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Abstract

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and
transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy,
and inevitably recurrent. However, little is known about how the spatial organization of GBM
genomes underlies this heterogeneity and its effects. Here, we compiled a cohort of 28 patient-
derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-
of-origin; six of these were primary-relapse tumor pairs from the same patient. We generated
and analyzed kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to
systematically map >3,100 standalone and complex structural variants (SVs) and the >6,300
neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data
with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic
occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of
new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can
help us infer patient-specific vulnerabilities. Together, our data provide a resource for dissecting

GBM biology and heterogeneity, as well as for informing therapeutic approaches.
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Introduction

Glioblastomas (GBMs) that are wild-type for the IDH gene constitute the most frequent primary
brain malignancy in adults (Ostrom et al., 2022). Despite their surgical resection, GBM tumors
inevitably recur, are resistant to chemotherapy and highly invasive. Hence the median patient
survival is ~15 months from the time of diagnosis (Johnson and O’Neill, 2012), and therapeutic
options at recurrence scarce (Wick et al., 2017; Lombardi et al., 2019). This is attributed to the
documented genomic (Meyer et al., 2015; Shen et al., 2019; Kim et al., 2015a; Francis et al,,
2014), epigenomic (Capper et al., 2018; Klughammer et al., 2018), and transcriptional
heterogeneity of GBM tumors (Capper et al., 2018; Shen et al., 2019).

In normal tissue, the three-dimensional (3D) organization of chromosomes coordinates
the activation and repression of genes to give rise to homeostatic transcriptional programs
(Rada-Iglesias et al., 2018; van Steensel and Furlong 2019; Hafner and Boettinger, 2023).
However, this 3D organization is disrupted at multiple levels in the context of human disease,
including cancer (Spielmann et al., 2018; Ibrahim and Mundlos, 2020; Danieli and Papantonis,
2020). Structural (SVs) and copy number variants (CNVs) in tumor cells can rewire the 3D
genome in ways that allow for the aberrant activation of oncogenes (Hnisz et al., 2016;
Weischenfeldt et al., 2017) or the repression of tumor suppressors (Xu et al., 2022a). For
example, deletion of a boundary insulating two neighboring topologically-associating domains
(TADs; Beagan and Phillips-Cremins, 2020) can lead to aberrant interactions between an
oncogene in one TAD and active enhancers in the other, a phenomenon known as “enhancer
hijacking” (Groschel et al., 2014; Hnisz et al., 2016; Flavahan et al., 2016; Akdemir et al., 20203;
Wang et al., 2021a). In fact, the overall distribution of somatic cancer mutations seems to be
guided by 3D genome folding (Akdemir et al., 2020b).

Recently, it became apparent that by mapping 3D genome organization using Hi-C (the
whole-genome variant of the chromosome conformation capture technology; reviewed in
Denker and de Laat, 2016), we can simultaneously obtain a highly-resolved map of SVs and CNVs
genome-wide (Harewood et al., 2017). The emergence of tools like hicbreakfinder (Dixon et al.,
2018) and EagleC (Wang et al., 2022) allows for a systematic detection of SVs/CNVs in Hi-C data.
Via this type of data analysis, the functional impact of SVs on subtype-specific cancer gene
regulation (Xu et al., 2022a; Liu et al., 2023), as well as on a compendium of cancer lines has
been investigated (Dixon et al., 2018; Wang et al., 2021a; Xu et al., 2022b). Nonetheless, our
understanding of 3D genome organization in GBM remains limited due to the small number of
samples analyzed to date (i.e., only 5 tumors by Harewood et al., 2017, and just 4 cell lines by
Johnston et al., 2019, Wang et al., 2021b, and Yang et al., 2022).

To address this and study the impact of patient-specific SVs, we derived glioblastoma stem
cell-like cells (GSCs) from 24 IDH-wt GBM patients—for three of which we could also sample
both the primary and the relapse tumor (see Supplementary Table 1). It is well acknowledged

that the subset of GBM tumor cells with stem-like attributes are implicated in essentially all
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aspects of GBM initiation, maintenance, therapy resistance, recurrence, and tissue invasion in
vivo (Liau et al., 2017; Ricci-Vitiani et al., 2010). Given that patient-derived GSCs retain the
genomic and functional traits of their tumors of origin (Lathia et al., 2015; Jacob et al., 2020;
Pine et al., 2020), they hold significant potential for translational modeling of GBM. Here, we
generated 28 high-resolution Hi-C datasets, and analyzed them to map structural variation in
each GSC. We discovered remarkable pervasiveness and variance in SV distribution across our
cohort, which gave rise to patient-specific ‘neo-TADs” and ‘neoloops’. We combined rearranged
chromosomal scaffolds with matching transcriptome and histone mark data to understand how
GBM gene expression and tumor recurrence are supported by such extensive heterogeneity in

their 3D genome folding.

Results

Pervasive structural variants cluster along GSC chromosomes

We applied in situ Hi-C to 28 low passage IDH-wt GSCs, including pairs from primary and
recurrent tumors from 3 patients (Fig. 1a) to generate a total of ~19 billion read pairs. Following
stringent filtering, we were left with >0.4 billion valid read pairs per patient on average (63.4%
mean data usage; Supplementary Table 2). This allowed us to produce 5-kbp resolution contact
maps for each GSC, and confirm reproducibility by generating additional replicates from two
randomly-selected lines (SCC>0.93; Supplementary Fig. 1a).

We next addressed CNV prevalence in cancer cells (Shao et al., 2019) that can distort Hi-C
contact maps. We verified that CNVs identified using whole-genome sequencing (WGS) data
from an exemplary line, G181, were essentially identical to those computed via Hi-C data
(Supplementary Fig. 1b). Then, we applied CNV-based matrix-balancing (Wang et al., 2021a) to
Hi-C contact maps to alleviate any distortions that standard matrix balancing could not
(Supplementary Fig. 1c). CNV-balanced matrices were next used for SV discovery in our cohort.

For a comprehensive identification of SVs in our cohort, we applied EagleC to 5-kbp
resolution Hi-C matrices (Wang et al., 2022). SVs, even those with breakpoints separated by
<100 kbp, were marked by characteristic signal in our Hi-C matrices and could be detected with
high sensitivity (Supplementary Fig. 1d). In total, we mapped 2,675 SVs across 28 Hi-C datasets,
on top of 591 complex SVs (all listed in Supplementary Table 3). These comprised 737 (27.6%)
interchromosomal translocations, plus 713 (26.7%) intrachromosomal inversions, 652 (23.4%)
deletions and 573 (21.4%) duplications. Of the 1,938 intrachromosomal SVs, 57.6% were short-
(<2 Mbp) and 42.4% long-range (=2 Mbp) (for an example see Fig. 1b,c). Detection of SVs was
robustly reproducible between replicates from the same line (mean Jaccard similarity index =
0.63; Supplementary Fig. 1e). As a control, EagleC applied to astrocyte in situ Hi-C (Wang et al.,
2021b), only returned 7 SVs. SV occurrence across GSCs was pervasive; 16 out of 28 samples
carried >80 SVs (the least number of SVs was 24 in G452C and the most was 182 for G450).
Notably, relapse tumor-derived GSCs usually carried more SVs than primary ones (Fig. 1d). Thus,

our analyses demonstrate the sensitivity and reproducibility of SV discovery in our cohort.
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Fig. 1. Pervasive and uneven SV occurrence discovered by Hi-C analysis of patient-derived GSCs.

a, Overview of our cohort from 28 primary (grey) or relapse GSCs (yellow). NGS data generated from each

GSC are indicated. *: WGS data is available for G181;-R designates GSCs derived from the relapse tumor

in a pair, and —C/P GSCs derived from the central or peripheral part of the same tumor. b, Heatmap of

500 kbp-resolution Hi-C data along all G457 chromosomes. Strong interchromosomal signal represent

translocations. ¢, Circos plot of SVs and CNVs detected in G457 Hi-C. Outer tracks: chromosomes; inner

tracks: gain (red: >2 copies) or loss of genomic segments (blue: <2 copies); lines: translocations (purple),

inversions (grey), deletions (light blue) or duplications (red). d, Bar plot showing the number of SV types

identified in each GSC line. Lines from relapse tumors are highlighted (yellow). e, Jaccard similarity index

of SVs discovered in different Hi-C datasets. f, Enrichment of breaks from all SV types (columns) relative

to GC content, gene density, gene expression, A/B compartment or TAD boundaries (rows). Each density

curve represents the quantile distribution of the particular genomic feature at SV breakpoints compared

to random positions. **: FDR<107 or ***: FDR<10" calculated after multiple hypothesis correction on a
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one-sided Kolmogorov—Smirnov test based on a sample size of 5,078 genomes containing SVs. g, Mean
enrichment of GBM-associated gene TSSs in the 100 kbp around TAD boundaries from astrocytes with
an SV break in GBM (red), all SV breaks (blue) or all TAD boundaries (dashed black). h, Ideogram of chr7
showing SV distribution (top) and gene density (bottom) in G181. i, Exemplary Hi-C contact map from
G181 in a 2-Mbp region of chr7 (magenta in panel h) harboring multiple SVs (circles).

We next asked what the degree of SV recurrence is across our samples. Similarity analysis
(Fig. 1e) and one-to-one comparisons of Hi-C-deduced SVs from all samples (Supplementary Fig.
2) showed remarkable heterogeneity among GSCs and little recurrence (mean Jaccard index =
0.02). Even mutations well-known to associate with GBM were only found in a subset of our
samples. For example, EGFR locus amplification (Brennan et al., 2013) associated with SVsin 9
out of 28 lines, while CDKN2A deletion (Hsu et al., 2022; Funakoshi et al., 2021) was detected
in 17 out of 28 lines. Finally, SVs found in GSC pairs from primary-relapse tumors of the same
patient showed somewhat higher overlap (Jaccard index = 0.21). This did not increase much
(Jaccard index = 0.42) even when SVs from the central and peripheral part of the same tumor
(i.e., G452C/P) were considered, highlighting the intra-tumor heterogeneity of GBM.

Despite their uneven distribution across our cohort, SV breakpoint emergence correlated
well with particular genomic features. For example, genomic duplications were strongly biased
for strongly transcribed, GC-rich segments in the A-compartment involving breakpoints close to
TAD boundaries (using astrocyte Hi-C as reference). Translocations and inversions also involved
gene-/GC-rich loci, but could be both near and distal to TAD boundaries, which agrees with the
notion that active gene co-association promotes rearrangements (especially translocations;
Zhang et al., 2012; Sidiropoulos et al., 2022). Conversely, deletions mostly occurred in AT-rich
segments of the B-compartment (Fig. 1f). Overall, we recorded significant enrichment for SVs
occurring in the active chromatin A-compartment, particularly in gene-rich stretches, and in the
vicinity of TAD boundaries (Fig. 1f). This is in line with the preferential occurrence of DNA
double-strand break hotspots within accessible, actively transcribed chromatin (Mourad et al.,
2018; Gothe et al., 2019). Notably, transcription start sites (TSSs) of genes linked to the GBM
transcriptional program (as derived from DisGenet; Pifiero et al., 2020) were markedly enriched
at breakpoint-associated TAD boundaries (Fig. 1g), suggesting that TAD boundary disruption can
favor oncogene dysregulation and malignant transformation (Flavahan et al., 2016; Hnisz et al.,
2016; Kloetgen et al., 2020). This was also true of SVs that result in gene fusions. We identified
421 fusion events in mRNA-seq data generated from each GSC (Fig. 1a), but as Hi-C is more
sensitive in detecting fusion positions within introns (Wang et al., 2022), we identified another
902 fusions therein (Supplementary Table 3) with 137 events identified by both methods. These
gene fusions were expressed at significantly higher levels than their counterparts in astrocytes

(Supplementary Fig. 3a).
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Finally, rather than stochastically distributed along chromosomes, SVs show a propensity
to cluster together, especially in GC-/gene-rich segments (Fig. 1h and Supplementary Fig. 3b).
Such high degree of breakpoint clustering (almost 43% of SVs, i.e. 2,298 out of 5,350, were in
clusters) led to complex rearrangements within relatively small (<2 Mbp) genomic stretches (Fig.
1i and Supplementary Fig. 3c). Notably, smaller chromosomes like chr12 (also remarked on in
TCGA WGS data analysis; Brennan et al., 2013), 16, and 17 carried a disproportionately high
density of SVs (i.e., >3.5 SVs/Mbp compared to a median of <2 SVs/Mbp; Supplementary Fig.
3d). As a whole, our results highlight structural variation in GSCs as a highly pervasive source of

heterogeneity bound to change the 3D regulatory architecture of GBM tumors.
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Fig. 2. GBM transcriptional subtypes are poorly reflected in Hi-C data.

a, PCA plot of RNA-seq replicates from 28 GSC lines classified as mesenchymal (green), classical (orange)
or proneural (brown). Data from primary or iPSC-derived astrocytes provide a control. b, Expression-
based subtyping of GSCs into mesenchymal (ME), proneural (PN) or classical (CL) based on ssGSEA
enrichment scores (top) and empirically-derived P-values (bottom) for each signature. 22 out of 28 lines
showed significant (P<0.01; Fisher’s exact test) association with one subtype. GSCs derived from relapse
tumors are highlighted. ¢, Unsupervised hierarchical clustering of 22 GSC lines based on insulation scores
calculated from 25 kbp-resolution Hi-C data. The subtype of each is indicated by colored boxes (below).

d, As in panel ¢, but computing the Jaccard similarity index for loop overlap between GSCs.

GSC-specific chromatin organization blurs transcriptional subtype classification
A well-established layer of GBM heterogeneity concerns gene expression profiles. Nonetheless,
analyses of bulk transcriptomic data have been used to identify three major subtypes: classical

(TCGA-CL), proneural (TCGA-PN), and mesenchymal (TCGA-MES) (Verhaak et al., 2010; Neftel
6
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et al., 2019; Alhalabi et al., 2022).

To classify our GSC cohort according to these three subtypes, we used our mRNA-seq data.
GSCs separated well from astrocyte profiles on PCA plots, but generated a continuum amongst
themselves (Fig. 2a). Samples from the same patient (i.e. primary-relapse or central-peripheral
GSC pairs) separated the least, suggesting that intratumor transcriptional differences are less
than intertumor ones (e.g., G402 and G402R in Fig. 2a). We then applied single-sample gene
set enrichment analysis (ssGSEA) using the CL/PN/MES signatures deduced previously (Wang et
al., 2017). Out of our 28 samples, 11 showed significant enrichment (empirical P-value < 0.01)
for CL, 9 for MES, and 2 for PN markers (Fig. 2b); 6 GSCs with ambiguous scores were not
considered in the ensuing analysis.

Subtypes of other cancer entities (e.g., acute myeloid leukemia) were recently shown to
classify on the basis of large-scale (i.e., compartmental) 3D genome organization assessed using
Hi-C (Xu et al., 2022a). This motivated us to ask whether different hierarchical features in our
Hi-C data would also allow classification of GSCs into the three subtypes deduced above. To this
end, we used different features starting with compartments (using the first principal component
of 40-kbp resolution Hi-C data eigenvectors), and continuing with insulation scores delineating
TAD boundaries (calculated at 25-kbp resolution), Hi-C contacts (at 10-kbp resolution) or loops
(at 5-kbp resolution). Although differential PC1 calling, reflecting GSC-specific changes in eu-
/heterochromatin, broadly separated CL from MES lines (but less so PN ones; Supplementary
Fig. 4a), all other higher-resolution features discriminated only moderately (insulation score/Hi-
C contacts) or less (loops) between the subtypes (Fig. 2c,d and Supplementary Fig. 4b). We
attributed this to the high structural heterogeneity that underlies individuality of each patient-
derived line. Even samples with very similar transcriptional profiles like the MES lines G83 and
G457 (see proximity in the PCA plot of Fig. 2a) share <10% of their SVs. As a result, their 3D
genome features diverge profoundly and, thus, demix during clustering (see Hi-C dissimilarity

in Fig. 2c,d and Supplementary Fig. 4a,b).

GSC-specific SVs underlie neo-domains and neo-loops formation

Induction of SVs along chromosomes does not simply disturb the integrity of chromosomes and
the continuity of gene loci, but also reorganize 3D spatial interactions of chromatin to give rise
to new topological domains, termed ‘neoTADs’ (Franke et al., 2016; Dixon et al., 2018). We
mapped neoTAD formation across all 28 Hi-Cs to identify a total of 2,222 neoTADs with a median
size of 500 kbp arising from all SV types (Supplementary Fig. 5a,b). Different GSCs carried vastly
different numbers of neoTADs (from 10 in G452C to 244 in G450; Supplementary Fig. 5b), which
again highlights the remarkable heterogeneity of these GBM specimens. Notably, expression of
genes harbored in neoTADs was consistently higher than that of genes in neighboring TADs
(Supplementary Fig. 5¢) as well as that of the same genes in astrocytes or in GSCs not forming
that specific neoTAD (Supplementary Fig. 5d). Thus, GBM neoTADs support GSC-specific gene

activity.
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Fig. 3. Extensive neoloop occurrence supports GSC-specific programs.

survival (months)

a, Exemplary Hi-C contact maps from G275R and G402R around a 50-kbp deletion in the HLA locus.

Neoloops forming across the breakpoint are indicated (blue circles). b, Bar plot showing the number of

neoloops identified in each GSC line. Lines derived from relapse tumors are indicated (yellow). c, Line

plot showing distribution of CTCF binding in the 400 kbp around all neoloop anchors. Inset: Aggregate

peak analysis (APA) plot for all neoloops detected. d, Bar plot showing the percent of neoloops of different

sizes. e, Signatures of neoloop-associated genes from the DisGeNET database (P-values calculated using

Fisher’s exact tests). f, APA plots of neoloops specific to G402R or G148. g, Box plots showing expression

of genes associated with GSC-specific neoloops from panel f. h, Box plots showing HLA-G/-J expression in
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TCGA GBM tumor and matching normal tissue. i, Violin plots showing copy number variation in the HLA-
G locus from TCGA GBM tumors with high (top 50%, magenta) or low HLA-G expression (bottom 50%,
green). P>0.5; two-sided Mann-Whitney U-test. j, Kaplan-Meier survival curves for GBM patients with
HLA-G (left) or HLA-J (right) high/low expression. P-values were calculated using a two-sided log-rank test.

Similarly to neoTADs, SVs also gave rise to ‘neoloops’ characteristic of each patient-derived
line (Fig. 3a). We used Neoloopfinder (Wang et al., 2021a) to identify 6,331 neoloops in locally
reconstructed and normalized for allelic effects Hi-C maps from all 28 GSCs (FDR cutoff <0.95;
Supplementary Table 3). Again, the number of neoloops in each GSC varied significantly (from
12in G28t0 1,327 in G148, with a median of 120; Fig. 3b), but we saw little correlation between
the number of SVs and neoloops in our cohort (p = 0.29).

Approximately 50% of neoloops in GSCs for which we have CTCF binding information (Fig.
1a) were anchored at CTCF-bound sites (i.e., 772 out of 1,579; Fig. 3c), with 88.5% of them
abiding to the expected convergent CTCF motif orientation (Rao et al., 2014). More than 90%
of neoloops were <0.8 Mbp in size (Fig. 3d), and we identified 2,053 genes associating with
neoloops (i.e., within =5 kbp of either anchor), of which 858 were protein-coding. 131 of these
protein-coding genes recurrently associated with neoloops, albeit at a low mean recurrence of
2. Amongst them, 33 (25.2%) have been reported as GBM-related (e.g., EGFR, PTEN, MTOR)
and 29 (22.1%) as other cancer-associated genes (e.g., AGAP2, SOX2). A query for all neoloop-
associated genes in DisGeNET returned a strong enrichment for genes characteristic of GBM
programs (Fig. 3e), including genes with a high disease specificity index, like SYF2 or AGAP2.
Notably, neoloops sustained significantly higher expression of associated genes in a GSC-specific
manner (Fig. 3f,g and Supplementary Fig. 6a,b).

Much like SV profiles that were highly heterogeneous, neoloop recurrence between GSCs
was limited. For instance, the most correlated at the loop level unpaired samples, G1 and G213
(Supplementary Fig. 4b), shared <10% of their neoloops, while even the intra-tumor G452C/P
lines shared <42%. Nevertheless, even limited recurrence becomes relevant in cases where
neoloops associate with particular gene loci in different GSCs. In total, 858 protein-coding (plus
1195 non-coding) genes associated with neoloops in our cohort. Of these, 40 protein-coding
(plus 59 non-coding) genes were neoloop-associated in 3 or more GSCs. On such example were
the neoloops forming around the HLA-F/-G/-J locus following a 50-kbp deletion in 8 samples;
these neoloops connected the HLA-G and HLA-J TSSs (Fig. 3a). HLA-G expression has been
associated with melanoma and breast cancers (Yan et al., 2005; He et al., 2010), but only
anecdotally with GBM (Wastowski et al., 2013), while HLA-J is considered a pseudogene with
prognostic value in breast and skin tumors (Wirfel et al., 2020). We analyzed TCGA data from
GBM patients to find that both HLA-G and -J were significantly overexpressed in tumors versus
control tissue (Fig. 3h), and that this was not due to gene amplification (Fig. 3i). Importantly,
HLA-G/-J overexpression is associated with poorer patient survival overall (Fig. 3j). We could

make similar observations for neoloops forming in the ADAM9 locus (Supplementary Fig. 7a)
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that encodes a cell-surface protease involved in solid tumor biology (Oria et al., 2018). ADAM9
is overexpressed in TCGA GBM tumors, not due to gene amplification, and again associates with
poor patient survival (Supplementary Fig. 7b-d). This data suggests that neoloop formation is a
key contributor to patient-specific gene expression, thereby helping us identify new GBM

dependencies and prognostic markers.
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Fig. 4. Enhancer-promoter neoloops control GSC-specific gene regulation.

a, Exemplary Hi-C contact map from G275R around a 1.24-Mbp inversion in the IFIT1 locus. Enhancer-
promoter neoloops forming across the breakpoint are indicated (blue circles). The same locus of G412,
where no inversion occurs, provides a control. b, Plot showing mean (line) and GSC-specific IFIT1 RNA-
seq levels (circles) in lines with (orange) or without the inversion (grey) or in astrocytes (black). *: P<0.01,
unpaired two-tailed Student’s t-test. ¢, Bar plot showing the fraction of neo- (orange) or non-neoloops
around SVs (grey) representing enhancer-promoter (E-P), enhancer-enhancer (E-E), promoter-promoter

(P-P) or other interactions. *: P<0.01, Fisher’s exact test d, Box plots comparing expression of genes
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associated with enhancer-promoter (E-P), promoter-promoter (P-P) or other neoloop or non-neoloops.
*. P<0.01, two-sided Mann-Whitney U-test. e, As in panel d, but for the mean expression of neoloop-
associated genes in GSCs with (green) or without these neoloops (grey) or in astrocytes (black). *: P<0.01,

two-sided Wilcoxon rank-sum test. f, Heatmap showing SV occurrence of known cancer-associated genes.

Enhancer-promoter neoloops explain GSC-specific gene dysregulation
Given that expression of genes was higher in GSCs where they associate with neoloops
(Supplementary Fig. 6a,b), we wanted to further investigate how neoloops contribute to gene
dysregulation in GBM. To this end, we used data from ten GSCs for which we also generated
H3K27ac genome-wide profiles (Fig. 1a). Using this data we were able to identify putative active
enhancers in each line, and saw that many of the neoloops we had charted actually represented
enhancer-promoter (E-P) contacts driving GSC-specific gene expression (see the example of
IFIT1 in Fig. 4a,b). Of 4,343 neoloops and 11,031 non-neoloops in these ten GSC lines, E-P
neoloops were significantly overrepresented (35.3%) compared to E-P non-neoloops (25.5%),
while the converse applied to promoter-promoter (P-P; 9.2% neo- vs 16.9% non-neoloops) and
other loops (33.3% neo- vs 66.6% non-neoloops; Fig. 4c). Critically, E-P neoloops linked
enhancers to 192 gene TSSs in these GSCs to induce expression levels higher than those of 801
genes linked to non-neoloop enhancers. This also held true for P-P neoloops and their 243
associated genes versus 1,055 non-neoloop-associated ones (Fig. 4d). Similarly, the levels of
123 E-P neoloop-associated genes were significantly higher in these ten GSCs compared to lines
where neoloops do not form (Fig. 4e). GO term analysis of E-P/P-P genes showed that they were
involved in key cancer-related pathways like ‘GBM signaling’, ‘cell cycle regulation’, ‘senescence’
or ‘chromatin organization’ (Supplementary Fig. 6¢) arguing for the tumor-specific importance
of E-P neoloops.

Finally, we compiled a list of 138 known GBM-/cancer-related genes that we could link with
a neoloop and with at least one SV-linked event (i.e., with a deletion, duplication or fusion) in
our cohort. Of these, 43 actually associated with at least two such events across our samples,
and we saw that dysregulation could be attributed just as often to neoloop formation as to any
other SV event (Fig. 4f). These observations suggest that E-P neoloops are a regulatory hallmark
of GBM, and highly selected for in the course of tumor development to sustain favorable gene

expression.

Modeling neoloop formation underlying selective GBM dependencies

The pervasive and uneven emergence of SVs and neoloops in our cohort would inevitably give
rise to GSC-specific E-P interactions and ensuing gene activation. This creates an opportunity of
potential translational value: to identify tumor-specific dependencies arising from E-P neoloops
activating druggable gene targets or pathways. To exemplify this, we selected G148 in which
MYC is markedly overexpressed, not due to gene amplification, but because of a translocation
between chr8 and 12. This brings into spatial vicinity the MYC locus (on chr8) with a cluster of

enhancers (on chrl2) via neoloop formation (Fig. 5a). This “enhancer hijacking” resulted in >10-
11
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fold increase in MYC levels in this one line compared to all other GSCs (or astrocytes; Fig. 5b),
which was also reflected on MYC protein levels (Supplementary Fig. 8a).

We next tested whether targeting MYC would selectively inhibit G148 growth. We treated
G148, as well as G62 cells, where no enhancer hijacking and no MYC overexpression occurs (Fig.
5b), with a new small molecule inhibitor, EN-4. EN-4 specifically targets Cys171 of MYC to form
a covalent bond and impair its binding to target genes (Boike et al., 2021). Treatment of GSCs
with EN-4 led to selective suppression of MYC and cell proliferation (marked by Ki-67expression)
in MYC-overexpressing G148, but not in G62 (Fig. 5¢c and Supplementary Fig. 8b,c). Moreover,
EN-4 treatment led to significant increase in DNA damage and cell death in G148 compared to
G62 as deduced from Tunnel assays (Fig. 5d and Supplementary Fig. 8d).
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Fig. 5. GSC-specific dependencies uncovered by neoloop analyses and simulations.

a, Exemplary Hi-C contact map from G148 around a translocation breakpoint involving the MYC locus.
Enhancer-promoter neoloops forming across the breakpoint are indicated (blue circles). Absence of
neoloops in G394, where no translocation occurs, provides a control. b, Plot showing mean (line) and
GSC-specific MYC expression (circles) in cells with (orange) or without the chr8:chr12 translocation (grey)
or in astrocytes (black). *: P<0.01, unpaired two-tailed Student’s t-test. ¢, Plots showing the percentage
of cells staining positive for MYC or Ki-67 in untreated (red) or EN4-treated MYC-high G148 (green) from
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at least 3 independent experiments; treatment of the MYC-low G62 provides a control. d, As in panel c,
but showing the percentage of cells positive for Tunnel stainings from at least 3 independent experiments.
e, Heatmaps showing correlation of each class of polymer beads with H3K27ac and RNA-seq data from
G148 that carries the chr8:chr12 translocation (left) or G394 that does not (right). Classes with a
correlation of >0.2 are shown. f, Left: Contact maps from Hi-C (top) or simulations (bottom) around the
translocation breakpoint in G148 are shown aligned to polymer bead classes. Enhancer-promoter
neoloops forming across the breakpoint are indicated (blue circles). Right: As in the left hand-side panel,
but for G394 that does not carry the translocation. g, Representative 3D renderings of the two major
configurations resulting from chr8:chr12 translocation involving the MYC locus. Beads from the binding
classes 1, 7, and 11 that best predict folding are color-coded as in panel d, and differential MYC-enhancer

interactions indicated (yellow halo).

Given the selective dependency of G148 on MYC overexpression, we argued that being
able to predict the formation of gene-activating E-P neoloops on a patient-specific basis could
guide treatment options. To achieve this, we expanded on the PRISMR in silico approach that
was previously developed to predict ectopic interactions due to congenital disease-causing SVs
(Bianco et al., 2018). In its original implementation, PRISMR could only predict ectopic
interactions in cis by inferring binding site distribution along the polymer that best reproduces
the Hi-C matrix of a genomic region in its wild-type configuration. Then, ectopic interactions are
predicted by reshuffling the polymer in accordance to the SV and recalculating the new Hi-C
contacts (Bianco et al., 2018). As we wanted to model a structural variant that occurs in trans,
we modified the approach to infer binding site distribution in an extended segment of chrl2
(i.e., chrl2:57.66-58.33 Mbp) using data from G275R that does not carry any SVs in the region,
but in conjunction with RNA-seq and H3K27ac signal from G148 to ensure faithful Hi-C contact
prediction using a probabilistic approach (see Supplementary Fig. 9a and Methods for details).
Following optimization of binding classes (Supplementary Fig. 9b,c), we found that the three
best-correlated ones recapitulate our input RNA-seq and H3K27ac profiles (Fig. 5e and
Supplementary Fig. 9a).

In turn, the inferred classes of binding sites gave rise to highly similar contact matrices for
the experiment and simulation (p=0.65). In G148, we could predict the formation of neoloops
connecting MYC on chr8 to the active enhancers on chr12 (Fig. 5f, left), while for G394, where
no translocation occurs, no neoloops were predicted (Fig. 5f, right). This was also reflected in
3D models rendered from the simulations, whereby a hub between the hijacked enhancers and
the MYC locus formed in G148 (Fig. 5g), but not G394 data (Supplementary Fig. 9d). Moreover,
our 3D models showed a largely mutually exclusive formation of MYC promoter contacts with
either class-1 or-7 enhancer beads (Fig. 5e-g and Supplementary Fig. 9e). These differential
conformations (Fig. 5g) gave rise to a heterogeneous population of 3D models, which reflected
different predicted MYC activation levels (calculated as in Buckle et al., 2018). Models with
different enhancer-promoter contacts cluster away from one another and lead to variable levels

of MYC activation (Supplementary Fig. 9f,g). Thus, we can now model the impact of SVs in cis
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and in trans using a minimal set of epigenetic tracks to assess expression and structural

heterogeneity, and potentially uncover patient-specific vulnerabilities.

GBM relapse associates with divergence in SV occurrence and 3D genome folding

GBM s are of the most aggressively recurring tumors, with patients succumbing within ~1 year
of relapse (Ostrom et al., 2022). Our cohort included GSCs from three such primary and relapse
tumor pairs (G275/R, G402/R, and G412/R; Fig. 1a), and we generated Hi-C, RNA-seq, and
H3K27ac data from these pairs in an approach to understand their emergence.

A first observation was that, like all other GSCs in our collection, these lines also showed
remarkable divergence in the number (Fig. 1d) and position of SVs mapped using Hi-C (Fig. 6a
and Supplementary Fig. 10a,b). Relapse GSCs on average shared <35% of SVs with their primary
tumor-derived counterparts (Fig. 6b and Supplementary Fig. 10c,d), while gene expression
upon relapse diverged significantly in each pair (with just 30 up- and 8 downregulated genes
shared by all three pairs, and <14% shared by any two; Supplementary Fig. 10e). Still, this
extreme heterogeneity did converge to few particular pathways affected in relapse GSCs, like
‘neurogenesis’ or ‘development regulation’ (Fig. 6¢c and Supplementary Fig. 10f).

We next asked which level of 3D genome organization was most involved in the divergent
transcriptional profiles we recorded. Switching between A- and B-compartments or association
with chromatin loops each explained 10% or less of the gene expression changes seen (Fig. 6d).
Association with enhancers though explained on average twice as many differentially-expressed
genes (Fig. 6d), and a larger fraction of E-P loops was dynamically lost or gained between the
sample pairs indicating their regulatory significance (Fig. 6e). On average, we identified 814
primary- and 1,090 recurrent-specific loops in the three pairs (826 and 327 for G275/R, 681 and
1,366 for G402/R, and 934 and 1,531 for G412/R; Fig. 6f and Supplementary Fig. 10g,h). We
stratified these loops on whether they are specific to primary (“lost”) or relapse GSCs (“gain”),
shared by a GSC pair but showing increase (“K27ac gain”) or decrease in H3K27ac signal in
relapse (“K27ac loss”) or remain unchanged. After assigning genes to the P anchor of these
loops, we found that expression levels of thousands of genes from all three GSC pairs were on
average significantly higher (for “gain” loops) or lower (for “loss” loops) than those of genes
associated with unchanged loops (Fig. 6f and Supplementary Fig. 10g,h). A considerable fraction
of these loops were neoloops forming as a result of primary- or relapse-specific SVs. We looked
into these and, again, relapse GSCs on average shared <41% of neoloops with their primary
tumor counterparts (Fig. 6b and Supplementary Fig. 10c,d). Such neoloops often facilitated
enhancer hijacking leading to aberrant gene overexpression (for an example see Fig. 6g).
Remarkably though, we could not find any recurrence of misexpressed loci associated with
neoloops or with any other SV type among the pairs. These findings suggest that GBM relapse,

as reflected in GSCs, associates with a set of SVs that cannot overlap those of the primary tumor.
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Moreover, despite some convergence in the pathways affected, we saw marked individuality in

the transcriptional programs of each GSC pair.
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Fig. 6. 3D genome folding differentiates relapse from primary GBM samples.

a, Circos plots of SVs and CNVs in G402 and G402R. Outer tracks: chromosomes; inner tracks: gain (red: >2
copies) or loss of genomic segments (blue: <2 copies); lines: translocations (purple), inversions (grey),
deletions (light blue) or duplications (red). b, Venn diagrams showing shared and unique SVs (top) or
neoloop-associated genes (below) in primary and relapse data. ¢, GO terms associated with differentially-
expressed genes in primary versus relapse G402. d, Percent of differentially-expressed genes explained
by A/B-compartment, loop or enhancer changes in all GSC pairs. *: P<0.01, unpaired two-tailed Student’s
t-test. e, As in panel d, but for differentially-expressed genes linked to E-P loops gained (orange), lost
(green) or not changed upon relapse (grey). f, Left: APA plot for neoloops specific to primary or relapse
GSC pairs. Right: Box plots showing changes in the expression of genes associated with loops gained (red)
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or lost (blue), having increased (orange) or decreased H3K27ac (light blue), or not changing in relapse
(white). *: P<0.01, Wilcoxon-Mann-Whitney test. g, Hi-C contact maps around a 17.6-Mbp deletion on
chr9 specific to G402R  shown aligned to overlaid RNA-seq and H3K27ac tracks from primary (black)

and relapse samples (yellow). G402-specific neoloops are indicated (blue circles).

Finally, we used Hi-C and RNA-seq data to compare a pair of GSCs derived from the central
and peripheral regions of the same GBM tumor (G452C/P). Once again, we found that the
periphery shared <45% of its SVs (16 out of 36) with the center, with many SVs of G452C being
lost in G452P (Supplementary Fig. 11a,b). This held true also for the (few) genes associated with
neoloops in this pair (Supplementary Fig. 11b). Overall, and in line with the transcriptional
divergence of these GSCs (Fig. 2a,b), we found pathways like “nervous system development”,
‘regulation of signaling” or ‘/ECM organization’ enriched in the central over the peripheral GSCs
(Supplementary Fig. 11c) in conjunction with prominent GSC-specific loops in either line
(Supplementary Fig. 11d). This data further affirms the extreme heterogeneity in GBM-derived
samples, to the extent that even different parts of the same tumor diversify at the level of 3D

genome architecture and regulation.

Discussion
In this study, we generated 5 kbp-resolution Hi-C maps from 28 patient-derived GSCs and used
their contact structure to identify tens to hundreds of SVs per sample. This highly resolved view
of rearrangements revealed an SV distribution that was pervasive (16 out of 28 samples
carried >80 SVs), yet very uneven between samples (even between GSCs derived from two
different parts of the same tumor). Despite their extreme heterogeneity and largely non-
recurrent nature, SVs were not stochastically distributed along chromosomes. In fact, they
clustered together in hotspots correlating well with GC-/gene-rich regions preferentially located
in the A chromatin compartment (i.e., transcriptionally active) and near TAD boundaries. When
we focused on SV breakpoints near TSSs of genes associated with the GBM transcriptional
program, we found enrichment for TAD boundaries. This suggests that disruption of such
positions of 3D chromatin insulation favors oncogene activation, malignant transformation, and
tumor growth (Sesé et al.,, 2021). Notably, in gliomas with /IDH gain-of-function mutations,
hypermethylation of CTCF sites at insulator elements that prevent binding and disrupt boundary
formation (Flavahan et al., 2016). Thus, we can envisage the development of interventions that
act to preserve TAD boundary integrity and counteract GBM progression in the future.
However, our cohort is exclusively IDH-wt and here insulation disruption is a direct result
of SVs that rewire 3D chromatin folding. Still, previous “pan-cancer” analyses showed that only
14% of TAD boundary deletions actually result in a >2-fold increase in gene expression of
adjacent loci (Akdemir et al., 2020a). Thus, we exploited our high-resolution Hi-C data and large
number of samples assayed to focus on a key effect of GBM genomic rearrangements: the
formation of hundreds to thousands (median = 120) of neoloops along each patient’s genome.

Genes associated with these neoloops were not only significantly higher expressed compared
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to when no neoloops occur (thus, explaining intra-tumor heterogeneity), but also enriched for
genes characteristic of the GBM transcriptional program. Moreover, some recurrence in
neoloop-associated genes was observed (e.g.,, HLA-G/-J overexpression associated with
neoloop formation in 8 out of 28 GSCs). Notably, a substantial fraction of these neoloops (>35%)
ectopically linked gene promoters with active enhancers, which led to their activation in a
tumor-specific manner. In fact, the formation of such regulatory neoloops can explain the
overexpression of known GBM drivers, like EGFR and MTOR, in GSCs in cases where gene
amplification or fusion does not.

We established how GBM inter-tumor heterogeneity extends to and is supported by 3D
genome refolding. Then, in the absence of highly recurrent events and given the inefficacy of
current treatment regimes, could 3D genomics guide personalized treatment decisions? To
address this, we combined kbp-resolution mapping of 3D chromatin neo-structures with in
silico predictions of their effects on gene expression. We expanded on the PRISMR approach by
Bianco et al. (2016) to now include modeling of SV effects on 3D genome folding in trans. Using
MYC overexpression via a chr8:chrl2 translocation in a single GSC as an exemplar, we could
show that (i) this translocation leads to the formation of two inductive enhancer-promoter
neoloops; (ii) the two neoloops form in a largely mutually exclusive manner, giving rise to allele-
specific conformations that explain heterogeneity in MYC expression; and (iii) that targeting
MYC in this specific GSC with a small molecule inhibitor led to selective inhibition of its growth
compared to a line not carrying the translocation and neoloops. Such patient-specific
vulnerabilities may represent new opportunities for therapy, especially in the face of relapse.

GBM relapse is essentially inevitable and the major hurdle in prolonging patient survival.
Studies comparing the genomic landscape of primary versus relapse IDH-wt glioblastomas
often produce contrasting outcomes. For example, Korber et al. (2019) studied 21 primary-
relapse tumor pairs using deep WGS to conclude that most of tumor evolution (incl. mutational
selection) occurs even prior to primary diagnosis and, thus, relapse tumors share an overall
similar landscape. This contrasts work by Kim et al. (2015b), and clinical experience, whereby
GBM recurs tumultuously within a few months and relapse tumors show little genetic
resemblance to primary ones. One explanation for this disparity could be the local versus distal
regrowth of tumors that correlate with higher versus lower genetic resemblance (Kim et al.
2015b; Korber et al., 2019). Here, we studied three primary-relapse GSC pairs that recurred
locally, but in three different brain regions (i.e., occipital, frontal, parietal). Our results on SV
distribution and neoloop formation in each pair, rather argue for reduced similarity. For example,
despite a consistent increase of SVs in relapse versus primary GSCs, there was an equally
consistent loss of primary-specific SVs in relapse genomes. This can be explained by the two
entities belonging to different (or very early diverging) tumor evolution trajectories. In addition,
as our samples represent the stem cell-like compartment of GBM tumors, this could also mean

that different (or even new) GSC populations emerge after resection of the primary tumor and
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therapy (all patients in our cohort underwent standard radiotherapy) that give rise to relapse
tumors with different characteristics and resistance. We hypothesize that formation of such
dynamic 3D structures as neoloops is a means for expanding regulatory options in tumor cells,
and that neoloops are equally subject to tumor evolution as “classical” genomic alterations (e.g.,
amplifications and deletions) as they can induce significant transcriptional effects. As a result,
high dissimilarity in SVs may be less telling than high dissimilarity in neoloops, as the latter can
directly affect gene expression patterns. On this basis, relapse GSCs do diverge significantly from
primary ones as regards their loop-level regulatory landscape despite local reemergence.

In summary, our Hi-C data constitute a valuable resource for GBM and exemplify how 3D
genomics can be used to construct patient-specific chromosomal scaffolds. These can, in turn,
help improve our understanding of GBM evolution and rationally identify new prognostic

markers and therapeutic vulnerabilities in the face of extreme heterogeneity.
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Methods

GSC generation and cell culture. GBM tumors from 24 patients who underwent surgery at
diagnosis (n=11) or relapse (n=17, as 3 initially-resected patients were also part of the relapse
group) at the Institute of Neurosurgery, Catholic University of Rome, were used to produce 28
GBM stem-like cell (GSC) lines. The key inclusion criteria were a GBM diagnosis (at first diagnosis
or relapse; WHO Grade |V glioma), good patient functional status (Karnofsky score >70), often
followed a standard Stupp protocol (for detailed profiles see Supplementary Table 1). Collection
and processing of all samples was in compliance with the Declaration of Helsinki and approved
by the Ethics Board of the hospital (Prot. ID CE 2253). Informed consent was obtained from all
patients. For the generation of GSCs, surgically-removed specimens were subjected to
mechanical dissociation. The resulting cell suspension was cultured in serum-free DMEM/F12
medium (ThermoFisher Scientific) containing 2 mM L-glutamine, 0.6% glucose, 9.6 mg/mL
putrescine, 6.3 ng/mL progesterone, 5.2 ng/mL sodium selenite, 0.025 mg/mL insulin, 0.1
mg/mL transferrin sodium salt (Sigma Aldrich), human recombinant epidermal growth factor
(hEGF; #AF-100-15, Peprotech; 20 ng/mL), basic fibroblast growth factor (b-FGF; #100-18B,
Peprotech; 10 ng/mL) and heparin (2 mg/mL; Sigma Aldrich) at 37°C under 5% CO,. Actively
proliferating cell cultures typically require 3 to 4 weeks to be established. GSCs were validated
by Short Tandem Repeat (STR) DNA fingerprinting using nine highly polymorphic STR loci plus
amelogenin (Cell ID™ System, Promega Inc). All GSC profiles were queried in public databases
to confirm authenticity (Visconti et al., 2021). The in vivo tumorigenic potential of GSCs was
assayed by intracranial cell injection into immunocompromised mice, resulting in tumors with
the same antigen expression and histological tissue organization as the tumor of origin (Pallini
et al., 2008; D’Alessandris et al., 2017).

MYC inhibition and immunofluorescence experiments. For MYC inhibition experiments, GSCs
#148 (MYCMe") and #62 (MYC'") were grown as described above, but using cell culture dishes
coated with growth factor-reduced Matrigel (Corning) and dissociated using Accutase (Thermo
Fisher) for passaging. Once expanded, GSCs were seeded on 12 mm sterile coverslips placed in
each well of a 24-well tissue culture plate. Cells were treated with either 50 uM of the small
molecule inhibitor EN4 (Selleckchem; Boike et al., 2021) or with an equivalent volume of DMSO
for 48 h. All experiments were performed in at least three independent biological replicates.
Following drug treatment, media was aspirated and the cells fixed in 4% paraformaldehyde (PFA)
for 1 h at room temperature. Cells were next permeabilized in 0.5% Triton X-100 in PBS for 10
min, and blocked with 0.5% fish gelatin in PBS for 1 h at room temperature.

MYC- and Ki67-positive cells were evaluated via immunofluorescence. In brief, primary
antibody stainings were at 4°C overnight, followed by 3x 5-min PBS washes. Then, coverslips
were incubated with anti-rabbit fluorophore-conjugated secondary antibodies for 1 h at room
temperature. The two primary antibodies used were rabbit anti-Ki67 (Merck) and rabbit anti-

MYC (Proteintech), while nuclei were also counterstained using DAPI. For Tunnel stainings, the
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Tunnel staining kit (Promega) was used according to the manufacturer’s instructions. Finally,
coverslips were mounted and three raw images from random fields of view per coverslip were
acquired using a Leica SP8 scanning confocal microscope (20x or 63x objective). Maximum
intensity projection images were used and MYC mean fluorescent intensity or the percentage

of Tunnel-, Ki67-, and MYC-positive cells in each sample was computed using ImageJ.

In situ Hi-C and data processing. Hi-C was performed on 0.5-1 million cells from each GSC line
using the Hi-C+ kit (Arima Genomics) according to the manufacturer’s instructions. Following
sequencing on a NovaSeq platform (lllumina), Hi-C reads were aligned to the reference genome
GRCh38 using bwa mem (v0.7.17) with “-SP5M”. Invalid data, including PCR duplicates and read
pairs mapping to the same restriction fragment, were removed using pairtools (v0.3.0; Open2C
etal., 2020). The runHiC (v0.8.4-r1; https://zenodo.org/badge/doi/10.5281/zenodo) and cooler

(v0.8.6; Abdennur and Mirny, 2020) packages were used to construct contact matrices at
various resolutions. Raw Hi-C matrices were corrected using a modified matrix balancing
method to account for CNV effects and other systematic biases including mappability, GC
content, and restriction enzyme sites, all processed via Neoloopfinder (v0.3.0.post4; Wang et
al., 2021a). Stratum-adjusted correlation coefficients (SCC) between any two Hi-C contact
matrices samples were calculated using Hicrep (v0.2.3) at 10-kbp resolution (Yang et al., 2017).

PC1 was calculated and A-/B-compartments identified at a resolution of 50 kbp using the
cooltools (v0.3.2; Open2C et al., 2020) call-compartment function. Insulation scores and TADs
were identified at 25-kbp resolution using the cooltools (v0.3.2) insulation function. Chromatin
loops were identified at 5-, 10-, and 25-kbp resolution on the basis of interaction probabilities >
0.95 and then merged using peakachu (v1.2.0; Samaleh et al., 2020). Significant differential
loops were determined using the diffPeakachu function via the Gaussian mixture model of the
peakachu probability score (FDR <5%). For 5- and 10-kbp loops, we extended flanking regions
by 5 kbp when searching for associated TSSs to define loop anchor genes; for 25 kbp-resolution
loops no such extension was applied.

To compare chromatin organization between GSC subtypes, hierarchical structural features
(PC1, insulation scores, and loops) were used for unsupervised clustering of GSC samples with
significate subtype enrichment scores. For PC1 and the insulation score, pairwise correlations
were calculated per each genomic bin in all samples. For loops, differential loops between GSC
pairs were identified as described above, and then Jaccard similarity indexes based on shared
loops were calculated, before hierarchical clustering was performed on all correlation matrices

using average linkage and correlation distance metrics.

Identification of structural variants (SVs) in Hi-C data. Structural variants, including inversions,
deletions, duplications, and interchromosomal translocations, were detected and annotated
using EagleC (v0.1.3; Wang et al., 2022) on Hi-C data, which predicts SV breakpoints at single-

kbp resolution and combines predictions from 5-, 10-, and 50-kbp resolutions. For 10- and 50-
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kbp predictions, EagleC further searches for the most probable local breakpoint coordinates
within 5-kbp Hi-C contact maps so that all reported SVs are at the same resolution. In more
detail, we divided the human reference genome (GRCh38) into 1-kbp bins and calculated a suite
of metrics per bin to summarize a variety of properties with potential relevance to the
distribution of SVs. To test for association between SV types and genome properties, each
property was compared between SV breakpoint positions (randomly choosing one side of each
breakpoint junction to reduce dependence between observations) and a set of 1,000 randomly-
shuffled SVs, keeping the SV breakpoint ends at same distance and chromosome as those of
bona fide ones. For each genome property and each SV type, real observations were pooled
together with 1,000 sets of random ones, and rank-transformed and normalized on a 0-1 scale.
Under the null hypothesis of no event-versus-property association, the ranks of the real
observations would follow a uniform distribution. We tested this for each SV type using a
Kolmogorov—-Smirnov test with a Benjamini—Yekutieli FDR correction across the entire suite of
tests, and set the threshold for significance reporting at 0.01. To define duplicated and deleted
genes induced by SVs, we used both orientation information of SV breakpoints and copy
number profiles. Duplications were defined as intrachromosomal SVs with —+, ++, or ——
orientations, and the genomic interval between breakpoints had a copy number ratio >1.35,
while deletions were also defined as intrachromosomal SVs but with the +- orientation, and the
genomic interval had a copy number ratio <0.65, considering allelic heterogeneity. Copy
number profiles inferred from Hi-C were used in this calculation (Wang et al., 2021a). Local Hi-
C maps surrounding SV breakpoints were reconstructed and Hi-C signal across the breakpoints
normalized due to the heterozygosity of the SVs and potential heterogeneity of our patient-
derived GSC samples. Then, neoTADs (predicted at 25-kbp resolution) and neoloops (predicted
at 5-, 10-, and 25-kbp resolutions with an FDR <0.05 and then merged) on each local
reconstructed map were detected. All steps were processed using Neoloopfinder (v0.3.0.post4).
Finally, we used RNA-seq to identify fusion genes in all GSC samples using Arriba (v2.3.0) (Uhrig
et al., 2021). In parallel, we also used Hi-C processed via the EagleC (v0.1.3) annotate-gene-
fusion function, as it can additionally detect intronic gene fusions (Wang et al., 2022). In the
end, fusion genes detected via both approaches were merged to provide a final list. All SVs,

CNVs, neoloops, and fusion genes are listed in Supplementary Table 3.

RNA sequencing (RNA-seq) and data processing. GSCs grown to near-confluence in a T25 flask
were directly lysed using Trizol (Invitrogen), total RNA was isolated using the DirectZol kit (Zymo),
and used for standard poly(A)+ selection and library preparation with the TruSeq kit (Illumina).
Following sequencing to at least 20 million reads on a NovaSeq platform (Illumina), reads were

processed following the ENCODE pipeline (https://github.com/ENCODE-DCC/rna-seg-pipeline).

Reads pairs were aligned to the human reference genome (GRCh38) and transcriptome
(Gencode.v29) using STAR (v2.6.0c; Dobin et al.,, 2013). Gene and isoform expression

guantification were performed using RSEM (v1.3.3; Li and Deqwey, 2011). Read coverage tracks
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(BigWig) were generated and normalized by scale factor using the bamCoverage function of
deepTools2 (v3.5.1; Ramirez et al., 2016). Differentially-expressed genes were determined using
RSEM (v1.3.3; rsem-run-ebseq function) with an FDR cutoff of < 0.05. For the purpose of
comparing expression levels across samples, we used "transcripts per million” (TPM) as metric.

For subtype-classification. 50-gene signatures for each subtype (TCGA-PN, TCGA-CL, TCGA-
MES) were used (Wang et al., 2017), and single-sample gene set enrichment analysis (ssSGSEA)
was conducted via R (ssGSEA). For each GSC, ssGSEA evaluated normalized enrichment scores
for each signature set with TPM as input. Three two-sided P-values of each sample were
calculated by the corresponding normalized enrichment score via the Z2p package and used to

determine the most significant subtypes for a given GSC expression profile.

Cleavage Under Target and tagmentation (CUT&Tag) and data processing. GSCs were lifted from
plates using accutase (Sigma-Aldrich). Typically, 0.5 million cells were processed using the
CUT&Tag-IT kit (Active Motif) as per manufacturer’s instructions and the resulting libraries were
paired-end sequenced on a NextSeq500 platform (lllumina) to obtain at least 107 reads. Read
pairs were aligned to the human reference genome GRCh38 using Bowtie2 (v2.3.4.1), PCR
duplicates were removed using the MarkDuplicates function in Picard tools (v2.20.7), and read
coverage tracks (BigWig) were generated and normalized with the RPCG parameter using the
bamCoverage function of deepTools2 (v3.5.1; Ramirez et al., 2016). Peaks were called using
SEACR (v1.3) with an FDR cutoff of <0.01 (Meers et al., 2019).

Whole-genome sequencing (WGS) data processing. For WGS, read pairs were first mapped to
GRCh38 by BWA mem (v0.7.17), and duplicate reads were removed by Picard (v2.20.7) as above.
WGS-based CNV profiles and segments were calculated via the CNVkit (v0.9.9; Talevich et al,,
2016) batch function using the “--segment-method hmm-tumor -m wgs --drop-low-coverage --

target-avg-size 25000” parameters.

TCGA data analysis. Kaplan-Meyer curves were generated via the Gene Expression Profiling
Interactive Analysis 2 (v7.0) (GEPIA2; Tang et al., 2019) based on 162 GBM samples from TCGA.
Median gene expression values were used as a high-low group cutoff. Expression comparison
between samples of glioblastoma and normal tissues were performed using GEPIA2 (v7.0)

based on publicly-available TCGA and GTEx data.

Simulations of SV impact on 3D genome folding. In order to predict neoloops forming as a result
of translocations, we used a polymer physics based approach previously used to predict ectopic
interactions in cis arising in congenital disease-causing structural variations, PRISMR (Bianco et
al., 2018). PRISMR models chromatin as a polymeric structure bearing sites of potential binding
by proteins represented as floating particles in solution (Barbieri et al., 2012; Chiariello et al,,
2016). The thermodynamic properties of this model can be used to infer the binding site

distribution along the polymer that best reproduces the Hi-C matrix of the genomic region
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lacking the structural variation, while ectopic interactions are predicted by reshuffling the
polymer in accordance with the variation and recalculating the new Hi-C contacts. Here, we
modified the PRISMR approach to simulate neoloop formation by a translocation involving the
MYC locus on chr8 and a large intergenic segment of chrl2 (chr8: 127.71-127.78 Mbp; chrl2:
57.7-58.155 Mbp); this occurs only in sample G148 of our cohort. Similar data from G394,
where the translocation does not occur and MYC is activated provided a negative control.

To predict the best binding sites distribution for the hybrid region in G148, we first inferred
them on an extended region on chrl2 (i.e., chrl2: 57.66-58.33 Mbp) using Hi-C data from
G275R that carries no SVs across this segment. We then correlated the binding site distribution
deduced from G275R with RNA-seq and H3K27ac CUT&Tag data from the same region in G148
to ensure good prediction of Hi-C contacts via a probabilistic approach using these correlation
to extend binding site distribution prediction around the MYC locus on chr8 (i.e., chr8: 127.71-
127.78 Mbp). Our approach repurposed PRISMR that finds the best minimum of the difference
between the real Hi-C matrix and the reconstructed Hi-C matrix via a simulated annealing (SA)
optimization procedure spanning the space of binding site distributions for a given number of
classes. A contact matrix is then reconstructed via a mean field approximation using contact
probability profiles characterized in the standard coil-globule theory of polymer physics
(DeGennes, 1979; Barbieri et al., 2012; Bianco et al., 2018). Estimation of the best number of
binding sites classes and the best A (i.e., the regularization term used in PRISMR SA to penalize
total binding site abundance and reduce overfitting) was as previously described (Bianco et al.,
2018). In brief, SA was executed for a range of A values, and the best A was selected when the
cost function raised ~10% above the starting plateau (Supplementary Fig. 8b). Similarly, SA was
executed for an increasing number of binding sites classes, M, until the cost function did not
show significant reduction (M=11 was selected; Supplementary Fig. 8c). For this, experimental
(input) Hi-C data was first smoothed via a Gaussian filter (0.5 bin), and similarity between the
simulated and original contact matrices was estimated using distance-corrected Pearson’s
correlations (which were 0.65 and 0.45 for G148 and G394, respectively). Also, to account for
chromatin persistence length effects in our 5-kbp resolution deduced Hi-C matrices, SA was
applied independently for different monomer lengths by interpolating and scaling contact
probability profiles accordingly, albeit with a significant increase in computing burden. To speed
up optimization convergence, we modified SA to generate, at every iteration, multiple tentative
modifications of the binding site configuration (rather than one in Bianco et al., 2018) that were
simultaneously evaluated. This allowed us to estimate an optimal monomer length ~20% longer
than the 5kb resolution.

To extend prediction of binding sites distribution to the MYC locus on chr8, we applied a
probabilistic approach, using RNA-seq and H3K27ac data as a bridge between chromosomes. If
Pcis the probability to find the binding sites class C in the region of interest, Pris the probability

to find the epigenetic track T, and corr(C,T) is the correlation between C and T, then the
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conditional probability P(C/T) to observe C given T can be obtained by inverting the following

equations:

cov(C,T) =P(CNT)—PcPr =P(C|IT)Pr — PPy (1)

cov(C,T) @

orrle ) = R = PPy (1 — P

Here we define corr(C,T) as the correlation between the PRISMR-inferred best binding sites
distributions (C) and the RNA-seq and H3K27ac tracks on the extended region chr12:57.66-
58.33Mbp (T), and Pc (P7) as the frequency of observing C (T) in the same region. Once we have
P(C|T), we can estimate the probability to find a binding site of class C in position x in region

chr8:127.71-127.78Mbp from the frequency of T as follows:
P =) PCITYPL ) (3)
1ERNAseq,H3K27ac

In this formula we neglected the intersection terms between Pruaseq and Puskz7ac as their
correlation is quite low (<0.2). When applying (3) we considered only (C,T) couples with a
correlation of >0.2. Equations (1-2) follow from the very definition of correlation and covariance
where cov(C,T) = cov(1s1r) and 1y is the indicator function, so the expected values in the
covariance equal the probabilities:

E(X) = px; var(X) = px(1—px).

Finally, to predict the three-dimensional structure and dynamics of the genomic region
bearing the translocation, we employed the SBS model via Molecular Dynamics simulations in
a classical Langevin and velocity-Verlet framework with standard parameters (Barbieri et al,,
2012; Chiariello et al., 2016; Bianco et al., 2018). The energy of interaction between binding
sites and binders was set to 4 KgT, while the binders’ concentration was set to 100 nmol/liter.
Randomly generated polymers and binder configurations were allowed to evolve and find the
steady state before measuring the probability of contact. From the SBS predicted structures we
estimated the degree of MYC triplet colocalization with region A and B with respect to what
expected by random independent pair-wise probability via the correlation coefficient:

PMYC,A,B B PMYC,A PMYC,B
(PMYC,A(1 - PMYC,A) PM}’C,B(1 - PMYC,B))l/2

corr(4,B) =

From the SBS polymer distance matrix we also estimated the level of in-silico single-allele

MYC expression with respect to the average level F following the formula in Buckle et al., 2018:

log (2'dMYC,i_1 / F)
4

where duyc, is the distance between MYC and i corresponding to a H3K27ac or RNA-seq peak.
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Statistics and reproducibility. All P-values were calculated using R, and their results considered

significant if P<0.01, unless stated otherwise.

Data availability. Due to patient protection policies, raw Hi-C, mRNA-seq, and H3K27ac/CTCF
CUT&Tag data may only be released upon request and ethics approval. Processed data that do
not contain identifiable information can be accessed via the NCBI Gene Expression Omnibus
(GEQ) under accession number GSE229966. GBM-associated genes were obtained from the
DisGenet Database (v7.0) (Pifiero et al., 2020). A list of cancer-related was sourced from:

http://www.bushmanlab.org/assets/doc/allOnco May2018.tsv, and gene-level copy numbers

of TCGA samples from the cBioPortal (https://www.cbioportal.org/). Astrocyte RNA-seq data

was sourced from Santos et al., 2017.

Code availability. All code used to analyse Hi-C, RNA-seq, WGS and CUT&Tag data is available at

https://github.com/xieting0603; the custom code used to perform simulations is available at

https://github.com/marianoimperatore/MeanFieldChromatin.git.

Supplementary information accompanying this manuscript includes Supplementary Figs 1-11

and Supplementary Tables 1-3.
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Supplementary Fig. 1. Evaluation of Hi-C reproducibility, CNV segmentation, and normalization.
a, Heatmap showing stratum-adjusted correlation between 10 kbp-resolution raw Hi-C contact
matrices from all GSC lines. Biological replicates from the same line (-1/-2) and their merged
map (M) are indicated. Data from relapse GSCs are highlighted (yellow).

b, Comparison of whole-genome CNV computations using WGS (via CNVkit) or Hi-C data from
G181 (via Neoloopfinder). A zoom-in for the CNVs identified along chr3 is provided.

¢, Comparison of 5 kbp-resolution raw (top), ICE-normalized (middle) or CNV-normalized Hi-C
contact matrices (bottom) around exemplary amplified regions (CNV profiles aligned below).
d, Exemplary 5-kbp resolution Hi-C contact maps showing signal characteristic of short-range
SVs for a deletion in G1 (left) and an inversion in G23 (right).

e, Heatmap showing similarity of SVs discovered in Hi-C data of 12 exemplary GSCs. Biological
replicates from the same line (-1/-2) and their merged map (M) are indicated.
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Supplementary Fig. 2. Distribution of SVs across GSC lines.

a, Key showing the positions of chromosomes (outer tracks) and the color code for SVs in Circos
plots (inversions — grey; deletions — light blue; duplications — red; translocations — purple).

b-t, Circos plots of SVs and CNVs detected in 19 GSC Hi-C datasets. Inner tracks: gain (red, >2
copies) or loss of genomic segments (blue, <2 copies); lines: SVs as detailed in panel a.

33


https://doi.org/10.1101/2023.04.20.537702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.20.537702; this version posted April 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Xie et al. (2023)

a b
G148 G163
GSCs with 0.009 0.01
fusion genes D:J ]’(_ N=1.569 n o ﬁ
astrocytes —{JJljIl— 0 0
e, O
2 4 6 8 10 12 80
expression [log,(tpm+1)] O N0 o
/ 1) o)
(©)
2 2 i o4
DL
5. (YR S
= O G e abna ; :
O chrg: 127.76 128.67 Mbp chr2: 16.48 17.41 Mbp
C
. O SVs O gene density
2 G275 G457
Se6 _
e £=0.28 0.005 0.02
@ 5
Q
€ < n ﬂ
e 1) ¢ o 0
8 9} ® ®
- &. o
Sz &
84 o0 e}
£ 2 Loa .9 A a o
0 o 4-
E S 0-- LA_ALH [ W p———— WY T i i Ll
& 1 1 I 1
5 chr12: 58.42 61.24 Mbp chr13: 53.080 55.295 Mbp

Supplementary Fig. 3. Clustered SV occurrence along GSC chromosomes.

a, Box plots showing expression levels of 1,569 gene fusions in GSCs (green) compared to their
individual counterparts in astrocytes (black). *P <0.01, two-sided Wilcoxon rank-sum test.

b, Exemplary Hi-C contact maps from 4 GSC lines showing SV clustering in 3-Mbp stretches of
different chromosomes.

¢, Lollipop plots showing the number of SVs (dark blue) or genes per Mbp of each chromosome
(light blue). Pearson’s correlation coefficient (p) for the two datasets is calculated.
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Supplementary Fig. 4. Discriminating GSC subtypes based on 3D genome organization features.
a, Heatmap showing correlation and unsupervised clustering on the basis of PC1 values called
at 50-kbp resolution Hi-C data for 22 GSc lines. The color code (below) reflects the subtype of
each line (proneural — brown; mesenchymal — orange; classical — green).

b, As in panel a, but computing SCC correlation for all Hi-C contacts at 10-kbp resolution
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Supplementary Fig. 5. SVs give rise to GSC-specific neoTADs.

a, Exemplary Hi-C contact maps from G1 and G120 in the 1-1.5 Mbp around a translocation (top)
and deletion breakpoint (bottom) that give rise to neoTADs (green rectangle).

b, Bar plot showing the number of neoTADs identified in Hi-C data from each GSC line. Lines
derived from relapse tumors are indicated (yellow).

¢, Box plots showing mean gene expression in neoTADs (green) versus neighboring TADs (grey).
*P<0.01, two-sided Mann-Whitney U-test.

d, As in panel d, but for mean expression of genes in GSC-specific neoTADs (green) versus that
in GSCs without neoTADs (grey) or in astrocytes (black). *P <0.01, two-sided Wilcoxon rank-sum
test.
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Supplementary Fig. 6. Neoloops sustain higher gene expression in GSCs.

a, Box plots showing expression of genes associated with neoloops (green) or non-neoloops in
GSCs (grey) or not associated with loops (black). *: P<0.01, two- sided Mann-Whitney U-test.
b, As in panel a, but showing mean expression of neoloop-associated genes in GSCs (green)

versus the same genes in astrocytes (black). *: P<0.01, two- sided Wilcoxon rank-sum test.

¢, GO terms associated with genes connected via E-P (black) or P-P neoloops (light grey).
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Supplementary Fig. 7. Neoloops in the ADAMS locus are associated with poor prognosis.

a, Exemplary Hi-C contact maps from G412R around a 150-kbp deletion in the ADAMS9 locus. A
neoloop forming across the breakpoint is indicated (blue circles).

b, Box plots showing ADAM9 expression in TCGA GBM tumor and normal tissue data. *: P<0.01,
two- sided Mann-Whitney U-test.

¢, Violin plots showing no copy number variation in the ADAMS9 locus from TCGA GBM tumors
with high (top 50%, magenta) or low HLA-G expression (bottom 50%, green). *: P>0.5, two-
sided Mann-Whitney U-test.

d, Kaplan-Meier survival analysis of GBM patients with ADAM9 high and low expression. P-
values were calculated using a two-sided log-rank test.
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Supplementary Fig. 8. Selective inhibition of MYC-high GSCs by EN-4 treatment.

a, Left: Representative immunofluorescence images of G148 and G62 cells stained for MYC.
Right: Bar plots showing mean MYC levels (+S.D.) in each GSC line. *P<0.01, unpaired two-tailed
Student’s t-test.

b, As in panel a, but G148 stained for MYC after treatment or not with 50 uM EN-4 for 48 h.

¢, As in panel a, but stained for Ki-67 after treatment or not with 50 uM EN-4 for 48 h.

d, As in panel a, but Tunnel-stained after treatment or not with 50 uM EN-4 for 48 h.
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Supplementary Fig. 9. Simulations of the G148-specific chr8:chrl2 translocation.

a, Hi-C contact map of thr 1-Mbp chr12 segment of G148 that harbors a translocation with chr8
(dashed line: breakpoint) aligned to classes of polymer beads deduced from simulation in the
same G275R region (bottom), and to H3K27ac (middle) and RNA-seq signal tracks (top).

b, Plot showing the sigmoidal behavior of the cost function with varying regularization constants
(M) that penalize the abundance of binding sites during annealing optimization.

¢, As in panel b, but showing exponential decay of the cost function with increasing number of
binding site classes (M) during annealing optimization.

d, Representative 3D rendering of the chr8 (white)-chr12 (black) translocation including MYC
(yellow halo). Beads from classes that best predict folding are colored (green, red, and orange).
e, Top: Triplet correlation coefficient of MYC with all pairs in the simulated G148 translocation.
While RNAseq- and H3K27ac-enriched regions form multiple simultaneous contacts with MYC
(positive correlation), these occur rather independently or even exclusively of one another
(negative correlation). Bottom: As above, but for G394 where no contacts form.

f, PCA clustering of simulated single-allele MYC distance profiles (N=1500) in G148. Individual
models are stratified by the degree of expression and by whether this is due to contacts with
beads of enriched H2K27ac (red), RNA-seq (blue) or to lack of contacts (grey).

g, Per cent of simulated models plotted relative to the extrapolated mean MYC activation due
to contacts with beads of enriched H2K27ac (red), RNA-seq (blue) or to lack of contacts (grey).
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Supplementary Fig. 10. Comparison of SVs in primary versus relapse tumor GSCs.

a, Circos plot of SVs and CNVs in the G275/275R primary-relapse pair. Outer tracks represent
chromosomes, inner tracks indicate gain (red: >2 copies) or loss of genomic segments (blue: <2
copies), and lines depict inversions (grey), deletions (light blue), translocations (purple) or
duplications (red).

b, As in panel a, but the G412/412R primary-relapse pair.

¢, Venn diagrams showing shared and unique SVs (top) or neoloop-associated genes (below) in
primary (grey) and relapse G275/275R Hi-C data (yellow).

d, As in panel ¢, but the G412/412R primary-relapse pair.

e, Venn diagrams showing shared and unique up- (left) and downregulated genes (right) from
all three primary-relapse GSC pairs.
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f, GO terms associated with genes differentially-expressed in the primary versus relapse pairs.
g, Left: APA plot for all loops specific to the G275 (primary) or G275R (relapse). Right: Box plots
showing changes in the expression of genes associated with loops gained (red) or lost (blue),
having increased (orange) or decreased H3K27ac (light blue), or not changing upon relapse
(white). *: P<0.01, two- sided Mann-Whitney U-test.

h, As in panel g, but for the G412/R pair. *: P<0.01, two- sided Mann-Whitney U-test.
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Supplementary Fig. 11. Comparison of SVs in the central versus peripheral part of a GBM tumor.
a, Circos plot of SVs and CNVs in the G452C/P pair originating from the central and peripheral
part of a single GBM tumor. Outer tracks represent chromosomes, inner tracks indicate gain
(red: >2 copies) or loss of genomic segments (blue: <2 copies), and lines depict deletions (light
blue), inversions (grey), duplications (red) or translocations (purple).

b, Venn diagrams showing shared and unique SVs (top) or neoloop-associated genes (below) in
G452P/C data.

¢, GO terms associated with genes differentially-expressed in the 452C versus the 452P line.

d, APA plots for all loops specific to the G452C or G452P line.
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Supplementary Table 1. Clinical features of GBM patients and tumors.

tumor

GSC# age sex sympt . stu IDH
location

1 40 M 25 primary temporal vyes M wt  neg hyper 6 12.5
23 77 M 2 primary parietal no UM wt  neg hyper 1 2
28 72 M 15 primary frontal yes M wt  neg hyper 6 11.5
61 5 M 2 primary occipital  no UM wt  pos normal 3 6
62 64 M 36 relapse  frontal yes M wt  neg hyper 10 14
83 52 M 0.5 primary temporal vyes UM wt  pos hyper 4 8
120 53 M 25 relapse  parietal yes UM wt  neg hyper 8 16.5
148 5 M relapse  parietal yes UM wt  neg hyper 5 8
163 56 M primary parietal no UM wt  neg normal 1 2
171 74 M 13 relapse  frontal yes M wt  pos normal 10 17
181 64 F 15 relapse  occipital  yes M wt  pos hyper 12 17
208 66 M 22 relapse  temporal vyes UM wt  neg hyper 20 33
213 50 M 18 relapse  frontal yes M wt  neg hyper 9 10.5
275 primary

58 M 2 occipital  yes M wt neg hyper 6 12
275R relapse
318 69 M 25 relapse  temporal vyes M wt  neg N/A 21 38
323 51 F 19 relapse  parietal yes UM wt  neg hyper 4 28
351 52 F 1 primary temporal vyes M wt  pos normal 84 84
390 49 M 05 relapse  temporal vyes M wt  pos hyper 23 32.5
394 64 M 1 relapse  frontal yes M wt  pos hyper 5 23
402 primary

58 M 0.5 parietal yes UM wt  neg hyper 9 23
402R* relapse
412 primary
ALOR* 56 F 1 relapse frontal no UM wt  neg hyper 22 31
450 76 F 1 primary temporal no M wt  neg hyper 3 6
452P/C® 67 F 46 relapse  temporal no M wt  pos hyper 15 2
457 59 F 0.5 relapse frontal yes M wt  pos hyper 9.5 145

Age is displayed in years; symptoms’ duration is displayed in months; M/UM, methylated/unmethylated;
N/A, not available; PFS, progression-free survival displayed in months; OS, overall survival displayed in
months; *initially named 428; **initially named 486; $P/C, biopsy peripheral/central to the tumor.
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Supplementary Table 2. Statistics and quality metrics of Hi-C experiments.

% uniquely % long-range % trans
total read pairs valid read pairs

mapped interactions interactions
1 625,787,061 82.45% 397,322,201 38.17% 27.45%
23 896,831,218 74.97% 517,118,202 48.77% 23.18%
28 465,573,200 82.77% 292,536,305 32.87% 26.50%
61 469,087,274 76.98% 300,832,405 44.71% 21.66%
62 556,915,214 78.36% 363,717,617 50.87% 18.05%
83 640,920,736 77.47% 405,480,447 52.68% 17.51%
120 576,586,441 80.57% 375,550,401 45.03% 20.79%
148 566,598,758 78.58% 367,401,496 44.31% 24.01%
163 658,302,887 80.73% 414,448,463 41.55% 18.65%
171 633,593,298 80.15% 419,365,905 43.29% 20.96%
181 302,003,570 79.97% 196,344,108 41.91% 22.81%
208r1 660,900,454 83.97% 431,713,920 32.44% 16.05%
208r2 628,126,052 78.23% 386,221,051 33.85% 42.22%
213r1 874,108,698 85.06% 519,662,045 24.35% 21.84%
213r2 622,608,520 77.22% 387,808,004 43.20% 29.62%
275 694,194,997 79.27% 446,298,283 43.02% 20.32%
275R 506,647,616 79.57% 330,626,223 41.62% 20.36%
318 575,672,446 76.63% 368,523,495 47.61% 19.29%
323 605,260,377 78.10% 391,679,652 47.02% 22.11%
351 743,980,073 81.42% 490,730,702 54.00% 18.27%
390 619,497,564 83.23% 401,753,521 33.80% 24.30%
394 657,571,552 79.38% 422,381,344 47.95% 22.94%
402 623,636,610 78.58% 360,887,948 51.00% 23.18%
402R 727,935,611 81.14% 473,206,854 48.53% 25.29%
412 550,364,451 79.88% 363,954,866 47.25% 18.87%
412R 708,374,421 81.80% 452,528,651 50.61% 17.97%
450 750,273,787 77.33% 463,004,321 48.16% 19.66%
452C 653,145,500 78.91% 415,038,329 44.64% 21.29%
452P 597,888,199 79.03% 384,384,412 47.34% 21.86%
457 855,162,397 84.10% 487,186,793 30.07% 25.35%

r1/r2 designate independent replicates; GSCs ending in R designate the relapse sample in a pair.
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Supplementary Table 3. Catalogue of all CNVs, SVs, neoloops, and gene fusion events identified
using Hi-C in all GSCs (provided in .x/sx format).
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