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ABSTRACT

Genome-wide association studies (GWAS) with proteomics generate hypotheses on protein
function and offer genetic evidence for drug target prioritization. Although most protein
guantitative loci (pQTLs) have so far been identified by high-throughput affinity proteomics
platforms, these methods also have some limitations, such as uncertainty about target identity,
non-specific binding of aptamers, and inability to handle epitope-modifying variants that affect
affinity binding. Mass spectrometry (MS) proteomics has the potential to overcome these
challenges and broaden the scope of pQTL studies. Here, we employ the recently developed MS-
based Proteograph™ workflow (Seer, Inc.) to quantify over 18,000 unique peptides from almost
3,000 proteins in more than 320 blood samples from a multi-ethnic cohort. We implement a
bottom-up MS-proteomics approach for the detection and quantification of blood-circulating
proteins in the presence of protein atering variants (PAVs). We identify 184 PAVs located in
137 genes that are significantly associated with their corresponding variant peptides in MS data
(MS-PAVs). Half of these MS-PAVs (94) overlap with cis-pQTLs previously identified by
affinity proteomics pQTL studies, thus confirming the target specificity of the affinity binders.
An additional 54 MS-PAVs overlap with trans-pQTLs (and not cis-pQTLS) in affinity
proteomics studies, thus identifying the putatively causal cis-encoded protein and providing
experimental evidence for its presence in blood. The remaining 36 MS-PAV's have not been
previously reported and include proteins that may be inaccessible to affinity proteomics, such as
avariant in the incretin pro-peptide (GIP) that associates with type 2 diabetes and cardiovascular
disease. Overall, our study introduces a novel approach for analyzing M S-based proteomics data
within the GWAS context, provides new insights relevant to genetics-based drug discovery, and
highlights the potential of M S-proteomics technologies when applied at population scale.

Keywor ds. Proteomics, Mass spectrometry, Proteograph™ workflow, Genome-wide association
studies, Protein quantitative trait loci, Protein altering variants.
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Highlights

e Thisis the first pQTL study that uses the Proteograph™ (Seer Inc.) mass spectrometry-
based proteomics workflow.

e We introduce a novel bottom-up proteomics approach that accounts for protein altering
variantsin the detection of pQTLSs.

o We confirm the target and potential epitope effects of affinity binders for cis-pQTLs from
affinity proteomics studies.

e We establish putatively causal proteins for known affinity proteomics trans-pQTLs and
confirm their presence in blood.

e We identify novel protein altering variants in proteins of clinical relevance that may not
be accessible to affinity proteomics.
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INTRODUCTION

Large-scale studies of the plasma proteome using extensive biobanks have attracted increasing
interest because of their potential to inform drug development by supplementing insights gained
from genome-wide disease association studies. Identifying genetic variants associated with
protein expression levels (protein quantitative trait loci, or pQTLS) can unveil proteins involved

in key biological processes that affect complex traits and disease etiology™.

The two main technologies employed to quantify protein levels in biologica samples are
affinity-binding proteomics and mass spectrometry (MS) proteomics. Most large-scale
proteomics studies to date have relied on affinity proteomics technologies, utilizing variants of
Olink’s antibody-based Proximity Extension Assay or Somalogic's aptamer-based SOMAscan
platform? %> ®7 The UK Biobank Pharma Proteomics Project (UKB-PPP) recently published
initial results from a study that quantified 1,500 proteins in blood plasma from 53,000 UKB
participants using the Olink platform® °, and the Fenland study analyzed over 4,700 proteins in
more than 10,000 individuals using the SOMAscan technology™, identifying tens of thousands
of pQTLs.

Affinity proteomics approaches can deliver quantitative readouts for hundreds and even
thousands of blood-circulating proteins in a high-throughput manner, but also possess certain
limitations™ ™. Notably, they are exposed to interference from genetic variants that can change
the protein’s epitope (structure) and modify the antibody or aptamer binding affinities, resulting
in ambiguous or erroneous associations™ 2. Additionally, establishing target specificity for
affinity binders is challenging and must be determined on an individua basis under various
physiological conditions. Although the literature considers a genetic association at the gene locus
that encodes the protein targeted by a given affinity-binder (cis-pQTL) as confirmatory evidence
for target specificity, cross-reactivity with other proteins cannot be ruled out in such cases. Some
protein classes may also be unsuitable for quantification by affinity binding (e.g., unfolded pro-

peptides).

Epitope-modifying variants can result in false-positive associations between genetic variants and
protein levels. Additionally, such variants often have a biological impact on the protein function
rather than on protein level. A recent study showed that approximately 50% of putative epitope-
modifying variants colocalize with GWAS associations, suggesting that these variants modify
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protein properties rather than protein abundance’. Consequently, genetic epitope effects caused
by non-synonymous variation pose a significant challenge to the analysis and application of
large-scale affinity proteomics-based pQTL studies for drug development: the effect of an
epitope-modifying variant on the outcome might not be through the protein level, and thus,

therapeutic changes to the protein level might not yield the desired effect.

MS-based proteomics has the potential to alleviate some of the issues faced by affinity
proteomics by directly measuring variant peptides originating from protein altering genetic
variants. In a bottom-up MS-proteomics approach, peptides (either generated by in silico
digestion of a comprehensive protein database or curated experimentally) are matched against
mass spectra collected by MS analysis of enzymatically digested protein extracts. Modern mass
spectrometers, equipped with liquid chromatography and ion mobility separation capabilities,
enable the collection of hundreds of thousands of peptide fragmentation spectra at high mass-
resolution in a data independent acquisition (DIA) mode™. Such methods can potentially identify
genetic epitope effects, as they provide peptide-level sequence readouts. Additionally, they may
identify proteinsthat are not amenable to affinity binding and resolve potentially disease-relevant

protein post-trandational modifications.

However, bottom-up M S-proteomics approaches also present technological challenges related to
peptide and protein identification and quantification™ *> . In the context of pQTL studies, one
such challenge is quantifying protein levels in the presence of genetic variation'’. Most current
analyses do not account for genetic variation, because incorporating all possible variants would
result in a significant increase in spectral library size and false-positive identifications.
Consequently, standard proteomic libraries fail to detect variant peptides in homozygous
aternate allele carriers and falsely suggest reduced protein levels in heterozygotes, leading to
genotype-dependent protein level measurements. This problem is exacerbated by genotype-
specific instrumental and technical effects, such as genotype-specific shifts in fragmentation,

ionization, ion mobility, and liquid chromatography properties.

Here, we examine these technology-specific challenges and propose potential solutions for

effectively utilizing bottom-up MS-based proteomics in conjunction with available genetic

18, 19 t

variation information. We employ the MS-based Proteograph™ (Seer Inc.) workflow (o]

quantify protein and peptide intensities in blood samples from individuals of a multi-ethnic
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cohort. The Proteograph™ workflow uses five physicochemically distinct nanoparticles that each
enrich different proteins, thereby compressing the dynamic range of proteins analyzed
downstream by DIA-MS”. Depending on protein abundance and biophysical properties, some
peptides can be detected with two or more of the nanoparticles included in the Proteograph™
Assay. Detections by distinct nanoparticles can be considered technical replicates under different
protein extraction protocols and offer additional internal validation of the data.

To account for genetic variability in peptide sequences, we implement a data analysis protocol
(see Methods) that includes al single nucleotide protein altering variants (PAVS) that are
present in the study population at a minor allele frequency (MAF) higher than 10%. Given the
size of our cohort, we expect at least 2-3 individuals to be homozygous for the minor alele at
this level. We introduce these PAVs into the protein database (UniProt), tranglate the variants to
amino-acid space, and perform in dlico digestion. We then create three spectral libraries: one
where we keep only the peptides that correspond to the reference alleles (termed the “reference
library”), one where we include both reference and variant peptides (termed the “PAV-inclusive
library”), and one where we exclude all variant peptides and their respective reference peptides
(termed the “PAV-exclusive library”). Note that the reference library corresponds to what is
currently used in standard DIA-M S analyses. Using the three different libraries, we then quantify
peptide and protein intensities using DIA-NN*®,

Next, we test the presence of the reference or alternate allele of PAV's for association with the
presence or absence of the resulting variant peptide(s) in the proteome of the respective sample
donor (detected with the PAV-inclusive library) using the Fisher’s Exact test. Note that a PAV
can give rise to multiple matching variant peptides, including peptides that differ by a single
amino acid as well as more complex situations, e.g. when the PAV involves a trypsin cleavage
site or a protein modification site. We use the term MS-PAV to refer to a PAV that associates
significantly (after correcting for multiple tests) with its matching MS-detected variant
peptide(s). We then ask whether the identified MS-PAV's also change the corresponding blood
protein intensities. For this purpose, we test for association between the protein intensities
(obtained using the PAV-exclusive library) with the copy number of the alternate allele of the
respective MS-PAV as the dependent variable, as generally practiced in pQTL studies. We use
the term MS-pQTL to refer to a PAV that associates with both the detection of the respective
variant peptide (using the PAV-inclusive library) and the protein intensity (using the PAV-
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exclusive library). We show that pQTLs that have been identified by large affinity proteomics
studies can be characterized by overlapping them with MS-PAVs and MS-pQTLs from MS-

proteomics studies.

Our study comprises the following steps. First, we identify MS-PAVs and MS-pQTLs using
samples from a multiethnic clinical cohort. Then, we query the summary statistics of the two
largest pQTL studies, which used the Olink and the SOMAscan platforms, respectively® *°, to
evaluate the power of this approach in identifying relevant pQTLs. Finally, we discuss new
biological insights derived from this study by overlapping MS-PAVs and MS-pQTLs with
GWAS associations with other phenotypes (Figure 1).

RESULTS

We identify 184 M S-PAVs by adding protein altering variants to a bottom-up proteomics

approach.

Citrate plasma samples were obtained from 345 individuals who participated in the Qatar
Metabolomics study of Diabetes (QMDiab)** % The previously unthawed samples (aliquot of
240 pL per sample) were processed using the Proteograph™ Product Suite (Seer, Inc.)™® % (see
Methods). Briefly, samples were incubated with five proprietary physicochemically distinct
nanoparticles for protein corona formation. Nanoparticle-bound proteins were captured, digested
using trypsin, and then analyzed using a dia-PASEF method™ on a timsTOF Pro 2 mass
spectrometer (Bruker Daltonics). All MS files were processed using the DIA-NN software
(version 1.8.1) using library-free search with match-between-runs (MBR) enabled against the
UniProt database (reference, accessed June 2022) and the derived PAV-exclusive and PAV-
inclusive databases. The Proteograph™ workflow quantified 18,603 unique peptides from 2,869
proteins (Figure 2).

Of the 345 analyzed samples, 325 were also genotyped on the [llumina Omni 2.5 platform and
had imputed genotype data available” . Using the PAV-inclusive library, we identified 492
unique variant peptides that correspond to 2,341 individual signals when accounting for
detections related to different nanoparticles, precursor charges, and missed cleavages
(Supplementary Table 1). These variant peptides mapped to 317 distinct genetic variantsin 251
genes. To filter to a set of reliably detected variant peptides and avoid false positives, we asked
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whether each peptide's detection matched the individual blood donor’s genotype. A total of
1,000 of the 2,341 variant peptide detections were significantly associated with the genotype of
the coding variant in a Fisher's Exact test at a Bonferroni level of significance of p < 2.1x10°
(0.05/2,341). Note that most of the non-significant variant peptides had a low detection
frequency and did not provide sufficient statistical power to reach the required significance level;
512 had seven or less detections, while only peptides with eight or more detections reached
Bonferroni significance. The 1,000 significant associations corresponded to 306 unique variant
peptides that were generated by 184 unique MS-PAVs. These MS-PAVs were located in 137
different genes (Supplementary Table 2).

Robust pQTL scan beidentified by excluding variant peptides from the spectral library.

In MS-proteomics, protein intensities are generally inferred from the intensities of one or
multiple peptides that are derived from that protein. When peptides map ambiguously to multiple
proteins, inference algorithms group them together into so-called “protein groups’ and quantify
them jointly. When a peptide that is used for protein quantification contains an amino acid-
changing genetic variant (an MS-PAV), the resulting protein level will reflect the genotype of
the sample donor and result in a spurious pQTL; this phenomenon can be considered the MS
equivalent of an epitope effect in affinity proteomics. We counter thisissue by excluding variant
peptides from the protein quantification process. This exclusion will not necessarily reduce
pQTL sensitivity for MS-PAVs that directly alter the corresponding blood protein level or for
those MS-PAVs in linkage disequilibrium with regulatory variants controlling the protein’s gene
expression (an MS-pQTL). In these cases, all peptides derived from the protein that do not
overlap with the position of the MS-PAV are expected to vary in the same way as the genotype
and to equally reflect the protein level.

Figure 3 demonstrates the impact of including or excluding PAVs in the process of protein
guantification in the example of the Factor V (F5) protein. When using the PAV-exclusive
library, no pQTL is observed at the protein level, which is consistent with the absence of pQTLs
on the non-PAV containing peptides. When using the PAV-inclusive library, the two F5 MS
PAV isoforms that correspond to a K>R substitution (rs4524) are identified as pQTLs. Thisis
also expected, as we are considering the expression level of the isoforms separately in this case.

No pQTLs are identified for any of the other peptides. However, when using the reference
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library, a pQTL isfound, which isincorrect because the overall level of F5 protein does not vary
with genotype. This is an example of the MS equivalent of an epitope effect in affinity

proteomics, but here in contrast to affinity proteomics, it can be easly captured.

We performed a pQTL analysis at the 184 MS-PAV's and calculated their associations with their
corresponding protein intensities derived using the PAV-exclusive library (Supplementary
Table 2). 14 MS-PAVs reached a genome-wide significance level of p-value < 5x10°® and are
considered as MS-pQTLs (Table 1). Half of the 14 are not found by either Olink or SOM Ascan
in the largest pQTL studies conducted with each; six are cross-verified by SOMAscan; and one
is cross-verified by Olink. Some of these variants are found in over 40% of the study population
and possess large effect sizes (absolute value > 0.5) on their respective proteins, the fact that
these are missed by larger studiesis of note.

We then compared the association statistics with those obtained using the reference library.
Robust MS-pQTLs are on the diagonal of the scatterplot presented in segment 1 of Figure 4.
Instances in which non-significant results from the PAV-exclusive library overlap with
significant results in the reference library indicate situations where the current standard approach
fails (segment 2 in Figure 4). If these variants overlap with cis-pQTLs from affinity proteomics
studies, they reveal potential epitope effects. MS-PAV's that do not reach significance using
either library are MS-PAV's that do not lead to detectable changes in protein expression in our
cohort (segment 3 in Figure 4); however, our cohort size is relatively small and larger sample
sizes are needed to reach the statistical power required to determine whether these MS-PAVs are
aso MS-pQTLs. These observations suggest that: 8) MS-PAV's can be detected at the peptide
level by using the PAV-inclusive library and conducting a Fisher’s Exact test performed on the
presence/absence of the coding variant versus M S detection/non-detection of the corresponding
variant peptide; and b) using a PAV-exclusive library to generate pQTLs is essential to prevent
false-positive pQTL identifications (i.e,, the MS equivalent of epitope effects in affinity

proteomics).
Overlap pQTLsfrom affinity proteomics platforms.

We then investigated which of the 184 MS-PAV's had been identified in previous pQTL studies
(Supplementary Table 2). To identify overlapping pQTLs from the SOMAscan platform™, we
gueried the web interface of the OmicScience server, accessed on 4 March 2023
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(https://omicscience.org/apps/pgwas/pgwas.table.php). We also annotated the 184 MS-PAVs
using Phenoscanner to identify pQTLs that were reported elsewhere (accessed 21 Jan 2023). To

identify overlapping pQTLs from the Olink platform, we used the Supplementary Tables from
the recent UKB PPP study®. Since this GWAS provides only the lead associations, we selected
suitable proxy variants by using the variant with the highest correlation (r?) with the MS-PAV
within a 500kb window. Three additional pQTLS, not reported by these two large studies, were
identified by Phenoscanner, two of which werein-cis.

Out of our 184 MS-PAV variants, 118 share a pQTL with at least one target of the SOMAscan
platform. In 76 cases, these are cis-pQTLs, meaning that the SOMAscan target of a pQTL
matches the protein identified by the Proteograph™ workflow. We identify 113 overlapping
Olink pQTLs, 29 of which are located in-cis. 13 MS-PAVs are cis-pQTLs in both the Olink and
SOMAscan study, and 92 are cis-pQTLs on at least one platform. 53 MS-PAV's overlap with
trans-pQTLs in one of these studies and have no corresponding cis-pQTL. These MS-PAVs
provide experimental evidence for the presence of the cis-encoded proteins via detection by mass
spectrometry in blood. Of the 39 MS-PAV's with no matching pQTL in the Fenland or the UKB
PPP study, three match a pQTL in another study as identified by Phenoscanner. This leaves a
total of 36 MS-PAVs detected using the Proteograph™ workflow that are not previously
identified in any large-scale affinity pQTL studies. These 36 novel MS-PAV's are located within
31 unique genes. Taken together, the observations highlight the complementarity between the
affinity and M S-proteomics approaches.

Novel findings using the Proteograph™ wor kflow.

We annotated the 184 MS-PAVs with overlapping expression QTLs (eQTLS), metabolomics
QTLs (mQTLs) and GWAS associations (Supplementary Table 2). Out of the 184 MS-PAVSs,
121 match an eQTL reported in Phenoscanner, suggesting that these variants not only influence
the peptide sequence but also alter the corresponding gene expression levels. 90 MS-PAVs
overlap a GWAS hit (not counting metabolite/protein levels and body height), including nine of
the novel variants (Table 2).

For example, variant rs2291725 corresponds to an S>G amino acid exchange in the Gastric
Inhibitory Polypeptide (GIP). This variant is in the GIP gene, which codes for an incretin
hormone and stimulates insulin secretion. The amino acid exchange occurs in a peptide

10
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consisting of ten amino acids (ALELA[S/G]QANR) on the incretin pro-peptide (aa98-107). This
part of the protein is not part of the processed incretin hormone. The variant peptide
corresponding to the alternate allele is detected in 130 out of 223 carriers of the alternate allele,
together with five false-positive detections in 102 reference allele homozygotes (p = 1.2x10%,
Fisher test). This variant is associated with several body fat traits, coronary artery disease, and
diabetes in the GWAS catalog, consistent with GIP’s function and suggesting a causal role for
this variant in these clinical phenotypes. This GIP variant has not been reported by any affinity
proteomics GWAS before, possibly because GIP is too small or transiently folded and may not
be detected by affinity binders. GIP agonism has recently gained renewed attention as a satiety-
suppressing drug (similar to GLP-1 inhibitors, but with possibly less severe side effects such as
nausea)®*. Hence, this variant may serve as a potential genetic instrument to further investigate
the potential effects of GIP inhibition.

Another key protein relevant to cardiovascular disease is APOB. Previous GWAS studies
associated genetic variation in APOB with many relevant lipid-related traits, with lead
associations with LDL-cholesterol (LDL-C) and Apolipoprotein B (ApoB) levels measured by
clinical biochemistry®. We found that the variant rs1367117 (chr2:21263900) associated with
the alternate and also the reference allele of the ApoB variant peptide TSQC[T/I]LK (p-value =
1.0x10® and 3.5x10™°, respectively; Fisher test), but do not detect a significant association
signal at the protein level (p-value > 0.02). To analyze this association in its genetic context, we
computed the associations of the detection of peptide TSQCILK with all variants in the vicinity
(+/-250kb) of thisMS-PAV, retrieved GWAS data for the associations with clinical biochemistry
measures of LDL-C and ApoB in the UK Biobank, and generated regional association plots (see
Methods, Figure5). The regional association plots show that rs1367117 has the strongest LDL
association, but they also indicate the presence of at least one additional equally-strong
association between a variant in the promoter region of APOB with both LDL and ApoB levels.
This observation suggests the presence of two distinct signals, one likely acting via a structural
change in the ApoB protein itself, and a second that may be attributed to changes in ApoB
protein levels. Interestingly, we previously found that these two signals also lead to distinct
phenotypes in lipoprotein composition (see Figure S11 in Reference®™). Our study is the first
study that directly identifies this putatively causal genetic variant of high LDL-C levels at the
peptide level using M S-proteomics at a population scale and shows how MS-PAVs can be used

to dissect complex genetic association signals.
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DISCUSSION

To the best of our knowledge, thisisthe first time that genetic variation has been systematically
investigated at the peptide level using mass spectrometry proteomics at a population scale. We
show that M S-proteomics has the potential to access genetic variation in proteins at the peptide
level and to complement affinity proteomics pQTL studies by: a) providing additional
information on protein identity and potential epitope effects, b) assessing proteins that are not
accessible to affinity binding, and c) incentivizing future applications that elucidate post-
trandational modifications and protein group resolution.

Our study also has limitations. First, by excluding peptides from the PAV-exclusive library, some
of the M S spectra remain unaccounted for and can yield false-positive matches to other peptides
in the library. Future approaches could remove variant peptides only at the protein quantification
step. This would also reduce the effort needed for identifying peptides with multiple libraries. In
addition, such new quantification agorithms could use data from all five nanoparticles in
parallel.

Another limitation is the choice of the MAF cutoff. Rarer variants are not detected at present,
since including lower-frequency variants could lead to an explosion in false-positive detections.
The inclusion of rare variants may also lead to multiple amino acid changes within the same
peptide s multaneously, which we do not presently account for. Use of sample-specific libraries
that account for individual genetic variants can mitigate this problem in the future. If these
libraries additionally used phased genotype data, potential issues when two variants are located

on the same peptide could also be solved.

We observe some cases where the detected variant peptide does not match the PAV, and a few
isolated cases where the alternate and reference alleles are both detected in all samples, such as
an E>D substitution in Complement Factor H (CFH peptide
SPP[E/D]ISHGVVAHMSDSY QY GEEVTYK). These false-positive identifications
(Supplementary Figure X) can be attributed to uncertainties or shortcomings in the algorithms
that match the MS2 spectra of alternate and reference peptides that occur in the same DIA-MS
window and share many common fragments. Due to the very low error rate in today’s
genotyping platforms, genetic variants can comparatively be considered a “ground truth” to
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calibrate peptide detection algorithms. We suggest that these algorithms may be improved in the
future by using combined genetic and proteomic data from studies like ours as a benchmark.

Taken together, our study highlights the complementarity but also the complexity of affinity- and
MS-based proteomics in the pQTL discovery process and suggests a new approach to the
analysis of MS-based proteomics data in the presence of genetic variation. We propose to use
naturally occurring genetic variation for the development of future and more powerful MS-
proteomics data analysis tools. Deployed at scale, this approach can provide valuable new
insights for drug target prioritization and repurposing.

METHODS

The QMDiab study. The Qatar Metabolomics study of Diabetes (QMDiab) was conducted in
2012 at the dermatology department of Hamad Medical Corporation, the magjor public hospital
in Doha, Qatar, with the primary aim to study metabolic differences in individuals with and
without diabetes in adult female and male participants of Arab and Asian ethnicities™ %.
Multiple aliquots of blood, urine and saliva samples were collected and stored at -80°C without
further freeze-thaw cycles.

Genotyping. DNA from QMDiab samples was extracted and genotyped using the Illumina
Omni 2.5 array (version 8) and imputed using the SHAPEIT software with 1000 Genomes
(phase3) haplotypes, as previously described. PAVs were identified in the imputed variant
dataset using the Ensembl Variant Effect Predictor (VEP)?’ and filtering to MAF > 10%.
Genotyping data was available for 325 of the 345 analyzed samples.

Gene model alignment. The gene model was constructed using the June 2022 version of the
UniProt fasta file and the UniProt genome annotation tracks
(https://ftp.uniprot.org/pub/databases/uni prot/current_rel ease/knowl edgebase/genome_annotation

tracks/UP000005640 9606 beds/UP000005640 9606.proteome.bed, accessed June 2022). To
create the gene model, we aligned the .bed with the .fasta they provide. We kept UniProt IDs that
unambiguously mapped to one sequence. For those that mapped to multiple sequences, we

preferentially selected those sequences that aligned perfectly when trandating the .bed
coordinates using the GRCh37 .fasta file. For those that did not map to the .fasta, we
preferentially selected sequences that started with Methionine and were in-frame. We removed
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ambiguity in UniProt IDs that had sequences in multiple chromosomes by picking the canonical
one if avallable, and then alphanumerically if not. For those UniProt IDs that had multiple
canonical sequences within the same chromosome, we picked the first sequence within the gene
model.

Library construction. The gene mode file from UniProt was used to generate reference
sequences for every UniProt ID. Common (MAF > 10%) protein altering variants were identified
using the Ensembl Variant Effect Predictor (VEP) ' and “injected” into the corresponding
reference protein sequences. We digested the reference and alternate sequences in a manner akin
to DIA-NN in silico (i.e., on tryptic [K/R] amino acids; with/without one missed cleavage; and
peptide length between 7-30 AAS) to generate constituent peptides per UniProt sequence. We
then compared the digests from the corresponding reference and alternate gene sequences. If
peptides were of equal length, shared their initial position within the full gene, and differed in
sequence, then the peptides were declared a reference-to-alternate match; otherwise, they were
annotated as “complex” (indicated in Supplementary Table 1). We repeated this process with
and without missed cleavages. All other mismatched injected variant sequences (which were a
result of the introduction or deletion of a K/R), were discarded. For each variant, a protein entry
with the corresponding amino acid exchange was also added to the PAV-inclusive library as an
isoform using the protein identifier (UniProt ID) followed by the variant identifier (rsID).
Similarly, the corresponding reference sequences were discarded from the PAV-exclusive library.
Genetic variants were considered independent, and only one variant per protein was considered

at atimeto avoid combinatorial growth of the library.

Proteomic Analysis. 240 uL of previousy un-thawed citrate plasma were loaded onto the
SP100 Automation Instrument for sample preparation with Proteograph™ Assay Kits and the

Proteograph™ workflow*® *°

(Seer, Inc.) to generate purified peptides for downstream LC-MS
analysis. Each plasma sample was incubated with five proprietary, physicochemically-distinct
nanoparticles for protein corona formation. Samples were automatically plated, including process
controls, digestion control, and MPE peptide clean-up control. A one-hour incubation resulted in
a reproducible protein corona around each nanoparticle surface. After incubation, nanoparticle-
bound proteins were captured using magnetic isolation. A series of gentle washes removed non-
specific and weakly-bound proteins. The paramagnetic property of the nanoparticles allows for

retention of nanoparticles with the protein corona during each wash step. This resultsin a highly
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specific and reproducible protein corona. Protein coronas were reduced, akylated, and digested
with Trypsin/Lys-C to generate tryptic peptides for LC-MS analysis. All steps were performed in
a one-pot reaction directly on the nanoparticles. The in-solution digestion mixture was then
desalted, and all detergents were removed using a solid phase extraction and positive pressure
(MPE) system on the SP100 Automation Instrument. Clean peptides were eluted in a high-
organic buffer into a deep-well collection plate. Equal volumes of the peptide elution were dried
down in a SpeedVac (3 hours-overnight), and the resulting dried peptides were stored at -80 °C.
Using the results from the peptide quantitation assay, peptides were thawed and recongtituted to
afinal concentration of 50 ng/uL in the Proteograph™ Assay Kit Reconstitution Buffer. 4 uL of
the reconstituted peptides were loaded on an Acclaim PepMap 100 C18 (0.3 mm ID x 5 mm)
trap column and then separated on a 50 cm pPAC analytical column (PharmaFluidics, Belgium)
at aflow rate of 1 pL/minute using a gradient of 5 — 25% solvent B (0.1% FA, 100 % ACN) in
solvent A (0.1% FA, 100% water) over 22 minutes, resulting in a 33 minute total run time. The
peptides generated from these multi-nanoparticle-sampled proteins were analyzed using a dia-
PASEF method™ on atimsTOF Pro 2 mass spectrometer (Bruker Daltonics).

Peptide and protein quantification. All MS files were processed using the DIA-NN 1.8.1
software™® and a library-free search with match-between-runs (MBR) enabled against the
UniProt database (accessed June 2022) and thereof derived PAV-exclusive and PAV-inclusive
libraries, as described above. Peptide and protein intensities were quantified using the DIA-NN

in match-between-runs mode with flags: --mass-acc-msl 10, --mass-acc 10, --
gvalue 0.1, --matrices, --missed-cleavages 2, --met-excision, --
cut K*,R*, --smart-profiling, --relaxed-prot-inf, --pg-level 1,
--reannotate, --gen-spec-1ib, --threads 32, --predictor, --
unimod4, --use-quant, --peak-center, --no-ifs-removal, and --
reanalyse.

Statistical analysis. Statistical analysis was performed using R (version 4.2.1) basic libraries
(fisher.test and Im) and Rstudio (version 2023.03.0). Significant MS-PAVs were identified
through the construction and analysis of a 2x2 matrix. This matrix depicted how many
individuals had the genetic variant at a given genomic location, and the corresponding variant
peptide. We used the Fisher's Exact test to determine if there was a non-random association

between these two categorical variables. Those that were statistically significant at a Bonferroni-
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corrected alpha level (out of 2,341 signals) were considered for future analysis. pQTLs were
determined by regressing alternate allele count to protein quantification intensities using a linear
regression model. We followed previous analysis protocols?; i.e., we used inverse-normal scaled
protein intensities as dependent variables and included age, sex, BMI, diabetes status, and the
first three genetic principal components as covariates in a linear model with the copy number of
the minor allele as dependent variable.

Variant annotation. The web servers snipaorg®, phenoscanner.medschl.cam.ac.uk® and
omicsciences.org'® were used to identify previously reported pQTLs and overlapping
information from disease GWAS, and expression and metabolomics QTLs. LocusZoom™® was

used to generate regional association plots.

APOB analysis. We downloaded UK Biobank GWAS summary statistics for LDL cholesterol
(code 30780) and Apolipoprotein B (code 30640) for the joint male/female analysis with from
343,621 individuals from https://github.com/Nealelab/UK_Biobank GWAS, extracted the +/-
250kb region around variant 2:21263900:G:A and visualized the association data using the

LocusZoom server (https://my.locuszoom.org).
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Table 1. MS-pQTLs. Associations of MS-PAVs that are significantly (p < 5x10°®) associated

with protein levels derived using the PAV-exclusive library.

Gene UniProtI D
MST1 G3XAK1
ITIH1 P19827
KNG1 P01042
HLA-C A2AEA2
CFB B4E174
PON1 P27169
PON1 P27169

PON2 AOA0J9Y XF2
FGL1 Q08830
GALC G3V255

SERPINA10 G3vV2w1

SERPINA1 PO1009
DSC3 Q14574
DSC3 Q14574

rsid
rs3197999
rs1042779
rs2304456
rs707908
rsl2614
rs662"
rs854560"
rs12026
rs3739406
rs34362748
rs2232700
rs709932
rs276938"

rs276937"

SNP

3:49721532:G:A

3:52821011:A:G

3:186445052:T:G

6:31238053:G:C

6:31914179:.C:T

7:94937446:T.C

7:94946084:A:T

7:95041016:G:C

8:17739538:T:C

14:88442712:.C:T

14:94756450:T:A

14:94849201:.C.T

18:28610988:C:T

18:28611061:A:T

*correlation between rs662 and rs854560 isr? = 0.20
“correlation between rs276938 and rs276937 is r? = 0.99

21

MAF

23.4%

37.7%

16.0%

21.8%

18.5%

37.4%

27.4%

30.6%

49.2%

11.5%

30.8%

23.1%

41.4%

41.2%

p-value
2.6E-18
12E-11
4.8E-21
2.0E-10
1.2E-13
4.6E-09
2.7E-10
1.3E-36
1.8E-11
1.0E-15
1.5E-22
3.8E-08
2.1E-08

1.5E-08

beta

-0.716

0.545

0.911

0.630

-0.590

-0.424

0.499

-0.998

0.512

0.887

0.741

0431

-0.422

-0.429

CispQTL
SOMA
SOMA
SOMA

no
SOMA
no
no
OLINK
SOMA
no
SOMA
no
no

no
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Table 2. MS-PAVs that overlap with disease-relevant GWAS hits. Selected MS-PAVs that
have not been reported in previous pQTL studies and that overlap with a clinically relevant
GWAS catalog entry (edited for brevity, see Supplementary Table 2 for details).

Gene UniProtl D rsiD FisIID"ler Peptide GWAS trait
WDRL 075083 rsl3441  4.8E-37 FTIGDHSR A ﬂf?lrjt't'gtio” e
PIPAK2A  H7BXS3  rs2230469 2.2E-48 IYIDDNSK Body fat composition
CHID1 QIBWS9 rs6682  59E-50 MVWDSQASEHFFEYK Body mass index
SCFD1  AOA7I2V362  rs229150 1.8E-28 FGQDIISPLLSVK Amyo;fgc‘gs'atera]
SPTB P11277 rs229587  9.6E-14 ETWLNENQR Red blood cell phenotypes
LOXL1 H3BUVS  rslo48661° 1.0E-70  EVAVGDSTGMALAR Exfoliation glaucoma

LOXL1 H3BUVS  rs3825042° 55E-57 HGDSASSVSASAFASTYR — Corondly artery disease,
Exfoliation glaucoma

ACAN  AOASK1VW97 rs1126823 3.9E-25 ITCTDPTTYK Osteoarthritis
] Coronary artery disease,
GIP P09681 rs2291725 1.2E-22 ALELAGQANR Type |1 diabetes

*correlation between rs1048661 and rs3825942 isr? = 0.12
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UniProt QMDiab variants QMDiab (" Identify variant | Affinity pQTLs:
61,075 proteins MAF >10% citrate plasma peptide PAVs Sun et al.,
% P 12,877 PAVs 345 samples I (MS-PAVS) J Pietzner et al.
| T T
's Y “\ 's Y N ¥
| identify variant DA M using 184 MS-PAVs in
4 Proteograph : —
peptides Kfl 137 unique genes
L ¢ ) L chr¢ ow ) ‘
13,577 proteins dia-PASEF dat [ Overlay with
with a variant el OLINK & SOMA
peptide . | affinity pQTLs
Create libraries: Shared pQTLs
p  include/exclude 113 OLINK (29 cis),
Legend: variant peptides 118 SOMA (76 cis)
input I A 4 A 4
PAV-incl./PAV- ( B Identify
excl./reference —] Brocsse NS cata MS-pQTLs
interim R using DIA-NN p
MS libraries \ ) (p < 5x10%)
result *
18,603 peptides
2,899 proteins 14 MS-pQTLs
pracess in >20% samples

Figure 1. Study chart. Procedure used to incorporate QM Diab variants into the UniProt .fasta,
create spectral libraries, and identify MS-PAVsand MS-pQTLSs.
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38 17 252 86
72 g 8 NP 1 2,005 601 400 64 NP 1 10,337
61 404, - NP 2 2,379 4893355 oo, NP 2 13,172
60 4 NP3 1,867 566 i NP 3 9,761
- NP 4 1,693 2 NP 4 8,990
NP 5 2,113 NP 5 12,072
Joint 2,899 Joint 18,603

Figure 2. Proteins and peptides identified in >20% of the samples by the Proteograph™
wor kflow. Datais for protein and peptide identification using DIA-NN with the reference (ref)
library using match-between-runs (MBR).
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Figure 3. Boxplots by genotype rs4524 for selected Factor V (F5) protein and peptide
intensities. This figure shows the effect of using the different libraries at the example of the
Factor V (F5) protein. Similar plots are provided as Supplementary Figure 1 for all 184 MS
PAVs; The boxes are color-coded as following: using the PAV-exclusive library (green), using
the reference library (blue), and using the PAV-inclusive library (red). Protein intensities are in
dark colors, and peptide intensities are in light colors. The grey vertical boxplots on top of the
plots represent the range of the data shown in that plot compared to the 5%-95% range of the
entire data for that protein. Units on the y-axis are engine-normalized intensities as provided by
DIA-NN. The x-axis labels indicate the number of detected peptides/proteins followed by a colon
and the number of samples with the given genotype (order: reference/major allele homozygote,
heterozygote, aternate/minor alele homozygote). The first line of the subtitle identifies the
protein (Uniprot ID and rsID, when applicable) or the peptide sequence followed by the
nanoparticle used in that analysis. The second line shows the number of data points included in
generating the plot (N). Significance intensities (p-values) for the following hypothesis tests are
given: (1) Fisher's Exact test on detected/non-detected versus presence/absence of the major (p-
maj) or minor (p-min) allele, where the stronger of the two associationsis shown (indicating MS-
PAV detection significance), and (2) a linear regression of peptide intensity versus genotype
(coded 0-1-2) with missing values set to zero (pX), and for proteins a linear model including
relevant covariates using inverse-normal scaled protein intensities (excluding missing values)
against genotype (pY; indicating pQTL significance). Protein name, chromosome, chromosome
position (GRCh37), and magor and minor alleles are indicated in boldface on top of the boxplots.
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Figure 4. Scatter plot of the protein-level associations (p-values) for the 184 M S-PAVsusing
the reference and the PAV-exclusive libraries. Three regimens are labeled: (1) variants that
remain associated with protein levels after removal of the variant peptides from the library (MS-
pQTLS), (2) variants where the association signal with the protein levels disappears after removal
of the variant peptides (the MS equivalent of an epitope effect), and (3) variants that do not
associate with protein levels in either case (MS-PAVs that may become significant in more

highly powered studies). Plot dataisin Supplementary Table 2.
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APOB variant peptide TSQCILK
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Figure 5: Regional association plotsfor the APOB region. Association of the detection of the
aternate variant peptide TSQCILK of APOB (pc2, nanoparticle 1) with the presence/absence of
the matching genetic variants at the APOB locus (top), GWAS associations of Apolipoprotein B
(middle) and LDL-cholesterol (bottom) measured by clinical biochemistry methods in blood
samples from 343,621 participants of the UK Biobank study. The highlighted variant rs1367117
(chr2:21263900) isthe MS-PAV in TSQC[T/I|LK.
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SUPPLEMENTARY TABLES

Supplementary tables are provided in EXCEL format.

ST1 List of all detected variant-peptides (2,341 detections, often on multiple nano particles and

with varying precursor charges, for atotal of 492 unique peptides)

ST2 List of significant lead variant to variant-peptide associations (N = 184)
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