laboratory frame of reference
data aligned along the x−axis. Each line corresponds
to a flagellum reconstruction at a specific time, and the
black dots represent the first point of the flagella at each
time. The color scale indicates the progression of the
beat, with blue representing the initial time advancing
towards to red.

Figure 2: Illustration of the process of fitting an ellipse
to a flagelloid. The lower subplot shows the segmented
and tracked spermatozoon from Figure 1, with 11 out of
292 gray planes (for visualization purposes only) corre-
sponding to 10 intervals of δ each. The upper subplot
shows a zoom of a single δ− length interval, the red dots
represent the flagellum points within that interval. The
right upper side displays the orthogonal projection of
the red dots, forming a flagelloid (black line) and its fit-
ted ellipse (purple dotted line).
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2.4 Ellipse fitting

We define a flagelloid F i
l [19] for sperm i as the set of

points orthogonally projected onto the Y Z plane whose
x-coordinate lie in the interval Il = [(l−1) ·δ, l ·δ) where
l = 1, 2, . . . , Li, Li = ⌈max{xi

tn}
δ ⌉ (the symbols ⌈·⌉ denote

the ceiling function, e.g., ⌈π⌉ = 4) and δ is the interval
size (as shown in Figure 2)

F i
l =

{
(yitn, z

i
tn)|xitn ∈ Il

}
. (1)

Figure 2 illustrates the fitting of an ellipse (purple) to
the points belonging to the flagelloid (Equation 1) us-
ing the “Direct fit of least squares of ellipses” method
presented in [27]. By performing this process for each
flagelloid, a set of transverse ellipses to the x−axis are
obtained, which describe the motility shape of the sperm
(as shown in Figure 3). The interval size, δ, is set to
∼ 0.21 µm; this value was imposed to ensure that each
interval contains at least three points. Ellipses are fitted
to the flagelloid only when it has at least this number of
points and they are not collinear, to avoid fitting an hy-
perbola or a parabola (eccentricity, ε ≥ 1). The number
of ellipses, Ei|Ei ≤ Li are the ellipses that were fitted
correctly for spermatozoon i.
From each ellipse eil, we obtain four parameters:

1. the semi-major axis (ail)

2. the semi-minor axis (bil)

3. the angle of the ellipse (ϕi
l) with respect to the

y−axis

4. the eccentricity (εil).

To describe the variations in the envelope of ellipses, we
propose a feature-based vector with the following four
components based on an analysis of the obtained data:

� Feature 1 (focus average): F i
1 = µ

({√
ai
l
2 − bil

2
}Ei

l=1

)

� Feature 2 (angular average): F i
2 = µ

({
ϕi
l−1 − ϕi

l

}Ei

l=2

)

� Feature 3 (eccentricity average): F i
3 = µ

({
εil

}Ei

l=1

)

� Feature 4 (semi-major axis deviation): F i
4 = σ

({
ai
l

}Ei

l=1

)
where µ is the mean and σ is the standard deviation.
Feature 1 is the mean distance from the center of each
ellipse to its foci, Feature 2 is the mean of the difference
between angles, which represents the mean change of an-
gles of the fitted ellipses, Feature 3 is the mean of the

semi-major axis and Feature 4 is the standard deviation
of the semi-major axis. Then we reduce the dimension-
ality of the vector using Principal Component Analysis
(PCA), resulting in three principal components that ac-
count for more than 90% of the variance in the dataset
(see Table 1).

PC 1 PC 2 PC 3

Eigenvalue 2.3862 1.0004 0.4616

Feature 1 0.6142 0.0392 -0.1122

Feature 2 -0.0242 0.9990 -0.0191

Feature 3 0.5712 -0.0163 -0.6197

Feature 4 0.5440 0.0172 0.7765

Table 1: Details of the principal component analysis ob-
tained from the feature-based vector of the envelope of
ellipses. The element [j, k] is the contribution of the Fea-
ture j to the k-th PC. The dominant features for each
principal component are shown in bold.

Figure 3: Envelope of ellipses (purple lines) and their
XY, XZ and YZ projections (light gray lines) for a sper-
matozoon. Each ellipse was fitted to an interval, the
complete envelope is composed with all the ellipses fit-
ted to the sperm’s beating.

2.5 Clustering

Our dataset consists of non-capacitated sperm (control)
and sperm that have undergone an in-vitro capacita-
tion process, we expect that around 10 − 20% of the
capacitated sperm, will be hyperactivated. Since our
dataset cannot be labeled, we did not have prior knowl-
edge of the number of clusters in the data, and the ac-
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tual number of hyperactivated sperm cells is unknown.
We choose to apply agglomerative hierarchical cluster-
ing, since it does not require knowing a priori how many
clusters there are, does not need input parameters, and
is less sensitive to outliers compared to other methods.
Agglomerative hierarchical clustering [24] is a technique
that clusters each of the objects in the dataset based
on the dissimilarity metric between them. The clusters
are created between pairs of greater similarity and then,
they are successively connected with the other pairs of
less similarity. This process is represented through a
dendrogram that shows the hierarchical relationship be-
tween group-pairs in the dataset [24]. We used the Eu-
clidean distance as the dissimilarity metric between the
descriptors of each sperm cell with all the others to deter-
mine the dissimilarity between each pair of spermatozoa.
We used average linkage and “distance” as the criterion
to define the clusters based on proximity between the
objects. The dendrogram enabled us to visually iden-
tify the number of main groups in the dataset, and we
identified two main clusters.

3 Results

The dissimilarity matrix of the Euclidean distance be-
tween each pair of spermatozoa is depicted in Figure 4,
illustrating how similar they are based on their feature-
based descriptors. The diagonal of the matrix is black
since a feature-based descriptor’s distance from itself is
0 (high similarity), while pairs of sperm with higher dis-
tances are represented with white (low similarity). The
non-capacitated cells and a fraction of the induced to
capacitate sperm are found in Cluster 2 (green square
and lines in Figure 4). Spermatozoa in Cluster 1 (red
squares and lines in Figure 4) have fitted ellipses with
semi-major axes that are larger (max(a) > 6.5µm) than
those in cluster 2 in addition to having ε → 1. The
ellipse’s eccentricity (ε) measures how much it deviates
from a circle. This is related to the tendency of the flag-
ellum’s beating pattern, with a more symmetric pattern
corresponding to a more circular ellipse (ε → 0) and an
asymmetric pattern corresponding to a more elongated
ellipse (ε → 1). Given the previous analysis and consid-
erations, we associate Cluster 2 to the motility pattern
of non-capacitated sperm, which includes the control
group and a subset of spermatozoa induced to capaci-
tation (those induced that failed-to-capacitate). Cluster
1 is then associated to the hyperactivated beating pat-
tern group, which only includes sperm cells that were
induced to capacitate.

Figure 4: The dissimilarity matrix shows the Euclidean
distance between each pair of sperm cells based on their
four principal components. The pixel intensity in the
matrix corresponds to the distance value. On the right
the IDs of each experiment are displayed, where “Cap”
refers to the spermatozoa induced to capacitate and “No
Cap” belongs to the control group. The dendrogram
shows the hierarchical clustering with average linkage;
red lines correspond to cluster 1 and green lines to clus-
ter 2.

3.1 Validating the classification of the 3D
sperm beating patterns

In the literature, it has been described that hyperacti-
vated motility in human spermatozoa is characterized by
asymmetric flagellar beating, an increase in amplitude,
and a decrease in the frequency of beating [7, 9, 28–32].
To validate our unsupervised classification of motility
patterns, we have measured these features (amplitude,
frequency, and asymmetry) in 3D+t from our database
and proposed some 3D generalizations of the 2D well-
known measures. For this, the first ∼ 2.5 µm of ar-
clength of each flagellum was aligned as a head-fixed
frame of reference (inner plot from the Figure 5).
We defined the amplitude as the mean distance, de-

noted by, µ(

√
yitn

2
+ zitn

2
) of each point of the flagellum

(xitn, y
i
tn, z

i
tn) to the x−axis for each sperm i (Figure 5).

The beat frequency is obtained through the analysis of
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Figure 5: The inside subplot shows the flagellar beating
of the spermatozoon aligned and rotated with respect
to the first ∼ 2.5 µm of arclength, which corresponds
to the mid-head of the spermatozoon. The bold orange
flagellum is shown in the bottom plot, and the black
lines are examples of the amplitude between the points
(140, 240, 340 and 390) on the flagellum and the x−axis
(dotted black line). The gray and orange dotted lines
show the projection on the XY and XZ planes of the
flagella, and the distances lines respectively.

the Fourier transform on each point of the flagellum over
the time F(yitn, zitn). The power spectrum amplitude of
each point of the sum of the two components are summed
and the frequency with peak amplitude is taken as the
maximum frequency (Figure 6):

ωi
b = argmaxω

(
N∑

n=1

|F{yitn}|+ |F{zitn}|

)
. (2)

Finally, the asymmetry is taken as the mean of the ec-
centricity of the ellipses fitted to each spermatozoon in
the head-fixed frame of reference. We performed the
Wilcoxon Rank Sum Test to determine if there were
differences between the two clusters for each measure
described above (Figure 7), this test is used when the
sizes of the samples are relatively small and they are not
normally distributed, showing a significant difference.

4 Conclusions and Discussion

The unsupervised classification of the flagellar beat-
ing of human spermatozoa into non-capacitated sperm,

Figure 6: Graphic representation of the process for ob-
taining the beat frequency of a spermatozoon. a, b, c, d,
and e) show the sum of the amplitude spectra for points
140, 240, 340 and 390, respectively (as a visual reference,
these points are the same as those shown in Figure 5),
for the two components (Y , Z) in the frequency domain
single-sided plot. Plot e) displays the sum of the am-
plitude spectrum of all points, the red dot on the plot
represents the maximum value of the spectrum to which
the sperm beat frequency is associated.

Figure 7: Boxplots of the frequency, amplitude, and
asymmetry values for each motility group identified (hy-
peractivated and non-capacitated). The p−value for the
Wilcoxon test for each feature is: 0.009, 0.01 and 0.0491
respectively ∗P < 0.05.
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from those truly capacitated (hyperactivated) classes,
was done using the proposed feature-based vector, which
describes the average dynamics of the flagellar beat in
3D+t. It has been previously noted, for the 2D case,
that hyperactivated spermatozoa have an asymmetrical
beating pattern compared to non-capacitated ones [8].
Our proposed envelope of ellipses allows to generalize
this description to the 3D case; since the ellipses with
eccentricities close to one imply that elongated ellipses
correspond to an asymmetric pattern while ellipses with
eccentricities close to 0 are more symmetrical. In this
sense, the 3D equivalent to the amplitude of the beat
also increases in hyperactivated motility, this character-
istic is obtained through the descriptor of the mean of
the focus average of the ellipses. For the non-capacitated
class, the mean of this feature is smaller than for the hy-
peractivated class. As expected, ≈ 17% of the induced to
capacitate spermatozoa belong to the class truly capaci-
tated, as mentioned in [9]. We emphasize that the entire
set of non-capacitated sperm together with the failed-
to-capacitate from the induced to capacitate group were
accurately classified in the green cluster. Since there is
no ground-truth for 3D classification, we first attempted
to compare the unsupervised classification results us-
ing the most common 2D characteristics of hyperacti-
vation motility: frequency, amplitude, and asymmetry
measured in 3D. This comparison shows that the fre-
quency in the hyperactivated group is lower, while the
mean amplitude is higher, and the asymmetry is greater
than in non-capacitated group. The Wilcoxon test in-
dicates that the two groups are statistically different in
terms of each attribute (frequency, amplitude and asym-
metry). Most results presented previously [25], coincide
with those presented in this work, from what we can
conclude that these descriptors reliably characterize the
motility patterns. However, to provide a more accurate
validation of the proposed feature-based descriptors for
motility patterns, we are planning future work using flu-
orescent markers of hyperactivation. Finally, since the
flagellar beating patterns have never been reported in
3D, our findings are encouraging. This approach could
help to establish a criteria for classifying hyperactivated
motility patterns in 3D+t by generalizing 2D descrip-
tors, or by identifying unique characteristics that 3D+t
data can provide.
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