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Abstract 
Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and 

transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, 

and inevitably recurrent. However, little is known about how the spatial organization of GBM 

genomes underlies this heterogeneity and its effects. Here, we compiled a cohort of 28 patient-

derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-

of-origin; six of these were primary-relapse tumor pairs from the same patient. We generated 

and analyzed kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to 

systematically map >3,100 standalone and complex structural variants (SVs) and the >6,300 

neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data 

with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic 

occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of 

new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can 

help us infer patient-specific vulnerabilities. Together, our data provide a resource for dissecting 

GBM biology and heterogeneity, as well as for informing therapeutic approaches.  
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Introduction 
Glioblastomas (GBMs) that are wild-type for the IDH gene constitute the most frequent primary 

brain malignancy in adults (Ostrom et al., 2022). Despite their surgical resection, GBM tumors 

inevitably recur, are resistant to chemotherapy and highly invasive. Hence the median patient 

survival is ~15 months from the time of diagnosis (Johnson and O’Neill, 2012), and therapeutic 

options at recurrence scarce (Wick et al., 2017; Lombardi et al., 2019). This is attributed to the 

documented genomic (Meyer et al., 2015; Shen et al., 2019; Kim et al., 2015a; Francis et al., 

2014), epigenomic (Capper et al., 2018; Klughammer et al., 2018), and transcriptional 

heterogeneity of GBM tumors (Capper et al., 2018; Shen et al., 2019). 

In normal tissue, the three-dimensional (3D) organization of chromosomes coordinates 

the activation and repression of genes to give rise to homeostatic transcriptional programs 

(Rada-Iglesias et al., 2018; van Steensel and Furlong 2019; Hafner and Boettinger, 2023). 

However, this 3D organization is disrupted at multiple levels in the context of human disease, 

including cancer (Spielmann et al., 2018; Ibrahim and Mundlos, 2020; Danieli and Papantonis, 

2020). Structural (SVs) and copy number variants (CNVs) in tumor cells can rewire the 3D 

genome in ways that allow for the aberrant activation of oncogenes (Hnisz et al., 2016; 

Weischenfeldt et al., 2017) or the repression of tumor suppressors (Xu et al., 2022a). For 

example, deletion of a boundary insulating two neighboring topologically-associating domains 

(TADs; Beagan and Phillips-Cremins, 2020) can lead to aberrant interactions between an 

oncogene in one TAD and active enhancers in the other, a phenomenon known as “enhancer 

hijacking” (Gröschel et al., 2014; Hnisz et al., 2016; Flavahan et al., 2016; Akdemir et al., 2020a; 

Wang et al., 2021a). In fact, the overall distribution of somatic cancer mutations seems to be 

guided by 3D genome folding (Akdemir et al., 2020b). 

Recently, it became apparent that by mapping 3D genome organization using Hi-C (the 

whole-genome variant of the chromosome conformation capture technology; reviewed in 

Denker and de Laat, 2016), we can simultaneously obtain a highly-resolved map of SVs and CNVs 

genome-wide (Harewood et al., 2017). The emergence of tools like hicbreakfinder (Dixon et al., 

2018) and EagleC (Wang et al., 2022) allows for a systematic detection of SVs/CNVs in Hi-C data. 

Via this type of data analysis, the functional impact of SVs on subtype-specific cancer gene 

regulation (Xu et al., 2022a; Liu et al., 2023), as well as on a compendium of cancer lines has 

been investigated (Dixon et al., 2018; Wang et al., 2021a; Xu et al., 2022b). Nonetheless, our 

understanding of 3D genome organization in GBM remains limited due to the small number of 

samples analyzed to date (i.e., only 5 tumors by Harewood et al., 2017, and just 4 cell lines by 

Johnston et al., 2019, Wang et al., 2021b, and Yang et al., 2022).  

To address this and study the impact of patient-specific SVs, we derived glioblastoma stem 

cell-like cells (GSCs) from 24 IDH-wt GBM patients—for three of which we could also sample 

both the primary and the relapse tumor (see Supplementary Table 1). It is well acknowledged 

that the subset of GBM tumor cells with stem -like attributes are implicated in essentially all 
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aspects of GBM initiation, maintenance, therapy resistance, recurrence, and tissue invasion in 

vivo (Liau et al., 2017; Ricci-Vitiani et al., 2010). Given that patient-derived GSCs retain the 

genomic and functional traits of their tumors of origin (Lathia et al., 2015; Jacob et al., 2020; 

Pine et al., 2020), they hold significant potential for translational modeling of GBM. Here, we 

generated 28 high-resolution Hi-C datasets, and analyzed them to map structural variation in 

each GSC. We discovered remarkable pervasiveness and variance in SV distribution across our 

cohort, which gave rise to patient-specific ‘neo-TADs’ and ‘neoloops’. We combined rearranged 

chromosomal scaffolds with matching transcriptome and histone mark data to understand how 

GBM gene expression and tumor recurrence are supported by such extensive heterogeneity in 

their 3D genome folding. 

Results 
Pervasive structural variants cluster along GSC chromosomes 

We applied in situ Hi-C to 28 low passage IDH-wt GSCs, including pairs from primary and 

recurrent tumors from 3 patients (Fig. 1a) to generate a total of ~19 billion read pairs. Following 

stringent filtering, we were left with >0.4 billion valid read pairs per patient on average (63.4% 

mean data usage; Supplementary Table 2). This allowed us to produce 5-kbp resolution contact 

maps for each GSC, and confirm reproducibility by generating additional replicates from two 

randomly-selected lines (SCC>0.93; Supplementary Fig. 1a). 

 We next addressed CNV prevalence in cancer cells (Shao et al., 2019) that can distort Hi-C 

contact maps. We verified that CNVs identified using whole-genome sequencing (WGS) data 

from an exemplary line, G181, were essentially identical to those computed via Hi-C data 

(Supplementary Fig. 1b). Then, we applied CNV-based matrix-balancing (Wang et al., 2021a) to 

Hi-C contact maps to alleviate any distortions that standard matrix balancing could not 

(Supplementary Fig. 1c). CNV-balanced matrices were next used for SV discovery in our cohort. 

 For a comprehensive identification of SVs in our cohort, we applied EagleC to 5-kbp 

resolution Hi-C matrices (Wang et al., 2022). SVs, even those with breakpoints separated by 

<100 kbp, were marked by characteristic signal in our Hi-C matrices and could be detected with 

high sensitivity (Supplementary Fig. 1d). In total, we mapped 2,675 SVs across 28 Hi-C datasets, 

on top of 591 complex SVs (all listed in Supplementary Table 3). These comprised 737 (27.6%) 

interchromosomal translocations, plus 713 (26.7%) intrachromosomal inversions, 652 (23.4%) 

deletions and 573 (21.4%) duplications. Of the 1,938 intrachromosomal SVs, 57.6% were short- 

(<2 Mbp) and 42.4% long-range (≥2 Mbp) (for an example see Fig. 1b,c). Detection of SVs was 

robustly reproducible between replicates from the same line (mean Jaccard similarity index = 

0.63; Supplementary Fig. 1e). As a control, EagleC applied to astrocyte in situ Hi-C (Wang et al., 

2021b), only returned 7 SVs. SV occurrence across GSCs was pervasive; 16 out of 28 samples 

carried >80 SVs (the least number of SVs was 24 in G452C and the most was 182 for G450). 

Notably, relapse tumor-derived GSCs usually carried more SVs than primary ones (Fig. 1d). Thus, 

our analyses demonstrate the sensitivity and reproducibility of SV discovery in our cohort. 
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Fig. 1. Pervasive and uneven SV occurrence discovered by Hi-C analysis of patient-derived GSCs. 

a, Overview of our cohort from 28 primary (grey) or relapse GSCs (yellow). NGS data generated from each 

GSC are indicated. *: WGS data is available for G181; -R designates GSCs derived from the relapse tumor 

in a pair, and –C/P GSCs derived from the central or peripheral part of the same tumor. b, Heatmap of 

500 kbp-resolution Hi-C data along all G457 chromosomes. Strong interchromosomal signal represent 

translocations. c, Circos plot of SVs and CNVs detected in G457 Hi-C. Outer tracks: chromosomes; inner 

tracks: gain (red: >2 copies) or loss of genomic segments (blue: <2 copies); lines: translocations (purple), 

inversions (grey), deletions (light blue) or duplications (red). d, Bar plot showing the number of SV types 

identified in each GSC line. Lines from relapse tumors are highlighted (yellow). e, Jaccard similarity index 

of SVs discovered in different Hi-C datasets. f, Enrichment of breaks from all SV types (columns) relative 

to GC content, gene density, gene expression, A/B compartment or TAD boundaries (rows). Each density 

curve represents the quantile distribution of the particular genomic feature at SV breakpoints compared 

to random positions. **: FDR<10-3 or ***: FDR<10-5 calculated after multiple hypothesis correction on a 
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one-sided Kolmogorov–Smirnov test based on a sample size of 5,078 genomes containing SVs. g, Mean 

enrichment of GBM-associated gene TSSs in the 100 kbp around TAD boundaries from astrocytes with 

an SV break in GBM (red), all SV breaks (blue) or all TAD boundaries (dashed black). h, Ideogram of chr7 

showing SV distribution (top) and gene density (bottom) in G181. i, Exemplary Hi-C contact map from 

G181 in a 2-Mbp region of chr7 (magenta in panel h) harboring multiple SVs (circles). 

We next asked what the degree of SV recurrence is across our samples. Similarity analysis 

(Fig. 1e) and one-to-one comparisons of Hi-C-deduced SVs from all samples (Supplementary Fig. 

2) showed remarkable heterogeneity among GSCs and little recurrence (mean Jaccard index = 

0.02). Even mutations well-known to associate with GBM were only found in a subset of our 

samples. For example, EGFR locus amplification (Brennan et al., 2013) associated with SVs in 9 

out of 28 lines, while CDKN2A deletion (Hsu et al., 2022; Funakoshi et al., 2021) was detected 

in 17 out of 28 lines. Finally, SVs found in GSC pairs from primary-relapse tumors of the same 

patient showed somewhat higher overlap (Jaccard index = 0.21). This did not increase much 

(Jaccard index = 0.42) even when SVs from the central and peripheral part of the same tumor 

(i.e., G452C/P) were considered, highlighting the intra-tumor heterogeneity of GBM. 

Despite their uneven distribution across our cohort, SV breakpoint emergence correlated 

well with particular genomic features. For example, genomic duplications were strongly biased 

for strongly transcribed, GC-rich segments in the A-compartment involving breakpoints close to 

TAD boundaries (using astrocyte Hi-C as reference). Translocations and inversions also involved 

gene-/GC-rich loci, but could be both near and distal to TAD boundaries, which agrees with the 

notion that active gene co-association promotes rearrangements (especially translocations; 

Zhang et al., 2012; Sidiropoulos et al., 2022). Conversely, deletions mostly occurred in AT-rich 

segments of the B-compartment (Fig. 1f). Overall, we recorded significant enrichment for SVs 

occurring in the active chromatin A-compartment, particularly in gene-rich stretches, and in the 

vicinity of TAD boundaries (Fig. 1f). This is in line with the preferential occurrence of DNA 

double-strand break hotspots within accessible, actively transcribed chromatin (Mourad et al., 

2018; Gothe et al., 2019). Notably, transcription start sites (TSSs) of genes linked to the GBM 

transcriptional program (as derived from DisGenet; Piñero et al., 2020) were markedly enriched 

at breakpoint-associated TAD boundaries (Fig. 1g), suggesting that TAD boundary disruption can 

favor oncogene dysregulation and malignant transformation (Flavahan et al., 2016; Hnisz et al., 

2016; Kloetgen et al., 2020). This was also true of SVs that result in gene fusions. We identified 

421 fusion events in mRNA-seq data generated from each GSC (Fig. 1a), but as Hi-C is more 

sensitive in detecting fusion positions within introns (Wang et al., 2022), we identified another 

902 fusions therein (Supplementary Table 3) with 137 events identified by both methods. These 

gene fusions were expressed at significantly higher levels than their counterparts in astrocytes 

(Supplementary Fig. 3a).  
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Finally, rather than stochastically distributed along chromosomes, SVs show a propensity 

to cluster together, especially in GC-/gene-rich segments (Fig. 1h and Supplementary Fig. 3b). 

Such high degree of breakpoint clustering (almost 43% of SVs, i.e. 2,298 out of 5,350, were in 

clusters) led to complex rearrangements within relatively small (<2 Mbp) genomic stretches (Fig. 

1i and Supplementary Fig. 3c). Notably, smaller chromosomes like chr12 (also remarked on in 

TCGA WGS data analysis; Brennan et al., 2013), 16, and 17 carried a disproportionately high 

density of SVs (i.e., >3.5 SVs/Mbp compared to a median of <2 SVs/Mbp; Supplementary Fig. 

3d). As a whole, our results highlight structural variation in GSCs as a highly pervasive source of 

heterogeneity bound to change the 3D regulatory architecture of GBM tumors. 

 

Fig. 2. GBM transcriptional subtypes are poorly reflected in Hi-C data. 

a, PCA plot of RNA-seq replicates from 28 GSC lines classified as mesenchymal (green), classical (orange) 

or proneural (brown). Data from primary or iPSC-derived astrocytes provide a control. b, Expression-

based subtyping of GSCs into mesenchymal (ME), proneural (PN) or classical (CL) based on ssGSEA 

enrichment scores (top) and empirically-derived P-values (bottom) for each signature. 22 out of 28 lines 

showed significant (P<0.01; Fisher’s exact test) association with one subtype. GSCs derived from relapse 

tumors are highlighted. c, Unsupervised hierarchical clustering of 22 GSC lines based on insulation scores 

calculated from 25 kbp-resolution Hi-C data. The subtype of each is indicated by colored boxes (below). 

d, As in panel c, but computing the Jaccard similarity index for loop overlap between GSCs. 

 

GSC-specific chromatin organization blurs transcriptional subtype classification 

A well-established layer of GBM heterogeneity concerns gene expression profiles. Nonetheless, 

analyses of bulk transcriptomic data have been used to identify three major subtypes: classical 

(TCGA-CL), proneural (TCGA-PN), and mesenchymal (TCGA-MES) (Verhaak et al., 2010; Neftel 
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et al., 2019; Alhalabi et al., 2022). 

To classify our GSC cohort according to these three subtypes, we used our mRNA-seq data. 

GSCs separated well from astrocyte profiles on PCA plots, but generated a continuum amongst 

themselves (Fig. 2a). Samples from the same patient (i.e. primary-relapse or central-peripheral 

GSC pairs) separated the least, suggesting that intratumor transcriptional differences are less 

than intertumor ones (e.g., G402 and G402R in Fig. 2a). We then applied single-sample gene 

set enrichment analysis (ssGSEA) using the CL/PN/MES signatures deduced previously (Wang et 

al., 2017). Out of our 28 samples, 11 showed significant enrichment (empirical P-value < 0.01) 

for CL, 9 for MES, and 2 for PN markers (Fig. 2b); 6 GSCs with ambiguous scores were not 

considered in the ensuing analysis. 

Subtypes of other cancer entities (e.g., acute myeloid leukemia) were recently shown to 

classify on the basis of large-scale (i.e., compartmental) 3D genome organization assessed using 

Hi-C (Xu et al., 2022a). This motivated us to ask whether different hierarchical features in our 

Hi-C data would also allow classification of GSCs into the three subtypes deduced above. To this 

end, we used different features starting with compartments (using the first principal component 

of 40-kbp resolution Hi-C data eigenvectors), and continuing with insulation scores delineating 

TAD boundaries (calculated at 25-kbp resolution), Hi-C contacts (at 10-kbp resolution) or loops 

(at 5-kbp resolution). Although differential PC1 calling, reflecting GSC-specific changes in eu-

/heterochromatin, broadly separated CL from MES lines (but less so PN ones; Supplementary 

Fig. 4a), all other higher-resolution features discriminated only moderately (insulation score/Hi-

C contacts) or less (loops) between the subtypes (Fig. 2c,d and Supplementary Fig. 4b). We 

attributed this to the high structural heterogeneity that underlies individuality of each patient-

derived line. Even samples with very similar transcriptional profiles like the MES lines G83 and 

G457 (see proximity in the PCA plot of Fig. 2a) share <10% of their SVs. As a result, their 3D 

genome features diverge profoundly and, thus, demix during clustering (see Hi-C dissimilarity 

in Fig. 2c,d and Supplementary Fig. 4a,b). 

GSC-specific SVs underlie neo-domains and neo-loops formation 

Induction of SVs along chromosomes does not simply disturb the integrity of chromosomes and 

the continuity of gene loci, but also reorganize 3D spatial interactions of chromatin to give rise 

to new topological domains, termed ‘neoTADs’ (Franke et al., 2016; Dixon et al., 2018). We 

mapped neoTAD formation across all 28 Hi-Cs to identify a total of 2,222 neoTADs with a median 

size of 500 kbp arising from all SV types (Supplementary Fig. 5a,b). Different GSCs carried vastly 

different numbers of neoTADs (from 10 in G452C to 244 in G450; Supplementary Fig. 5b), which 

again highlights the remarkable heterogeneity of these GBM specimens. Notably, expression of 

genes harbored in neoTADs was consistently higher than that of genes in neighboring TADs 

(Supplementary Fig. 5c) as well as that of the same genes in astrocytes or in GSCs not forming 

that specific neoTAD (Supplementary Fig. 5d). Thus, GBM neoTADs support GSC-specific gene 

activity. 
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Fig. 3. Extensive neoloop occurrence supports GSC-specific programs. 

a, Exemplary Hi-C contact maps from G275R and G402R around a 50-kbp deletion in the HLA locus. 

Neoloops forming across the breakpoint are indicated (blue circles). b, Bar plot showing the number of 

neoloops identified in each GSC line. Lines derived from relapse tumors are indicated (yellow). c, Line 

plot showing distribution of CTCF binding in the 400 kbp around all neoloop anchors. Inset: Aggregate 

peak analysis (APA) plot for all neoloops detected. d, Bar plot showing the percent of neoloops of different 

sizes. e, Signatures of neoloop-associated genes from the DisGeNET database (P-values calculated using 

Fisher’s exact tests). f, APA plots of neoloops specific to G402R or G148. g, Box plots showing expression 

of genes associated with GSC-specific neoloops from panel f. h, Box plots showing HLA-G/-J expression in 
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TCGA GBM tumor and matching normal tissue. i, Violin plots showing copy number variation in the HLA-

G locus from TCGA GBM tumors with high (top 50%, magenta) or low HLA-G expression (bottom 50%, 

green). P>0.5; two-sided Mann-Whitney U-test. j, Kaplan-Meier survival curves for GBM patients with 

HLA-G (left) or HLA-J (right) high/low expression. P-values were calculated using a two-sided log-rank test.  

Similarly to neoTADs, SVs also gave rise to ‘neoloops’ characteristic of each patient-derived 

line (Fig. 3a). We used Neoloopfinder (Wang et al., 2021a) to identify 6,331 neoloops in locally 

reconstructed and normalized for allelic effects Hi-C maps from all 28 GSCs (FDR cutoff <0.95; 

Supplementary Table 3). Again, the number of neoloops in each GSC varied significantly (from 

12 in G28 to 1,327 in G148, with a median of 120; Fig. 3b), but we saw little correlation between 

the number of SVs and neoloops in our cohort (ρ = 0.29). 

Approximately 50% of neoloops in GSCs for which we have CTCF binding information (Fig. 

1a) were anchored at CTCF-bound sites (i.e., 772 out of 1,579; Fig. 3c), with 88.5% of them 

abiding to the expected convergent CTCF motif orientation (Rao et al., 2014). More than 90% 

of neoloops were <0.8 Mbp in size (Fig. 3d), and we identified 2,053 genes associating with 

neoloops (i.e., within ±5 kbp of either anchor), of which 858 were protein-coding. 131 of these 

protein-coding genes recurrently associated with neoloops, albeit at a low mean recurrence of 

2. Amongst them, 33 (25.2%) have been reported as GBM-related (e.g., EGFR, PTEN, MTOR) 

and 29 (22.1%) as other cancer-associated genes (e.g., AGAP2, SOX2). A query for all neoloop-

associated genes in DisGeNET returned a strong enrichment for genes characteristic of GBM 

programs (Fig. 3e), including genes with a high disease specificity index, like SYF2 or AGAP2. 

Notably, neoloops sustained significantly higher expression of associated genes in a GSC-specific 

manner (Fig. 3f,g and Supplementary Fig. 6a,b). 

Much like SV profiles that were highly heterogeneous, neoloop recurrence between GSCs 

was limited. For instance, the most correlated at the loop level unpaired samples, G1 and G213 

(Supplementary Fig. 4b), shared <10% of their neoloops, while even the intra-tumor G452C/P 

lines shared <42%. Nevertheless, even limited recurrence becomes relevant in cases where 

neoloops associate with particular gene loci in different GSCs. In total, 858 protein-coding (plus 

1195 non-coding) genes associated with neoloops in our cohort. Of these, 40 protein-coding 

(plus 59 non-coding) genes were neoloop-associated in 3 or more GSCs. On such example were 

the neoloops forming around the HLA-F/-G/-J locus following a 50-kbp deletion in 8 samples; 

these neoloops connected the HLA-G and HLA-J TSSs (Fig. 3a). HLA-G expression has been 

associated with melanoma and breast cancers (Yan et al., 2005; He et al., 2010), but only 

anecdotally with GBM (Wastowski et al., 2013), while HLA-J is considered a pseudogene with 

prognostic value in breast and skin tumors (Würfel et al., 2020). We analyzed TCGA data from 

GBM patients to find that both HLA-G and -J were significantly overexpressed in tumors versus 

control tissue (Fig. 3h), and that this was not due to gene amplification (Fig. 3i). Importantly, 

HLA-G/-J overexpression is associated with poorer patient survival overall (Fig. 3j). We could 

make similar observations for neoloops forming in the ADAM9 locus (Supplementary Fig. 7a) 
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that encodes a cell-surface protease involved in solid tumor biology (Oria et al., 2018). ADAM9 

is overexpressed in TCGA GBM tumors, not due to gene amplification, and again associates with 

poor patient survival (Supplementary Fig. 7b-d). This data suggests that neoloop formation is a 

key contributor to patient-specific gene expression,  thereby helping us identify new GBM 

dependencies and prognostic markers. 

 

Fig. 4. Enhancer-promoter neoloops control GSC-specific gene regulation. 

a, Exemplary Hi-C contact map from G275R around a 1.24-Mbp inversion in the IFIT1 locus. Enhancer-

promoter neoloops forming across the breakpoint are indicated (blue circles). The same locus of G412, 

where no inversion occurs, provides a control. b, Plot showing mean (line) and GSC-specific IFIT1 RNA-

seq levels (circles) in lines with (orange) or without the inversion (grey) or in astrocytes (black). *: P<0.01, 

unpaired two-tailed Student’s t-test. c, Bar plot showing the fraction of neo- (orange) or non-neoloops 

around SVs (grey) representing enhancer-promoter (E-P), enhancer-enhancer (E-E), promoter-promoter 

(P-P) or other interactions. *: P<0.01, Fisher’s exact test d, Box plots comparing expression of genes 
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associated with enhancer-promoter (E-P), promoter-promoter (P-P) or other neoloop or non-neoloops. 

*: P<0.01, two-sided Mann-Whitney U-test. e, As in panel d, but for the mean expression of neoloop-

associated genes in GSCs with (green) or without these neoloops (grey) or in astrocytes (black). *: P<0.01, 

two-sided Wilcoxon rank-sum test. f, Heatmap showing SV occurrence of known cancer-associated genes. 

Enhancer-promoter neoloops explain GSC-specific gene dysregulation 

Given that expression of genes was higher in GSCs where they associate with neoloops 

(Supplementary Fig. 6a,b), we wanted to further investigate how neoloops contribute to gene 

dysregulation in GBM. To this end, we used data from ten GSCs for which we also generated 

H3K27ac genome-wide profiles (Fig. 1a). Using this data we were able to identify putative active 

enhancers in each line, and saw that many of the neoloops we had charted actually represented 

enhancer-promoter (E-P) contacts driving GSC-specific gene expression (see the example of 

IFIT1 in Fig. 4a,b). Of 4,343 neoloops and 11,031 non-neoloops in these ten GSC lines, E-P 

neoloops were significantly overrepresented (35.3%) compared to E-P non-neoloops (25.5%), 

while the converse applied to promoter-promoter (P-P; 9.2% neo- vs 16.9% non-neoloops) and 

other loops (33.3% neo- vs 66.6% non-neoloops; Fig. 4c). Critically, E-P neoloops linked 

enhancers to 192 gene TSSs in these GSCs to induce expression levels higher than those of 801 

genes linked to non-neoloop enhancers. This also held true for P-P neoloops and their 243 

associated genes versus 1,055 non-neoloop-associated ones (Fig. 4d). Similarly, the levels of 

123 E-P neoloop-associated genes were significantly higher in these ten GSCs compared to lines 

where neoloops do not form (Fig. 4e). GO term analysis of E-P/P-P genes showed that they were 

involved in key cancer-related pathways like ‘GBM signaling’, ‘cell cycle regulation’, ‘senescence’ 

or ‘chromatin organization’ (Supplementary Fig. 6c) arguing for the tumor-specific importance 

of E-P neoloops. 

Finally, we compiled a list of 138 known GBM-/cancer-related genes that we could link with 

a neoloop and with at least one SV-linked event (i.e., with a deletion, duplication or fusion) in 

our cohort. Of these, 43 actually associated with at least two such events across our samples, 

and we saw that dysregulation could be attributed just as often to neoloop formation as to any 

other SV event (Fig. 4f). These observations suggest that E-P neoloops are a regulatory hallmark 

of GBM, and highly selected for in the course of tumor development to sustain favorable gene 

expression. 

Modeling neoloop formation underlying selective GBM dependencies  

The pervasive and uneven emergence of SVs and neoloops in our cohort would inevitably give 

rise to GSC-specific E-P interactions and ensuing gene activation. This creates an opportunity of 

potential translational value: to identify tumor-specific dependencies arising from E-P neoloops 

activating druggable gene targets or pathways. To exemplify this, we selected G148 in which 

MYC is markedly overexpressed, not due to gene amplification, but because of a translocation 

between chr8 and 12. This brings into spatial vicinity the MYC locus (on chr8) with a cluster of 

enhancers (on chr12) via neoloop formation (Fig. 5a). This “enhancer hijacking” resulted in >10-
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fold increase in MYC levels in this one line compared to all other GSCs (or astrocytes; Fig. 5b), 

which was also reflected on MYC protein levels (Supplementary Fig. 8a). 

 We next tested whether targeting MYC would selectively inhibit G148 growth. We treated 

G148, as well as G62 cells, where no enhancer hijacking and no MYC overexpression occurs (Fig. 

5b), with a new small molecule inhibitor, EN-4. EN-4 specifically targets Cys171 of MYC to form 

a covalent bond and impair its binding to target genes (Boike et al., 2021). Treatment of GSCs 

with EN-4 led to selective suppression of MYC and cell proliferation (marked by Ki-67expression) 

in MYC-overexpressing G148, but not in G62 (Fig. 5c and Supplementary Fig. 8b,c). Moreover, 

EN-4 treatment led to significant increase in DNA damage and cell death in G148 compared to 

G62 as deduced from Tunnel assays (Fig. 5d and Supplementary Fig. 8d). 
 

 
Fig. 5. GSC-specific dependencies uncovered by neoloop analyses and simulations. 

a, Exemplary Hi-C contact map from G148 around a translocation breakpoint involving the MYC locus. 

Enhancer-promoter neoloops forming across the breakpoint are indicated (blue circles). Absence of 

neoloops in G394, where no translocation occurs, provides a control. b, Plot showing mean (line) and 

GSC-specific MYC expression (circles) in cells with (orange) or without the chr8:chr12 translocation (grey) 

or in astrocytes (black). *: P<0.01, unpaired two-tailed Student’s t-test. c, Plots showing the percentage 

of cells staining positive for MYC or Ki-67 in untreated (red) or EN4-treated MYC-high G148 (green) from 
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at least 3 independent experiments; treatment of the MYC-low G62 provides a control. d, As in panel c, 

but showing the percentage of cells positive for Tunnel stainings from at least 3 independent experiments. 

e, Heatmaps showing correlation of each class of polymer beads with H3K27ac and RNA-seq data from 

G148 that carries the chr8:chr12 translocation (left) or G394 that does not (right). Classes with a 

correlation of >0.2 are shown. f, Left: Contact maps from Hi-C (top) or simulations (bottom) around the 

translocation breakpoint in G148 are shown aligned to polymer bead classes. Enhancer-promoter 

neoloops forming across the breakpoint are indicated (blue circles). Right: As in the left hand-side panel, 

but for G394 that does not carry the translocation. g, Representative 3D renderings of the two major 

configurations resulting from chr8:chr12 translocation involving the MYC locus. Beads from the binding 

classes 1, 7, and 11 that best predict folding are color-coded as in panel d, and differential MYC-enhancer 

interactions indicated (yellow halo). 

Given the selective dependency of G148 on MYC overexpression, we argued that being 

able to predict the formation of gene-activating E-P neoloops on a patient-specific basis could 

guide treatment options. To achieve this, we expanded on the PRISMR in silico approach that 

was previously developed to predict ectopic interactions due to congenital disease-causing SVs 

(Bianco et al., 2018). In its original implementation, PRISMR could only predict ectopic 

interactions in cis by inferring binding site distribution along the polymer that best reproduces 

the Hi-C matrix of a genomic region in its wild-type configuration. Then, ectopic interactions are 

predicted by reshuffling the polymer in accordance to the SV and recalculating the new Hi-C 

contacts (Bianco et al., 2018). As we wanted to model a structural variant that occurs in trans, 

we modified the approach to infer binding site distribution in an extended segment of chr12 

(i.e., chr12: 57.66-58.33 Mbp) using data from G275R that does not carry any SVs in the region, 

but in conjunction with RNA-seq and H3K27ac signal from G148 to ensure faithful Hi-C contact 

prediction using a probabilistic approach (see Supplementary Fig. 9a and Methods for details). 

Following optimization of binding classes (Supplementary Fig. 9b,c), we found that the three 

best-correlated ones recapitulate our input RNA-seq and H3K27ac profiles (Fig. 5e and 

Supplementary Fig. 9a).  

 In turn, the inferred classes of binding sites gave rise to highly similar contact matrices for 

the experiment and simulation (ρ=0.65). In G148, we could predict the formation of neoloops 

connecting MYC on chr8 to the active enhancers on chr12 (Fig. 5f, left), while for G394, where 

no translocation occurs, no neoloops were predicted (Fig. 5f, right). This was also reflected in 

3D models rendered from the simulations, whereby a hub between the hijacked enhancers and 

the MYC locus formed in G148 (Fig. 5g), but not G394 data (Supplementary Fig. 9d). Moreover, 

our 3D models showed a largely mutually exclusive formation of MYC promoter contacts with 

either class-1 or -7 enhancer beads (Fig. 5e-g and Supplementary Fig. 9e). These differential 

conformations (Fig. 5g) gave rise to a heterogeneous population of 3D models, which reflected 

different predicted MYC activation levels (calculated as in Buckle et al., 2018). Models with 

different enhancer-promoter contacts cluster away from one another and lead to variable levels 

of MYC activation (Supplementary Fig. 9f,g). Thus, we can now model the impact of SVs in cis 
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and in trans using a minimal set of epigenetic tracks to assess expression and structural 

heterogeneity, and potentially uncover patient-specific vulnerabilities. 

GBM relapse associates with divergence in SV occurrence and 3D genome folding  

GBMs are of the most aggressively recurring tumors, with patients succumbing within ~1 year 

of relapse (Ostrom et al., 2022). Our cohort included GSCs from three such primary and relapse 

tumor pairs (G275/R, G402/R, and G412/R; Fig. 1a), and we generated Hi-C, RNA-seq, and 

H3K27ac data from these pairs in an approach to understand their emergence.  

A first observation was that, like all other GSCs in our collection, these lines also showed 

remarkable divergence in the number (Fig. 1d) and position of SVs mapped using Hi-C (Fig. 6a 

and Supplementary Fig. 10a,b). Relapse GSCs on average shared <35% of SVs with their primary 

tumor-derived counterparts (Fig. 6b and Supplementary Fig. 10c,d), while gene expression 

upon relapse diverged significantly in each pair (with just 30 up- and 8 downregulated genes 

shared by all three pairs, and <14% shared by any two; Supplementary Fig. 10e). Still, this 

extreme heterogeneity did converge to few particular pathways affected in relapse GSCs, like 

‘neurogenesis’ or ‘development regulation’ (Fig. 6c and Supplementary Fig. 10f). 

 We next asked which level of 3D genome organization was most involved in the divergent 

transcriptional profiles we recorded. Switching between A- and B-compartments or association 

with chromatin loops each explained 10% or less of the gene expression changes seen (Fig. 6d). 

Association with enhancers though explained on average twice as many differentially-expressed 

genes (Fig. 6d), and a larger fraction of E-P loops was dynamically lost or gained between the 

sample pairs indicating their regulatory significance (Fig. 6e). On average, we identified 814 

primary- and 1,090 recurrent-specific loops in the three pairs (826 and 327 for G275/R, 681 and 

1,366 for G402/R, and 934 and 1,531 for G412/R; Fig. 6f and Supplementary Fig. 10g,h). We 

stratified these loops on whether they are specific to primary (“lost”) or relapse GSCs (“gain”), 

shared by a GSC pair but showing increase (“K27ac gain”) or decrease in H3K27ac signal in 

relapse (“K27ac loss”) or remain unchanged. After assigning genes to the P anchor of these 

loops, we found that expression levels of thousands of genes from all three GSC pairs were on 

average significantly higher (for “gain” loops) or lower (for “loss” loops) than those of genes 

associated with unchanged loops (Fig. 6f and Supplementary Fig. 10g,h). A considerable fraction 

of these loops were neoloops forming as a result of primary- or relapse-specific SVs. We looked 

into these and, again, relapse GSCs on average shared <41% of neoloops with their primary 

tumor counterparts (Fig. 6b and Supplementary Fig. 10c,d). Such neoloops often facilitated 

enhancer hijacking leading to aberrant gene overexpression (for an example see Fig. 6g). 

Remarkably though, we could not find any recurrence of misexpressed loci associated with 

neoloops or with any other SV type among the pairs. These findings suggest that GBM relapse, 

as reflected in GSCs, associates with a set of SVs that cannot overlap those of the primary tumor. 
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Moreover, despite some convergence in the pathways affected, we saw marked individuality in 

the transcriptional programs of each GSC pair. 

 

Fig. 6. 3D genome folding differentiates relapse from primary GBM samples. 

a, Circos plots of SVs and CNVs in G402 and G402R. Outer tracks: chromosomes; inner tracks: gain (red: >2 

copies) or loss of genomic segments (blue: <2 copies); lines: translocations (purple), inversions (grey), 

deletions (light blue) or duplications (red). b, Venn diagrams showing shared and unique SVs (top) or 

neoloop-associated genes (below) in primary and relapse data. c, GO terms associated with differentially-

expressed genes in primary versus relapse G402. d, Percent of differentially-expressed genes explained 

by A/B-compartment, loop or enhancer changes in all GSC pairs. *: P<0.01, unpaired two-tailed Student’s 

t-test. e, As in panel d, but for differentially-expressed genes linked to E-P loops gained (orange), lost 

(green) or not changed upon relapse (grey). f, Left: APA plot for neoloops specific to primary or relapse 

GSC pairs. Right: Box plots showing changes in the expression of genes associated with loops gained (red) 
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or lost (blue), having increased (orange) or decreased H3K27ac (light blue), or not changing in relapse 

(white). *: P<0.01, Wilcoxon-Mann-Whitney test. g, Hi-C contact maps around a 17.6-Mbp deletion on 

chr9 specific to G402R  shown aligned to overlaid RNA-seq and H3K27ac tracks from primary (black) 

and relapse samples (yellow). G402-specific neoloops are indicated (blue circles). 

Finally, we used Hi-C and RNA-seq data to compare a pair of GSCs derived from the central 

and peripheral regions of the same GBM tumor (G452C/P). Once again, we found that the 

periphery shared <45% of its SVs (16 out of 36) with the center, with many SVs of G452C being 

lost in G452P (Supplementary Fig. 11a,b). This held true also for the (few) genes associated with 

neoloops in this pair (Supplementary Fig. 11b). Overall, and in line with the transcriptional 

divergence of these GSCs (Fig. 2a,b), we found pathways like “nervous system development”, 

‘regulation of signaling’ or ‘ECM organization’ enriched in the central over the peripheral GSCs 

(Supplementary Fig. 11c) in conjunction with prominent GSC-specific loops in either line 

(Supplementary Fig. 11d). This data further affirms the extreme heterogeneity in GBM-derived 

samples, to the extent that even different parts of the same tumor diversify at the level of 3D 

genome architecture and regulation. 

Discussion 
In this study, we generated 5 kbp-resolution Hi-C maps from 28 patient-derived GSCs and used 

their contact structure to identify tens to hundreds of SVs per sample. This highly resolved view 

of rearrangements revealed an SV distribution that was pervasive (16 out of 28 samples 

carried >80 SVs), yet very uneven between samples (even between GSCs derived from two 

different parts of the same tumor). Despite their extreme heterogeneity and largely non-

recurrent nature, SVs were not stochastically distributed along chromosomes. In fact, they 

clustered together in hotspots correlating well with GC-/gene-rich regions preferentially located 

in the A chromatin compartment (i.e., transcriptionally active) and near TAD boundaries. When 

we focused on SV breakpoints near TSSs of genes associated with the GBM transcriptional 

program, we found enrichment for TAD boundaries. This suggests that disruption of such 

positions of 3D chromatin insulation favors oncogene activation, malignant transformation, and 

tumor growth (Sesé et al., 2021). Notably, in gliomas with IDH gain-of-function mutations, 

hypermethylation of CTCF sites at insulator elements that prevent binding and disrupt boundary 

formation (Flavahan et al., 2016). Thus, we can envisage the development of interventions that 

act to preserve TAD boundary integrity and counteract GBM progression in the future.  

However, our cohort is exclusively IDH-wt and here insulation disruption is a direct result 

of SVs that rewire 3D chromatin folding. Still, previous “pan-cancer” analyses showed that only 

14% of TAD boundary deletions actually result in a >2-fold increase in gene expression of 

adjacent loci (Akdemir et al., 2020a). Thus, we exploited our high-resolution Hi-C data and large 

number of samples assayed to focus on a key effect of GBM genomic rearrangements: the 

formation of hundreds to thousands (median = 120) of neoloops along each patient’s genome. 

Genes associated with these neoloops were not only significantly higher expressed compared 
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to when no neoloops occur (thus, explaining intra-tumor heterogeneity), but also enriched for 

genes characteristic of the GBM transcriptional program. Moreover, some recurrence in 

neoloop-associated genes was observed (e.g., HLA-G/-J overexpression associated with 

neoloop formation in 8 out of 28 GSCs). Notably, a substantial fraction of these neoloops (>35%) 

ectopically linked gene promoters with active enhancers, which led to their activation in a 

tumor-specific manner. In fact, the formation of such regulatory neoloops can explain the 

overexpression of known GBM drivers, like EGFR and MTOR, in GSCs in cases where gene 

amplification or fusion does not.   

 We established how GBM inter-tumor heterogeneity extends to and is supported by 3D 

genome refolding. Then, in the absence of highly recurrent events and given the inefficacy of 

current treatment regimes, could 3D genomics guide personalized treatment decisions? To 

address this, we combined kbp-resolution mapping of 3D chromatin neo-structures with in 

silico predictions of their effects on gene expression. We expanded on the PRISMR approach by 

Bianco et al. (2016) to now include modeling of SV effects on 3D genome folding in trans. Using 

MYC overexpression via a chr8:chr12 translocation in a single GSC as an exemplar, we could 

show that (i) this translocation leads to the formation of two inductive enhancer-promoter 

neoloops; (ii) the two neoloops form in a largely mutually exclusive manner, giving rise to allele-

specific conformations that explain heterogeneity in MYC expression; and (iii) that targeting 

MYC in this specific GSC with a small molecule inhibitor led to selective inhibition of its growth 

compared to a line not carrying the translocation and neoloops. Such patient-specific 

vulnerabilities may represent new opportunities for therapy, especially in the face of relapse. 

 GBM relapse is essentially inevitable and the major hurdle in prolonging patient survival. 

Studies comparing the genomic landscape of primary versus relapse IDH-wt glioblastomas 

often produce contrasting outcomes. For example, Körber et al. (2019) studied 21 primary-

relapse tumor pairs using deep WGS to conclude that most of tumor evolution (incl. mutational 

selection) occurs even prior to primary diagnosis and, thus, relapse tumors share an overall 

similar landscape. This contrasts work by Kim et al. (2015b), and clinical experience, whereby 

GBM recurs tumultuously within a few months and relapse tumors show little genetic 

resemblance to primary ones. One explanation for this disparity could be the local versus distal 

regrowth of tumors that correlate with higher versus lower genetic resemblance (Kim et al. 

2015b; Körber et al., 2019). Here, we studied three primary-relapse GSC pairs that recurred 

locally, but in three different brain regions (i.e., occipital, frontal, parietal). Our results on SV 

distribution and neoloop formation in each pair, rather argue for reduced similarity. For example, 

despite a consistent increase of SVs in relapse versus primary GSCs, there was an equally 

consistent loss of primary-specific SVs in relapse genomes. This can be explained by the two 

entities belonging to different (or very early diverging) tumor evolution trajectories. In addition, 

as our samples represent the stem cell-like compartment of GBM tumors, this could also mean 

that different (or even new) GSC populations emerge after resection of the primary tumor and 
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therapy (all patients in our cohort underwent standard radiotherapy) that give rise to relapse 

tumors with different characteristics and resistance. We hypothesize that formation of such 

dynamic 3D structures as neoloops is a means for expanding regulatory options in tumor cells, 

and that neoloops are equally subject to tumor evolution as “classical” genomic alterations (e.g., 

amplifications and deletions) as they can induce significant transcriptional effects. As a result, 

high dissimilarity in SVs may be less telling than high dissimilarity in neoloops, as the latter can 

directly affect gene expression patterns. On this basis, relapse GSCs do diverge significantly from 

primary ones as regards their loop-level regulatory landscape despite local reemergence. 

 In summary, our Hi-C data constitute a valuable resource for GBM and exemplify how 3D 

genomics can be used to construct patient-specific chromosomal scaffolds. These can, in turn, 

help improve our understanding of GBM evolution and rationally identify new prognostic 

markers and therapeutic vulnerabilities in the face of extreme heterogeneity.    
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Methods 
GSC generation and cell culture. GBM tumors from 24 patients who underwent surgery at 

diagnosis (n=11) or relapse (n=17, as 3 initially-resected patients were also part of the relapse 

group) at the Institute of Neurosurgery, Catholic University of Rome, were used to produce 28 

GBM stem-like cell (GSC) lines. The key inclusion criteria were a GBM diagnosis (at first diagnosis 

or relapse; WHO Grade IV glioma), good patient functional status (Karnofsky score >70), often 

followed a standard Stupp protocol (for detailed profiles see Supplementary Table 1). Collection 

and processing of all samples was in compliance with the Declaration of Helsinki and approved 

by the Ethics Board of the hospital (Prot. ID CE 2253). Informed consent was obtained from all 

patients. For the generation of GSCs, surgically-removed specimens were subjected to 

mechanical dissociation. The resulting cell suspension was cultured in serum-free DMEM/F12 

medium (ThermoFisher Scientific) containing 2 mM L-glutamine, 0.6% glucose, 9.6 mg/mL 

putrescine, 6.3 ng/mL progesterone, 5.2 ng/mL sodium selenite, 0.025 mg/mL insulin, 0.1 

mg/mL transferrin sodium salt (Sigma Aldrich), human recombinant epidermal growth factor 

(hEGF; #AF-100-15, Peprotech; 20 ng/mL), basic fibroblast growth factor (b-FGF; #100-18B, 

Peprotech; 10 ng/mL) and heparin (2 mg/mL; Sigma Aldrich) at 37°C under 5% CO2. Actively 

proliferating cell cultures typically require 3 to 4 weeks to be established. GSCs were validated 

by Short Tandem Repeat (STR) DNA fingerprinting using nine highly polymorphic STR loci plus 

amelogenin (Cell ID™ System, Promega Inc). All GSC profiles were queried in public databases 

to confirm authenticity (Visconti et al., 2021). The in vivo tumorigenic potential of GSCs was 

assayed by intracranial cell injection into immunocompromised mice, resulting in tumors with 

the same antigen expression and histological tissue organization as the tumor of origin (Pallini 

et al., 2008; D’Alessandris et al., 2017). 

MYC inhibition and immunofluorescence experiments. For MYC inhibition experiments, GSCs 

#148 (MYChigh) and #62 (MYClow) were grown as described above, but using cell culture dishes 

coated with growth factor-reduced Matrigel (Corning) and dissociated using Accutase (Thermo 

Fisher) for passaging. Once expanded, GSCs were seeded on 12 mm sterile coverslips placed in 

each well of a 24-well tissue culture plate. Cells were treated with either 50 µM of the small 

molecule inhibitor EN4 (Selleckchem; Boike et al., 2021) or with an equivalent volume of DMSO 

for 48 h. All experiments were performed in at least three independent biological replicates. 

Following drug treatment, media was aspirated and the cells fixed in 4% paraformaldehyde (PFA) 

for 1 h at room temperature. Cells were next permeabilized in 0.5% Triton X-100 in PBS for 10 

min, and blocked with 0.5% fish gelatin in PBS for 1 h at room temperature. 

MYC- and Ki67-positive cells were evaluated via immunofluorescence. In brief, primary 

antibody stainings were at 4°C overnight, followed by 3x 5-min PBS washes. Then, coverslips 

were incubated with anti-rabbit fluorophore-conjugated secondary antibodies for 1 h at room 

temperature. The two primary antibodies used were rabbit anti-Ki67 (Merck) and rabbit anti-

MYC (Proteintech), while nuclei were also counterstained using DAPI. For Tunnel stainings, the 
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Tunnel staining kit (Promega) was used according to the manufacturer’s instructions. Finally, 

coverslips were mounted and three raw images from random fields of view per coverslip were 

acquired using a Leica SP8 scanning confocal microscope (20x or 63x objective). Maximum 

intensity projection images were used and MYC mean fluorescent intensity or the percentage 

of Tunnel-, Ki67-, and MYC-positive cells in each sample was computed using ImageJ. 

In situ Hi-C and data processing. Hi-C was performed on 0.5-1 million cells from each GSC line 

using the Hi-C+ kit (Arima Genomics) according to the manufacturer’s instructions. Following 

sequencing on a NovaSeq platform (Illumina), Hi-C reads were aligned to the reference genome 

GRCh38 using bwa mem (v0.7.17) with “-SP5M”. Invalid data, including PCR duplicates and read 

pairs mapping to the same restriction fragment, were removed using pairtools (v0.3.0; Open2C 

et al., 2020). The runHiC (v0.8.4-r1; https://zenodo.org/badge/doi/10.5281/zenodo) and cooler 

(v0.8.6; Abdennur and Mirny, 2020) packages were used to construct contact matrices at 

various resolutions. Raw Hi-C matrices were corrected using a modified matrix balancing 

method to account for CNV effects and other systematic biases including mappability, GC 

content, and restriction enzyme sites, all processed via Neoloopfinder (v0.3.0.post4; Wang et 

al., 2021a). Stratum-adjusted correlation coefficients (SCC) between any two Hi-C contact 

matrices samples were calculated using Hicrep (v0.2.3) at 10-kbp resolution (Yang et al., 2017). 

PC1 was calculated and A-/B-compartments identified at a resolution of 50 kbp using the 

cooltools (v0.3.2; Open2C et al., 2020) call-compartment function. Insulation scores and TADs 

were identified at 25-kbp resolution using the cooltools (v0.3.2) insulation function. Chromatin 

loops were identified at 5-, 10-, and 25-kbp resolution on the basis of interaction probabilities > 

0.95 and then merged using peakachu (v1.2.0; Samaleh et al., 2020). Significant differential 

loops were determined using the diffPeakachu function via the Gaussian mixture model of the 

peakachu probability score (FDR  < 5%). For 5- and 10-kbp loops, we extended flanking regions 

by 5 kbp when searching for associated TSSs to define loop anchor genes; for 25 kbp-resolution 

loops no such extension was applied. 

To compare chromatin organization between GSC subtypes, hierarchical structural features 

(PC1, insulation scores, and loops) were used for unsupervised clustering of GSC samples with 

significate subtype enrichment scores. For PC1 and the insulation score, pairwise correlations 

were calculated per each genomic bin in all samples. For loops, differential loops between GSC 

pairs were identified as described above, and then Jaccard similarity indexes based on shared 

loops were calculated, before hierarchical clustering was performed on all correlation matrices 

using average linkage and correlation distance metrics. 

Identification of structural variants (SVs) in Hi-C data. Structural variants, including inversions, 

deletions, duplications, and interchromosomal translocations, were detected and annotated 

using EagleC (v0.1.3; Wang et al., 2022) on Hi-C data, which predicts SV breakpoints at single-

kbp resolution and combines predictions from 5-, 10-, and 50-kbp resolutions. For 10- and 50-
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kbp predictions, EagleC further searches for the most probable local breakpoint coordinates 

within 5-kbp Hi-C contact maps so that all reported SVs are at the same resolution. In more 

detail, we divided the human reference genome (GRCh38) into 1-kbp bins and calculated a suite 

of metrics per bin to summarize a variety of properties with potential relevance to the 

distribution of SVs. To test for association between SV types and genome properties, each 

property was compared between SV breakpoint positions (randomly choosing one side of each 

breakpoint junction to reduce dependence between observations) and a set of 1,000 randomly-

shuffled SVs, keeping the SV breakpoint ends at same distance and chromosome as those of 

bona fide ones. For each genome property and each SV type, real observations were pooled 

together with 1,000 sets of random ones, and rank-transformed and normalized on a 0-1 scale. 

Under the null hypothesis of no event-versus-property association, the ranks of the real 

observations would follow a uniform distribution. We tested this for each SV type using a 

Kolmogorov–Smirnov test with a Benjamini–Yekutieli FDR correction across the entire suite of 

tests, and set the threshold for significance reporting at 0.01. To define duplicated and deleted 

genes induced by SVs, we used both orientation information of SV breakpoints and copy 

number profiles. Duplications were defined as intrachromosomal SVs with −+, ++, or −− 

orientations, and the genomic interval between breakpoints had a copy number ratio >1.35, 

while deletions were also defined as intrachromosomal SVs but with the +− orientation, and the 

genomic interval had a copy number ratio <0.65, considering allelic heterogeneity. Copy 

number profiles inferred from Hi-C were used in this calculation (Wang et al., 2021a). Local Hi-

C maps surrounding SV breakpoints were reconstructed and Hi-C signal across the breakpoints 

normalized due to the heterozygosity of the SVs and potential heterogeneity of our patient-

derived GSC samples. Then, neoTADs (predicted at 25-kbp resolution) and neoloops (predicted 

at 5-, 10-, and 25-kbp resolutions with an FDR <0.05 and then merged) on each local 

reconstructed map were detected. All steps were processed using Neoloopfinder (v0.3.0.post4). 

Finally, we used RNA-seq to identify fusion genes in all GSC samples using Arriba (v2.3.0) (Uhrig 

et al., 2021). In parallel, we also used Hi-C processed via the EagleC (v0.1.3) annotate-gene-

fusion function, as it can additionally detect intronic gene fusions (Wang et al., 2022). In the 

end, fusion genes detected via both approaches were merged to provide a final list. All SVs, 

CNVs, neoloops, and fusion genes are listed in Supplementary Table 3. 

RNA sequencing (RNA-seq) and data processing. GSCs grown to near-confluence in a T25 flask 

were directly lysed using Trizol (Invitrogen), total RNA was isolated using the DirectZol kit (Zymo), 

and used for standard poly(A)+ selection and library preparation with the TruSeq kit (Illumina). 

Following sequencing to at least 20 million reads on a NovaSeq platform (Illumina), reads were 

processed following the ENCODE pipeline (https://github.com/ENCODE-DCC/rna-seq-pipeline). 

Reads pairs were aligned to the human reference genome (GRCh38) and transcriptome 

(Gencode.v29) using STAR (v2.6.0c; Dobin et al., 2013). Gene and isoform expression 

quantification were performed using RSEM (v1.3.3; Li and Deqwey, 2011). Read coverage tracks 
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(BigWig) were generated and normalized by scale factor using the bamCoverage function of 

deepTools2 (v3.5.1; Ramirez et al., 2016). Differentially-expressed genes were determined using 

RSEM (v1.3.3; rsem-run-ebseq function) with an FDR cutoff of < 0.05. For the purpose of 

comparing expression levels across samples, we used ”transcripts per million” (TPM) as metric.  

For subtype-classification. 50-gene signatures for each subtype (TCGA-PN, TCGA-CL, TCGA-

MES) were used (Wang et al., 2017), and single-sample gene set enrichment analysis (ssGSEA) 

was conducted via R (ssGSEA). For each GSC, ssGSEA evaluated normalized enrichment scores 

for each signature set with TPM as input. Three two-sided P-values of each sample were 

calculated by the corresponding normalized enrichment score via the Z2p package and used to 

determine the most significant subtypes for a given GSC expression profile. 

Cleavage Under Target and tagmentation (CUT&Tag) and data processing. GSCs were lifted from 

plates using accutase (Sigma-Aldrich). Typically, 0.5 million cells were processed using the 

CUT&Tag-IT kit (Active Motif) as per manufacturer’s instructions and the resulting libraries were 

paired-end sequenced on a NextSeq500 platform (Illumina) to obtain at least 107 reads. Read 

pairs were aligned to the human reference genome GRCh38 using Bowtie2 (v2.3.4.1), PCR 

duplicates were removed using the MarkDuplicates function in Picard tools (v2.20.7), and read 

coverage tracks (BigWig) were generated and normalized with the RPCG parameter using the 

bamCoverage function of deepTools2 (v3.5.1; Ramirez et al., 2016). Peaks were called using 

SEACR (v1.3) with an FDR cutoff of <0.01 (Meers et al., 2019). 

Whole-genome sequencing (WGS) data processing. For WGS, read pairs were first mapped to 

GRCh38 by BWA mem (v0.7.17), and duplicate reads were removed by Picard (v2.20.7) as above. 

WGS-based CNV profiles and segments were calculated via the CNVkit (v0.9.9; Talevich et al., 

2016) batch function using the “--segment-method hmm-tumor -m wgs --drop-low-coverage --

target-avg-size 25000” parameters. 

TCGA data analysis. Kaplan-Meyer curves were generated via the Gene Expression Profiling 

Interactive Analysis 2 (v7.0) (GEPIA2; Tang et al., 2019) based on 162 GBM samples from TCGA. 

Median gene expression values were used as a high-low group cutoff. Expression comparison 

between samples of glioblastoma and normal tissues were performed using GEPIA2 (v7.0) 

based on publicly-available TCGA and GTEx data. 

Simulations of SV impact on 3D genome folding. In order to predict neoloops forming as a result 

of translocations, we used a polymer physics based approach previously used to predict ectopic 

interactions in cis arising in congenital disease-causing structural variations, PRISMR (Bianco et 

al., 2018). PRISMR models chromatin as a polymeric structure bearing sites of potential binding 

by proteins represented as floating particles in solution (Barbieri et al., 2012; Chiariello et al., 

2016). The thermodynamic properties of this model can be used to infer the binding site 

distribution along the polymer that best reproduces the Hi-C matrix of the genomic region 
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lacking the structural variation, while ectopic interactions are predicted by reshuffling the 

polymer in accordance with the variation and recalculating the new Hi-C contacts. Here, we 

modified the PRISMR approach to simulate neoloop formation by a translocation involving the 

MYC locus on chr8 and a large intergenic segment of chr12 (chr8: 127.71-127.78 Mbp; chr12: 

57.7-58.155 Mbp); this occurs only in sample G148 of our cohort. Similar data from G394, 

where the translocation does not occur and MYC is activated provided a negative control. 

To predict the best binding sites distribution for the hybrid region in G148, we first inferred 

them on an extended region on chr12 (i.e., chr12: 57.66-58.33 Mbp) using Hi-C data from 

G275R that carries no SVs across this segment. We then correlated the binding site distribution 

deduced from G275R with RNA-seq and H3K27ac CUT&Tag data from the same region in G148 

to ensure good prediction of Hi-C contacts via a probabilistic approach using these correlation 

to extend binding site distribution prediction around the MYC locus on chr8 (i.e., chr8: 127.71-

127.78 Mbp). Our approach repurposed PRISMR that finds the best minimum of the difference 

between the real Hi-C matrix and the reconstructed Hi-C matrix via a simulated annealing (SA) 

optimization procedure spanning the space of binding site distributions for a given number of 

classes. A contact matrix is then reconstructed via a mean field approximation using contact 

probability profiles characterized in the standard coil-globule theory of polymer physics 

(DeGennes, 1979; Barbieri et al., 2012; Bianco et al., 2018). Estimation of the best number of 

binding sites classes and the best λ (i.e., the regularization term used in PRISMR SA to penalize 

total binding site abundance and reduce overfitting) was as previously described (Bianco et al., 

2018). In brief, SA was executed for a range of λ values, and the best λ was selected when the 

cost function raised ~10% above the starting plateau (Supplementary Fig. 8b). Similarly, SA was 

executed for an increasing number of binding sites classes, M, until the cost function did not 

show significant reduction (M=11 was selected; Supplementary Fig. 8c). For this, experimental 

(input) Hi-C data was first smoothed via a Gaussian filter (0.5 bin), and similarity between the 

simulated and original contact matrices was estimated using distance-corrected Pearson’s 

correlations (which were 0.65 and 0.45 for G148 and G394, respectively). Also, to account for 

chromatin persistence length effects in our 5-kbp resolution deduced Hi-C matrices, SA was 

applied independently for different monomer lengths by interpolating and scaling contact 

probability profiles accordingly, albeit with a significant increase in computing burden. To speed 

up optimization convergence, we modified SA to generate, at every iteration, multiple tentative 

modifications of the binding site configuration (rather than one in Bianco et al., 2018) that were 

simultaneously evaluated. This allowed us to estimate an optimal monomer length ~20% longer 

than the 5kb resolution. 

To extend prediction of binding sites distribution to the MYC locus on chr8, we applied a 

probabilistic approach, using RNA-seq and H3K27ac data as a bridge between chromosomes. If 

PC is the probability to find the binding sites class C in the region of interest, PT is the probability 

to find the epigenetic track T, and corr(C,T) is the correlation between C and T, then the 
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conditional probability P(C|T) to observe C given T can be obtained by inverting the following 

equations: 

 

cov(𝐶, 𝑇) = P(𝐶 ∩ 𝑇) − 𝑃!𝑃" = P(𝐶|𝑇)𝑃" − 𝑃!𝑃" 			(1)	

𝑐𝑜𝑟𝑟(𝐶, 𝑇) =
𝑐𝑜𝑣(𝐶, 𝑇)

(𝑃!(1 − 𝑃!)𝑃"(1 − 𝑃"))#/%
						(2) 

 

Here we define corr(C,T) as the correlation between the PRISMR-inferred best binding sites 

distributions (C) and the RNA-seq and H3K27ac tracks on the extended region chr12:57.66-

58.33Mbp (T), and PC (PT) as the frequency of observing C (T) in the same region. Once we have 

P(C|T), we can estimate the probability to find a binding site of class C in position x in region 

chr8:127.71-127.78Mbp from the frequency of T as follows: 

 

𝑃!(𝑥) =7 𝑃(𝐶|𝑇&)𝑃"!(𝑥)
	

&∈)*+,-.,012%345
			(3) 

 
In this formula we neglected the intersection terms between PRNAseq and PH3K27ac as their 
correlation is quite low (<0.2). When applying (3) we considered only (C,T) couples with a 
correlation of >0.2. Equations (1-2) follow from the very definition of correlation and covariance 
where cov(C,T) = cov(1C,1T) and 1X is the indicator function, so the expected values in the 
covariance equal the probabilities: 
 

𝐸(𝑋) = 	𝑝!	; 			𝑣𝑎𝑟(𝑋) = 	𝑝!(1 − 𝑝!). 
Finally, to predict the three-dimensional structure and dynamics of the genomic region 

bearing the translocation, we employed the SBS model via Molecular Dynamics simulations in 

a classical Langevin and velocity-Verlet framework with standard parameters (Barbieri et al., 

2012; Chiariello et al., 2016; Bianco et al., 2018). The energy of interaction between binding 

sites and binders was set to 4 KBT, while the binders’ concentration was set to 100 nmol/liter. 

Randomly generated polymers and binder configurations were allowed to evolve and find the 

steady state before measuring the probability of contact. From the SBS predicted structures we 

estimated the degree of MYC triplet colocalization with region A and B with respect to what 

expected by random independent pair-wise probability via the correlation coefficient:  

𝑐𝑜𝑟𝑟(𝐴, 𝐵) = 	
𝑃67!,+,8 	− 	𝑃67!,+	𝑃67!,8

(𝑃67!,+(1 − 𝑃67!,+)	𝑃67!,8(1 − 𝑃67!,8))#/%
 

 

From the SBS polymer distance matrix we also estimated the level of in-silico single-allele 

MYC expression with respect to the average level F following the formula in Buckle et al., 2018: 

𝑙𝑜𝑔 =7 𝑑67!,&
9#

	

&
/	𝐹A	 

where dMYC,I is the distance between MYC and i corresponding to a H3K27ac or RNA-seq peak.  
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Statistics and reproducibility. All P-values were calculated using R, and their results considered 

significant if P<0.01, unless stated otherwise. 

Data availability. Due to patient protection policies, raw Hi-C, mRNA-seq, and H3K27ac/CTCF 

CUT&Tag data may only be released upon request and ethics approval. Processed data that do 

not contain identifiable information can be accessed via the NCBI Gene Expression Omnibus 

(GEO) under accession number GSE229966. GBM-associated genes were obtained from the 

DisGenet Database (v7.0) (Piñero et al., 2020). A list of cancer-related was sourced from: 

http://www.bushmanlab.org/assets/doc/allOnco_May2018.tsv, and gene-level copy numbers 

of TCGA samples from the cBioPortal (https://www.cbioportal.org/). Astrocyte RNA-seq data 

was sourced from Santos et al., 2017. 

Code availability. All code used to analyse Hi-C, RNA-seq, WGS and CUT&Tag data is available at 

https://github.com/xieting0603; the custom code used to perform simulations is available at 

https://github.com/marianoimperatore/MeanFieldChromatin.git. 

Supplementary information accompanying this manuscript includes Supplementary Figs 1-11 

and Supplementary Tables 1-3.  
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SUPPLEMENTARY INFORMATION 
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Supplementary Fig. 1. Evaluation of Hi-C reproducibility, CNV segmentation, and normalization. 
a, Heatmap showing stratum-adjusted correlation between 10 kbp-resolution raw Hi-C contact 
matrices from all GSC lines. Biological replicates from the same line (-1/-2) and their merged 
map (M) are indicated. Data from relapse GSCs are highlighted (yellow). 
b, Comparison of whole-genome CNV computations using WGS (via CNVkit) or Hi-C data from 
G181 (via Neoloopfinder). A zoom-in for the CNVs identified along chr3 is provided. 
c, Comparison of 5 kbp-resolution raw (top), ICE-normalized (middle) or CNV-normalized Hi-C 
contact matrices (bottom) around exemplary amplified regions (CNV profiles aligned below). 
d, Exemplary 5-kbp resolution Hi-C contact maps showing signal characteristic of short-range 
SVs for a deletion in G1 (left) and an inversion in G23 (right). 
e, Heatmap showing similarity of SVs discovered in Hi-C data of 12 exemplary GSCs. Biological 
replicates from the same line (-1/-2) and their merged map (M) are indicated. 
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Supplementary Fig. 2. Distribution of SVs across GSC lines. 

a, Key showing the positions of chromosomes (outer tracks) and the color code for SVs in Circos 
plots (inversions – grey; deletions – light blue; duplications – red; translocations – purple). 
b-t, Circos plots of SVs and CNVs detected in 19 GSC Hi-C datasets. Inner tracks: gain (red, >2 
copies) or loss of genomic segments (blue, <2 copies); lines: SVs as detailed in panel a.   
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Supplementary Fig. 3. Clustered SV occurrence along GSC chromosomes. 
a, Box plots showing expression levels of 1,569 gene fusions in GSCs (green) compared to their 
individual counterparts in astrocytes (black). *P <0.01, two-sided Wilcoxon rank-sum test. 
b, Exemplary Hi-C contact maps from 4 GSC lines showing SV clustering in 3-Mbp stretches of 
different chromosomes. 
c, Lollipop plots showing the number of SVs (dark blue) or genes per Mbp of each chromosome 
(light blue). Pearson’s correlation coefficient (ρ) for the two datasets is calculated. 
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Supplementary Fig. 4. Discriminating GSC subtypes based on 3D genome organization features. 
a, Heatmap showing correlation and unsupervised clustering on the basis of PC1 values called 
at 50-kbp resolution Hi-C data for 22 GSc lines. The color code (below) reflects the subtype of 
each line (proneural – brown; mesenchymal – orange; classical – green). 
b, As in panel a, but computing SCC correlation for all Hi-C contacts at 10-kbp resolution   
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Supplementary Fig. 5. SVs give rise to GSC-specific neoTADs. 
a, Exemplary Hi-C contact maps from G1 and G120 in the 1-1.5 Mbp around a translocation (top) 
and deletion breakpoint (bottom) that give rise to neoTADs (green rectangle). 
b, Bar plot showing the number of neoTADs identified in Hi-C data from each GSC line. Lines 
derived from relapse tumors are indicated (yellow). 
c, Box plots showing mean gene expression in neoTADs (green) versus neighboring TADs (grey). 
*P<0.01, two-sided Mann-Whitney U-test. 
d, As in panel d, but for mean expression of genes in GSC-specific neoTADs (green) versus that 
in GSCs without neoTADs (grey) or in astrocytes (black). *P <0.01, two-sided Wilcoxon rank-sum 
test. 
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Supplementary Fig. 6. Neoloops sustain higher gene expression in GSCs. 
a, Box plots showing expression of genes associated with neoloops (green) or non-neoloops in 
GSCs (grey) or not associated with loops (black). *: P<0.01, two- sided Mann-Whitney U-test. 
b, As in panel a, but showing mean expression of neoloop-associated genes in GSCs (green) 
versus the same genes in astrocytes (black). *: P<0.01, two- sided Wilcoxon rank-sum test. 
c, GO terms associated with genes connected via E-P (black) or P-P neoloops (light grey).  
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Supplementary Fig. 7. Neoloops in the ADAM9 locus are associated with poor prognosis. 
a, Exemplary Hi-C contact maps from G412R around a 150-kbp deletion in the ADAM9 locus. A 
neoloop forming across the breakpoint is indicated (blue circles). 
b, Box plots showing ADAM9 expression in TCGA GBM tumor and normal tissue data. *: P<0.01, 
two- sided Mann-Whitney U-test. 
c, Violin plots showing no copy number variation in the ADAM9 locus from TCGA GBM tumors 
with high (top 50%, magenta) or low HLA-G expression (bottom 50%, green). *: P>0.5, two- 
sided Mann-Whitney U-test. 
d, Kaplan-Meier survival analysis of GBM patients with ADAM9 high and low expression. P -
values were calculated using a two-sided log-rank test.  
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Supplementary Fig. 8. Selective inhibition of MYC-high GSCs by EN-4 treatment. 
a, Left: Representative immunofluorescence images of G148 and G62 cells stained for MYC. 
Right: Bar plots showing mean MYC levels (±S.D.) in each GSC line. *P<0.01, unpaired two-tailed 
Student’s t-test. 
b, As in panel a, but G148 stained for MYC after treatment or not with 50 μM EN-4 for 48 h. 
c, As in panel a, but stained for Ki-67 after treatment or not with 50 μM EN-4 for 48 h. 
d, As in panel a, but Tunnel-stained after treatment or not with 50 μM EN-4 for 48 h. 
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Supplementary Fig. 9. Simulations of the G148-specific chr8:chr12 translocation. 
a, Hi-C contact map of thr 1-Mbp chr12 segment of G148 that harbors a translocation with chr8 
(dashed line: breakpoint) aligned to classes of polymer beads deduced from simulation in the 
same G275R region (bottom), and to H3K27ac (middle) and RNA-seq signal tracks (top). 
b, Plot showing the sigmoidal behavior of the cost function with varying regularization constants 
(λ) that penalize the abundance of binding sites during annealing optimization. 
c, As in panel b, but showing exponential decay of the cost function with increasing number of 
binding site classes (M) during annealing optimization. 
d, Representative 3D rendering of the chr8 (white)-chr12 (black) translocation including MYC 
(yellow halo). Beads from classes that best predict folding are colored (green, red, and orange). 
e, Top: Triplet correlation coefficient of MYC with all pairs in the simulated G148 translocation. 
While RNAseq- and H3K27ac-enriched regions form multiple simultaneous contacts with MYC 
(positive correlation), these occur rather independently or even exclusively of one another 
(negative correlation). Bottom: As above, but for G394 where no contacts form. 
f, PCA clustering of simulated single-allele MYC distance profiles (N=1500) in G148. Individual 
models are stratified by the degree of expression and by whether this is due to contacts with 
beads of enriched H2K27ac (red), RNA-seq (blue) or to lack of contacts (grey). 
g, Per cent of simulated models plotted relative to the extrapolated mean MYC activation due 
to contacts with beads of enriched H2K27ac (red), RNA-seq (blue) or to lack of contacts (grey).  
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Supplementary Fig. 10. Comparison of SVs in primary versus relapse tumor GSCs. 
a, Circos plot of SVs and CNVs in the G275/275R primary-relapse pair. Outer tracks represent 
chromosomes, inner tracks indicate gain (red: >2 copies) or loss of genomic segments (blue: <2 
copies), and lines depict inversions (grey), deletions (light blue), translocations (purple) or 
duplications (red). 
b, As in panel a, but the G412/412R primary-relapse pair. 
c, Venn diagrams showing shared and unique SVs (top) or neoloop-associated genes (below) in 
primary (grey) and relapse G275/275R Hi-C data (yellow). 
d, As in panel c, but the G412/412R primary-relapse pair. 
e, Venn diagrams showing shared and unique up- (left) and downregulated genes (right) from 
all three primary-relapse GSC pairs. 
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f, GO terms associated with genes differentially-expressed in the primary versus relapse pairs. 
g, Left: APA plot for all loops specific to the G275 (primary) or G275R (relapse). Right: Box plots 
showing changes in the expression of genes associated with loops gained (red) or lost (blue), 
having increased (orange) or decreased H3K27ac (light blue), or not changing upon relapse 
(white). *: P<0.01, two- sided Mann-Whitney U-test. 
h, As in panel g, but for the G412/R pair. *: P<0.01, two- sided Mann-Whitney U-test. 
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Supplementary Fig. 11. Comparison of SVs in the central versus peripheral part of a GBM tumor. 
a, Circos plot of SVs and CNVs in the G452C/P pair originating from the central and peripheral 
part of a single GBM tumor. Outer tracks represent chromosomes, inner tracks indicate gain 
(red: >2 copies) or loss of genomic segments (blue: <2 copies), and lines depict deletions (light 
blue), inversions (grey), duplications (red) or translocations (purple). 
b, Venn diagrams showing shared and unique SVs (top) or neoloop-associated genes (below) in 
G452P/C data. 
c, GO terms associated with genes differentially-expressed in the 452C versus the 452P line. 
d, APA plots for all loops specific to the G452C or G452P line. 
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Supplementary Table 1. Clinical features of GBM patients and tumors. 

GSC# age sex sympt 
tumor 

type 

tumor 

location 
stupp  MGMT IDH EGFR VEGF PFS OS 

1 40 M 2.5 primary temporal yes M wt neg hyper 6 12.5 

23 77 M 2 primary parietal no UM wt neg hyper 1 2 

28 72 M 1.5 primary frontal yes M wt neg hyper 6 11.5 

61 59 M 2 primary occipital no UM wt pos normal 3 6 

62 64 M 36 relapse frontal yes M wt neg hyper 10 14 

83 52 M 0.5 primary temporal yes UM wt pos hyper 4 8 

120 53 M 25 relapse parietal yes UM wt neg hyper 8 16.5 

148 55 M 6 relapse parietal yes UM wt neg hyper 5 8 

163 56 M 5 primary parietal no UM wt neg normal 1 2 

171 74 M 13 relapse frontal yes M wt pos normal 10 17 

181 64 F 15 relapse occipital yes M wt pos hyper 12 17 

208 66 M 22 relapse temporal yes UM wt neg hyper 20 33 

213 50 M 18 relapse frontal yes M wt neg hyper 9 10.5 

275 
58 M 2 

primary 
occipital yes M wt neg hyper 6 12 

275R relapse 
318 69 M 25 relapse temporal yes M wt neg N/A 21 38 

323 51 F 19 relapse parietal yes UM wt neg hyper 4 28 

351 52 F 1 primary temporal yes M wt pos normal 84 84 

390 49 M 0.5 relapse temporal yes M wt pos hyper 23 32.5 

394 64 M 1 relapse frontal yes M wt pos hyper 5 23 

402 
58 M 0.5 

primary 
parietal yes UM wt neg hyper 9 23 

402R* relapse 

412 
56 F 1 

primary 
frontal no UM wt neg hyper 22 31 

412R** relapse 

450 76 F 1 primary temporal no M wt neg hyper 3 6 

452P/C§ 67 F 46 relapse temporal no M wt pos hyper 1.5 2 

457 59 F 0.5 relapse frontal yes M wt pos hyper 9.5 14.5 

Age is displayed in years; symptoms’ duration is displayed in months; M/UM, methylated/unmethylated; 

N/A, not available; PFS, progression-free survival displayed in months; OS, overall survival displayed in 

months; *initially named 428; **initially named 486; §P/C, biopsy peripheral/central to the tumor. 
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Supplementary Table 2. Statistics and quality metrics of Hi-C experiments. 

GSC# total read pairs 
% uniquely 

mapped  
valid read pairs 

% long-range 

interactions 

% trans 

interactions 

1 625,787,061 82.45% 397,322,201 38.17% 27.45% 

23 896,831,218  74.97% 517,118,202  48.77% 23.18% 

28 465,573,200  82.77% 292,536,305  32.87% 26.50% 

61 469,087,274  76.98% 300,832,405  44.71% 21.66% 

62 556,915,214  78.36% 363,717,617  50.87% 18.05% 

83 640,920,736  77.47% 405,480,447  52.68% 17.51% 

120 576,586,441  80.57% 375,550,401  45.03% 20.79% 

148 566,598,758  78.58% 367,401,496  44.31% 24.01% 

163 658,302,887  80.73% 414,448,463  41.55% 18.65% 

171 633,593,298  80.15% 419,365,905  43.29% 20.96% 

181 302,003,570  79.97% 196,344,108  41.91% 22.81% 

208r1 660,900,454  83.97% 431,713,920  32.44% 16.05% 

208r2 628,126,052  78.23% 386,221,051  33.85% 42.22% 

213r1 874,108,698  85.06% 519,662,045  24.35% 21.84% 

213r2 622,608,520  77.22% 387,808,004  43.20% 29.62% 

275 694,194,997  79.27% 446,298,283  43.02% 20.32% 

275R 506,647,616  79.57% 330,626,223  41.62% 20.36% 

318 575,672,446  76.63% 368,523,495  47.61% 19.29% 

323 605,260,377  78.10% 391,679,652  47.02% 22.11% 

351 743,980,073  81.42% 490,730,702  54.00% 18.27% 

390 619,497,564  83.23% 401,753,521  33.80% 24.30% 

394 657,571,552  79.38% 422,381,344  47.95% 22.94% 

402 623,636,610  78.58% 360,887,948  51.00% 23.18% 

402R 727,935,611  81.14% 473,206,854  48.53% 25.29% 

412 550,364,451  79.88% 363,954,866  47.25% 18.87% 

412R 708,374,421  81.80% 452,528,651  50.61% 17.97% 

450 750,273,787  77.33% 463,004,321  48.16% 19.66% 

452C 653,145,500  78.91% 415,038,329  44.64% 21.29% 

452P 597,888,199  79.03% 384,384,412  47.34% 21.86% 

457 855,162,397  84.10% 487,186,793  30.07% 25.35% 

r1/r2 designate independent replicates; GSCs ending in R designate the relapse sample in a pair. 
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Supplementary Table 3. Catalogue of all CNVs, SVs, neoloops, and gene fusion events identified 
using Hi-C in all GSCs (provided in .xlsx format). 
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