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ABSTRACT 

Genome-wide association studies (GWAS) with proteomics generate hypotheses on protein 

function and offer genetic evidence for drug target prioritization. Although most protein 

quantitative loci (pQTLs) have so far been identified by high-throughput affinity proteomics 

platforms, these methods also have some limitations, such as uncertainty about target identity, 

non-specific binding of aptamers, and inability to handle epitope-modifying variants that affect 

affinity binding. Mass spectrometry (MS) proteomics has the potential to overcome these 

challenges and broaden the scope of pQTL studies. Here, we employ the recently developed MS-

based Proteograph™ workflow (Seer, Inc.) to quantify over 18,000 unique peptides from almost 

3,000 proteins in more than 320 blood samples from a multi-ethnic cohort. We implement a 

bottom-up MS-proteomics approach for the detection and quantification of blood-circulating 

proteins in the presence of protein altering variants (PAVs). We identify 184 PAVs located in 

137 genes that are significantly associated with their corresponding variant peptides in MS data 

(MS-PAVs). Half of these MS-PAVs (94) overlap with cis-pQTLs previously identified by 

affinity proteomics pQTL studies, thus confirming the target specificity of the affinity binders. 

An additional 54 MS-PAVs overlap with trans-pQTLs (and not cis-pQTLs) in affinity 

proteomics studies, thus identifying the putatively causal cis-encoded protein and providing 

experimental evidence for its presence in blood. The remaining 36 MS-PAVs have not been 

previously reported and include proteins that may be inaccessible to affinity proteomics, such as 

a variant in the incretin pro-peptide (GIP) that associates with type 2 diabetes and cardiovascular 

disease. Overall, our study introduces a novel approach for analyzing MS-based proteomics data 

within the GWAS context, provides new insights relevant to genetics-based drug discovery, and 

highlights the potential of MS-proteomics technologies when applied at population scale. 

Keywords: Proteomics, Mass spectrometry, Proteograph™ workflow, Genome-wide association 

studies, Protein quantitative trait loci, Protein altering variants.  
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Highlights 

• This is the first pQTL study that uses the Proteograph™ (Seer Inc.) mass spectrometry-

based proteomics workflow. 

• We introduce a novel bottom-up proteomics approach that accounts for protein altering

variants in the detection of pQTLs. 

• We confirm the target and potential epitope effects of affinity binders for cis-pQTLs from

affinity proteomics studies. 

• We establish putatively causal proteins for known affinity proteomics trans-pQTLs and

confirm their presence in blood. 

• We identify novel protein altering variants in proteins of clinical relevance that may not

be accessible to affinity proteomics. 
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INTRODUCTION 

Large-scale studies of the plasma proteome using extensive biobanks have attracted increasing 

interest because of their potential to inform drug development by supplementing insights gained 

from genome-wide disease association studies. Identifying genetic variants associated with 

protein expression levels (protein quantitative trait loci, or pQTLs) can unveil proteins involved 

in key biological processes that affect complex traits and disease etiology1. 

The two main technologies employed to quantify protein levels in biological samples are 

affinity-binding proteomics and mass spectrometry (MS) proteomics. Most large-scale 

proteomics studies to date have relied on affinity proteomics technologies, utilizing variants of 

Olink’s antibody-based Proximity Extension Assay or Somalogic’s aptamer-based SOMAscan 

platform2, 3, 4, 5, 6, 7. The UK Biobank Pharma Proteomics Project (UKB-PPP) recently published 

initial results from a study that quantified 1,500 proteins in blood plasma from 53,000 UKB 

participants using the Olink platform8, 9, and the Fenland study analyzed over 4,700 proteins in 

more than 10,000 individuals using the SOMAscan technology10, identifying tens of thousands 

of pQTLs.  

Affinity proteomics approaches can deliver quantitative readouts for hundreds and even 

thousands of blood-circulating proteins in a high-throughput manner, but also possess certain 

limitations1, 11. Notably, they are exposed to interference from genetic variants that can change 

the protein’s epitope (structure) and modify the antibody or aptamer binding affinities, resulting 

in ambiguous or erroneous associations11, 12. Additionally, establishing target specificity for 

affinity binders is challenging and must be determined on an individual basis under various 

physiological conditions. Although the literature considers a genetic association at the gene locus 

that encodes the protein targeted by a given affinity-binder (cis-pQTL) as confirmatory evidence 

for target specificity, cross-reactivity with other proteins cannot be ruled out in such cases. Some 

protein classes may also be unsuitable for quantification by affinity binding (e.g., unfolded pro-

peptides).  

Epitope-modifying variants can result in false-positive associations between genetic variants and 

protein levels. Additionally, such variants often have a biological impact on the protein function 

rather than on protein level. A recent study showed that approximately 50% of putative epitope-

modifying variants colocalize with GWAS associations, suggesting that these variants modify 
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protein properties rather than protein abundance7. Consequently, genetic epitope effects caused 

by non-synonymous variation pose a significant challenge to the analysis and application of 

large-scale affinity proteomics-based pQTL studies for drug development: the effect of an 

epitope-modifying variant on the outcome might not be through the protein level, and thus, 

therapeutic changes to the protein level might not yield the desired effect.  

MS-based proteomics has the potential to alleviate some of the issues faced by affinity 

proteomics by directly measuring variant peptides originating from protein altering genetic 

variants. In a bottom-up MS-proteomics approach, peptides (either generated by in silico 

digestion of a comprehensive protein database or curated experimentally) are matched against 

mass spectra collected by MS analysis of enzymatically digested protein extracts. Modern mass 

spectrometers, equipped with liquid chromatography and ion mobility separation capabilities, 

enable the collection of hundreds of thousands of peptide fragmentation spectra at high mass-

resolution in a data independent acquisition (DIA) mode13. Such methods can potentially identify 

genetic epitope effects, as they provide peptide-level sequence readouts. Additionally, they may 

identify proteins that are not amenable to affinity binding and resolve potentially disease-relevant 

protein post-translational modifications.  

However, bottom-up MS-proteomics approaches also present technological challenges related to 

peptide and protein identification and quantification14, 15, 16. In the context of pQTL studies, one 

such challenge is quantifying protein levels in the presence of genetic variation17. Most current 

analyses do not account for genetic variation, because incorporating all possible variants would 

result in a significant increase in spectral library size and false-positive identifications. 

Consequently, standard proteomic libraries fail to detect variant peptides in homozygous 

alternate allele carriers and falsely suggest reduced protein levels in heterozygotes, leading to 

genotype-dependent protein level measurements. This problem is exacerbated by genotype-

specific instrumental and technical effects, such as genotype-specific shifts in fragmentation, 

ionization, ion mobility, and liquid chromatography properties.  

Here, we examine these technology-specific challenges and propose potential solutions for 

effectively utilizing bottom-up MS-based proteomics in conjunction with available genetic 

variation information. We employ the MS-based Proteograph™ (Seer Inc.) workflow18, 19 to 

quantify protein and peptide intensities in blood samples from individuals of a multi-ethnic 
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cohort. The Proteograph™ workflow uses five physicochemically distinct nanoparticles that each 

enrich different proteins, thereby compressing the dynamic range of proteins analyzed 

downstream by DIA-MS20. Depending on protein abundance and biophysical properties, some 

peptides can be detected with two or more of the nanoparticles included in the Proteograph™ 

Assay. Detections by distinct nanoparticles can be considered technical replicates under different 

protein extraction protocols and offer additional internal validation of the data. 

To account for genetic variability in peptide sequences, we implement a data analysis protocol 

(see Methods) that includes all single nucleotide protein altering variants (PAVs) that are 

present in the study population at a minor allele frequency (MAF) higher than 10%. Given the 

size of our cohort, we expect at least 2-3 individuals to be homozygous for the minor allele at 

this level. We introduce these PAVs into the protein database (UniProt), translate the variants to 

amino-acid space, and perform in silico digestion. We then create three spectral libraries: one 

where we keep only the peptides that correspond to the reference alleles (termed the “reference 

library”), one where we include both reference and variant peptides (termed the “PAV-inclusive 

library”), and one where we exclude all variant peptides and their respective reference peptides 

(termed the “PAV-exclusive library”). Note that the reference library corresponds to what is 

currently used in standard DIA-MS analyses. Using the three different libraries, we then quantify 

peptide and protein intensities using DIA-NN16.  

Next, we test the presence of the reference or alternate allele of PAVs for association with the 

presence or absence of the resulting variant peptide(s) in the proteome of the respective sample 

donor (detected with the PAV-inclusive library) using the Fisher’s Exact test. Note that a PAV 

can give rise to multiple matching variant peptides, including peptides that differ by a single 

amino acid as well as more complex situations, e.g. when the PAV involves a trypsin cleavage 

site or a protein modification site. We use the term MS-PAV to refer to a PAV that associates 

significantly (after correcting for multiple tests) with its matching MS-detected variant 

peptide(s). We then ask whether the identified MS-PAVs also change the corresponding blood 

protein intensities. For this purpose, we test for association between the protein intensities 

(obtained using the PAV-exclusive library) with the copy number of the alternate allele of the 

respective MS-PAV as the dependent variable, as generally practiced in pQTL studies. We use 

the term MS-pQTL to refer to a PAV that associates with both the detection of the respective 

variant peptide (using the PAV-inclusive library) and the protein intensity (using the PAV-
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exclusive library). We show that pQTLs that have been identified by large affinity proteomics 

studies can be characterized by overlapping them with MS-PAVs and MS-pQTLs from MS-

proteomics studies.  

Our study comprises the following steps: First, we identify MS-PAVs and MS-pQTLs using 

samples from a multiethnic clinical cohort. Then, we query the summary statistics of the two 

largest pQTL studies, which used the Olink and the SOMAscan platforms, respectively9, 10, to 

evaluate the power of this approach in identifying relevant pQTLs. Finally, we discuss new 

biological insights derived from this study by overlapping MS-PAVs and MS-pQTLs with 

GWAS associations with other phenotypes (Figure 1). 

RESULTS 

We identify 184 MS-PAVs by adding protein altering variants to a bottom-up proteomics 

approach. 

Citrate plasma samples were obtained from 345 individuals who participated in the Qatar 

Metabolomics study of Diabetes (QMDiab)21, 22. The previously unthawed samples (aliquot of 

240 µL per sample) were processed using the Proteograph™ Product Suite (Seer, Inc.)18, 19 (see 

Methods). Briefly, samples were incubated with five proprietary physicochemically distinct 

nanoparticles for protein corona formation. Nanoparticle-bound proteins were captured, digested 

using trypsin, and then analyzed using a dia-PASEF method13 on a timsTOF Pro 2 mass 

spectrometer (Bruker Daltonics). All MS files were processed using the DIA-NN software 

(version 1.8.1) using library-free search with match-between-runs (MBR) enabled against the 

UniProt database (reference, accessed June 2022) and the derived PAV-exclusive and PAV-

inclusive databases. The Proteograph™ workflow quantified 18,603 unique peptides from 2,869 

proteins (Figure 2). 

Of the 345 analyzed samples, 325 were also genotyped on the Illumina Omni 2.5 platform and 

had imputed genotype data available2, 23. Using the PAV-inclusive library, we identified 492 

unique variant peptides that correspond to 2,341 individual signals when accounting for 

detections related to different nanoparticles, precursor charges, and missed cleavages 

(Supplementary Table 1). These variant peptides mapped to 317 distinct genetic variants in 251 

genes. To filter to a set of reliably detected variant peptides and avoid false positives, we asked 
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whether each peptide’s detection matched the individual blood donor’s genotype. A total of 

1,000 of the 2,341 variant peptide detections were significantly associated with the genotype of 

the coding variant in a Fisher’s Exact test at a Bonferroni level of significance of p < 2.1×10-5 

(0.05/2,341). Note that most of the non-significant variant peptides had a low detection 

frequency and did not provide sufficient statistical power to reach the required significance level; 

512 had seven or less detections, while only peptides with eight or more detections reached 

Bonferroni significance. The 1,000 significant associations corresponded to 306 unique variant 

peptides that were generated by 184 unique MS-PAVs. These MS-PAVs were located in 137 

different genes (Supplementary Table 2). 

Robust pQTLs can be identified by excluding variant peptides from the spectral library. 

In MS-proteomics, protein intensities are generally inferred from the intensities of one or 

multiple peptides that are derived from that protein. When peptides map ambiguously to multiple 

proteins, inference algorithms group them together into so-called “protein groups” and quantify 

them jointly. When a peptide that is used for protein quantification contains an amino acid-

changing genetic variant (an MS-PAV), the resulting protein level will reflect the genotype of 

the sample donor and result in a spurious pQTL; this phenomenon can be considered the MS 

equivalent of an epitope effect in affinity proteomics. We counter this issue by excluding variant 

peptides from the protein quantification process. This exclusion will not necessarily reduce 

pQTL sensitivity for MS-PAVs that directly alter the corresponding blood protein level or for 

those MS-PAVs in linkage disequilibrium with regulatory variants controlling the protein’s gene 

expression (an MS-pQTL). In these cases, all peptides derived from the protein that do not 

overlap with the position of the MS-PAV are expected to vary in the same way as the genotype 

and to equally reflect the protein level. 

Figure 3 demonstrates the impact of including or excluding PAVs in the process of protein 

quantification in the example of the Factor V (F5) protein. When using the PAV-exclusive 

library, no pQTL is observed at the protein level, which is consistent with the absence of pQTLs 

on the non-PAV containing peptides. When using the PAV-inclusive library, the two F5 MS-

PAV isoforms that correspond to a K>R substitution (rs4524) are identified as pQTLs. This is 

also expected, as we are considering the expression level of the isoforms separately in this case. 

No pQTLs are identified for any of the other peptides. However, when using the reference 
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library, a pQTL is found, which is incorrect because the overall level of F5 protein does not vary 

with genotype. This is an example of the MS equivalent of an epitope effect in affinity 

proteomics, but here in contrast to affinity proteomics, it can be easly captured.  

We performed a pQTL analysis at the 184 MS-PAVs and calculated their associations with their 

corresponding protein intensities derived using the PAV-exclusive library (Supplementary 

Table 2). 14 MS-PAVs reached a genome-wide significance level of p-value < 5×10-8 and are 

considered as MS-pQTLs (Table 1). Half of the 14 are not found by either Olink or SOMAscan 

in the largest pQTL studies conducted with each; six are cross-verified by SOMAscan; and one 

is cross-verified by Olink. Some of these variants are found in over 40% of the study population 

and possess large effect sizes (absolute value > 0.5) on their respective proteins; the fact that 

these are missed by larger studies is of note.  

We then compared the association statistics with those obtained using the reference library. 

Robust MS-pQTLs are on the diagonal of the scatterplot presented in segment 1 of Figure 4. 

Instances in which non-significant results from the PAV-exclusive library overlap with 

significant results in the reference library indicate situations where the current standard approach 

fails (segment 2 in Figure 4). If these variants overlap with cis-pQTLs from affinity proteomics 

studies, they reveal potential epitope effects. MS-PAVs that do not reach significance using 

either library are MS-PAVs that do not lead to detectable changes in protein expression in our 

cohort (segment 3 in Figure 4); however, our cohort size is relatively small and larger sample 

sizes are needed to reach the statistical power required to determine whether these MS-PAVs are 

also MS-pQTLs. These observations suggest that: a) MS-PAVs can be detected at the peptide 

level by using the PAV-inclusive library and conducting a Fisher’s Exact test performed on the 

presence/absence of the coding variant versus MS detection/non-detection of the corresponding 

variant peptide; and b) using a PAV-exclusive library to generate pQTLs is essential to prevent 

false-positive pQTL identifications (i.e., the MS equivalent of epitope effects in affinity 

proteomics). 

Overlap pQTLs from affinity proteomics platforms. 

We then investigated which of the 184 MS-PAVs had been identified in previous pQTL studies 

(Supplementary Table 2). To identify overlapping pQTLs from the SOMAscan platform10, we 

queried the web interface of the OmicScience server, accessed on 4 March 2023 
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(https://omicscience.org/apps/pgwas/pgwas.table.php). We also annotated the 184 MS-PAVs 

using Phenoscanner to identify pQTLs that were reported elsewhere (accessed 21 Jan 2023). To 

identify overlapping pQTLs from the Olink platform, we used the Supplementary Tables from 

the recent UKB PPP study9. Since this GWAS provides only the lead associations, we selected 

suitable proxy variants by using the variant with the highest correlation (r2) with the MS-PAV 

within a 500kb window. Three additional pQTLs, not reported by these two large studies, were 

identified by Phenoscanner, two of which were in-cis. 

Out of our 184 MS-PAV variants, 118 share a pQTL with at least one target of the SOMAscan 

platform. In 76 cases, these are cis-pQTLs, meaning that the SOMAscan target of a pQTL 

matches the protein identified by the Proteograph™ workflow. We identify 113 overlapping 

Olink pQTLs, 29 of which are located in-cis. 13 MS-PAVs are cis-pQTLs in both the Olink and 

SOMAscan study, and 92 are cis-pQTLs on at least one platform. 53 MS-PAVs overlap with 

trans-pQTLs in one of these studies and have no corresponding cis-pQTL. These MS-PAVs 

provide experimental evidence for the presence of the cis-encoded proteins via detection by mass 

spectrometry in blood. Of the 39 MS-PAVs with no matching pQTL in the Fenland or the UKB 

PPP study, three match a pQTL in another study as identified by Phenoscanner. This leaves a 

total of 36 MS-PAVs detected using the Proteograph™ workflow that are not previously 

identified in any large-scale affinity pQTL studies. These 36 novel MS-PAVs are located within 

31 unique genes. Taken together, the observations highlight the complementarity between the 

affinity and MS-proteomics approaches. 

Novel findings using the Proteograph™ workflow. 

We annotated the 184 MS-PAVs with overlapping expression QTLs (eQTLs), metabolomics 

QTLs (mQTLs) and GWAS associations (Supplementary Table 2). Out of the 184 MS-PAVs, 

121 match an eQTL reported in Phenoscanner, suggesting that these variants not only influence 

the peptide sequence but also alter the corresponding gene expression levels. 90 MS-PAVs 

overlap a GWAS hit (not counting metabolite/protein levels and body height), including nine of 

the novel variants (Table 2). 

For example, variant rs2291725 corresponds to an S>G amino acid exchange in the Gastric 

Inhibitory Polypeptide (GIP). This variant is in the GIP gene, which codes for an incretin 

hormone and stimulates insulin secretion. The amino acid exchange occurs in a peptide 
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consisting of ten amino acids (ALELA[S/G]QANR) on the incretin pro-peptide (aa98-107). This 

part of the protein is not part of the processed incretin hormone. The variant peptide 

corresponding to the alternate allele is detected in 130 out of 223 carriers of the alternate allele, 

together with five false-positive detections in 102 reference allele homozygotes (p = 1.2×10-22, 

Fisher test). This variant is associated with several body fat traits, coronary artery disease, and 

diabetes in the GWAS catalog, consistent with GIP’s function and suggesting a causal role for 

this variant in these clinical phenotypes. This GIP variant has not been reported by any affinity 

proteomics GWAS before, possibly because GIP is too small or transiently folded and may not 

be detected by affinity binders. GIP agonism has recently gained renewed attention as a satiety-

suppressing drug (similar to GLP-1 inhibitors, but with possibly less severe side effects such as 

nausea)24. Hence, this variant may serve as a potential genetic instrument to further investigate 

the potential effects of GIP inhibition. 

Another key protein relevant to cardiovascular disease is APOB. Previous GWAS studies 

associated genetic variation in APOB with many relevant lipid-related traits, with lead 

associations with LDL-cholesterol (LDL-C) and Apolipoprotein B (ApoB) levels measured by 

clinical biochemistry25. We found that the variant rs1367117 (chr2:21263900) associated with 

the alternate and also the reference allele of the ApoB variant peptide TSQC[T/I]LK (p-value = 

1.0×10-68 and 3.5×10-16, respectively; Fisher test), but do not detect a significant association 

signal at the protein level (p-value > 0.02). To analyze this association in its genetic context, we 

computed the associations of the detection of peptide TSQCILK with all variants in the vicinity 

(+/-250kb) of this MS-PAV, retrieved GWAS data for the associations with clinical biochemistry 

measures of LDL-C and ApoB in the UK Biobank, and generated regional association plots (see 

Methods, Figure 5). The regional association plots show that rs1367117 has the strongest LDL 

association, but they also indicate the presence of at least one additional equally-strong 

association between a variant in the promoter region of APOB with both LDL and ApoB levels. 

This observation suggests the presence of two distinct signals, one likely acting via a structural 

change in the ApoB protein itself, and a second that may be attributed to changes in ApoB 

protein levels. Interestingly, we previously found that these two signals also lead to distinct 

phenotypes in lipoprotein composition (see Figure S11 in Reference26). Our study is the first 

study that directly identifies this putatively causal genetic variant of high LDL-C levels at the 

peptide level using MS-proteomics at a population scale and shows how MS-PAVs can be used 

to dissect complex genetic association signals. 
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DISCUSSION 

To the best of our knowledge, this is the first time that genetic variation has been systematically 

investigated at the peptide level using mass spectrometry proteomics at a population scale. We 

show that MS-proteomics has the potential to access genetic variation in proteins at the peptide 

level and to complement affinity proteomics pQTL studies by: a) providing additional 

information on protein identity and potential epitope effects, b) assessing proteins that are not 

accessible to affinity binding, and c) incentivizing future applications that elucidate post-

translational modifications and protein group resolution. 

Our study also has limitations. First, by excluding peptides from the PAV-exclusive library, some 

of the MS spectra remain unaccounted for and can yield false-positive matches to other peptides 

in the library. Future approaches could remove variant peptides only at the protein quantification 

step. This would also reduce the effort needed for identifying peptides with multiple libraries. In 

addition, such new quantification algorithms could use data from all five nanoparticles in 

parallel.  

Another limitation is the choice of the MAF cutoff. Rarer variants are not detected at present, 

since including lower-frequency variants could lead to an explosion in false-positive detections. 

The inclusion of rare variants may also lead to multiple amino acid changes within the same 

peptide simultaneously, which we do not presently account for. Use of sample-specific libraries 

that account for individual genetic variants can mitigate this problem in the future. If these 

libraries additionally used phased genotype data, potential issues when two variants are located 

on the same peptide could also be solved. 

We observe some cases where the detected variant peptide does not match the PAV, and a few 

isolated cases where the alternate and reference alleles are both detected in all samples, such as 

an E>D substitution in Complement Factor H (CFH peptide 

SPP[E/D]ISHGVVAHMSDSYQYGEEVTYK). These false-positive identifications 

(Supplementary Figure X) can be attributed to uncertainties or shortcomings in the algorithms 

that match the MS2 spectra of alternate and reference peptides that occur in the same DIA-MS 

window and share many common fragments. Due to the very low error rate in today’s 

genotyping platforms, genetic variants can comparatively be considered a “ground truth” to 
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calibrate peptide detection algorithms. We suggest that these algorithms may be improved in the 

future by using combined genetic and proteomic data from studies like ours as a benchmark. 

Taken together, our study highlights the complementarity but also the complexity of affinity- and 

MS-based proteomics in the pQTL discovery process and suggests a new approach to the 

analysis of MS-based proteomics data in the presence of genetic variation. We propose to use 

naturally occurring genetic variation for the development of future and more powerful MS-

proteomics data analysis tools. Deployed at scale, this approach can provide valuable new 

insights for drug target prioritization and repurposing. 

METHODS 

The QMDiab study. The Qatar Metabolomics study of Diabetes (QMDiab) was conducted in 

2012 at the dermatology department of  Hamad Medical Corporation, the major public hospital 

in Doha, Qatar, with the primary aim to study metabolic differences in individuals with and 

without diabetes in adult female and male participants of Arab and Asian ethnicities21, 22. 

Multiple aliquots of blood, urine and saliva samples were collected and stored at -80°C without 

further freeze-thaw cycles. 

Genotyping. DNA from QMDiab samples was extracted and genotyped using the Illumina 

Omni 2.5 array (version 8) and imputed using the SHAPEIT software with 1000 Genomes 

(phase3) haplotypes, as previously described. PAVs were identified in the imputed variant 

dataset using the Ensembl Variant Effect Predictor (VEP)27 and filtering to MAF > 10%. 

Genotyping data was available for 325 of the 345 analyzed samples. 

Gene model alignment. The gene model was constructed using the June 2022 version of the 

UniProt .fasta file and the UniProt genome annotation tracks 

(https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/genome_annotation

_tracks/UP000005640_9606_beds/UP000005640_9606.proteome.bed, accessed June 2022). To 

create the gene model, we aligned the .bed with the .fasta they provide. We kept UniProt IDs that 

unambiguously mapped to one sequence. For those that mapped to multiple sequences, we 

preferentially selected those sequences that aligned perfectly when translating the .bed 

coordinates using the GRCh37 .fasta file. For those that did not map to the .fasta, we 

preferentially selected sequences that started with Methionine and were in-frame. We removed 
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ambiguity in UniProt IDs that had sequences in multiple chromosomes by picking the canonical 

one if available, and then alphanumerically if not. For those UniProt IDs that had multiple 

canonical sequences within the same chromosome, we picked the first sequence within the gene 

model. 

Library construction. The gene model file from UniProt was used to generate reference 

sequences for every UniProt ID. Common (MAF > 10%) protein altering variants were identified 

using the Ensembl Variant Effect Predictor (VEP) 27 and “injected” into the corresponding 

reference protein sequences. We digested the reference and alternate sequences in a manner akin 

to DIA-NN in silico (i.e., on tryptic [K/R] amino acids; with/without one missed cleavage; and 

peptide length between 7-30 AAs) to generate constituent peptides per UniProt sequence. We 

then compared the digests from the corresponding reference and alternate gene sequences. If 

peptides were of equal length, shared their initial position within the full gene, and differed in 

sequence, then the peptides were declared a reference-to-alternate match; otherwise, they were 

annotated as “complex” (indicated in Supplementary Table 1). We repeated this process with 

and without missed cleavages. All other mismatched injected variant sequences (which were a 

result of the introduction or deletion of a K/R), were discarded. For each variant, a protein entry 

with the corresponding amino acid exchange was also added to the PAV-inclusive library as an 

isoform using the protein identifier (UniProt ID) followed by the variant identifier (rsID). 

Similarly, the corresponding reference sequences were discarded from the PAV-exclusive library. 

Genetic variants were considered independent, and only one variant per protein was considered 

at a time to avoid combinatorial growth of the library. 

Proteomic Analysis. 240 µL of previously un-thawed citrate plasma were loaded onto the 

SP100 Automation Instrument for sample preparation with Proteograph™ Assay Kits and the 

Proteograph™ workflow18, 19 (Seer, Inc.) to generate purified peptides for downstream LC-MS 

analysis. Each plasma sample was incubated with five proprietary, physicochemically-distinct 

nanoparticles for protein corona formation. Samples were automatically plated, including process 

controls, digestion control, and MPE peptide clean-up control. A one-hour incubation resulted in 

a reproducible protein corona around each nanoparticle surface. After incubation, nanoparticle-

bound proteins were captured using magnetic isolation. A series of gentle washes removed non-

specific and weakly-bound proteins. The paramagnetic property of the nanoparticles allows for 

retention of nanoparticles with the protein corona during each wash step. This results in a highly 
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specific and reproducible protein corona. Protein coronas were reduced, alkylated, and digested 

with Trypsin/Lys-C to generate tryptic peptides for LC-MS analysis. All steps were performed in 

a one-pot reaction directly on the nanoparticles. The in-solution digestion mixture was then 

desalted, and all detergents were removed using a solid phase extraction and positive pressure 

(MPE) system on the SP100 Automation Instrument. Clean peptides were eluted in a high-

organic buffer into a deep-well collection plate. Equal volumes of the peptide elution were dried 

down in a SpeedVac (3 hours-overnight), and the resulting dried peptides were stored at -80 °C. 

Using the results from the peptide quantitation assay, peptides were thawed and reconstituted to 

a final concentration of 50 ng/µL in the Proteograph™ Assay Kit Reconstitution Buffer. 4 µL of 

the reconstituted peptides were loaded on an Acclaim PepMap 100 C18 (0.3 mm ID x 5 mm) 

trap column and then separated on a 50 cm μPAC analytical column (PharmaFluidics, Belgium) 

at a flow rate of 1 μL/minute using a gradient of 5 – 25% solvent B (0.1% FA, 100 % ACN) in 

solvent A (0.1% FA, 100% water) over 22 minutes, resulting in a 33 minute total run time. The 

peptides generated from these multi-nanoparticle-sampled proteins were analyzed using a dia-

PASEF method13 on a timsTOF Pro 2 mass spectrometer (Bruker Daltonics).  

Peptide and protein quantification. All MS files were processed using the DIA-NN 1.8.1 

software16 and a library-free search with match-between-runs (MBR) enabled against the 

UniProt database (accessed June 2022) and thereof derived PAV-exclusive and PAV-inclusive 

libraries, as described above. Peptide and protein intensities were quantified using the DIA-NN 

in match-between-runs mode with flags: --mass-acc-ms1 10, --mass-acc 10, --

qvalue 0.1, --matrices, --missed-cleavages 2, --met-excision, --

cut K*,R*, --smart-profiling, --relaxed-prot-inf, --pg-level 1, 

--reannotate, --gen-spec-lib, --threads 32, --predictor, --

unimod4, --use-quant, --peak-center, --no-ifs-removal, and –-

reanalyse. 

Statistical analysis. Statistical analysis was performed using R (version 4.2.1) basic libraries 

(fisher.test and lm) and Rstudio (version 2023.03.0). Significant MS-PAVs were identified 

through the construction and analysis of a 2x2 matrix. This matrix depicted how many 

individuals had the genetic variant at a given genomic location, and the corresponding variant 

peptide. We used the Fisher’s Exact test to determine if there was a non-random association 

between these two categorical variables. Those that were statistically significant at a Bonferroni-
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corrected alpha level (out of 2,341 signals) were considered for future analysis. pQTLs were 

determined by regressing alternate allele count to protein quantification intensities using a linear 

regression model. We followed previous analysis protocols2; i.e., we used inverse-normal scaled 

protein intensities as dependent variables and included age, sex, BMI, diabetes status, and the 

first three genetic principal components as covariates in a linear model with the copy number of 

the minor allele as dependent variable.  

Variant annotation. The web servers snipa.org28, phenoscanner.medschl.cam.ac.uk29 and 

omicsciences.org10 were used to identify previously reported pQTLs and overlapping 

information from disease GWAS, and expression and metabolomics QTLs. LocusZoom30 was 

used to generate regional association plots. 

APOB analysis. We downloaded UK Biobank GWAS summary statistics for LDL cholesterol 

(code 30780) and Apolipoprotein B (code 30640) for the joint male/female analysis with from 

343,621 individuals from https://github.com/Nealelab/UK_Biobank_GWAS, extracted the +/-

250kb region around variant 2:21263900:G:A and visualized the association data using the 

LocusZoom server (https://my.locuszoom.org). 
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TABLES 

Table 1. MS-pQTLs. Associations of MS-PAVs that are significantly (p < 5×10-8) associated 

with protein levels derived using the PAV-exclusive library. 

Gene UniProtID rsid SNP MAF p-value beta cis-pQTL 

MST1 G3XAK1 rs3197999 3:49721532:G:A 23.4% 2.6E-18 -0.716 SOMA 

ITIH1 P19827 rs1042779 3:52821011:A:G 37.7% 1.2E-11 0.545 SOMA 

KNG1 P01042 rs2304456 3:186445052:T:G 16.0% 4.8E-21 0.911 SOMA 

HLA-C A2AEA2 rs707908 6:31238053:G:C 21.8% 2.0E-10 0.630 no 

CFB B4E1Z4 rs12614 6:31914179:C:T 18.5% 1.2E-13 -0.590 SOMA 

PON1 P27169 rs662+ 7:94937446:T:C 37.4% 4.6E-09 -0.424 no 

PON1 P27169 rs854560+ 7:94946084:A:T 27.4% 2.7E-10 0.499 no 

PON2 A0A0J9YXF2 rs12026 7:95041016:G:C 30.6% 1.3E-36 -0.998 OLINK 

FGL1 Q08830 rs3739406 8:17739538:T:C 49.2% 1.8E-11 0.512 SOMA 

GALC G3V255 rs34362748 14:88442712:C:T 11.5% 1.0E-15 0.887 no 

SERPINA10 G3V2W1 rs2232700 14:94756450:T:A 30.8% 1.5E-22 0.741 SOMA 

SERPINA1 P01009 rs709932 14:94849201:C:T 23.1% 3.8E-08 0.431 no 

DSC3 Q14574 rs276938* 18:28610988:C:T 41.4% 2.1E-08 -0.422 no 

DSC3 Q14574 rs276937* 18:28611061:A:T 41.2% 1.5E-08 -0.429 no 
+correlation between rs662 and rs854560 is r2 = 0.20 
*correlation between rs276938 and rs276937 is r2 = 0.99 
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Table 2. MS-PAVs that overlap with disease-relevant GWAS hits. Selected MS-PAVs that 

have not been reported in previous pQTL studies and that overlap with a clinically relevant 

GWAS catalog entry (edited for brevity, see Supplementary Table 2 for details). 

Gene UniProtID rsID Fisher 
P Peptide GWAS trait 

WDR1 O75083 rs13441 4.8E-37 FTIGDHSR 
Atrial fibrillation and 

flutter 

PIP4K2A H7BXS3 rs2230469 2.2E-48 IYIDDNSK Body fat composition 

CHID1 Q9BWS9 rs6682 5.9E-59 MVWDSQASEHFFEYK Body mass index 

SCFD1 A0A7I2V362 rs229150 1.8E-28 FGQDIISPLLSVK 
Amyotrophic lateral 

sclerosis 

SPTB P11277 rs229587 9.6E-14 ETWLNENQR Red blood cell phenotypes 

LOXL1 H3BUV8 rs1048661+ 1.0E-70 EVAVGDSTGMALAR Exfoliation glaucoma 

LOXL1 H3BUV8 rs3825942+ 5.5E-57 HGDSASSVSASAFASTYR 
Coronary artery disease, 

Exfoliation glaucoma 

ACAN A0A5K1VW97 rs1126823 3.9E-25 ITCTDPTTYK Osteoarthritis 

GIP P09681 rs2291725 1.2E-22 ALELAGQANR 
Coronary artery disease, 

Type II diabetes 
+correlation between rs1048661 and rs3825942 is r2 = 0.12 
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FIGURES 

Figure 1: Study chart. Procedure used to incorporate QMDiab variants into the UniProt .fasta, 

create spectral libraries, and identify MS-PAVs and MS-pQTLs. 
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Figure 2. Proteins and peptides identified in >20% of the samples by the Proteograph™

workflow. Data is for protein and peptide identification using DIA-NN with the reference (ref)

library using match-between-runs (MBR). 
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Figure 3. Boxplots by genotype rs4524 for selected Factor V (F5) protein and peptide
intensities. This figure shows the effect of using the different libraries at the example of the
Factor V (F5) protein. Similar plots are provided as Supplementary Figure 1 for all 184 MS-
PAVs; The boxes are color-coded as following: using the PAV-exclusive library (green), using
the reference library (blue), and using the PAV-inclusive library (red). Protein intensities are in
dark colors, and peptide intensities are in light colors. The grey vertical boxplots on top of the
plots represent the range of the data shown in that plot compared to the 5%-95% range of the
entire data for that protein. Units on the y-axis are engine-normalized intensities as provided by
DIA-NN. The x-axis labels indicate the number of detected peptides/proteins followed by a colon
and the number of samples with the given genotype (order: reference/major allele homozygote,
heterozygote, alternate/minor allele homozygote). The first line of the subtitle identifies the
protein (Uniprot ID and rsID, when applicable) or the peptide sequence followed by the
nanoparticle used in that analysis. The second line shows the number of data points included in
generating the plot (N). Significance intensities (p-values) for the following hypothesis tests are
given: (1) Fisher’s Exact test on detected/non-detected versus presence/absence of the major (p-
maj) or minor (p-min) allele, where the stronger of the two associations is shown (indicating MS-
PAV detection significance), and (2) a linear regression of peptide intensity versus genotype
(coded 0-1-2) with missing values set to zero (pX), and for proteins a linear model including
relevant covariates using inverse-normal scaled protein intensities (excluding missing values)
against genotype (pY; indicating pQTL significance). Protein name, chromosome, chromosome
position (GRCh37), and major and minor alleles are indicated in boldface on top of the boxplots. 
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Figure 4. Scatterplot of the protein-level associations (p-values) for the 184 MS-PAVs using

the reference and the PAV-exclusive libraries. Three regimens are labeled: (1) variants that

remain associated with protein levels after removal of the variant peptides from the library (MS-

pQTLs), (2) variants where the association signal with the protein levels disappears after removal

of the variant peptides (the MS equivalent of an epitope effect), and (3) variants that do not

associate with protein levels in either case (MS-PAVs that may become significant in more

highly powered studies). Plot data is in Supplementary Table 2. 
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Figure 5: Regional association plots for the APOB region. Association of the detection of the

alternate variant peptide TSQCILK of APOB (pc2, nanoparticle 1) with the presence/absence of

the matching genetic variants at the APOB locus (top), GWAS associations of Apolipoprotein B

(middle) and LDL-cholesterol (bottom) measured by clinical biochemistry methods in blood

samples from 343,621 participants of the UK Biobank study. The highlighted variant rs1367117

(chr2:21263900) is the MS-PAV in TSQC[T/I]LK. 
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SUPPLEMENTARY TABLES 

Supplementary tables are provided in EXCEL format. 

ST1 List of all detected variant-peptides (2,341 detections, often on multiple nano particles and 

with varying precursor charges, for a total of 492 unique peptides) 

ST2 List of significant lead variant to variant-peptide associations (N = 184) 
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