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Abstract

Aims

The increased prevalence of insulin resistance is one of the major health risks in society today. Insulin
resistance involves both short-term dynamics, such as altered meal responses, and long-term
dynamics, such as development of type 2 diabetes. Insulin resistance also occurs on different
physiological levels, ranging from disease phenotypes to organ-organ communication and
intracellular signaling. To better understand the progression of insulin resistance, an analysis method
is needed that can combine different timescales and physiological levels. One such method is digital
twins, consisting of combined mechanistic multi-scale and multi-level mathematical models. We have
previously developed a multi-level model for short-term glucose homeostasis and intracellular insulin
signaling, and there exists long-term weight regulation models. However, no one has combined these
kinds of models into an interconnected, multi-level and multi-timescale digital twin model. Herein,
we present a first such multi-scale digital twin for the progression of insulin resistance in humans.

Methods

The model is based on ordinary differential equations representing biochemical and physiological
processes, in which unknown parameters were fitted to data using a MATLAB toolbox.

Results

The connected twin correctly predicts independent data from a weight increase study, both for
weight-changes, for fasting plasma insulin and glucose levels, as well as for intracellular insulin
signaling. Similarly, the model can predict independent weight-change data in a weight loss study,
involving diet and the weight loss drug topiramate. These independent validation tests are confirmed
by a chi-square test (V(6) = 4.8 < 21 = (12,0.05)). In both these cases, the model can
also predict non-measured variables, such as activity of intracellular intermediaries, glucose
tolerance responses, and organ fluxes.
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Conclusions

We present a first multi-level and multi-timescale model, describing dynamics on the whole-body,

organ and cellular levels, ranging from minutes to years. This model constitutes the basis for a new
digital twin technology, which in the future could potentially be used to aid medical pedagogics and
increase motivation and compliance and thus aid in prevention and treatment of insulin resistance.
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Introduction

Insulin resistance is becoming more common, partly due to a general weight increase in the
population, and it is one of today’s major health problems. Insulin resistance is both a part of, and a
precursor of, type 2 diabetes. The progression towards these harmful conditions is complex: they
usually develop over many years, involving both short and long-term changes with dynamics ranging
from minutes to years. Furthermore, the changes happen on different biological levels: inside cells,
within and between organs, and on the whole-body level. A widely spread hypothesis for the cause of
type 2 diabetes is adiposity-driven insulin resistance: an impaired or saturated lipid storage capacity in
adipose tissue cause ectopic accumulation of lipids on other organs and tissues, for example in muscle
tissue and liver. This lipid accumulation is associated with decreased insulin sensitivity in insulin's
target tissues. This decreased insulin sensitivity is initially compensated for by increased insulin
secretion, but over time leads to pancreatic failure. The resulting reduction in insulin secretion leads
to the onset of type 2 diabetes (1). It is therefore clear that the progression of insulin resistance is a
complex, multi-level, multi-timescale process.

Some of the processes and risk factors for insulin resistance, such as your genetic risk and age, are not
controllable. Still, both insulin resistance and type 2 diabetes are preventable, manageable, and
possibly even treatable. Regarding prevention, maintaining a low weight is viewed as one of the most
important strategies. Regarding treatment, it has recently been shown that weight reduction is
sometimes able to reverse type 2 diabetes (2). For some individuals, weight reduction might be more
difficult for a variety of reasons, and in these cases, a weight reducing drug might be valuable. The
choice of drug for prevention, management, and/or treatment is complex due to the inherent
heterogeneity in type 2 diabetes in different individuals, and due to the varying effects of different
drugs and diet/exercise regimes. This complexity in treatment choices, as well as the multi-scale
complexity in disease mechanisms, points to a need for a more comprehensive understanding of
insulin resistance, both on a general and an individual level. One method for achieving, testing, and
visualizing such a comprehensive understanding is to represent this understanding using mathematical
models and digital twins.

Digital twins and mechanistic modelling have been used extensively to study different individual
aspects of the insulin resistance and type 2 diabetes, on both whole-body, organ or tissue, and cellular
level. For whole-body weight regulation, there exists models that describe body composition as a
response to energy intake, such as the one developed by Hall et al (3). For the organ and tissue level,
meal response models such as that developed by Dalla Man et al. are relevant, and have even been
approved by the US Food and Drug Administration (FDA) for certain applications (4,5). On the cellular
level, there exists models that describe e.g. pancreas, liver, and adipocytes (6—8). There also exist some
models that combine these different levels in comprehensive model that can explain both short- and
long-term dynamics. Such multi-level models include the longitudinal model developed by Ha et al. (9),
that describes two different progressions towards type 2 diabetes. Another model, developed
by Uluseker et al. (10), combines the Dalla Man model with an adipocyte model. We have also
developed such a multi-level model, combining an adipocyte model for intracellular insulin signaling
with the Dalla Man model for organ-organ communication in glucose homeostasis (4). However, to the
best of our knowledge there exists no multi-level and multi-timescale model that can describe data for
all three levels, and that can describe the progression into diabetes in a mechanistic manner.

Herein, we present a first multi-level, multi-timescale, and mechanistic mathematical model that also
can describe the progression to diabetes in a semi-mechanistic manner (Fig. 1B). The model uses a new
adiposity-driven insulin resistance model to connect the three different physiological levels and
timescales: long-term whole-body weight composition over months and years; short-term meal-
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responses of glucose and insulin over a few hours, and fast dynamics of adipocyte intracellular insulin
signaling over seconds and minutes. We develop and test the model using data from two scenarios: i)
the progression towards insulin resistance due to weight gain, where the model correctly predicts data
for fasting glucose and insulin levels, as well as intracellular insulin signaling in adipocytes (Fig. 1C), and
ii) a weight loss scenario, where the model can describe data for both weight-loss due to decreased
energy intake alone, and due to additional drug usage (Fig. 1D). We also use the model to make
predictions regarding relevant biomarkers for type 2 diabetes not measured in the above studies,
showcasing how the model can be used to unravel more processes than those directly measured.
Future iterations of the model could potentially be used to evaluate different health scenarios, e.g.,
different diets and medications, and as such aid in the prevention and treatment of insulin resistance.
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A Physiological effects of insulin resistance on glucose homeostasis
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Figure 1. A) The different physiological effects of insulin resistance on glucose homeostasis. B)
Schematic overview of the multi-level and multi-scale model structure, connecting multiple body
levels and timescales. The new reactions (solid lines) include a connection from the Body composition
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model on the whole-body level to the Meal response model on the organ/tissue level, and the
intracellular level, as well as arrows to and from the new insulin resistance model. Reactions in
previously published models are shown as dashed lines. C) Schematic overview of the analyses made
herein, involving two different studies: a weight gain study — the Fast-food study — that was
conducted during 12 weeks, and a weight decrease study on the drug topiramate — the Topiramate
study. Fast-food study: on the whole-body level, the model was trained on weight data as well as fat
mass and fat-free mass data, and validated on fat mass and fat free mass, as shown in detail in Fig.
3BC and Fig. 3C respectively. A prediction of further weight increase was also made, shown in Fig. 4A.
On the organ/tissue level, the model was validated on fasting insulin data, shown in Fig. 3D, and
predictions were made of meal response insulin, glucose, and glucose uptake in fat and muscle tissue
before and after the diet, as shown in Fig. 4B. D) Topiramate study: on the whole-body level, the
model was trained and validated on weight data for placebo and 3 different dosages of Topiramate.
The model was then used to predict two other scenarios not explored in the study — an increase in
energy intake with and without medication — as well as meal responses before and after these
scenarios, on both organ/tissue and cell level.
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Method

Model equations

The models are built up by standard form ordinary differential equations (ODEs). All of equations are
given in the supplementary material, both as equations and as simulation files. Below we only
describe the equations that were added to the multi-level model in this article, specifically those of
the insulin resistance model, the weight-meal response interconnection, the phenomenological
energy intake, and the drug response model for topiramate.

Insulin resistance on organ/tissue level

The insulin resistance part of the model is inspired by the similar insulin resistance equations
implemented for mice in (11). The equations used herein are:

F
xF = [1]
Finit
L
xL = (2]
Linit

fir;ys = 1 + biys - log (xF) - scale (3]

fIREGP = 1 + bggp -log(xF) - scale (4]

firey = 1 + bergr - log (xF) - scale 5]
where xF is the relative change in fat mass from initial fat mass Fj;,;¢, F is the current fat mass, xL is
the relative change in lean tissue mass from initial lean tissue mass L;,;;, L is the current lean tissue
mass, fir., ¢, IS the insulin resistance effect on hepatic and muscle glucose uptake, fig,., is the
insulin resistance effect on endogenous glucose production, fg,, . is the insulin resistance effect on
insulin secretion, scale scales all the insulin resistance effects from mice to humans, and b¢r¢r, Prgp,
byys are parameters.

The effect of the insulin resistance on insulin secretion is described by

d
%(Ipo) = ((—]/ ’ [po) + Spo) 'fIRINS *teonw [6]

where I, is the amount of insulin in the portal vein, y is the transfer rate constant between portal
vein and liver, S, is the insulin secretion into the portal vein, fg,, . is the insulin resistance effect on
insulin secretion, and ., is @ parameter for time conversion between the body composition
model, defined in the time units days, and the other models, defined in minutes. Note that this is
different from the previously reported mouse model, where the insulin resistance effect is directly on
Spo- One of the reasons for this difference is that insulin in the portal vein, I,,, is not explicitly
modelled in the mouse model.

The effect of insulin resistance on endogenous glucose production, EGP, is described by

EGP = (kpl - (kpz ’ Gp + kp3 g+ kp4 ’ Ipo)) 'fIREGP (7]
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where k,; is the extrapolated EGP at zero glucose and insulin, k) is liver glucose effectiveness, k3
governs the amplitude of insulin action on the liver, I, is a delayed insulin signal, k,, governs the
amplitude of portal insulin action on the liver.

The effect of insulin resistance on glucose utilization in the liver, U;4;, and muscle tissue, U;gm, is
affected by insulin resistance as follows:

G

Vimax * e

Uiy = (K + Gr) (8]
fIRCLGI

Gy

meax (Km + Gt) [9]
Uigm = xL-
fi IRcLGI

where Vi,ax is the maximum rate of glucose utilization in the liver, G; is the glucose in tissue, K; is a
Michaelis-Menten parameter, Vy,,max is the maximum rate of glucose utilization in muscle, and K,,, is
a Michaelis-Menten parameter. In our model, insulin resistance does not directly influence the
glucose utilization in fat tissue, U4y, since it has been observed in diabetics that glucose uptake is
significantly changed in muscle and liver but not in fat tissue. (12,13).

Insulin resistance on cell level

The insulin resistance on the cell level is implemented as a gradual transition between the different
parameter sets for non-diabetics and diabetics from the previous version of the model. The effect of
diabetes was, as in the previous model, implemented on three different places in the model: IR,
GLUT4, and diabetes. The diabetes effect on IR decreases the total amount of IR, and with less
insulin receptors, less insulin can bind to the cell, i.e. the cell is less sensitive to insulin. The diabetes
effect on GLUT4 decreases the amount of GLUT4, which means that less GLUT4, can be taken up
by the cell. The parameter named diabetes reduces the positive feedback from mTORC1 to IRS1
(Fig. 3E). All these diabetes effects results in an increase in insulin sensitivity and a decrease in
glucose uptake in the model. The gradual transition of these diabetes effects was, as with previous
insulin resistance equations, dependent on the change in fat mass as follows:

[10]
fIRIR = 1— big - log(xF) [11]
firgryrs = 1 — bgLurs - log (xF) (12]

fIRdL'abetes = 1— bgiavetes * 108 (xF)
where b;g, beryra, and Dgigpetes are parameters.

As mentioned, the diabetes effect was static in the previous model — the model could either be
diabetic, non-diabetic, but could not transition from one to the other. A transition between non-
diabetic and diabetic version of the model was not possible since the total amount of IR and GLUT4
could not change. To make the gradual transition to diabetes possible, equations that could change
the total amount of IR and GLUT4 was therefore added. Specifically, degradation and protein
expression of IR and GLUT4 was added (Fig. 4C). The protein expressions of IR and GLUT4 are then
influenced by the insulin resistance functions fiz, . and fig . . to achieve the gradual decrease of
IR and GLUT4 that is part of the gradual transition to diabetes (Eq. 15 and 19). For IR, the following
equations were changed:
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d
P (IRm) = —vla — vlbasal + vlg + vir + vIR [13]

d
r (IRi) = vle — vlr — viRdeg [14]

where IRm is the insulin receptors (IR) found in the cell membrane, vla, vlbasal, vlg, and vir
are the unchanged reaction rates describing the transition of IRm to and from other IR-forms (see
the supplementary material and (7)), and vIR is the new reaction rate describing the protein
expression of IRm, IRi is the internalized form of IR, vle and v1r are the unchanged reaction rates
describing the transition of IRi to and from other IR-forms (see the supplementary material and (7)),
VIR is the new reaction rate describing the protein expression of IRm, and viRdeg is the new
reaction rate describing the degradation of IRi. The reaction rates vIRdeg and vIR are defined as:

vIR = kIR - fip,, [15]

vIRdeg = kIRdeg - IRi [16]

where kIR and kIRdeg are parameters. For GLUT4, the following equations where changed:

d
a(GLUTéLm) = v7f —v7b — vGLUTdeg [17]

d
— (GLUT4) = —v7f +v7b + vGLUT [18]

where GLUT4m and GLUT4 are the two forms of GLUT4, the first associated with the cellular
membrane and the other inside the cell cytosol, v7f and v7b are the unchanged reaction rates
describing the transition between GLUT4m and GLUT4, vGLUTdeg is the new reaction describing
the degradation of GLUT4m, and vGLUT is the new reaction rate describing the protein expression
of GLUT4.

vGLUTdeg = kGLUT * firy,yrs [19]

vGLUT = kGLUTdeg - GLUT4m [20]

where kGLUT and kGLUTdeg are parameters. The membrane form, GLUT4m, then effects the
inflow of glucose to the cell, which is upscaled to U4 as described in (14).

The now gradual adiposity driven effect of insulin resistance on the positive feedback from mTORC1
to IRS1, v2¢, was applied in the same way as the parameter diabetes was in the previous model:

v2c = IRS1p - k2c¢ - mTORCla - fIRd, ot [21]

where IRS1p is the amount of phosphorylated form of IRS1, k2c is a parameter, mTORC1a is the amount of
mTORC1a.
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Weight-meal response interconnection

As shown in Equation 9, the change in lean tissue mass, xL, has a direct effect on the glucose
utilization in muscle tissue. This effect is a part of the connection between the whole-body weight
model and the meal response model. The glucose utilization in fat tissue, U;qy, is also affected by the
weight model, specifically by the change in fat mass:

Gt
Uiar = XF * Vemayx - <m>

where, similarly to the utilization in the other tissues, V4 is the maximum rate of glucose

[22]

utilization in muscle, and Ky is a Michaelis-Menten parameter.

Equations 9 and 22 also show the connection between the whole-body and the organ/tissue level:
the glucose uptake in muscle and fat tissue changes with the change in lean and fat mass
respectively. Furthermore, the glucose rate of appearance, Ra, changes with the total body weight
(BW):
Qgut [23]
Ra = f-k Lgut
f abs BW
where f is the fraction of intestinal glucose absorption which appears in plasma, k; is the
absorption rate, Qg is the glucose content in the gut, and BW is the body weight. In the earlier
model, BW was a constant, while here it is a variable in the whole-body level as described in (3).

To merge the different models, a parameter t.,,, = 24 - 60 was introduced to the models
corresponding to time expressed in minutes, i.e., the organ/tissue level model and the cell model, to
change the unit for time into days.

Phenomenological energy intake

We added an equation for accounting for differences in energy intake throughout the study period:

h1l

Elvehicle = Elbaseline - AEImax + (AEImax - AEISS) ' t [24]

hi
hatf o+t

where El,gpicie(t) is the energy intake over time, Elp s01ine is the energy intake at baseline, AEI 4,
is the maximum change in energy intake, here fixed at the change in energy intake that the
participants were asked to follow, AEI, is the change in energy intake at steady state, t is the time,
h1is the hill coefficient, and tyq;y is the timepoint where half of El,zpici¢(t) has been reached.

Drug response model for topiramate

The energy intake was also altered with respect to the drug topiramate according to

ChZ
EI(t) = Elyenicie - <1 — Inax chz + 16&2) [25]
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where EI(t) is the energy intake that influenced by topiramate, h2, I, 4, and ICé‘O are parameters,
and C is the concentration of topiramate in plasma. To get C, we adopted the standard two-
compartment pharmacokinetic model with first-order absorption from (15)

d
_ - _ . [26]
- () Ka-A
d A [27]
—()=Ka-=—K23-C+K23 - C2—K10 - C
dt v
d [28]
—(C2) = K32 - C~K32 - C2

where A is the absorption compartment, into which the daily dosages of topiramate are
administered, Ka, V, K23, K10, and K32 are parameters, and C2 is the topiramate concentration in
tissue.

Parameter Estimation

Almost all of the 146 parameters in this multi-scale model were fixed at their values obtained from
previous studies. The parameters estimated in this article are one scaling parameter of the insulin
resistance model, the scaling parameter of the diabetes effects in the cell-level model, the new
parameters in the cell-level model, those parameters corresponding to the phenomenological energy
intake equation, and finally the parameters of the meal response model. The different parameters
are estimated using different data and in different ways.

Most parameters were optimized using an optimization algorithm. Specifically, the parameters were
estimated by minimizing the difference between model simulations, denoted §(8), and experimental
data, denoted y. The cost function used is the conventional weight least square, i.e.,

N ~
Y, =Y,
V() = Z( S 129)

where the subscript i denotes the data point, where N denotes the number of data points, and
where SEM denotes the standard error of the mean for the data uncertainty (15). In practice, this
parameter estimation was accomplished using the enhanced scatter search (eSS) algorithm from the
MEIGO toolbox (16). The optimization was restarted multiple times, run in parallel at the local node
of the Swedish national supercomputing center (NSC). The parameter estimation was allowed to
freely find the best possible combinations of parameter values within boundaries.

We use a y2-test to evaluate the agreement between model simulations and data. To be more
specific, we use the inverse of the cumulative y?-distribution function for setting a threshold, T)(()z,

and then compare the cost function VV(0) with this threshold:

T)?z = F;dzf_in"(l —a,v) [30]
where F;‘;f_i"v us the inverse density function, a is the significance level, and v is the degrees of

freedom, which was the same as the number of data points in the training data sets. The model is
then rejected if the model cost is larger than T)?z.
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The parameters that were not estimated using an algorithm were estimated manually due to
simplicity, but the fit to data was assessed in the same way as for the optimization algorithm, i.e.
with a y?-test (Eq. 30). Note that apart from these explicitly mentioned parameters, all other
parameters were optimized using an optimization algorithm (Eq. 29).

The scaling parameter of the insulin resistance model, which accounts for the scale difference in fat
tissue between mice and humans, was estimated by hand. The data used for this manual fitting was
the fasting insulin data from the Fast-food study (17,18) (Fig. 3D).

The scaling of the three diabetes effects - IR, GLUT4, and diabetes - were adjusted by hand to fit to
the level of diabetes seen in the cellular data from the Fast-food study (Fig. 3G). The three diabetes
effects have their own range of diabetic to non-diabetic values (Fig. 3EF) — 55-100 for IR, 50-100 for
GLUT4, and 15.5-100 for diabetes. These ranges of diabetes effects where then scaled using one
scaling parameter, scaling them towards a percentage of diabetes that corresponded to an
acceptable fit to the cellular data after the fast-food diet.

The parameters added to the cell model to enable a gradual change due to insulin resistance,
kGLUT, kGLUTdeg, kIR and kIRdeg (Eq. 13-20), where also adjusted manually. These parameters
were adjusted so that the initial values of total IR and total GLUT4 had a steady state at 100%.

The last parameters to be adjusted manually where the parameters of the insulin resistance
equations (Eq. 10-12), b;g, bgrura, and bgiapetes- These parameters were adjusted so that the initial
values of total IR and total GLUT4 reached the scaled values from the estimation to cellular data
within the time span of the Fast-food study (Fig. 4D).

Two sets of parameters were adjusted using an optimization algorithm: the energy intake
parameters and the meal response parameters. The parameters relating to the energy-intake
equation were estimated using data from the Topiramate study. This estimation data consists of
body-weight time-course data, which is denoted BW. The meal-response parameters were
estimated using the baseline values of fasting plasma insulin and glucose from the Fast-food study,
and were only changed when used in the training and predictions relating to the Fast-food study (i.e.,
the training and prediction related to the Topiramate study used the parameters from the original
article (4)). These parameters were kept within tight bounds (a factor of 1) of the parameter values
from the original model (4).

For detailed description of all parameters, see the supplementary material. All other parameters
were fixed and set to values used in Nyman et al. (2011), and these values are listed in the
supplementary material. We exploited the modular structure of the model by fitting the weight
model on its own. In the final simulation with the multi-level model, all aspects of the model are
simulated at the same time.

Model simulation

We exploited the unidirectional structure of the multi-level model to only simulate those parts of the
model that are needed. In other words, the whole-body part of the model is not impacted by other
parts of the model and could therefore be simulated on its own, for instance when estimating the
parameters in that part of the model to only the weight data. In contrast, the entire multi-level
model was simulated for the tissue- and cell-levels.

The initial values used in the simulations can be found in the supplementary material.
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Uncertainty estimation

The uncertainty of both the parameters and the model simulations for estimation, validation, and
predictions were gathered as proposed in (19) and as implemented in (20). In short, the desired
property (i.e., the fasting plasma glucose and insulin levels in the Fast-food study (Fig. 3) and the
weight data in the Topiramate study (Fig. 4)) were either maximized or minimized, while requiring
the cost to be below the y?-threshold. See (20) for more details on how the uncertainty estimation
was done.

Model and data availability

We used MATLAB R2020b (MathWorks, Natick, MA) and the IQM toolbox (IntiQuan GmbH, Basel,
Switzerland) for the entire modelling work performed (21).

No new experimental data were collected in this study. We therefore refer to the methods sections
in the original articles (17,18,22-24) for the corresponding details experimental methods.
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Results

Mechanistic, multi-level, and multi-timescale model

The multi-level model (Fig. 2) is comprised of three interconnected models, previously published on
their own, plus a new insulin resistance model adopted from rodents (11). Firstly, the whole-body
model describes changes on body-composition (3), which produces input to the new sub-model for
the progression of insulin resistance. Secondly, the tissue-level model describes the meal response of
plasma glucose, organ-specific glucose uptake, and insulin regulation (4). Thirdly, the cellular level
describes intracellular insulin signaling in adipocytes (6). The whole-body model has previously been
trained and validated on weight-change data (3), and the interconnected tissue-level and cell-level
model was previously trained and validated on meal-response data and intracellular insulin-signaling

data from human adipocytes (6). The insulin resistance model (Fig. 2A, green box) is, as in (11), driven
F

by adiposity, specifically the relative increase in fat mass from baseline (—). The insulin resistance

init
affects the tissue-level model in three ways: 1) it decreases glucose utilization in muscle and liver
tissue (Uijgm, Uiar) (Eq. 5), 2) it increases endogenous glucose production (EGP) (Eq. 4), and 3) it
increases insulin secretion (I,,,) (Eq 3). The insulin resistance model also influences the cell-level
model in three ways: by decreasing the protein expression of IR and GLUT4, and reducing a positive
feedback from mTORC1 to IRS1. The connection between the whole-body model and the tissue-
level model is top-down, and comprises three parts: 1) muscle uptake (U;4.,,) is dependent on muscle
mass, 2) adipose tissue uptake (Ujqy) is dependent on fat free mass, and 3) rate of appearance of
glucose (Ra) is dependent on total body weight (BW). All model equations and parameter values can
be found in the Supplement.
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Figure 2. Detailed overview of the entire multi-level and multi-timescale model structure on the
different levels. New reactions, added in this paper, are represented by solid lines, any color, while old
reactions are represented with dashed lines. A) Whole-body level. The body composition model takes
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change in energy intake as input, i.e., the difference in energy intake (El) and energy expenditure
(EE). This difference translates to the outputs: changes in the masses of fat (F), lean tissue (L), and
glycogen (Gly). The total sum of these masses is the body weight (BW ). The insulin resistance model
(green box) takes the change in fat mass (xF) as input. B) The following factors influence the glucose
concentration on the tissue/organ level: the insulin resistance, xF, the change in lean tissue (xL), and
BW. More specifically, insulin resistance (green short arrows) increases endogenous glucose
production (EGP) and insulin secretion (Ipo), and decreases glucose uptake in both muscle (U; ;)
and liver tissue (U;q4;). Furthermore, xL increases U, 4., XF increases glucose uptake in fat tissue
(Uiar), and BW increases the rate of appearance of glucose (Ra). C) Finally, the amount of insulin in
fat tissue translates to insulin input on the cell level. More specifically, insulin binds to the insulin
receptor (IR), causing a signaling cascade that ultimately results in glucose transporter 4 (GLUT4)
being translocated to the plasma membrane to facilitate glucose transport. The new reactions on the
cell level are the protein expressions of IR and GLUT4 (black arrows going to), the effect of insulin
resistance on the protein expression of IR and GLUT4 (green arrows), as well as the degradation of
IR and GLUT4 (black arrows going out). These new reactions enable a gradual decrease in IR and
GLUTA4, moving the cell towards diabetes.

The model explains total weight change data and can correctly predicts data on all three levels in
the Fast-food study

The whole-body model was trained on total body weight data, describing change in total body weight,
obtained from a weight-increase study (23). In this study, the participants were told to increase their
energy intake by around 3480 kcal per day by eating at least two extra meals of fast-food, and by
decreasing their physical activity for four weeks (Fig. 3A). The model agrees well with the total body
weight data, used for training the model (Fig. 3B). The model can also predict the increase in fat and
fat free mass on the whole-body level (Fig. 3C). The interconnection between the whole-body and the
tissue-level model was tested by comparing simulations from the entire multi-level model with tissue-
and cell-level data from the weight-increase study (Fig. 3D-E). As can be seen in Fig. 3D, the
experimental data for fasting insulin lies within the predicted bounds (light yellow area). The solid
purple line shows the simulation with the lowest cost from the training to the weight data. Only one
scaling parameter was adjusted to the data in Fig. 3D.

The prediction of the cell-level insulin response data for the intracellular metabolites I[RS1 — p and
PKB — p was scaled using two parameters to switch the three diabetes parameters (Fig. 3EF) in the
model to 22% towards diabetes. As shown in Fig. 3G, this prediction also looks good, and is
supported by a ¥’ test, (V(6) = 19.3 < 21 (12,0.05)) for IRS1 —p and (V(0) =

199 < 21 =

— 2
=X cum,inv

(12,0.05)) for PKB — p.

2
X cum,inv
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Figure 3. Results of model training and validation on Fast-food study data A). Comparison between
model uncertainty (light purple area) for the best model simulation (the dark purple line) with the
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training data (purple error bars) or validation data (grey error bars). On the whole-body level, data
for B) weight and C) fat mass (FM) and fat free mass (FFM) was used for training and validation. On
the tissue/organ level, data for D) glucose and insulin was used for training and validation. E) The
diabetes effects on the cell level model — decrease in IR, decrease in GLUT4, and diabetes,
representing an attenuation of. F) Scaling of the three diabetes parameters (with the chosen values
indicated with triangles) and the resulting behavior of the simulation curves as dose responses to
insulin, to match the fit to data in G). Data and simulations of the dose responses of phosphorylated
PKB, PKB308 — p and phosphorylated IRS1, IRS1 — p in response to the indicated concentrations
of insulin for 10 min and normalized 0-100%. The predicted simulation before the Fast-food diet (blue
solid line) use the non-diabetic parameters from (7) as they were, which gave a good agreement with
data (blue error bars with circles). The three diabetes parameters were scaled to get the predicted
simulation after the diet (purple dashed line) to fit to the corresponding data (purple error bars with
squares).

The multi-level model can predict whole-body-, tissue- and cell-level data based on weight increase
data

All the simulations lie close to experimental data, as in Fig. 3B-D, G, meaning that the model can both
explain training data and correctly predict independent validation data. It is therefore meaningful to
look at predictions of other non-measured variables. The trained and validated model was therefore
used to predict a continuation of the Fast-food diet for an additional 8 weeks, resulting in a continued
weight increase (Fig. 4A left). During these additional weeks, the fasting plasma glucose and insulin
levels reached prediabetic levels (Fig. 4A middle and right). The meal response of plasma and glucose
also increased, while the glucose uptake in muscle and fat tissue decreased and increased respectively
(Fig. 4B). The predictions of total IRS1 and PKB expression at the cellular level got closer to the
diabetic levels (Fig. 4D).
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Figure 4. A) Model simulation of weight, fasting plasma glucose and insulin for a predicted
continuation of the Fast-food diet for an additional 8 weeks. Prediabetic levels is shown as purple
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dotted line. Two meals are simulated during the period, before and the predicted 12 weeks (blue and
red pizza icons respectively). B) Meal response simulations before (blue solid line) and after (red
dashed line) the predicted 12-week Fast-food diet for plasma insulin, plasma glucose, and glucose
uptake in muscle and fat tissue. C) The updates made to the cell level of the model and insulin
resistance (green box). The added reactions include a protein expression IRm, degradation of IRi,
protein expression of GLUT4, and degradation of GLUT4m. The insulin resistance influences the
protein expression of IRm and GLUT4 (green arrows). These updates enable the gradual change in
total IR and GLUT4 due to increased insulin resistance seen in D). After the 4 weeks of the Fast-food
study, the total IR and GLUT4 (solid purple) have reached the values estimated from data in Fig.
3FG. After the additional 8 weeks, total IR and GLUT4 (dashed purple) have gone down further
towards but not completely reached the diabetic value (dotted red line). E) Cell response to the
simulated meals before (blue solid line) and after the 12 weeks (red dashed line), specifically the
response of PKB308 — p and IRS1 — p.

The model describes and predicts weight changes from Topiramate study

The model was further validated on a weight-decrease study with the drug topiramate (22). The
model was trained on two doses of topiramate - 64 and 192 mg/day - and then validated on a third
dosage - 96 mg/dl. The model training passes a y test (V(0) = 3.0 < 36 = (24,0.05)). As

shown in Fig. 5, the validation lies within the predicted bounds, and it also passes a x* test (V(08) =
48 <21 = (12,0.05)).

2
X cum,inv

2
X cum,inv

The multi-level model can predict tissue- and cell-level data based on weight decrease

As shown in Fig. 5BCD, the simulations describe accurately both experimental estimation and
validation data. It is therefore, as with Fig. 3BCDG and the weight-increase scenario, meaningful to
look at predictions for the population in the Topiramate study as well. Such predictions on the
organ/tissue- and cell level were made using the fit of the whole-body model to the weight data from
the Topiramate study. Specifically, two scenarios that were not part of the Topiramate study were
both predicted and compared: 1) an increase in energy intake by 1200 kcal per day for 1 year without
topiramate treatment, and 2) the same increase in energy intake (1200 kcal/day for 1 year) but with
topiramate treatment, 192 mg/day (Fig. 5E). In the first scenario, the weight increases with almost 15
kg (Fig. 5E, solid line), while in the scenario with topiramate, the model predicts a decrease in weight
(Fig. 5E, dashed line), despite the increase in calories. When looking at a meal response at the
organ/tissue level, before and after the predicted year of weight increase or decrease (Fig. 5F), both
the plasma insulin and glucose levels have increased after one year without drug treatment (red solid
lines) compared with before (blue solid lines). After one year of energy-intake increase with
topiramate treatment (purple dashed lines), the plasma insulin and glucose levels have instead
decreased slightly. Similar changes can also be seen in the meal response on the cellular level (Fig.
5G) — PKB308 — p protein levels have increased after 1 year of only increase in energy intake
compared to before, and the same protein level had decreased after one year of topiramate
treatment, while IRS1 — p has decreased after 1 year of energy intake increase only and slightly
decreased after 1 year on topiramate.
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Figure 5. A) Overview of the Topiramate study, in which the patients were treated with three different
dosages of the weight-loss drug topiramate, and instructed to eat on average 600 kcal less per day
and also took different dosages of the weight loss drug Topiramate. The results of the model training
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and validation on topiramate data are shown as purple lines for the best simulation, purple error bars
for the data, and shaded purple areas for model uncertainty, for the B) fit to placebo data, C) fit to
weight data for Topiramate dosages 64 mg/day and 192 mg/day, and D) model validation on
Topiramate dosage 96 mg/day, where the validation data is shown as gray error bars. The first data
point was used to set initial conditions for the corresponding simulations. E) The trained model was
used to make predictions made for two different scenarios not done during the Topiramate study:
increasing the energy intake with 1200 kcal/day for 1 year, without topiramate treatment (solid
purple line) and with 192 mg/day topiramate treatment (dashed purple line). F) Predictions of meal
responses before the predicted diet and topiramate intervention (blue solid line), after 1 year of
energy intake increase without treatment (red solid line) and with treatment (purple dashed line) for
plasma insulin and plasma glucose on the organ/tissue level, and G) IRS1 — p and PKB308 — p
on the cell level.

Outline of possible future clinical usage

Predictions such as the ones made in Fig. 4 and Fig. 5E-G can, among other things, potentially be
used in health care. More specifically, an active version of a digital twin, which has been personalized
using data from one person (Fig. 6A), can be used to simulate and predict different scenarios (Fig.
6B). For example, it is possible simulate how different diets can result in either an increase or
decrease in weight, such as the two scenarios shown in Fig. 6B. Such simulated scenarios can then be
compared with each other, either for pedagogical and motvational purposes or for treatment
evaluation. When used for pedagogical and motivational purposes, the simulations can be used to
increase the understanding of the physiological effects that different lifestyles and/or treatments
have on your physiology over extended periods of time. Such an increased understanding could then
hopefully lead to better motivation to follow a certain lifestyle or treatment intervention. When
using the simulations for treatment evaluation, the scenarios can be compared in order to chose the
lifestyle and/or treatment most suited for the particular person using it, both in terms of outcome
(e.g. which diet results in the most decreased risk of diabetes) and what changes you can and are
willing to do in your life (e.g. which diet with a good enough outcome could you see yourself comply
to). Finally, the multi-time scale and multi-level aspect of the model can potentially be utilized to get
continuous feedback on the chosen lifestyle and/or treatment (Fig. 6C), by zooming in on shorter
time scales (as in Fig. 6C big blue box) and comparing with collected data, or simulating something
else in the digital twin (e.g. the glucose response in plasma following a meal, as in Fig. 6C left and
right small boxes). This feedback can help to evaluate the life style — does this chosen intervention
seem to work for me as predicted?
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Figure 6: A) Personalizing a digital twin using data from one person to train and validate a passive
digital twin, such as the one presented herein, and making the digital twin active. B) Using the digital
twin to predict and compare scenarios with different lifestyles and/or treatments. In this example, the
digital twin is used to predict two scenarios. In scenario 1, the digital twin simulates an increase in
energy intake for 40 years (from 40 to 80 years of age) and a resulting increase in BMI — from


https://doi.org/10.1101/2023.04.20.537480
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.20.537480; this version posted April 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

overweight to obese levels (BMI over 25 and 30 kg/m?, respectively) - and an increase in fasting
plasma glucose — from prediabetic to diabetic levels (fasting glucose above 5.6 and 7 mmol/,
respectively). In Scenario 2, the digital twin simulates a decrease in energy intake with a weight-loss
drug such as topiramate, resulting in a decrease to healthy levels of BMI and fasting plasma glucose.
C) Following the chosen lifestyle and getting continuous feedback by zooming in on 4 weeks of the
predicted fasting plasma glucose (solid line) and comparing with data (blue squares) collected by the
user. Zooming in even more and looking at meal response glucose before and after the 4 weeks, one
can see that the glucose curve is higher before (left box) compared to after (right box), indicating an
improvement in meal response glucose levels as well.
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Discussion

Summary of main findings

Herein, we have presented a first multi-level, multi-timescale, and mechanistic model of the
progression of insulin resistance in humans. The model describes insulin resistance development on
three different biological levels: whole-body composition (Fig. 2A, 3BC, 4A, and 5C), plasma glucose
and insulin (Fig. 2B, 3D, 4B, and 5D), and intracellular adipocyte insulin signaling (Fig. 2C, 3G, 4DE and
5E). The model agrees with the multi-level dataset from the Fast-food study (17,18), both describing
estimation data (Fig. 3B) and correctly predicting independent validation data (Fig. 3CDG). For this
weight-increase study, we predict traditional biomarkers which had not been measured, such as oral
glucose tolerance test and other intracellular signaling intermediaries (Fig. 4). The model also agrees
with whole-body weight-loss data from the Topiramate study (Fig. 5BC) (22). Moreover, for this study,
we use the model to predict changes in a glucose tolerance test and intracellular insulin signaling (Fig.
5DE). Finally, we illustrate how this model potentially can be used to improve health in future eHealth
technologies (Fig. 6).

New strengths and possibilities with our new modular and multi-scale model for insulin resistance

An important strength of this model is that it combines three well-determined and validated models
into an interconnected multi-scale model. Having a multi-scale model is an important strength since
the progression of diabetes in reality is multi-scale, as seen in the data (Fig. 3). Despite this importance,
there existed no previously available multi-scale model that could describe such data. Nevertheless,
there exists models that describe the different levels separately: the Hall model for whole-body weight
describes changes over months and years (3); the Dalla Man model for the meal response describes
the interplay between plasma glucose and insulin (4); and the Brannmark model that describes
intracellular insulin signaling data in adipocytes (6,7). However, these three models had previously not
been connected into a single model, in part because the arguably most central connection between
them — adiposity-driven insulin resistance — had not previously been modelled. Herein, we have for
the first time connected these three well-established models and levels into a multi-scale model, by
introducing a new model for the progression of insulin resistance. This is the first such human, multi-
scale insulin resistance model. The connecting kit, the adiposity-driven insulin resistance model, has
been adopted from a corresponding multi-scale model for mice (11), even though the three
constituent models for the three levels and timescales, come from existing models that were specific
to humans. Moreover, the cell level model has also been adjusted to allow a continuous development
of insulin resistance, by allowing some of the model’s steady states to instead change over time. A final
important aspect of this multi-scale model is that it is modular, meaning that the different subsystems
and organs described in the model can be changed to other models with more or less details (25,26).

Another strength with our new model is that it can describe not only estimation data, but also correctly
predict independent validation data, and can thus also be used to predict non-measured variables. The
model correctly describes estimation data of weight change from both the Fast-food study (Fig. 3B)
and the Topiramate study (Fig. 5C). Furthermore, the model also correctly described independent
validation data from both these studies. For the Fast-food study, the model describes independent
data on changes in fat mass and fat free mass (Fig. 3C), fasting glucose and insulin concentrations (Fig.
3D), and the insulin response of the intracellular signaling metabolites (Fig. 3E). In all these predictions,
the model only changed one parameter: the scale difference between mice and humans in the insulin
resistance model. For the Topiramate study, the model describes independent data for weight change
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using a dosage of topiramate that was not used for fitting, 96 mg/day (Fig. 5D). Because of the success
of these validation tests, we then used the model to make predictions of the gradual changes of some
of the things that were not measured in the original study. For example, we could predict how the
glucose levels and fluxes changes during the studies, as well as how intracellular signaling is changing.
These kinds of predictions are something that the earlier model cannot do, since they require the
interplay between the different layers. These predictions of additional non-measured variables can in
principle be tested by doing new studies where these variables are measured, and this could either
validate the current model even further, or reject the model, and both these outcomes would provide
new mechanistic insights regarding the progression of insulin resistance.

Limitations with our model

The current version of the model has some limitations. One such limitation is that the implementation
of the fat-dependent insulin resistance is a minimal model, using simple relatively expressions.
Specifically, the model lacks relevant details and hypotheses assumed to be involved in insulin
progression. One such mechanistic hypothesis is ectopic fat storage and inflammation in liver and
pancreas (27,28). Inflammation is also often believed to play a role in the adipose tissue itself, as is the
varying cell size distributions of adipocytes (29,30). These things could be included in future, more
detailed versions, of the model. However, all of these are processes that are not covered by the
model’s current level of detail, and among processes currently included, the progression of insulin
resistance is mechanistic, in the sense that it affects the right included mechanisms. For instance, the
EGP-production of glucose from the liver is known to be impacted by insulin resistance, and this impact
is included, even though the underlying mechanisms for this impact are not included. To include such
underlying mechanisms would allow us to simulate a wider array of drugs, including e.g. anti-
inflammatory drugs like cd44-inhibitors (31,32), or drugs that influence the size of adipocytes like
metformin (33). These potential additions could thus be useful for both drug development and
individualized prevention. Apart from this lack of mechanistic detail, the current implementation of
insulin resistance progression is given by a logarithmic expression (Eq. 3-5,10-12). This expression thus
excludes potential transient and/or adjustment processes in the body. Also, the current progression of
insulin resistance has only been validated on a relatively small weight span and population, meaning
that higher or lower weight changes and other time scales might not be accurately represented by the
model.

Another potential limitation with the current model concerns how the interconnection was
introduced. Specifically, the interconnection is top down only — the whole-body level only influences
the organ/tissue level only goes in one direction, that is from the top-level (whole-body) to the lower
level (organ/tissue/cell), and is not reversible. This implementation of the connection means that the
meal response or meal response dynamics does not affect the whole-body composition changes,
which, in reality, it does. A future implementation of the interconnection could describe how short-
term changes in meal response dynamics would lead to short-term changes in ectopic fat storage,
which over time would lead to long-term changes in fat mass, and therefore also overall body weight.
To implement such a two-way interconnection between the levels, the model should represent fat
tissue in greater detail, including e.g., proliferation and death of adipocytes, the effects of differently
sized adipocytes, the amount of fat in each adipocyte, and ectopic fat storage. (29,30,34,35). Other
more realistic interconnections include for example different hunger and fat-mass regulating
hormones (such as leptin, adiponectin, various inflammation mechanisms, intracellular mechanisms
on more organs than fat tissue), as well as the interplay between glucose, proteins, and fat (20,36—39).
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A third potential drawback is that the model is heavily focused on adipose tissue and the adipocytes,
and their involvement in insulin resistance. This adipocentric explanation is one of the most popular
ones for the progression of insulin resistance, but not the only one. Other explanations do exist, such
as various genetic explanations, inflammation in other organs and/or due to ectopic fat storage
(29,29,34,35,40-42). Itis also possible that there are several mechanisms leading to insulin progression
that are true at the same time or for different clusters of people with insulin resistance. There are also
at least some evidence for the existence of a range of different diabetic subtypes (43,44), and that
there are also different possible pathways to diabetes and insulin resistance (9). Ideally, all different
hypotheses should be implemented and compared.

Future applications of our multi-scale model: digital twins, eHealth, and drug development

The multi-scale model presented herein is a so called passive digital twin. A passive digital twin is, in
contrast to an active digital twin, not personalized using individual data, even though it could be. Both
active and passive digital twins can be useful in an eHealth scenario. Passive twins can for example be
used to describe general dynamics of disease progression and be used as a medical pedagogics tool.
For example, when looking at the progression of insulin resistance, the model can show how an
increased energy intake can result in a weight increase, and eventually also to progression towards
insulin resistance and type 2 diabetes. To simulate such illustrations of the effect of daily habits could
both help to convey medical knowledge in a comprehensive way and motivate to making life-style
changes. Active digital twins can also help with medical pedagogics and motivation, but with the
additional benefit of being able to make personalized predictions. Such predictions could potentially
also be used to help motivate patients to adhere to prescribed drugs or to more stringently follow their
prescribed diet and exercise-schemes. Furthermore, mechanistically based, multi-scale models for the
progression of insulin resistance and type 2 diabetes could potentially also be used to evaluate
different care interventions. For example, when using weight loss as a prevention or treatment for
diabetes, a digital twin can be used for comparison of different options - topiramate could be
compared to other interventions, both by comparing the effects on weight loss and other relevant
biomarkers. All of these potential applications of a digital twin could be further increased by connecting
the digital twin with a machine learning risk model-based drug development, and systems
pharmacology, creating a hybrid model. This hybrid model could then be used to calculate a
personalized or general risk for different diseases, like diabetes or cardiovascular diseases, given a
certain scenario simulated by the digital twin. Then, when comparing different weight-loss drugs, their
relative effect on the risk of disease could also be compared (45,46). In conclusion, the multi-scale
model presented herein constitutes the basis for an active or passive digital twin technology that could
be used to aid medical pedagogics and increase motivation and compliance, and can as such aid in
prevention and treatment of insulin resistance.
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