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ABSTRACT 

Multimodal magnetic resonance imaging (MRI) provides complementary information for 
investigating brain structure and function; for example, an in vivo microstructure-sensitive 
proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. 
However, acquiring multiple imaging modalities is challenging in patients with inattentive 
disorders. In this study, we proposed a comprehensive framework to provide multiple 
imaging features related to the brain microstructure using only T1-weighted MRI. Our 
toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a 
conditional generative adversarial network; (ii) estimating microstructural features, including 
intracortical covariance and moment features of cortical layer-wise microstructural profiles; 
and (iii) generating a microstructural gradient, which is a low-dimensional representation of 
the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-
weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome 
Project database. We found that the synthesized T2-weighted MRI was very similar to the 
actual image and that the synthesized data successfully reproduced the microstructural 
features. The toolbox was validated using an independent dataset containing healthy controls 
and patients with episodic migraine as well as the atypical developmental condition of autism 
spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal 
structural MRI in the neuroscience community, and is openly accessible at 
https://github.com/CAMIN-neuro/GAN-MAT. 
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INTRODUCTION 

Multimodal magnetic resonance imaging (MRI) enables the investigation of brain structure 
and function, and their relationships, in vivo. Using structural MRI of T1-weighted (T1w) and 
T2-weighted (T2w) images, we can assess the anatomical features of the brain, such as 
cortical thickness, curvature, and volume. Both T1w and T2w data elucidate brain structures, 
but the image contrast is a major difference. In T1w MRI, the white matter is bright and the 
gray matter is dark, whereas T2w imaging shows the opposite intensity patterns. This is a 
consequence of the different MRI parameters. For example, in T1w, the repetition time (TR), 
which is the time between successive pulse sequences applied to the same slice, and the echo 
time (TE), which is the time from the center of the radio-frequency pulse to the center of the 
echo, were shorter than those in T2w MRI. A short TR leads to a strong T1 weighting, 
whereas a long TE results in a strong T2 weighting. Indeed, T1 and T2 properties are 
heterogeneous across different tissue types according to the amount of available free water, 
yielding different image contrasts (Stanisz et al., 2005). 

In addition to brain morphology, we can assess microstructural information of the brain using 
T1w and T2w MRI without obtaining cytoarchitecture data. Specifically, an approximation of 
the brain microstructure can be estimated using a microstructure-sensitive proxy, which is 
calculated based on the ratio between T1w and T2w imaging contrasts (Glasser et al., 2014; 
Glasser and van Essen, 2011), thus enabling us to investigate the cortical microstructure in 
vivo. A recent study suggested a method for analyzing the interregional relations of the brain 
microstructure (Paquola et al., 2019) by calculating cortical layer-wise microstructural 
profiles among different brain regions. By applying dimensionality reduction techniques, they 
generated a low-dimensional representation of the cortical microstructure, referred to as a 
microstructural gradient. The microstructural gradient represents a well-known hierarchical 
cortical model of the sensory-fugal axis, which expands from the sensory regions to the 
limbic cortices (Mesulam, 1998; Paquola et al., 2019). This feature has been widely adopted 
to assess the microstructural profiles of the brain in healthy adults as well as during 
adolescence (Paquola et al., 2019, n.d.; Whitaker et al., 2016). Indeed, the microstructural 
gradient linked the macroscale connectome to microscale cell-type-specific expression during 
adolescent development, suggesting the validity of this feature for investigating multiscale 
properties of the brain (Paquola et al., n.d.). However, it is difficult to obtain microstructural 
features because it requires the acquisition of both T1w and T2w MRI, which is time-
consuming and costly. Moreover, obtaining multiple imaging data within a restricted time 
may not be possible for individuals with psychiatric disorders showing inattentive behaviors, 
such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Because of 
these issues, many open databases and clinics typically provide only T1w MRI, not T2w, for 
research (di Martino et al., 2017, 2014; Milham et al., 2012; Nooner et al., 2012). One 
approach for mitigating this limitation is image synthesis. If we can synthesize T2w MRI 
images from T1w images, we can generate a microstructural gradient using only T1w MRI 
images with reduced time and cost. 

Image synthesis has been conducted in many prior works using natural images and texts 
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(Huang et al., 2018; Sangkloy et al., n.d.; Thies et al., 2019; Wang et al., n.d.; Zhang et al., 
2019), and transferred to study medical imaging data (Chira et al., 2022; Nie et al., 2018; 
Osokin et al., 2017; Shin et al., 2018). For example, one study generated high-resolution 
images from low-resolution data using deep variational autoencoders (Chira et al., 2022), and 
another work generated brain MRI with tumors using a generative adversarial network (GAN) 
(Huang et al., n.d.; Osokin et al., 2017). Additionally, one study synthesized multiple imaging 
modalities using GAN, such as computed tomography from MRI, 7T MRI from 3T MRI, and 
T2w from T1w MRI (Nie et al., 2018). GAN is a deep learning model synthesizing new 
imaging data consisting of a generator and discriminator (Goodfellow et al., 2014). The GAN 
model generates data by simultaneously training both the generator and discriminator. The 
generator makes fake images as similar as possible to the original image, and the 
discriminator distinguishes whether the input images are fake or real. The generator and 
discriminator are adversarial. Specifically, the generator is trained to make the discriminator 
fail to classify between fake and real data, and the discriminator is trained to distinguish 
between real and fake images as accurately as possible. A recent study introduced a 
conditional GAN by adding specific conditions to the vanilla GAN (Nie et al., 2018). One 
representative model of the conditional GAN is pix2pix, which processes paired data of input 
and label images (Isola et al., 2016), and another model, called CycleGAN, allows the 
unpaired set of images (Zhu et al., 2017). 

Several studies have proposed models for synthesizing T2w MRI images from T1w MRI 
images(Kawahara and Nagata, 2021; Yang et al., 2020; Zhao et al., 2021). However, these 
studies are limited to yielding two-dimensional (2D) MRI data and focus on improving the 
accuracy of image synthesis without providing a comprehensive framework to study the brain 
microstructure in vivo. In this study, we propose a toolbox consolidating (i) the synthesis of 
T2w MRI images from T1w images using a conditional GAN, (ii) the calculation of a 
microstructure-sensitive proxy, and (iii) the generation of ready-to-use microstructural 
features (Fig. 1A). 

 

 

METHODS 

Imaging data 

We studied structural MRI data from three independent sites: (i) Human Connectome Project 
(HCP) (http://www.humanconnectome.org/) (van Essen et al., 2013), (ii) Samsung Medical 
Center (SMC), and (iii) Autism Brain Imaging Data Exchange II initiative (ABIDE-II; 
https://fcon_1000.projects.nitrc.org/indi/abide) (di Martino et al., 2017). The GAN model was 
constructed using healthy young adults from the HCP dataset and its generalizability was 
validated using the healthy and diseased populations from the SMC dataset. Finally, we 
applied the model to the ABIDE-II dataset to confirm its generalizability to both typical and 
atypical neurodevelopmental conditions. The detailed image acquisition parameters are as 
follows: 
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i) HCP: We obtained T1w and T2w data of 1,104 healthy young adults (mean ± standard 
deviation (SD) age = 28.8 ± 3.7 years; 54.9% female) from the HCP database. The T1w MRI 
was performed using a 3D magnetization-prepared rapid acquisition gradient echo 
(MPRAGE) sequence (TR = 2,400 ms; TE = 2.14 ms; field of view (FOV) = 224 × 224 mm2; 
voxel size = 0.7 mm isotropic; number of slices = 256), and the T2w MRI was performed 
using a 3D T2-SPACE sequence (TR = 3,200 ms; TE = 565 ms; FOV = 224 × 224 mm2, 
voxel size = 0.7 mm isotropic, number of slices = 256). 

ii) SMC: From the SMC site, we obtained T1w and T2w data of 43 healthy controls (mean ± 
SD age = 35.1 ± 7.6 years; 76.7% female) and 58 individuals with migraine (mean ± SD age 
= 34.3 ± 8.2 years; 75.8% female). The T1w MRI was scanned turbo field echo (TFE) 
sequence (TR = 8.2 ms; TE = 3.8 ms; field of view (FOV) = 256 × 256 mm2; voxel size = 1.0 
mm isotropic; and the number of slices = 180), and the T2w MRI was scanned turbo spin 
echo (TSE) sequence (TR = 3,000 ms; TE = 280 ms; FOV = 256 × 256 mm2, voxel size = 1.0 
mm isotropic, and the number of slices = 180). 

iii) ABIDE-II: Additionally, we obtained T1w data of 36 neurotypical controls (mean ± SD 
age = 13.0 ± 4.6 years; 2.8% female) and 47 individuals with autism (mean ± SD age = 11.46 
± 5.7 years; 10.6% female) from the ABIDE-II database, which was the same list as our 
previous study (Park et al., 2021a). As the database did not provide T2w MRI data, we only 
studied T1w data. Study participants were recruited from two independent sites: New York 
University Langone Medical Center (NYU) and Trinity College, Dublin (TCD). The T1w 
MRI was scanned using 3D MPRAGE sequence for both NYU (TR = 2,530 ms; TE = 3.25 
ms; FOV = 256 × 256 mm2; voxel size = 1.3 × 1.0 × 1.3 mm3; and number of slices = 128) 
and TCD (TR = 8,400 ms; TE = 3.90 ms; FOV = 230 × 230 mm2; voxel size = 0.9 mm 
isotropic; and number of slices = 180). 

 

MRI data preprocessing 

i) HCP: The HCP data were preprocessed using the minimal preprocessing pipelines for HCP 
(Glasser et al., 2013). The T1w and T2w data were corrected for gradient nonlinearity and b0 
distortions and co-registered using a rigid-body transformation. Bias field correction was 
performed based on the inverse intensities from T1- and T2-weighting. The processed data 
were nonlinearly registered to the standard Montreal Neurological Institute (MNI152) space. 
White and pial surfaces were generated by following the boundaries between the different 
tissues (Dale et al., 1999; Fischl et al., 1999b, 1999a). The mid-thickness surface was 
generated by averaging the white and pial surfaces, and was used to generate the inflated 
surface. The spherical surface was registered to  Conte69 template using MSMAll (Glasser et 
al., 2016). 

ii) SMC: The SMC data were preprocessed using the Fusion of Neuroimaging Preprocessing 
(FuNP) pipeline (Park et al., 2019) that integrated AFNI, FSL, FreeSurfer, and ANTs (Avants 
et al., 2011; Cox, 1996; Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012). Similar to 
the HCP pipeline, gradient nonlinearity and b0 distortion correction, nonbrain tissue removal, 
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and intensity normalization were performed. White matter, pial, and mid-thickness surfaces 
were generated, and the inflated surface was spherically registered to the Conte69 template 
with 164k vertices and down-sampled to a 32k vertex mesh. 

iii) ABIDE-II: T1w data from the ABIDE-II database were preprocessed using FreeSurfer 
(Dale et al., 1999; Fischl, 2012; Fischl et al., 2001, 1999a, 1999b; Ségonne et al., 2007), 
which included gradient non-uniformity correction, non-brain tissue removal, intensity 
normalization, and tissue segmentation. White and pial surfaces were generated, and topology 
correction, inflation, and spherical registration to the fsaverage template were performed. 

 

T2w image synthesis using T1w MRI 

We constructed a conditional GAN-based model to synthesize T2w MRI images from T1w 
MR images using the HCP individuals. The participants were randomly divided into training 
(n = 752), validation (n = 187), and test (n = 165) datasets. The conditional GAN was based 
on the pix2pix, which was developed for 2D data (Isola et al., 2016), and its architecture was 
adjusted to process 3D input data (Fig. 1B). The generator was based on the U-Net 
architecture, which has skip connections linking the layers between the encoder and decoder 
(Isola et al., 2016). First, the original 3D T1w data were registered onto a 0.7 mm isotropic 
MNI152 standard space with a matrix size of 260 × 311 × 260 using GNU parallel (TANGE, 
2018) and resized to 256 × 256 × 256. The data were processed using seven 3D convolutional 
layers with a leaky rectified linear unit (LeakyReLU) activation function. At the end of the 
encoding phase, the latent feature was convoluted and 512 units were obtained. Three 
deconvolutions with RELU, batch normalization, and dropout with a ratio of 0.5 were applied, 
and four additional deconvolutions with RELU and batch normalization were conducted. 
Finally, deconvolution and a hyperbolic tangent were applied, and 256 × 256 × 256 output 
data were generated. The skip connection was linked to the corresponding decoding layer at 
each encoding layer. The discriminator was constructed using PatchGAN (Isola et al., 2016). 
It discriminates images in units of patches; thus, it is faster than conventional discriminators 
that distinguish entire images simultaneously. The 256 × 256 × 256 input matrix was passed 
through five convolution layers, and finally, a sigmoid function was applied. To optimize the 
hyperparameters, we adopted the Adam optimizer, which is a stochastic gradient descent 
method. The objective function was defined as follows: 

arg min� max� ��,�	log �
�, ��� � ��	log
1 � �
�, �
����� � 100 �  ��,�	�� � �
����� (1) 

where G and D denote the generator and discriminator and x and y denote the input and label 
images, respectively. The objective function comprises the following three terms: the first 
determines whether an input is fake or real. The second term is an adversarial term in which 
the discriminator receives a fake image generated from the generator. The generator is trained 
to create fake images to enable the discriminator to classify the fake image as real, and the 
discriminator is trained to accurately distinguish between fake and real images. The last term 
is the regularization term for training stability. We assessed the performance of the model by 
calculating the mean absolute error (MAE) between the actual and synthesized T2w data after 
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normalizing the image intensities between 0 and 1. In addition to the global performance, we 
assessed the tissue type-specific synthesis performance by calculating the MAE of gray 
matter, white matter, and cerebrospinal fluid. Regional performance was assessed in the 
frontal, temporal, parietal, occipital, insular, and limbic cortices, and subcortical structures 
were defined using the Brainnetome atlas (Fan et al., 2016). 

 

Fig. 1 | A proposed toolbox synthesizing T2w MRI from T1w MRI and estimating brain microstructural 
features. (A) Shown is the schema of our toolbox, the Generative Adversarial Network-based Microstructural 
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Profile Covariance Analysis Toolbox (GAN-MAT). It contains a conditional GAN synthesizing T2w from T1w 
MRI and calculates the ratio between T1w and T2w intensities to obtain the microstructure-sensitive proxy. The 
moment features are calculated from the synthesized microstructure data. The microstructural profile covariance 
(MPC) matrix is constructed based on the linear correlations of intracortical T1w/T2w intensity profiles between 
different brain regions, and microstructural gradients are generated using nonlinear dimensionality reduction 
techniques. (B) The architectures of the generator (top) and discriminator (bottom) are shown. (C) We describe 
the schema for generating the microstructural gradient. After generating 14 equivolumetric surfaces (left), we 
calculate linear correlations of cortical depth-dependent T1w/T2w intensity profiles between different cortical 
regions to make an MPC matrix (top middle). By applying dimensionality reduction techniques, we generate the 
microstructural gradient (top right). Additionally, four moment features are calculated from the intracortical 
microstructural profiles (bottom right). (D) Shown is the organization of the input (left) and output (right) 
directories of a sample subject. Abbreviations: T1w, T1-weighted; T2w, T2-weighted; GAN, generative 
adversarial network; MRI, magnetic resonance imaging. 

 

Microstructural profile of the brain 

We generated a microstructure-sensitive proxy based on the ratio between the actual T1w and 
synthesized T2w contrasts (Glasser et al., 2014; Glasser and van Essen, 2011) (Fig. 1C). To 
calculate the intracortical microstructure profiles, we first generated 14 equivolumetric 
surfaces within the cortex between the inner white and outer pial surfaces, and then sampled 
the T1w/T2w intensities along these surfaces(Paquola et al., 2019). The statistical moment 
features (mean, SD, skewness, and kurtosis) were then calculated from the intensity profiles 
(Paquola et al., n.d.; Schleicher et al., 2009). The mean and SD indicate the overall 
distribution of the intracortical microstructure, skewness represents shifts in intensity values 
toward the supragranular layers (i.e., positive) or flat distribution (i.e., negative), and kurtosis 
indicates whether the tails of the intensity distribution contain extreme values. In addition to 
the moment features, we constructed a microstructural profile covariance (MPC) matrix by 
calculating the linear correlations of cortical depth-dependent T1w/T2w intensity profiles 
between different cortical regions defined using the Schaefer atlas with 300 parcels (Schaefer 
et al., 2018), while controlling for the average whole-cortex intensity profile(Paquola et al., 
2019). The matrix was thresholded to zero and log-transformed (Paquola et al., 2019). We 
generated a microstructural gradient from the MPC matrix, which is a low-dimensional 
representation of connectome organization that explains the spatial variation in connectivity 
(Margulies et al., 2016; Paquola et al., 2019)using the BrainSpace toolbox 
(https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). Specifically, we 
applied diffusion map embedding after applying a normalized angle kernel to the group-
averaged MPC matrix, leaving the top 10% of elements for each brain region [48]. Diffusion 
map embedding is a nonlinear dimensionality reduction technique that is robust to noise and 
computationally efficient compared with other nonlinear manifold learning 
techniques(Tenenbaum et al., 1995; von Luxburg, 2007). It is controlled by two parameters, α 
and t, where α controls the influence of the density of the sampling points on the manifold (α 
= 0, maximal influence; α = 1, no influence), and t scales the eigenvalues of the diffusion 
operator. The parameters were set as α = 0.5 and t = 0 to retain the global relations between 
data points in the embedded space, following prior applications (Hong et al., 2019; Margulies 
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et al., 2016; Paquola et al., 2019; Park et al., 2021b; Vos de Wael et al., 2020). Individual 
gradients were estimated and aligned to the template gradient using Procrustes alignment 
(Langs et al., 2015; Vos de Wael et al., 2020). We evaluated the similarity between the actual 
and synthesized microstructural moments and gradient features based on linear correlations, 
where the significance of the correlation was assessed using 1,000 spin permutation tests that 
accounted for spatial autocorrelation (Alexander-Bloch et al., 2018; Vos de Wael et al., 2020). 
Additionally, we assessed the global MAE between the actual and synthesized 
microstructural features. 

 

Generalizability of the model using an independent dataset 

To assess the reliability and robustness of our toolbox, we applied the HCP-driven model to 
an independent SMC dataset containing healthy controls and individuals with migraine. We 
synthesized T2w from T1w and calculated the microstructure-sensitive proxy and relevant 
moment and gradient features. Performance was evaluated using the MAE between the actual 
and synthesized T2w images and the linear correlations between the actual and synthesized 
microstructural features. 

 

Application to the developmental conditions 

We applied the toolbox to T1w MRI of neurotypical controls and individuals with autism 
obtained from the ABIDE-II database (di Martino et al., 2017) to synthesize T2w data. As the 
ABIDE-II database did not provide T2w MRI data, we stratified the synthesized 
microstructural gradient values according to four cortical hierarchical levels (idiotypic, 
unimodal association, heteromodal association, and paralimbic) (Mesulam, 1998) to assess 
whether the gradient followed a well-known sensory-fugal brain hierarchy (Paquola et al., 
2019). 

 

Sensitivity analyses 

i) Bootstrap analysis. We trained the GAN model using different training and validation 
datasets and synthesized T2w MRI images from the T1w data. We assessed the performance 
of the model by calculating the MAE between the actual and synthesized T2w images as well 
as the microstructure-sensitive proxy (T1w/T2w ratio) of the test dataset. The analysis was 
repeated ten times. 

ii) Two-dimensional model. In the main analyses, we modified the original 2D-based pix2pix 
model to process the 3D data. Additionally, we tested whether the original pix2pix model 
could synthesize T2w images. To this end, we sliced the 3D T1w images along each axis (x, y, 
and z). The original model consisted of one discriminator; however, we used three 
discriminators to distinguish the sliced images along each axis. Three synthesized images 
from the x-, y-, and z-axes were merged in the final stage to yield the 3D data. Model 
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performance was assessed using the MAE between the actual and synthesized T2w and 
T1w/T2w ratios. 

iii) Synthesis of T1w/T2w ratio. In addition to synthesizing T2w MRI images from T1w, we 
trained the GAN to synthesize T1w/T2w directly. We tested both the 3D and 2D models and 
calculated the MAE to assess the performance. 

 

 

RESULTS 

Organization of the toolbox 

The developed toolbox requires the input data to be organized in a specific format containing 
T1w data and several FreeSurfer output files (Fig. 1D). The toolbox can be implemented 
using a single command “gan-mat -input_dir /INPUT/DATA/DIRECTORY -output_dir 
/OUTPUT/DIRECTORY”. It then yields brain microstructural and intracortical moment 
features as well as the MPC matrix and its microstructural gradient, mapped onto 18 different 
parcellation schemes (Cruces et al., 2022). 

 

Synthesis of T2w from T1w MRI 

We synthesized 3D T2w MRI images from T1w data using a modified pix2pix model. The 
trained model was applied to the holdout test dataset and the actual and synthesized T2w 
images showed similar spatial patterns (mean ± SD MAE of the whole brain across 

individuals = 0.036 ± 0.010) when the image intensity of each subject was scaled between 0 
and 1 (Fig. 2A). The synthesis performance was slightly different among the tissue types, 
with the best performance observed in the white matter (white matter = 0.032 ± 0.009, gray 

matter = 0.038 ± 0.008, and cerebrospinal fluid = 0.041 ± 0.005 across individuals). When we 
stratified the MAE according to different lobes and subcortical structures, the subcortical 
structures showed the best performance, whereas the parietal and occipital lobes showed 
relatively higher errors but were still comparable. 
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Fig. 2 | Performance of the synthesis model. (A) Visualization of the actual and synthesized T2w images of 
three representative participants (left). The box plots show the MAE of different cortical and subcortical 
structures (right). (B) The actual (left) and synthesized (middle) microstructural gradients of three representative 
participants are shown. The similarity of the group-level gradients is assessed using spatial correlations with 
spin permutation tests (right), where the gray area indicates a 95% confidence interval. (C) The actual (left) and 
synthesized (right) group-level moment features are shown. The group-level correlations between actual and 
synthesized moment features are shown (bottom). Abbreviations: MAE, mean absolute error; T2w, T2-weighted. 
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Synthesized brain microstructure 

The validity of the synthesized T2w images was evaluated by assessing the similarity 
between the actual and synthesized microstructure-sensitive proxies based on the T1w/T2w 
ratio (Fig. 2B). We observed a high similarity in the synthesized microstructure-sensitive 
proxy, where the mean ± SD MAE was 0.007 ± 0.002 across individuals. Moreover, the 
generated microstructural gradient showed a well-known sensory-fugal hierarchy that 
radiated from sensory and motor areas with higher myelination toward heteromodal 
associations and paralimbic regions with lower myelin content. The individual-level 
correlations between the actual and synthesized microstructural gradients showed significant 
associations (mean ± SD correlation coefficient = 0.71 ± 0.05, pspin < 0.001). Additionally, we 
assessed the similarity between the actual and synthesized moment features, which also 
showed high similarities (mean: mean ± SD correlation coefficient = 0.70 ± 0.07, pspin < 

0.001; SD: 0.53 ± 0.08, pspin < 0.001; skewness: 0.77 ± 0.06, pspin < 0.001; kurtosis: 0.63 ± 
0.12, pspin < 0.001; Fig. 2C). 

 

Validation of the model using an independent dataset 

The generalizability of the model was evaluated by applying it to an independent SMC 
dataset. The MAE between the actual and synthesized T2w images showed comparable 
results (mean ± SD MAE across healthy controls = 0.086 ± 0.016; individuals with migraine 

= 0.089 ± 0.014; Fig. 3A). The linear correlations were also comparable between the actual 

and synthesized microstructural gradients (healthy controls = 0.74 ± 0.04, individuals with 

migraine = 0.75 ± 0.06) and moment features (healthy controls/individuals with migraine: 

mean = 0.08 ± 0.04/0.09 ± 0.07, SD = 0.45 ± 0.14/0.47 ± 0.15, skewness = 0.72 ± 0.06/0.75 ± 

0.05, kurtosis = 0.60 ± 0.09/0.64 ± 0.10) except for the mean moment feature (Fig. 3B-C). 
These results indicated that our toolbox can be used to investigate the microstructural profiles 
of both healthy controls and patients with neurological conditions. 
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Fig. 3 | Validation of the toolbox using an independent dataset. (A) Visualization of the actual and 
synthesized T2w images of two representative participants in each group. (B) Shown are the microstructural 
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gradients of the control and migraine groups. The group-level correlations between the actual and synthesized 
gradients are shown with scatter plots. (C) We described moment features of the control and (D) migraine 
groups, where the group-level correlations are reported with scatter plots. Abbreviations: T2w, T2-weighted. 

 

Application of the model to the typical and atypical developmental conditions 

We applied our toolbox to data from neurotypical controls and individuals with autism which 
we obtained from the ABIDE II database (di Martino et al., 2017). We estimated the MPC 
matrix and microstructural gradients for each subject and averaged them to obtain group-
representative data for the control and autism groups (Fig. 4A). The generated 
microstructural gradients exhibited a sensory-fugal axis in both groups. When we stratified 
the gradient values according to the four cortical hierarchical levels (Mesulam, 1998), a clear 
hierarchy along the cortex was observed, expanding from the lower-level idiotypic to the 
higher-order association and paralimbic areas (Fig. 4B). Together, these results indicate that 
our toolbox can be generalized to independent datasets of typical and atypical developmental 
conditions. 

 

Fig. 4 | Brain microstructure of an independent dataset. (A) We constructed a microstructural profile 
covariance (MPC) matrix (top) and microstructural gradient (bottom) of neurotypical controls and individuals 
with autism. (B) We stratified the gradient values according to four cortical hierarchical levels. 
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Sensitivity analyses 

i) Bootstrap analysis. We synthesized T2w data from T1w MRI images using randomly 
selected training and validation datasets to avoid subject-selection bias. The mean ± SD MAE 
between the actual and synthesized T2w of the test datasets across ten bootstraps was 0.045 ± 
0.005 and that of the T1w/T2w ratio was 0.016 ± 0.0004, indicating robustness 
(Supplementary Fig. 1). 

ii) Two-dimensional model. The original 2D pix2pix model was trained instead of the 
modified 3D model. The mean ± SD MAE between the actual and synthesized T2w was 
0.110 ± 0.023, and the T1w/T2w ratio was 0.027 ± 0.023 (Supplementary Fig. 2A). The 
results based on the 2D model exhibited higher errors than those based on the 3D model. 

iii) Synthesis of T1w/T2w ratio. Instead of synthesizing T2w, we directly determined the 
T1w/T2w ratio from the T1w data. The 2D model showed mean ± SD MAE of 0.048 ± 0.008 
(Supplementary Fig. 2B), and the 3D model showed 0.018 ± 0.002 (Supplementary Fig. 
2C). These results suggest that synthesizing T2w data is better than synthesizing the 
T1w/T2w ratio. 

 

 

DISCUSSION 

The image-synthesis approach benefits neuroimaging studies by generating multiple imaging 
modalities from a single modal image with reduced time and cost. In this study, we 
constructed and disseminated a toolbox to analyze the brain microstructure in vivo using only 
T1w MRI. Specifically, the toolbox synthesizes T2w from T1w MRI images and calculates a 
microstructure-sensitive proxy to generate the MPC matrix, its gradient, and moment features. 
We observed a high correspondence between the actual and synthesized features, and 
multiple sensitivity analyses demonstrated the robustness of the toolbox. Our proposed 
framework may facilitate multimodal neuroimaging studies, particularly for studying brain 
microstructures using limited neuroimaging modalities. 

The concept of image synthesis was introduced in previous neuroimaging studies. For 
example, one study used a conditional GAN to synthesize T1w from T2w images and T2w 
from T1w images based on the original pix2pix model (Kawahara and Nagata, 2021). 
Another study modified the model to process 3D data, in which each dimension was a sagittal, 
coronal, or axial slice (Zhao et al., 2021). Additionally, a conditional GAN was adopted to 
improve the quality of the registration and segmentation of brain images containing tumors 
(Yang et al., 2020). These studies focused on optimizing the distribution of the synthesized 
image to make it as similar as possible to an actual image. Thus, the aims of these studies 
were primarily to improve the synthesis accuracy and optimize the hyperparameters of the 
model. Contrastingly, our work aimed to provide the microstructural features of the brain that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.20.537642doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537642
http://creativecommons.org/licenses/by-nc-nd/4.0/


can be used in neuroscience and clinical studies to identify markers of specific psychiatric or 
neurological conditions. For example, the microstructure-sensitive proxy can be used to 
investigate alterations in brain network organization of Alzheimer’s disease, schizophrenia, 
epilepsy, and multiple sclerosis (Bernhardt et al., 2018; Boaventura et al., 2022; Ganzetti et 
al., 2015; Pelkmans et al., 2019; Yasuno et al., 2017), and we can assess behavioral and 
cognitive traits during typical and atypical development [53]–[55]. Moreover, microstructural 
features can be used to investigate multiscale neural organization. The microstructural 
gradient describes macroscopic connectome organization and is associated with gene 
expression in brain cells (Paquola et al., n.d.; Royer et al., 2020). In summary, our study 
impacts clinical neuroscience by providing a consolidated framework for synthesizing T2w 
images from T1w MRI images and generating ready-to-use brain microstructural features. 

We demonstrated the reliability and robustness of our toolbox using multiple scenarios. First, 
we quantitatively tested four different models: (i) synthesis of T2w using a 3D GAN (ii) 2D 
GAN, (iii) synthesis of the T1w/T2w ratio using a 3D GAN, and (iv) 2D GAN. We found that 
the first model (3D–T2w synthesis) exhibited the best performance. The superior 
performance of the 3D model relative to that of the 2D model may be due to the quantity of 
information. The 2D model uses information on the brain anatomy of each axis (i.e., sagittal, 
coronal, and axial) for training; thus, it does not consider the geometric properties across 
different slices. Additionally, synthesizing T2w images is better than directly creating a 
T1w/T2w ratio. A previous study suggested that the role of T2w images when calculating 
microstructure-sensitive proxies is to remove blood vessels and dura from the pial surface 
and reduce the effects of myelin content on pial surface generation via intensity normalization 
of gray matter (Glasser et al., 2014). If we directly synthesize the T1w/T2w ratio from the 
T1w data, the GAN model may not consider these biological properties of T2w images, 
leading to a minor similarity between the actual and synthesized images. Second, we 
conducted bootstrap tests with different training and validation datasets and found low errors 
in the gray and white matter. The boundaries between different tissue types and the skull vary 
largely across individuals, leading to the optimization of hyperparameters for model training. 
Further studies are required to minimize such errors and improve the synthesis performance. 
Third, we tested the generalizability of our toolbox by using an independent dataset 
containing both healthy and diseased populations. These findings indicate that our toolbox is 
appropriate for investigating disease-related microstructural alterations in the brain using only 
T1w MRI. 

In this study, we developed an end-to-end toolbox for synthesizing T2w images from T1w 
images and generating brain microstructural features, including moments, MPC matrix, and 
microstructural gradients. Multiple sensitivity analyses demonstrated the reliability and 
robustness of this toolbox. Our model may foster future multimodal MRI studies to 
investigate brain microstructures. 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Fig. 1 | Differences between the actual and synthesized T2-weighted 
MRI. The mean (top) and standard deviation (bottom) of the differences across ten bootstraps 
are shown. 
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Supplementary Fig. 2 | Synthesized images using other models. (A) The actual (left), 
synthesized (right) T2w images using a 2D model, (B) T1w/T2w ratio using a 2D model, and 
(C) T1w/T2w ratio using a 3D model of three representative participants. Abbreviations: T1w, 
T1-weighted; T2w, T2-weighted. 
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