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ABSTRACT

Multimodal magnetic resonance imaging (MRI) provides complementary information for
investigating brain structure and function; for example, an in vivo microstructure-sensitive
proxy can be estimated using the ratio between T1- and T2-weighted structura MRI.
However, acquiring multiple imaging modalities is challenging in patients with inattentive
disorders. In this study, we proposed a comprehensive framework to provide multiple
imaging features related to the brain microstructure using only T1-weighted MRI. Our
toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a
conditional generative adversarial network; (ii) estimating microstructural features, including
intracortical covariance and moment features of cortical layer-wise microstructural profiles;
and (iii) generating a microstructural gradient, which is a low-dimensional representation of
the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-
weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome
Project database. We found that the synthesized T2-weighted MRI was very similar to the
actual image and that the synthesized data successfully reproduced the microstructural
features. The toolbox was validated using an independent dataset containing healthy controls
and patients with episodic migraine as well as the atypical developmental condition of autism
spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal
structural  MRI in the neuroscience community, and is openly accessible at
https://github.com/CAMIN-neuro/GAN-MAT.

KEYWORDS: structural magnetic resonance imaging; generative adversarial network;
microstructure-sensitive proxy; microstructural gradient
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INTRODUCTION

Multimodal magnetic resonance imaging (MRI) enables the investigation of brain structure
and function, and their relationships, in vivo. Using structural MRI of T1-weighted (T1w) and
T2-weighted (T2w) images, we can assess the anatomical features of the brain, such as
cortical thickness, curvature, and volume. Both T1w and T2w data elucidate brain structures,
but the image contrast is a mgjor difference. In T1lw MRI, the white matter is bright and the
gray matter is dark, whereas T2w imaging shows the opposite intensity patterns. This is a
consequence of the different MRI parameters. For example, in T1w, the repetition time (TR),
which is the time between successive pulse sequences applied to the same dice, and the echo
time (TE), which is the time from the center of the radio-frequency pulse to the center of the
echo, were shorter than those in T2w MRI. A short TR leads to a strong T1 weighting,
whereas a long TE results in a strong T2 weighting. Indeed, T1 and T2 properties are
heterogeneous across different tissue types according to the amount of available free water,
yielding different image contrasts (Stanisz et al., 2005).

In addition to brain morphology, we can assess microstructural information of the brain using
T1w and T2w MRI without obtaining cytoarchitecture data. Specifically, an approximation of
the brain microstructure can be estimated using a microstructure-sensitive proxy, which is
calculated based on the ratio between T1w and T2w imaging contrasts (Glasser et a., 2014;
Glasser and van Essen, 2011), thus enabling us to investigate the cortical microstructure in
vivo. A recent study suggested a method for analyzing the interregional relations of the brain
microstructure (Paguola et al., 2019) by calculating cortical layer-wise microstructural
profiles among different brain regions. By applying dimensionality reduction techniques, they
generated a low-dimensional representation of the cortical microstructure, referred to as a
microstructural gradient. The microstructural gradient represents a well-known hierarchical
cortical model of the sensory-fugal axis, which expands from the sensory regions to the
limbic cortices (Mesulam, 1998; Paquola et al., 2019). This feature has been widely adopted
to assess the microstructural profiles of the brain in healthy adults as well as during
adolescence (Paquola et a., 2019, n.d.; Whitaker et a., 2016). Indeed, the microstructural
gradient linked the macroscale connectome to microscale cell-type-specific expression during
adolescent development, suggesting the validity of this feature for investigating multiscale
properties of the brain (Paguola et al., n.d.). However, it is difficult to obtain microstructural
features because it requires the acquisition of both Tlw and T2w MRI, which is time-
consuming and costly. Moreover, obtaining multiple imaging data within a restricted time
may not be possible for individuals with psychiatric disorders showing inattentive behaviors,
such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Because of
these issues, many open databases and clinics typically provide only Tlw MRI, not T2w, for
research (di Martino et a., 2017, 2014; Milham et al., 2012; Nooner et al., 2012). One
approach for mitigating this limitation is image synthesis. If we can synthesize T2w MRI
images from T1w images, we can generate a microstructural gradient using only Tiw MRI
images with reduced time and cost.

Image synthesis has been conducted in many prior works using natural images and texts
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(Huang et al., 2018; Sangkloy et a., n.d.; Thies et a., 2019; Wang et a., n.d.; Zhang et al.,
2019), and transferred to study medical imaging data (Chira et a., 2022; Nie et al., 2018;
Osokin et a., 2017; Shin et a., 2018). For example, one study generated high-resolution
images from low-resolution data using deep variationa autoencoders (Chira et al., 2022), and
another work generated brain MRI with tumors using a generative adversarial network (GAN)
(Huang et al., n.d.; Osokin et a., 2017). Additionally, one study synthesized multiple imaging
modalities using GAN, such as computed tomography from MRI, 7T MRI from 3T MRI, and
T2w from Tlw MRI (Nie et al., 2018). GAN is a deep learning model synthesizing new
imaging data consisting of a generator and discriminator (Goodfellow et a., 2014). The GAN
model generates data by simultaneously training both the generator and discriminator. The
generator makes fake images as similar as possible to the origina image, and the
discriminator distinguishes whether the input images are fake or real. The generator and
discriminator are adversarial. Specifically, the generator is trained to make the discriminator
fail to classify between fake and rea data, and the discriminator is trained to distinguish
between real and fake images as accurately as possible. A recent study introduced a
conditional GAN by adding specific conditions to the vanilla GAN (Nie et al., 2018). One
representative model of the conditional GAN is pix2pix, which processes paired data of input
and label images (Isola et a., 2016), and another model, called CycleGAN, alows the
unpaired set of images (Zhu et al., 2017).

Several studies have proposed models for synthesizing T2w MRI images from Tlw MRI
images(Kawahara and Nagata, 2021; Yang et a., 2020; Zhao et al., 2021). However, these
studies are limited to yielding two-dimensional (2D) MRI data and focus on improving the
accuracy of image synthesis without providing a comprehensive framework to study the brain
microstructure in vivo. In this study, we propose a toolbox consolidating (i) the synthesis of
T2w MRI images from T1lw images using a conditional GAN, (ii) the calculation of a
microstructure-sensitive proxy, and (iii) the generation of ready-to-use microstructural
features (Fig. 1A).

METHODS

Imaging data

We studied structural MRI data from three independent sites: (i) Human Connectome Project
(HCP) (http://www.humanconnectome.org/) (van Essen et al., 2013), (ii) Samsung Medical
Center (SMC), and (iii) Autism Brain Imaging Data Exchange Il initiative (ABIDE-II;
https://fcon_1000.projects.nitrc.org/indi/abide) (di Martino et a., 2017). The GAN model was
constructed using healthy young adults from the HCP dataset and its generalizability was
validated using the healthy and diseased populations from the SMC dataset. Finaly, we
applied the model to the ABIDE-II dataset to confirm its generalizability to both typical and
atypical neurodevelopmental conditions. The detailed image acquisition parameters are as
follows:
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i) HCP: We obtained T1w and T2w data of 1,104 healthy young adults (mean + standard
deviation (SD) age = 28.8 = 3.7 years, 54.9% female) from the HCP database. The Tlw MRI
was performed using a 3D magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence (TR = 2,400 ms; TE = 2.14 ms; field of view (FOV) = 224 x 224 mm?;
voxel size = 0.7 mm isotropic; number of slices = 256), and the T2w MRI was performed
using a 3D T2-SPACE sequence (TR = 3,200 ms; TE = 565 ms; FOV = 224 x 224 mm?,
voxel size = 0.7 mm isotropic, number of slices = 256).

i) SMC: From the SMC site, we obtained T1w and T2w data of 43 healthy controls (mean £
SD age = 35.1 £ 7.6 years; 76.7% female) and 58 individuals with migraine (mean + SD age
= 34.3 = 8.2 years; 75.8% female). The Tlw MRI was scanned turbo field echo (TFE)
sequence (TR = 8.2 ms; TE = 3.8 ms; field of view (FOV) = 256 x 256 mm?; voxel size=1.0
mm isotropic; and the number of slices = 180), and the T2w MRI was scanned turbo spin
echo (TSE) sequence (TR = 3,000 ms; TE = 280 ms; FOV = 256 x 256 mm?, voxel size = 1.0
mm isotropic, and the number of slices = 180).

iii) ABIDE-II: Additionally, we obtained T1w data of 36 neurotypical controls (mean + SD
age = 13.0 £ 4.6 years, 2.8% female) and 47 individuals with autism (mean + SD age = 11.46
+ 5.7 years; 10.6% female) from the ABIDE-II database, which was the same list as our
previous study (Park et al., 2021a). As the database did not provide T2w MRI data, we only
studied T1w data. Study participants were recruited from two independent sites: New York
University Langone Medical Center (NYU) and Trinity College, Dublin (TCD). The Tiw
MRI was scanned using 3D MPRAGE sequence for both NYU (TR = 2,530 ms; TE = 3.25
ms; FOV = 256 x 256 mm?; voxel size = 1.3 x 1.0 x 1.3 mm>; and number of slices = 128)
and TCD (TR = 8,400 ms; TE = 3.90 ms; FOV = 230 x 230 mm? voxel size = 0.9 mm
isotropic; and number of slices = 180).

MRI data preprocessing

i) HCP: The HCP data were preprocessed using the minimal preprocessing pipelines for HCP
(Glasser et al., 2013). The T1w and T2w data were corrected for gradient nonlinearity and b0
distortions and co-registered using a rigid-body transformation. Bias field correction was
performed based on the inverse intensities from T1- and T2-weighting. The processed data
were nonlinearly registered to the standard Montreal Neurological Institute (MNI152) space.
White and pial surfaces were generated by following the boundaries between the different
tissues (Dale et al., 1999; Fischl et al., 1999b, 1999a). The mid-thickness surface was
generated by averaging the white and pial surfaces, and was used to generate the inflated
surface. The spherical surface was registered to Conte69 template using MSMAII (Glasser et
a., 2016).

i) SMC: The SMC data were preprocessed using the Fusion of Neuroimaging Preprocessing
(FUNP) pipeline (Park et a., 2019) that integrated AFNI, FSL, FreeSurfer, and ANTs (Avants
et al., 2011; Cox, 1996; Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012). Similar to
the HCP pipeline, gradient nonlinearity and b0 distortion correction, nonbrain tissue removal,
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and intensity normalization were performed. White matter, pial, and mid-thickness surfaces
were generated, and the inflated surface was spherically registered to the Conte69 template
with 164k vertices and down-sampled to a 32k vertex mesh.

iii) ABIDE-Il: Tlw data from the ABIDE-II database were preprocessed using FreeSurfer
(Ddle et a., 1999; Fischl, 2012; Fischl et al., 2001, 1999a, 1999b; Ségonne et al., 2007),
which included gradient non-uniformity correction, non-brain tissue removal, intensity
normalization, and tissue segmentation. White and pial surfaces were generated, and topology
correction, inflation, and spherical registration to the fsaverage template were performed.

T2w image synthesis using T1lw MRI

We constructed a conditional GAN-based model to synthesize T2w MRI images from T1w
MR images using the HCP individuals. The participants were randomly divided into training
(n=752), validation (n = 187), and test (n = 165) datasets. The conditional GAN was based
on the pix2pix, which was developed for 2D data (Isola et a., 2016), and its architecture was
adjusted to process 3D input data (Fig. 1B). The generator was based on the U-Net
architecture, which has skip connections linking the layers between the encoder and decoder
(Isola et al., 2016). First, the original 3D T1w data were registered onto a 0.7 mm isotropic
MNI152 standard space with a matrix size of 260 x 311 x 260 using GNU parallel (TANGE,
2018) and resized to 256 x 256 x 256. The data were processed using seven 3D convolutional
layers with a leaky rectified linear unit (LeakyRelLU) activation function. At the end of the
encoding phase, the latent feature was convoluted and 512 units were obtained. Three
deconvolutions with RELU, batch normalization, and dropout with aratio of 0.5 were applied,
and four additional deconvolutions with RELU and batch normalization were conducted.
Finally, deconvolution and a hyperbolic tangent were applied, and 256 x 256 x 256 output
data were generated. The skip connection was linked to the corresponding decoding layer at
each encoding layer. The discriminator was constructed using PatchGAN (Isola et al., 2016).
It discriminates images in units of patches; thus, it is faster than conventional discriminators
that distinguish entire images simultaneously. The 256 x 256 x 256 input matrix was passed
through five convolution layers, and finally, a sigmoid function was applied. To optimize the
hyperparameters, we adopted the Adam optimizer, which is a stochastic gradient descent
method. The objective function was defined as follows:

arg ming maxy, E, ,[log D(x,y)] + E,[log(1 — D(x,G(x)))] + 100 x E, [lly — G(x)ll1] (1)

where G and D denote the generator and discriminator and x and y denote the input and |abel
images, respectively. The objective function comprises the following three terms: the first
determines whether an input is fake or real. The second term is an adversarial term in which
the discriminator receives afake image generated from the generator. The generator is trained
to create fake images to enable the discriminator to classify the fake image as real, and the
discriminator is trained to accurately distinguish between fake and real images. The last term
is the regularization term for training stability. We assessed the performance of the model by
calculating the mean absolute error (MAE) between the actual and synthesized T2w data after
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normalizing the image intensities between 0 and 1. In addition to the global performance, we
assessed the tissue type-specific synthesis performance by calculating the MAE of gray
matter, white matter, and cerebrospina fluid. Regional performance was assessed in the
frontal, temporal, parietal, occipital, insular, and limbic cortices, and subcortical structures
were defined using the Brainnetome atlas (Fan et al., 2016).

A. Schema of GAN-MAT
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Fig. 1 | A proposed toolbox synthesizing T2w MRI from Tlw MRI and estimating brain microstructural
features. (A) Shown is the schema of our toolbox, the Generative Adversarial Network-based Microstructural
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Profile Covariance Analysis Toolbox (GAN-MAT). It contains a conditional GAN synthesizing T2w from T1w
MRI and calculates the ratio between T1w and T2w intensities to obtain the microstructure-sensitive proxy. The
moment features are calculated from the synthesized microstructure data. The microstructural profile covariance
(MPC) matrix is constructed based on the linear correlations of intracortical T1w/T2w intensity profiles between
different brain regions, and microstructural gradients are generated using nonlinear dimensionality reduction
techniques. (B) The architectures of the generator (top) and discriminator (bottom) are shown. (C) We describe
the schema for generating the microstructural gradient. After generating 14 equivolumetric surfaces (left), we
calculate linear correlations of cortical depth-dependent T1w/T2w intensity profiles between different cortical
regions to make an MPC matrix (top middle). By applying dimensionality reduction techniques, we generate the
microstructural gradient (top right). Additionally, four moment features are calculated from the intracortical
microstructural profiles (bottom right). (D) Shown is the organization of the input (left) and output (right)
directories of a sample subject. Abbreviations: Tlw, T1l-weighted; T2w, T2-weighted; GAN, generative
adversarial network; MRI, magnetic resonance imaging.

Microstructural profile of the brain

We generated a microstructure-sensitive proxy based on the ratio between the actual T1w and
synthesized T2w contrasts (Glasser et al., 2014; Glasser and van Essen, 2011) (Fig. 1C). To
calculate the intracortical microstructure profiles, we first generated 14 equivolumetric
surfaces within the cortex between the inner white and outer pial surfaces, and then sampled
the T1w/T2w intensities along these surfaces(Paguola et al., 2019). The statistical moment
features (mean, SD, skewness, and kurtosis) were then calculated from the intensity profiles
(Paquola et al., n.d.; Schleicher et a., 2009). The mean and SD indicate the overall
distribution of the intracortical microstructure, skewness represents shifts in intensity values
toward the supragranular layers (i.e., positive) or flat distribution (i.e., negative), and kurtosis
indicates whether the tails of the intensity distribution contain extreme values. In addition to
the moment features, we constructed a microstructural profile covariance (MPC) matrix by
calculating the linear correlations of cortical depth-dependent T1w/T2w intensity profiles
between different cortical regions defined using the Schaefer atlas with 300 parcels (Schaefer
et al., 2018), while controlling for the average whole-cortex intensity profile(Paquola et al.,
2019). The matrix was thresholded to zero and log-transformed (Paguola et a., 2019). We
generated a microstructural gradient from the MPC matrix, which is a low-dimensional
representation of connectome organization that explains the spatial variation in connectivity
(Margulies et a., 2016; Paguola et al., 2019)using the BrainSpace toolbox
(https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). Specifically, we
applied diffusion map embedding after applying a normalized angle kernel to the group-
averaged MPC matrix, leaving the top 10% of elements for each brain region [48]. Diffusion
map embedding is a nonlinear dimensionality reduction technique that is robust to noise and
computationally  efficient compared with other nonlinear manifold learning
techniques(Tenenbaum et al., 1995; von Luxburg, 2007). It is controlled by two parameters, a
and t, where a controls the influence of the density of the sampling points on the manifold («
= 0, maximal influence; o = 1, no influence), and t scales the eigenvalues of the diffusion
operator. The parameters were set as a = 0.5 and t = O to retain the global relations between
data points in the embedded space, following prior applications (Hong et a., 2019; Margulies
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et al., 2016; Paguola et a., 2019; Park et al., 2021b; Vos de Wael et al., 2020). Individual
gradients were estimated and aligned to the template gradient using Procrustes alignment
(Langs et al., 2015; Vos de Wael et al., 2020). We evaluated the similarity between the actual
and synthesized microstructural moments and gradient features based on linear correlations,
where the significance of the correlation was assessed using 1,000 spin permutation tests that
accounted for spatial autocorrelation (Alexander-Bloch et al., 2018; Vos de Wael et al., 2020).
Additionally, we assessed the global MAE between the actual and synthesized
microstructural features.

Generalizability of the model using an independent dataset

To assess the reliability and robustness of our toolbox, we applied the HCP-driven model to
an independent SMC dataset containing healthy controls and individuals with migraine. We
synthesized T2w from T1lw and calculated the microstructure-sensitive proxy and relevant
moment and gradient features. Performance was evaluated using the M AE between the actual
and synthesized T2w images and the linear correlations between the actual and synthesized
microstructural features.

Application to the developmental conditions

We applied the toolbox to Tlw MRI of neurotypical controls and individuals with autism
obtained from the ABIDE-II database (di Martino et a., 2017) to synthesize T2w data. Asthe
ABIDE-Il database did not provide T2w MRI data, we stratified the synthesized
microstructural gradient values according to four cortical hierarchica levels (idiotypic,
unimodal association, heteromodal association, and paralimbic) (Mesulam, 1998) to assess
whether the gradient followed a well-known sensory-fugal brain hierarchy (Paquola et al.,
2019).

Sensitivity analyses

i) Bootstrap analysis. We trained the GAN model using different training and validation
datasets and synthesized T2w MRI images from the T1w data. We assessed the performance
of the model by calculating the MAE between the actual and synthesized T2w images as well
as the microstructure-sensitive proxy (T1w/T2w ratio) of the test dataset. The analysis was
repeated ten times.

ii) Two-dimensional model. In the main analyses, we modified the original 2D-based pix2pix
model to process the 3D data. Additionally, we tested whether the origina pix2pix model
could synthesize T2w images. To this end, we sliced the 3D T1w images along each axis (X, Y,
and z). The original model consisted of one discriminator; however, we used three
discriminators to distinguish the sliced images along each axis. Three synthesized images
from the x-, y-, and z-axes were merged in the final stage to yield the 3D data. Model
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performance was assessed using the MAE between the actual and synthesized T2w and
T1w/T2w ratios.

iii) Synthesis of TIw/T2w ratio. In addition to synthesizing T2w MRI images from T1w, we
trained the GAN to synthesize T1w/T2w directly. We tested both the 3D and 2D models and
calculated the MAE to assess the performance.

RESULTS

Organization of the toolbox

The developed toolbox requires the input datato be organized in a specific format containing
T1lw data and several FreeSurfer output files (Fig. 1D). The toolbox can be implemented
using a single command “gan-mat -input_dir /INPUT/DATA/DIRECTORY -output_dir
/OUTPUT/DIRECTORY". It then yields brain microstructural and intracortical moment
features as well as the MPC matrix and its microstructural gradient, mapped onto 18 different
parcellation schemes (Cruces et a., 2022).

Synthesis of T2w from T1w MRI

We synthesized 3D T2w MRI images from T1w data using a modified pix2pix model. The
trained model was applied to the holdout test dataset and the actual and synthesized T2w
images showed similar spatia patterns (mean = SD MAE of the whole brain across
individuals = 0.036 + 0.010) when the image intensity of each subject was scaled between 0
and 1 (Fig. 2A). The synthesis performance was slightly different among the tissue types,
with the best performance observed in the white matter (white matter = 0.032 + 0.009, gray
matter = 0.038 £ 0.008, and cerebrospinal fluid = 0.041 + 0.005 across individuals). When we
stratified the MAE according to different lobes and subcortical structures, the subcortical
structures showed the best performance, whereas the parietal and occipital |obes showed
relatively higher errors but were still comparable.
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Fig. 2 | Performance of the synthesis model. (A) Visualization of the actual and synthesized T2w images of
three representative participants (left). The box plots show the MAE of different cortical and subcortical
structures (right). (B) The actua (left) and synthesized (middle) microstructural gradients of three representative
participants are shown. The similarity of the group-level gradients is assessed using spatial correlations with
spin permutation tests (right), where the gray area indicates a 95% confidence interval. (C) The actual (left) and
synthesized (right) group-level moment features are shown. The group-level correlations between actual and
synthesized moment features are shown (bottom). Abbreviations: MAE, mean absolute error; T2w, T2-weighted.
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Synthesized brain microstructure

The validity of the synthesized T2w images was evaluated by assessing the similarity
between the actual and synthesized microstructure-sensitive proxies based on the T1w/T2w
ratio (Fig. 2B). We observed a high similarity in the synthesized microstructure-sensitive
proxy, where the mean = SD MAE was 0.007 + 0.002 across individuals. Moreover, the
generated microstructural gradient showed a well-known sensory-fugal hierarchy that
radiated from sensory and motor areas with higher myelination toward heteromodal
associations and paralimbic regions with lower myelin content. The individual-level
correlations between the actual and synthesized microstructural gradients showed significant
associations (mean = SD correlation coefficient = 0.71 + 0.05, pgin < 0.001). Additionally, we
assessed the similarity between the actual and synthesized moment features, which also
showed high similarities (mean: mean £ SD correlation coefficient = 0.70 = 0.07, pgin <
0.001; SD: 0.53 + 0.08, pspin < 0.001; skewness: 0.77 + 0.06, psin < 0.001; kurtosis: 0.63
0.12, pyin < 0.001; Fig. 2C).

Validation of the model using an independent dataset

The generaizability of the model was evaluated by applying it to an independent SMC
dataset. The MAE between the actual and synthesized T2w images showed comparable
results (mean = SD MAE across healthy controls = 0.086 + 0.016; individuals with migraine
= 0.089 + 0.014; Fig. 3A). The linear correlations were also comparable between the actual
and synthesized microstructural gradients (healthy controls = 0.74 £+ 0.04, individuals with
migraine = 0.75 + 0.06) and moment features (healthy controls/individuas with migraine:
mean = 0.08 + 0.04/0.09 £ 0.07, SD = 0.45 + 0.14/0.47 £ 0.15, skewness = 0.72 + 0.06/0.75 £
0.05, kurtosis = 0.60 + 0.09/0.64 + 0.10) except for the mean moment feature (Fig. 3B-C).
These results indicated that our toolbox can be used to investigate the microstructural profiles
of both healthy controls and patients with neurological conditions.


https://doi.org/10.1101/2023.04.20.537642
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.20.537642; this version posted April 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A. Comparison between the actual and synthaslzed T2w

Higraine i

B. Comparison between actual and syntheskzed microstructural gradlents
1= 383 p,,. < 0001

21

i
£.1 Actua mirestnctra )),-
radioat

18084, B % 0001

ar . el

41 perml :1:;“1 EL
C. Comparison between actual and synthesized moment features in control group
Actual moment features Bynthesized moment featuras

S wilnd 1n v wenrl
_— ]

18 s ule . :
£17 Aduslreresrectra 02 101 Astual wilsromruotral 1Y 44 aeneimematuciu 10
an ‘barched devution rete——

D. Comparison between actual and synthesized moment features in migraine group
Actual moment features Synthesized moment featuras

Fig. 3 | Validation of the toolbox using an independent dataset. (A) Visudization of the actual and
synthesized T2w images of two representative participants in each group. (B) Shown are the microstructural
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gradients of the control and migraine groups. The group-level correlations between the actual and synthesized
gradients are shown with scatter plots. (C) We described moment features of the control and (D) migraine
groups, where the group-level correlations are reported with scatter plots. Abbreviations: T2w, T2-weighted.

Application of the modd to the typical and atypical developmental conditions

We applied our toolbox to data from neurotypical controls and individuals with autism which
we obtained from the ABIDE |1 database (di Martino et al., 2017). We estimated the MPC
matrix and microstructural gradients for each subject and averaged them to obtain group-
representative data for the control and autism groups (Fig. 4A). The generated
microstructural gradients exhibited a sensory-fugal axis in both groups. When we stratified
the gradient values according to the four cortical hierarchical levels (Mesulam, 1998), a clear
hierarchy aong the cortex was observed, expanding from the lower-level idiotypic to the
higher-order association and paralimbic areas (Fig. 4B). Together, these results indicate that
our toolbox can be generalized to independent datasets of typical and atypical developmental
conditions.

A, MPC matrix and microstructural gradients of ABIDE-|| dataset

B. Gradient values accerding to cortical hierarch

R
$
I

» Kietypia R Unimodal ssgesiatin ® Hetsremodsl aggociation = Paralimble

Fig. 4 | Brain microstructure of an independent dataset. (A) We constructed a microstructural profile
covariance (MPC) matrix (top) and microstructural gradient (bottom) of neurotypical controls and individuals
with autism. (B) We gratified the gradient values according to four cortical hierarchical levels.
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Sensitivity analyses

i) Bootstrap analysis. We synthesized T2w data from Tlw MRI images using randomly
selected training and validation datasets to avoid subject-selection bias. The mean + SD MAE
between the actual and synthesized T2w of the test datasets across ten bootstraps was 0.045 +
0.005 and that of the Tiw/T2w ratio was 0.016 * 0.0004, indicating robustness
(Supplementary Fig. 1).

i) Two-dimensional model. The origina 2D pix2pix model was trained instead of the
modified 3D model. The mean £ SD MAE between the actual and synthesized T2w was
0.110 + 0.023, and the T1w/T2w ratio was 0.027 + 0.023 (Supplementary Fig. 2A). The
results based on the 2D model exhibited higher errors than those based on the 3D model.

iii) Synthesis of TAw/T2w ratio. Instead of synthesizing T2w, we directly determined the
T1w/T2w ratio from the T1w data. The 2D model showed mean + SD MAE of 0.048 + 0.008
(Supplementary Fig. 2B), and the 3D model showed 0.018 + 0.002 (Supplementary Fig.
2C). These results suggest that synthesizing T2w data is better than synthesizing the
T1w/T2w ratio.

DiscussioN

The image-synthesis approach benefits neuroimaging studies by generating multiple imaging
modalities from a single modal image with reduced time and cost. In this study, we
constructed and disseminated a toolbox to analyze the brain microstructure in vivo using only
T1w MRI. Specificaly, the toolbox synthesizes T2w from T1w MRI images and calculates a
microstructure-sensitive proxy to generate the MPC matrix, its gradient, and moment features.
We observed a high correspondence between the actual and synthesized features, and
multiple sensitivity analyses demonstrated the robustness of the toolbox. Our proposed
framework may facilitate multimodal neuroimaging studies, particularly for studying brain
microstructures using limited neuroimaging modalities.

The concept of image synthesis was introduced in previous neuroimaging studies. For
example, one study used a conditional GAN to synthesize T1w from T2w images and T2w
from T1lw images based on the original pix2pix model (Kawahara and Nagata, 2021).
Another study modified the model to process 3D data, in which each dimension was a sagittal,
coronal, or axia dlice (Zhao et al., 2021). Additionally, a conditional GAN was adopted to
improve the quality of the registration and segmentation of brain images containing tumors
(Yang et al., 2020). These studies focused on optimizing the distribution of the synthesized
image to make it as similar as possible to an actual image. Thus, the aims of these studies
were primarily to improve the synthesis accuracy and optimize the hyperparameters of the
model. Contrastingly, our work aimed to provide the microstructural features of the brain that
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can be used in neuroscience and clinical studies to identify markers of specific psychiatric or
neurological conditions. For example, the microstructure-sensitive proxy can be used to
investigate alterations in brain network organization of Alzheimer’s disease, schizophrenia,
epilepsy, and multiple sclerosis (Bernhardt et al., 2018; Boaventura et a., 2022; Ganzetti et
a., 2015; Pelkmans et a., 2019; Yasuno et al., 2017), and we can assess behavioral and
cognitive traits during typical and atypical development [53]-[55]. Moreover, microstructural
features can be used to investigate multiscale neura organization. The microstructural
gradient describes macroscopic connectome organization and is associated with gene
expression in brain cells (Paquola et al., n.d.; Royer et al., 2020). In summary, our study
impacts clinical neuroscience by providing a consolidated framework for synthesizing T2w
images from T1w MRI images and generating ready-to-use brain microstructural features.

We demonstrated the reliability and robustness of our toolbox using multiple scenarios. First,
we quantitatively tested four different models: (i) synthesis of T2w using a 3D GAN (ii) 2D
GAN, (iii) synthesis of the TAw/T2w ratio using a 3D GAN, and (iv) 2D GAN. We found that
the first model (3D-T2w synthesis) exhibited the best performance. The superior
performance of the 3D model relative to that of the 2D model may be due to the quantity of
information. The 2D model uses information on the brain anatomy of each axis (i.e., sagittal,
coronal, and axial) for training; thus, it does not consider the geometric properties across
different slices. Additionally, synthesizing T2w images is better than directly creating a
T1w/T2w ratio. A previous study suggested that the role of T2w images when calculating
microstructure-sensitive proxies is to remove blood vessels and dura from the pial surface
and reduce the effects of myelin content on pial surface generation via intensity normalization
of gray matter (Glasser et al., 2014). If we directly synthesize the T1w/T2w ratio from the
Tlw data, the GAN model may not consider these biological properties of T2w images,
leading to a minor similarity between the actual and synthesized images. Second, we
conducted bootstrap tests with different training and validation datasets and found low errors
in the gray and white matter. The boundaries between different tissue types and the skull vary
largely across individuals, leading to the optimization of hyperparameters for model training.
Further studies are required to minimize such errors and improve the synthesis performance.
Third, we tested the generaizability of our toolbox by using an independent dataset
containing both healthy and diseased populations. These findings indicate that our toolbox is
appropriate for investigating disease-related microstructural alterations in the brain using only
Tlw MRI.

In this study, we developed an end-to-end toolbox for synthesizing T2w images from T1lw
images and generating brain microstructural features, including moments, MPC matrix, and
microstructural gradients. Multiple sensitivity analyses demonstrated the reliability and
robustness of this toolbox. Our model may foster future multimodal MRI studies to
investigate brain microstructures.
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Supplementary Fig. 1 | Differences between the actual and synthesized T2-weighted
MRI. The mean (top) and standard deviation (bottom) of the differences across ten bootstraps
are shown.
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A. 2D model generating T2w image

Supplementary Fig. 2 | Synthesized images using other models. (A) The actual (left),
synthesized (right) T2w images using a 2D model, (B) T1w/T2w ratio using a 2D model, and
(C) T1w/T2w ratio using a 3D model of three representative participants. Abbreviations: T1w,
T1-weighted; T2w, T2-weighted.
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