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Abstract 
Aims 

The increased prevalence of insulin resistance is one of the major health risks in society today. Insulin 
resistance involves both short-term dynamics, such as altered meal responses, and long-term 
dynamics, such as development of type 2 diabetes. Insulin resistance also occurs on different 
physiological levels, ranging from disease phenotypes to organ-organ communication and 
intracellular signaling. To better understand the progression of insulin resistance, an analysis method 
is needed that can combine different timescales and physiological levels. One such method is digital 
twins, consisting of combined mechanistic multi-scale and multi-level mathematical models. We have 
previously developed a multi-level model for short-term glucose homeostasis and intracellular insulin 
signaling, and there exists long-term weight regulation models. However, no one has combined these 
kinds of models into an interconnected, multi-level and multi-timescale digital twin model. Herein, 
we present a first such multi-scale digital twin for the progression of insulin resistance in humans.  

Methods 

The model is based on ordinary differential equations representing biochemical and physiological 
processes, in which unknown parameters were fitted to data using a MATLAB toolbox. 

Results 

The connected twin correctly predicts independent data from a weight increase study, both for 
weight-changes, for fasting plasma insulin and glucose levels, as well as for intracellular insulin 
signaling. Similarly, the model can predict independent weight-change data in a weight loss study, 
involving diet and the weight loss drug topiramate. These independent validation tests are confirmed 
by a chi-square test (𝑉𝑉(𝜃𝜃) = 4.8 <  21 = 𝜒𝜒2𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖(12,0.05)). In both these cases, the model can 
also predict non-measured variables, such as activity of intracellular intermediaries, glucose 
tolerance responses, and organ fluxes.  

Conclusions 

We present a first multi-level and multi-timescale model, describing dynamics on the whole-body, 
organ and cellular levels, ranging from minutes to years. This model constitutes the basis for a new 
digital twin technology, which in the future could potentially be used to aid medical pedagogics and 
increase motivation and compliance and thus aid in prevention and treatment of insulin resistance. 
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Introduction 

Insulin resistance is becoming more common, partly due to a general weight increase in the 
population, and it is one of today’s major health problems. Insulin resistance is both a part of, and a 
precursor of, type 2 diabetes. The progression towards these harmful conditions is complex: they 
usually develop over many years, involving both short and long-term changes with dynamics ranging 
from minutes to years. Furthermore, the changes happen on different biological levels: inside cells, 
within and between organs, and on the whole-body level. A widely spread hypothesis for the cause of 
type 2 diabetes is adiposity-driven insulin resistance: an impaired or saturated lipid storage capacity in 
adipose tissue cause ectopic accumulation of lipids on other organs and tissues, for example in muscle 
tissue and liver. This lipid accumulation is associated with decreased insulin sensitivity in insulin's 
target tissues. This decreased insulin sensitivity is initially compensated for by increased insulin 
secretion, but over time leads to pancreatic failure. The resulting reduction in insulin secretion leads 
to the onset of type 2 diabetes (1). It is therefore clear that the progression of insulin resistance is a 
complex, multi-level, multi-timescale process. 

Some of the processes and risk factors for insulin resistance, such as your genetic risk and age, are not 
controllable. Still, both insulin resistance and type 2 diabetes are preventable, manageable, and 
possibly even treatable. Regarding prevention, maintaining a low weight is viewed as one of the most 
important strategies. Regarding treatment, it has recently been shown that weight reduction is 
sometimes able to reverse type 2 diabetes (2). For some individuals, weight reduction might be more 
difficult for a variety of reasons, and in these cases, a weight reducing drug might be valuable. The 
choice of drug for prevention, management, and/or treatment is complex due to the inherent 
heterogeneity in type 2 diabetes in different individuals, and due to the varying effects of different 
drugs and diet/exercise regimes. This complexity in treatment choices, as well as the multi-scale 
complexity in disease mechanisms, points to a need for a more comprehensive understanding of 
insulin resistance, both on a general and an individual level. One method for achieving, testing, and 
visualizing such a comprehensive understanding is to represent this understanding using mathematical 
models and digital twins. 

Digital twins and mechanistic modelling have been used extensively to study different individual 
aspects of the insulin resistance and type 2 diabetes, on both whole-body, organ or tissue, and cellular 
level. For whole-body weight regulation, there exists models that describe body composition as a 
response to energy intake, such as the one developed by Hall et al (3). For the organ and tissue level, 
meal response models such as that developed by Dalla Man et al. are relevant, and have even been 
approved by the US Food and Drug Administration (FDA) for certain applications (4,5). On the cellular 
level, there exists models that describe e.g. pancreas, liver, and adipocytes (6–8). There also exist some 
models that combine these different levels in comprehensive model that can explain both short- and 
long-term dynamics. Such multi-level models include the longitudinal model developed by Ha et al. (9), 
that describes two different progressions towards type 2 diabetes. Another model, developed 
by Uluseker et al. (10), combines the Dalla Man model with an adipocyte model. We have also 
developed such a multi-level model, combining an adipocyte model for intracellular insulin signaling 
with the Dalla Man model for organ-organ communication in glucose homeostasis (4). However, to the 
best of our knowledge there exists no multi-level and multi-timescale model that can describe data for 
all three levels, and that can describe the progression into diabetes in a mechanistic manner. 

Herein, we present a first multi-level, multi-timescale, and mechanistic mathematical model that also 
can describe the progression to diabetes in a semi-mechanistic manner (Fig. 1B). The model uses a new 
adiposity-driven insulin resistance model to connect the three different physiological levels and 
timescales: long-term whole-body weight composition over months and years; short-term meal-
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responses of glucose and insulin over a few hours, and fast dynamics of adipocyte intracellular insulin 
signaling over seconds and minutes. We develop and test the model using data from two scenarios: i) 
the progression towards insulin resistance due to weight gain, where the model correctly predicts data 
for fasting glucose and insulin levels, as well as intracellular insulin signaling in adipocytes (Fig. 1C), and 
ii) a weight loss scenario, where the model can describe data for both weight-loss due to decreased 
energy intake alone, and due to additional drug usage (Fig. 1D). We also use the model to make 
predictions regarding relevant biomarkers for type 2 diabetes not measured in the above studies, 
showcasing how the model can be used to unravel more processes than those directly measured. 
Future iterations of the model could potentially be used to evaluate different health scenarios, e.g., 
different diets and medications, and as such aid in the prevention and treatment of insulin resistance. 
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Figure 1. A) The different physiological effects of insulin resistance on glucose homeostasis. B) 
Schematic overview of the multi-level and multi-scale model structure, connecting multiple body 
levels and timescales. The new reactions (solid lines) include a connection from the Body composition 
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model on the whole-body level to the Meal response model on the organ/tissue level, and the 
intracellular level, as well as arrows to and from the new insulin resistance model. Reactions in 
previously published models are shown as dashed lines. C) Schematic overview of the analyses made 
herein, involving two different studies: a weight gain study – the Fast-food study – that was 
conducted during 12 weeks, and a weight decrease study on the drug topiramate – the Topiramate 
study. Fast-food study: on the whole-body level, the model was trained on weight data as well as fat 
mass and fat-free mass data, and validated on fat mass and fat free mass, as shown in detail in Fig. 
3BC and Fig. 3C respectively. A prediction of further weight increase was also made, shown in Fig. 4A. 
On the organ/tissue level, the model was validated on fasting insulin data, shown in Fig. 3D, and 
predictions were made of meal response insulin, glucose, and glucose uptake in fat and muscle tissue 
before and after the diet, as shown in Fig. 4B. D) Topiramate study: on the whole-body level, the 
model was trained and validated on weight data for placebo and 3 different dosages of Topiramate. 
The model was then used to predict two other scenarios not explored in the study – an increase in 
energy intake with and without medication – as well as meal responses before and after these 
scenarios, on both organ/tissue and cell level. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.20.537480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537480
http://creativecommons.org/licenses/by/4.0/


Method 
 
Model equations 

The models are built up by standard form ordinary differential equations (ODEs). All of equations are 
given in the supplementary material, both as equations and as simulation files. Below we only 
describe the equations that were added to the multi-level model in this article, specifically those of 
the insulin resistance model, the weight-meal response interconnection, the phenomenological 
energy intake, and the drug response model for topiramate. 

 

Insulin resistance on organ/tissue level 

The insulin resistance part of the model is inspired by the similar insulin resistance equations 
implemented for mice in (11). The equations used herein are: 

𝑥𝑥𝑥𝑥 =  
𝐹𝐹
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑥𝑥𝑥𝑥 =  
𝐿𝐿

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  1 +  𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼  ∙  log (𝑥𝑥𝑥𝑥)  ∙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑓𝑓𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸  =  1 +  𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸  ∙ log(𝑥𝑥𝑥𝑥) ∙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑓𝑓𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  1 +  𝑏𝑏𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺  ∙  log (𝑥𝑥𝑥𝑥)  ∙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

where 𝑥𝑥𝑥𝑥 is the relative change in fat mass from initial fat mass 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐹𝐹 is the current fat mass, 𝑥𝑥𝑥𝑥 is 
the relative change in lean tissue mass from initial lean tissue mass 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐿𝐿 is the current lean tissue 
mass, 𝑓𝑓𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the insulin resistance effect on hepatic and muscle glucose uptake, 𝑓𝑓𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸 is the 
insulin resistance effect on endogenous glucose production, 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  is the insulin resistance effect on 
insulin secretion, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 scales all the insulin resistance effects from mice to humans, and 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸, 
𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼 are parameters.  

The effect of the insulin resistance on insulin secretion is described by 

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝐼𝐼𝑝𝑝𝑝𝑝� =  ��−𝛾𝛾 ∙ 𝐼𝐼𝑝𝑝𝑝𝑝� + 𝑆𝑆𝑝𝑝𝑝𝑝� ∙ 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∙ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

where 𝐼𝐼𝑝𝑝𝑝𝑝 is the amount of insulin in the portal vein, 𝛾𝛾 is the transfer rate constant between portal 
vein and liver, 𝑆𝑆𝑝𝑝𝑝𝑝 is the insulin secretion into the portal vein, 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the insulin resistance effect on 
insulin secretion, and 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a parameter for time conversion between the body composition 
model, defined in the time units days, and the other models, defined in minutes. Note that this is 
different from the previously reported mouse model, where the insulin resistance effect is directly on 
𝑆𝑆𝑝𝑝𝑝𝑝. One of the reasons for this difference is that insulin in the portal vein, 𝐼𝐼𝑝𝑝𝑝𝑝,  is not explicitly 
modelled in the mouse model.  

The effect of insulin resistance on endogenous glucose production, 𝐸𝐸𝐸𝐸𝐸𝐸, is described by 

𝐸𝐸𝐸𝐸𝐸𝐸 =  (𝑘𝑘𝑝𝑝1  − (𝑘𝑘𝑝𝑝2 ∙ 𝐺𝐺𝑝𝑝 + 𝑘𝑘𝑝𝑝3 ∙ 𝐼𝐼𝑑𝑑 + 𝑘𝑘𝑝𝑝4 ∙ 𝐼𝐼𝑝𝑝𝑝𝑝))  ∙ 𝑓𝑓𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸  [7] 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.20.537480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537480
http://creativecommons.org/licenses/by/4.0/


where 𝑘𝑘𝑝𝑝1 is the extrapolated 𝐸𝐸𝐸𝐸𝐸𝐸 at zero glucose and insulin, 𝑘𝑘𝑝𝑝2 is liver glucose effectiveness, 𝑘𝑘𝑝𝑝3 
governs the amplitude of insulin action on the liver, 𝐼𝐼𝑑𝑑 is a delayed insulin signal, 𝑘𝑘𝑝𝑝4 governs the 
amplitude of portal insulin action on the liver. 

The effect of insulin resistance on glucose utilization in the liver, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, and muscle tissue, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, is 
affected by insulin resistance as follows: 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙

𝐺𝐺𝑡𝑡
(𝐾𝐾𝑙𝑙 + 𝐺𝐺𝑡𝑡)

𝑓𝑓𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
  

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥 ∙
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙

𝐺𝐺𝑡𝑡
(𝐾𝐾𝑚𝑚 + 𝐺𝐺𝑡𝑡)

𝑓𝑓𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
  

where 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the maximum rate of glucose utilization in the liver, 𝐺𝐺𝑡𝑡 is the glucose in tissue, 𝐾𝐾𝑙𝑙 is a 
Michaelis-Menten parameter, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum rate of glucose utilization in muscle, and 𝐾𝐾𝑚𝑚 is 
a Michaelis-Menten parameter. In our model, insulin resistance does not directly influence the 
glucose utilization in fat tissue, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, since it has been observed in diabetics that glucose uptake is 
significantly changed in muscle and liver but not in fat tissue. (12,13). 

 

Insulin resistance on cell level 

The insulin resistance on the cell level is implemented as a gradual transition between the different 
parameter sets for non-diabetics and diabetics from the previous version of the model. The effect of 
diabetes was, as in the previous model, implemented on three different places in the model: 𝐼𝐼𝐼𝐼, 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The diabetes effect on 𝐼𝐼𝐼𝐼 decreases the total amount of 𝐼𝐼𝐼𝐼, and with less 
insulin receptors, less insulin can bind to the cell, i.e. the cell is less sensitive to insulin. The diabetes 
effect on 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 decreases the amount of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, which means that less 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, can be taken up 
by the cell. The parameter named 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 reduces the positive feedback from 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 to 𝐼𝐼𝐼𝐼𝐼𝐼1 
(Fig. 3E). All these diabetes effects results in an increase in insulin sensitivity and a decrease in 
glucose uptake in the model. The gradual transition of these diabetes effects was, as with previous 
insulin resistance equations, dependent on the change in fat mass as follows: 

𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  =  1 −  𝑏𝑏𝐼𝐼𝐼𝐼 ∙ log(𝑥𝑥𝑥𝑥)      

𝑓𝑓𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 =  1 −  𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 ∙  log (𝑥𝑥𝑥𝑥)   

𝑓𝑓𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  1 −  𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙  log (𝑥𝑥𝑥𝑥)  

where 𝑏𝑏𝐼𝐼𝐼𝐼, 𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are parameters. 

As mentioned, the diabetes effect was static in the previous model – the model could either be 
diabetic, non-diabetic, but could not transition from one to the other. A transition between non-
diabetic and diabetic version of the model was not possible since the total amount of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 
could not change. To make the gradual transition to diabetes possible, equations that could change 
the total amount of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 was therefore added. Specifically, degradation and protein 
expression of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 was added (Fig. 4C). The protein expressions of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 are then 
influenced by the insulin resistance functions 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑓𝑓𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  to achieve the gradual decrease of 
𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 that is part of the gradual transition to diabetes (Eq. 15 and 19). For 𝐼𝐼𝐼𝐼, the following 
equations were changed: 

[8] 

 

[9] 

[10] 

[11] 

[12] 
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𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐼𝐼𝐼𝐼𝐼𝐼) =  −𝑣𝑣1𝑎𝑎 − 𝑣𝑣1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑣𝑣1𝑔𝑔 + 𝑣𝑣1𝑟𝑟 + 𝑣𝑣𝑣𝑣𝑣𝑣   

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐼𝐼𝐼𝐼𝐼𝐼) =  𝑣𝑣1𝑒𝑒 − 𝑣𝑣1𝑟𝑟 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

where 𝐼𝐼𝐼𝐼𝐼𝐼 is the insulin receptors (𝐼𝐼𝐼𝐼) found in the cell membrane, 𝑣𝑣1𝑎𝑎, 𝑣𝑣1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑣𝑣1𝑔𝑔, and 𝑣𝑣1𝑟𝑟 
are the unchanged reaction rates describing the transition of 𝐼𝐼𝐼𝐼𝐼𝐼 to and from other 𝐼𝐼𝐼𝐼-forms (see 
the supplementary material and (7)), and 𝑣𝑣𝑣𝑣𝑣𝑣 is the new reaction rate describing the protein 
expression of 𝐼𝐼𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼 is the internalized form of 𝐼𝐼𝐼𝐼, 𝑣𝑣1𝑒𝑒 and 𝑣𝑣1𝑟𝑟 are the unchanged reaction rates 
describing the transition of 𝐼𝐼𝐼𝐼𝐼𝐼 to and from other 𝐼𝐼𝐼𝐼-forms (see the supplementary material and (7)), 
𝑣𝑣𝑣𝑣𝑣𝑣 is the new reaction rate describing the protein expression of 𝐼𝐼𝐼𝐼𝐼𝐼, and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔 is the new 
reaction rate describing the degradation of 𝐼𝐼𝐼𝐼𝐼𝐼. The reaction rates 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑣𝑣𝑣𝑣𝑣𝑣 are defined as: 

𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑘𝑘𝑘𝑘 ∙  𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼 

 

where 𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are parameters. For 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, the following equations where changed: 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚) =  𝑣𝑣7𝑓𝑓 − 𝑣𝑣7𝑏𝑏 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣   

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4) =  −𝑣𝑣7𝑓𝑓 + 𝑣𝑣7𝑏𝑏 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 are the two forms of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, the first associated with the cellular 
membrane and the other inside the cell cytosol, 𝑣𝑣7𝑓𝑓 and 𝑣𝑣7𝑏𝑏 are the unchanged reaction rates 
describing the transition between 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the new reaction describing 
the degradation of 𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿4𝑚𝑚, and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the new reaction rate describing the protein expression 
of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4. 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ∙  𝑓𝑓𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4  

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ∙  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚 

 

where 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are parameters. The membrane form, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚, then effects the 
inflow of glucose to the cell, which is upscaled to 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 as described in (14). 

The now gradual adiposity driven effect of insulin resistance on the positive feedback from 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 
to 𝐼𝐼𝐼𝐼𝐼𝐼1, 𝑣𝑣2𝑐𝑐, was applied in the same way as the parameter 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was in the previous model:  

 

𝑣𝑣2𝑐𝑐 =  𝐼𝐼𝐼𝐼𝐼𝐼1𝑝𝑝 ∙  𝑘𝑘2𝑐𝑐 ∙  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1𝑎𝑎 ∙  𝑓𝑓𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 

where 𝐼𝐼𝐼𝐼𝐼𝐼1𝑝𝑝 is the amount of phosphorylated form of 𝐼𝐼𝐼𝐼𝐼𝐼1, 𝑘𝑘2𝑐𝑐 is a parameter, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1𝑎𝑎 is the amount of 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1𝑎𝑎. 
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Weight-meal response interconnection 

As shown in Equation 9, the change in lean tissue mass, 𝑥𝑥𝑥𝑥, has a direct effect on the glucose 
utilization in muscle tissue. This effect is a part of the connection between the whole-body weight 
model and the meal response model. The glucose utilization in fat tissue, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, is also affected by the 
weight model, specifically by the change in fat mass: 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥 ∙  𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∙  �
𝐺𝐺𝑡𝑡

𝐾𝐾𝑓𝑓 + 𝐺𝐺𝑡𝑡
� 

where, similarly to the utilization in the other tissues, 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the maximum rate of glucose 
utilization in muscle, and 𝐾𝐾𝑓𝑓 is a Michaelis-Menten parameter. 

Equations 9 and 22 also show the connection between the whole-body and the organ/tissue level: 
the glucose uptake in muscle and fat tissue changes with the change in lean and fat mass 
respectively. Furthermore, the glucose rate of appearance, 𝑅𝑅𝑅𝑅, changes with the total body weight 
(𝐵𝐵𝐵𝐵): 

𝑅𝑅𝑅𝑅 =  𝑓𝑓 ∙ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 ∙
𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔
𝐵𝐵𝐵𝐵

   

where 𝑓𝑓 is the fraction of intestinal glucose absorption which appears in plasma, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 is the 
absorption rate,  𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔 is the glucose content in the gut, and 𝐵𝐵𝐵𝐵 is the body weight. In the earlier 
model, 𝐵𝐵𝐵𝐵 was a constant, while here it is a variable in the whole-body level as described in (3). 

To merge the different models, a parameter 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 24 ∙ 60 was introduced to the models 
corresponding to time expressed in minutes, i.e., the organ/tissue level model and the cell model, to 
change the unit for time into days.  

 

Phenomenological energy intake 

We added an equation for accounting for differences in energy intake throughout the study period: 

 

 

 

where 𝐸𝐸𝐼𝐼𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) is the energy intake over time, 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the energy intake at baseline, ∆𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 
is the maximum change in energy intake, here fixed at the change in energy intake that the 
participants were asked to follow, ∆𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 is the change in energy intake at steady state, 𝑡𝑡 is the time, 
ℎ1 is the hill coefficient, and 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is the timepoint where half of 𝐸𝐸𝐼𝐼𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) has been reached. 

 

Drug response model for topiramate   

The energy intake was also altered with respect to the drug topiramate according to 

 

𝐸𝐸𝐸𝐸(𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ �1− 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙
𝐶𝐶ℎ2

𝐶𝐶ℎ2 + 𝐼𝐼𝐼𝐼50ℎ2
� 

[22] 

[23] 

𝐸𝐸𝐼𝐼𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − ∆𝐸𝐸𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + (∆𝐸𝐸𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝐸𝐸𝐼𝐼𝑠𝑠𝑠𝑠) ∙
𝑡𝑡ℎ1

𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎ℎ1 + 𝑡𝑡ℎ1
 [24] 
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where 𝐸𝐸𝐸𝐸(𝑡𝑡) is the energy intake that influenced by topiramate, ℎ2, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐼𝐼𝐼𝐼50ℎ  are parameters, 
and 𝐶𝐶 is the concentration of topiramate in plasma. To get 𝐶𝐶, we adopted the standard two-
compartment pharmacokinetic model with first-order absorption from (15) 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐴𝐴)  =  −𝐾𝐾𝐾𝐾 ∙ 𝐴𝐴 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐶𝐶) =  𝐾𝐾𝐾𝐾 ∙  
𝐴𝐴
𝑉𝑉
− 𝐾𝐾23 ∙  𝐶𝐶 + 𝐾𝐾23 ∙  𝐶𝐶2 −𝐾𝐾10 ∙  𝐶𝐶  

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐶𝐶2) =  𝐾𝐾32 ∙  𝐶𝐶 − 𝐾𝐾32 ∙  𝐶𝐶2 

where 𝐴𝐴 is the absorption compartment, into which the daily dosages of topiramate are 
administered, 𝐾𝐾𝐾𝐾, 𝑉𝑉, 𝐾𝐾23, 𝐾𝐾10, and 𝐾𝐾32 are parameters, and 𝐶𝐶2 is the topiramate concentration in 
tissue.  

 

Parameter Estimation 

Almost all of the 146 parameters in this multi-scale model were fixed at their values obtained from 
previous studies. The parameters estimated in this article are one scaling parameter of the insulin 
resistance model, the scaling parameter of the diabetes effects in the cell-level model, the new 
parameters in the cell-level model, those parameters corresponding to the phenomenological energy 
intake equation, and finally the parameters of the meal response model. The different parameters 
are estimated using different data and in different ways.  

Most parameters were optimized using an optimization algorithm. Specifically, the parameters were 
estimated by minimizing the difference between model simulations, denoted ŷ(𝜃𝜃), and experimental 
data, denoted 𝑦𝑦. The cost function used is the conventional weight least square, i.e., 

V(𝜃𝜃) = �(
𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖 − 𝒚𝒚�𝒊𝒊
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡)

)2     

where the subscript 𝑖𝑖 denotes the data point, where 𝑁𝑁 denotes the number of data points, and 
where 𝑆𝑆𝑆𝑆𝑆𝑆 denotes the standard error of the mean for the data uncertainty (15). In practice, this 
parameter estimation was accomplished using the enhanced scatter search (eSS) algorithm from the 
MEIGO toolbox (16). The optimization was restarted multiple times, run in parallel at the local node 
of the Swedish national supercomputing center (NSC). The parameter estimation was allowed to 
freely find the best possible combinations of parameter values within boundaries. 

We use a 𝜒𝜒2-test to evaluate the agreement between model simulations and data. To be more 
specific, we use the inverse of the cumulative 𝜒𝜒2-distribution function for setting a threshold,  𝑇𝑇𝜒𝜒2

0 , 
and then compare the cost function 𝑉𝑉(𝜃𝜃) with this threshold: 

 𝑇𝑇𝜒𝜒2
0 =  Ϝ𝜒𝜒2

𝑐𝑐𝑐𝑐𝑐𝑐−𝑖𝑖𝑖𝑖𝑖𝑖(1− 𝛼𝛼, 𝑣𝑣) 

where Ϝ𝜒𝜒2
𝑐𝑐𝑐𝑐𝑐𝑐−𝑖𝑖𝑖𝑖𝑖𝑖 us the inverse density function, 𝛼𝛼 is the significance level, and 𝑣𝑣 is the degrees of 

freedom, which was the same as the number of data points in the training data sets. The model is 
then rejected if the model cost is larger than 𝑇𝑇𝜒𝜒2

0 . 
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The parameters that were not estimated using an algorithm were estimated manually due to 
simplicity, but the fit to data was assessed in the same way as for the optimization algorithm, i.e. 
with a 𝜒𝜒2-test (Eq. 30). Note that apart from these explicitly mentioned parameters, all other 
parameters were optimized using an optimization algorithm (Eq. 29). 

The scaling parameter of the insulin resistance model, which accounts for the scale difference in fat 
tissue between mice and humans, was estimated by hand. The data used for this manual fitting was 
the fasting insulin data from the Fast-food study (17,18) (Fig. 3D).  

The scaling of the three diabetes effects - 𝐼𝐼𝐼𝐼, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 - were adjusted by hand to fit to 
the level of diabetes seen in the cellular data from the Fast-food study (Fig. 3G). The three diabetes 
effects have their own range of diabetic to non-diabetic values (Fig. 3EF) – 55-100 for 𝐼𝐼𝐼𝐼, 50-100 for 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 15.5-100 for 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. These ranges of diabetes effects where then scaled using one 
scaling parameter, scaling them towards a percentage of diabetes that corresponded to an 
acceptable fit to the cellular data after the fast-food diet.  

The parameters added to the cell model to enable a gradual change due to insulin resistance, 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (Eq. 13-20), where also adjusted manually. These parameters 
were adjusted so that the initial values of total 𝐼𝐼𝐼𝐼 and total 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 had a steady state at 100%.  

The last parameters to be adjusted manually where the parameters of the insulin resistance 
equations (Eq. 10-12), 𝑏𝑏𝐼𝐼𝐼𝐼, 𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. These parameters were adjusted so that the initial 
values of total 𝐼𝐼𝐼𝐼 and total 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 reached the scaled values from the estimation to cellular data 
within the time span of the Fast-food study (Fig. 4D). 

Two sets of parameters were adjusted using an optimization algorithm: the energy intake 
parameters and the meal response parameters. The parameters relating to the energy-intake 
equation were estimated using data from the Topiramate study. This estimation data consists of 
body-weight time-course data, which is denoted 𝐵𝐵𝐵𝐵. The meal-response parameters were 
estimated using the baseline values of fasting plasma insulin and glucose from the Fast-food study, 
and were only changed when used in the training and predictions relating to the Fast-food study (i.e., 
the training and prediction related to the Topiramate study used the parameters from the original 
article (4)). These parameters were kept within tight bounds (a factor of 1) of the parameter values 
from the original model (4). 

For detailed description of all parameters, see the supplementary material. All other parameters 
were fixed and set to values used in Nyman et al. (2011), and these values are listed in the 
supplementary material. We exploited the modular structure of the model by fitting the weight 
model on its own. In the final simulation with the multi-level model, all aspects of the model are 
simulated at the same time. 

 

Model simulation 

We exploited the unidirectional structure of the multi-level model to only simulate those parts of the 
model that are needed. In other words, the whole-body part of the model is not impacted by other 
parts of the model and could therefore be simulated on its own, for instance when estimating the 
parameters in that part of the model to only the weight data. In contrast, the entire multi-level 
model was simulated for the tissue- and cell-levels. 

The initial values used in the simulations can be found in the supplementary material. 
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Uncertainty estimation 

The uncertainty of both the parameters and the model simulations for estimation, validation, and 
predictions were gathered as proposed in (19) and as implemented in (20). In short, the desired 
property (i.e., the fasting plasma glucose and insulin levels in the Fast-food study (Fig. 3) and the 
weight data in the Topiramate study (Fig. 4)) were either maximized or minimized, while requiring 
the cost to be below the 𝜒𝜒2-threshold. See (20) for more details on how the uncertainty estimation 
was done. 

 

Model and data availability 

We used MATLAB R2020b (MathWorks, Natick, MA) and the IQM toolbox (IntiQuan GmbH, Basel, 
Switzerland) for the entire modelling work performed (21).  

No new experimental data were collected in this study. We therefore refer to the methods sections 
in the original articles (17,18,22–24) for the corresponding details experimental methods. 
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Results 
 

Mechanistic, multi-level, and multi-timescale model 

The multi-level model (Fig. 2) is comprised of three interconnected models, previously published on 
their own, plus a new insulin resistance model adopted from rodents (11). Firstly, the whole-body 
model describes changes on body-composition (3), which produces input to the new sub-model for 
the progression of insulin resistance. Secondly, the tissue-level model describes the meal response of 
plasma glucose, organ-specific glucose uptake, and insulin regulation (4). Thirdly, the cellular level 
describes intracellular insulin signaling in adipocytes (6). The whole-body model has previously been 
trained and validated on weight-change data (3), and the interconnected tissue-level and cell-level 
model was previously trained and validated on meal-response data and intracellular insulin-signaling 
data from human adipocytes (6). The insulin resistance model (Fig. 2A, green box) is, as in (11), driven 
by adiposity, specifically the relative increase in fat mass from baseline ( 𝐹𝐹

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
). The insulin resistance 

affects the tissue-level model in three ways: 1) it decreases glucose utilization in muscle and liver 
tissue (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖) (Eq. 5), 2) it increases endogenous glucose production (𝐸𝐸𝐸𝐸𝐸𝐸) (Eq. 4), and 3) it 
increases insulin secretion (𝐼𝐼𝑝𝑝𝑝𝑝) (Eq 3). The insulin resistance model also influences the cell-level 
model in three ways: by decreasing the protein expression of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and reducing a positive 
feedback from 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 to 𝐼𝐼𝐼𝐼𝐼𝐼1. The connection between the whole-body model and the tissue-
level model is top-down, and comprises three parts: 1) muscle uptake (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖) is dependent on muscle 
mass, 2) adipose tissue uptake (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖) is dependent on fat free mass, and 3) rate of appearance of 
glucose (𝑅𝑅𝑅𝑅) is dependent on total body weight (𝐵𝐵𝐵𝐵). All model equations and parameter values can 
be found in the Supplement. 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.20.537480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537480
http://creativecommons.org/licenses/by/4.0/


 

Figure 2. Detailed overview of the entire multi-level and multi-timescale model structure on the 
different levels. New reactions, added in this paper, are represented by solid lines, any color, while old 
reactions are represented with dashed lines. A) Whole-body level. The body composition model takes 
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change in energy intake as input, i.e., the difference in energy intake (𝐸𝐸𝐸𝐸) and energy expenditure 
(𝐸𝐸𝐸𝐸). This difference translates to the outputs: changes in the masses of fat (𝐹𝐹), lean tissue (𝐿𝐿), and 
glycogen (𝐺𝐺𝐺𝐺𝐺𝐺). The total sum of these masses is the body weight (𝐵𝐵𝐵𝐵). The insulin resistance model 
(green box) takes the change in fat mass (𝑥𝑥𝑥𝑥) as input. B) The following factors influence the glucose 
concentration on the tissue/organ level: the insulin resistance, 𝑥𝑥𝑥𝑥, the change in lean tissue (𝑥𝑥𝑥𝑥), and 
𝐵𝐵𝐵𝐵. More specifically, insulin resistance (green short arrows) increases endogenous glucose 
production (𝐸𝐸𝐸𝐸𝐸𝐸) and insulin secretion (𝐼𝐼𝐼𝐼𝐼𝐼), and decreases glucose uptake in both muscle (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖) 
and liver tissue (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖). Furthermore, 𝑥𝑥𝑥𝑥 increases 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥 increases glucose uptake in fat tissue 
(𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖), and 𝐵𝐵𝐵𝐵 increases the rate of appearance of glucose (𝑅𝑅𝑅𝑅). C) Finally, the amount of insulin in 
fat tissue translates to insulin input on the cell level. More specifically, insulin binds to the insulin 
receptor (𝐼𝐼𝐼𝐼), causing a signaling cascade that ultimately results in glucose transporter 4 (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4) 
being translocated to the plasma membrane to facilitate glucose transport. The new reactions on the 
cell level are the protein expressions of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (black arrows going to), the effect of insulin 
resistance on the protein expression of 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (green arrows), as well as the degradation of 
𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (black arrows going out). These new reactions enable a gradual decrease in 𝐼𝐼𝐼𝐼 and 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, moving the cell towards diabetes. 

 

The model explains total weight change data and can correctly predicts data on all three levels in 
the Fast-food study 

The whole-body model was trained on total body weight data, describing change in total body weight, 
obtained from a weight-increase study (23). In this study, the participants were told to increase their 
energy intake by around 3480 kcal per day by eating at least two extra meals of fast-food, and by 
decreasing their physical activity for four weeks (Fig. 3A). The model agrees well with the total body 
weight data, used for training the model (Fig. 3B). The model can also predict the increase in fat and 
fat free mass on the whole-body level (Fig. 3C). The interconnection between the whole-body and the 
tissue-level model was tested by comparing simulations from the entire multi-level model with tissue- 
and cell-level data from the weight-increase study (Fig. 3D-E). As can be seen in Fig. 3D, the 
experimental data for fasting insulin lies within the predicted bounds (light yellow area). The solid 
purple line shows the simulation with the lowest cost from the training to the weight data. Only one 
scaling parameter was adjusted to the data in Fig. 3D. 

The prediction of the cell-level insulin response data for the intracellular metabolites 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝 and 
𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑝𝑝 was scaled using two parameters to switch the three diabetes parameters (Fig. 3EF) in the 
model to 22% towards diabetes. As shown in Fig. 3G, this prediction also looks good, and is 
supported by a χ2 test, (𝑉𝑉(𝜃𝜃) = 19.3 <  21 = 𝜒𝜒2𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖(12,0.05)) for 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝 and (𝑉𝑉(𝜃𝜃) =
19.9 <  21 = 𝜒𝜒2𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖(12,0.05)) for 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑝𝑝.  
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Figure 3. Results of model training and validation on Fast-food study data A). Comparison between 
model uncertainty (light purple area) for the best model simulation (the dark purple line) with the 
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training data (purple error bars) or validation data (grey error bars). On the whole-body level, data 
for B) weight and C) fat mass (𝐹𝐹𝐹𝐹) and fat free mass (𝐹𝐹𝐹𝐹𝐹𝐹) was used for training and validation. On 
the tissue/organ level, data for D) glucose and insulin was used for training and validation. E) The 
diabetes effects on the cell level model – decrease in 𝐼𝐼𝐼𝐼, decrease in 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
representing an attenuation of. F) Scaling of the three diabetes parameters (with the chosen values 
indicated with triangles) and the resulting behavior of the simulation curves as dose responses to 
insulin, to match the fit to data in G). Data and simulations of the dose responses of phosphorylated 
𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃308 − 𝑝𝑝 and phosphorylated 𝐼𝐼𝐼𝐼𝐼𝐼1, 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝 in response to the indicated concentrations 
of insulin for 10 min and normalized 0–100%. The predicted simulation before the Fast-food diet (blue 
solid line) use the non-diabetic parameters from (7) as they were, which gave a good agreement with 
data (blue error bars with circles). The three diabetes parameters were scaled to get the predicted 
simulation after the diet (purple dashed line) to fit to the corresponding data (purple error bars with 
squares). 

 

The multi-level model can predict whole-body-, tissue- and cell-level data based on weight increase 
data 

All the simulations lie close to experimental data, as in Fig. 3B-D, G, meaning that the model can both 
explain training data and correctly predict independent validation data. It is therefore meaningful to 
look at predictions of other non-measured variables. The trained and validated model was therefore 
used to predict a continuation of the Fast-food diet for an additional 8 weeks, resulting in a continued 
weight increase (Fig. 4A left). During these additional weeks, the fasting plasma glucose and insulin 
levels reached prediabetic levels (Fig. 4A middle and right). The meal response of plasma and glucose 
also increased, while the glucose uptake in muscle and fat tissue decreased and increased respectively 
(Fig. 4B). The predictions of total 𝐼𝐼𝐼𝐼𝐼𝐼1 and 𝑃𝑃𝑃𝑃𝑃𝑃 expression at the cellular level got closer to the 
diabetic levels (Fig. 4D).  
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Figure 4. A) Model simulation of weight, fasting plasma glucose and insulin for a predicted 
continuation of the Fast-food diet for an additional 8 weeks. Prediabetic levels is shown as purple 
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dotted line. Two meals are simulated during the period, before and the predicted 12 weeks (blue and 
red pizza icons respectively). B) Meal response simulations before (blue solid line) and after (red 
dashed line) the predicted 12-week Fast-food diet for plasma insulin, plasma glucose, and glucose 
uptake in muscle and fat tissue. C) The updates made to the cell level of the model and insulin 
resistance (green box). The added reactions include a protein expression 𝐼𝐼𝐼𝐼𝐼𝐼, degradation of 𝐼𝐼𝐼𝐼𝐼𝐼, 
protein expression of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4, and degradation of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4𝑚𝑚. The insulin resistance influences the 
protein expression of 𝐼𝐼𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (green arrows). These updates enable the gradual change in 
total 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 due to increased insulin resistance seen in D). After the 4 weeks of the Fast-food 
study, the total 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (solid purple) have reached the values estimated from data in Fig. 
3FG. After the additional 8 weeks, total 𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (dashed purple) have gone down further 
towards but not completely reached the diabetic value (dotted red line). E) Cell response to the 
simulated meals before (blue solid line) and after the 12 weeks (red dashed line), specifically the 
response of 𝑃𝑃𝑃𝑃𝑃𝑃308 − 𝑝𝑝 and 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝. 

 

The model describes and predicts weight changes from Topiramate study 

The model was further validated on a weight-decrease study with the drug topiramate (22). The 
model was trained on two doses of topiramate - 64 and 192 mg/day - and then validated on a third 
dosage - 96 mg/dl. The model training passes a χ2 test (𝑉𝑉(𝜃𝜃) = 3.0 < 36 = 𝜒𝜒2𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖(24,0.05)). As 
shown in Fig.  5, the validation lies within the predicted bounds, and it also passes a χ2 test (𝑉𝑉(𝜃𝜃) =
4.8 < 21 = 𝜒𝜒2𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑖𝑖(12,0.05)).   

 

The multi-level model can predict tissue- and cell-level data based on weight decrease 

As shown in Fig. 5BCD, the simulations describe accurately both experimental estimation and 
validation data. It is therefore, as with Fig. 3BCDG and the weight-increase scenario, meaningful to 
look at predictions for the population in the Topiramate study as well. Such predictions on the 
organ/tissue- and cell level were made using the fit of the whole-body model to the weight data from 
the Topiramate study. Specifically, two scenarios that were not part of the Topiramate study were 
both predicted and compared: 1) an increase in energy intake by 1200 kcal per day for 1 year without 
topiramate treatment, and 2) the same increase in energy intake (1200 kcal/day for 1 year) but with 
topiramate treatment, 192 mg/day (Fig. 5E). In the first scenario, the weight increases with almost 15 
kg (Fig. 5E, solid line), while in the scenario with topiramate, the model predicts a decrease in weight 
(Fig. 5E, dashed line), despite the increase in calories. When looking at a meal response at the 
organ/tissue level, before and after the predicted year of weight increase or decrease (Fig. 5F), both 
the plasma insulin and glucose levels have increased after one year without drug treatment (red solid 
lines) compared with before (blue solid lines). After one year of energy-intake increase with 
topiramate treatment (purple dashed lines), the plasma insulin and glucose levels have instead 
decreased slightly. Similar changes can also be seen in the meal response on the cellular level (Fig. 
5G) – 𝑃𝑃𝑃𝑃𝑃𝑃308 − 𝑝𝑝 protein levels have increased after 1 year of only increase in energy intake 
compared to before, and the same protein level had decreased after one year of topiramate 
treatment, while 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝 has decreased after 1 year of energy intake increase only and slightly 
decreased after 1 year on topiramate.  
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Figure 5. A) Overview of the Topiramate study, in which the patients were treated with three different 
dosages of the weight-loss drug topiramate, and instructed to eat on average 600 kcal less per day 
and also took different dosages of the weight loss drug Topiramate. The results of the model training 
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and validation on topiramate data are shown as purple lines for the best simulation, purple error bars 
for the data, and shaded purple areas for model uncertainty, for the B) fit to placebo data, C) fit to 
weight data for Topiramate dosages 64 mg/day and 192 mg/day, and D) model validation on 
Topiramate dosage 96 mg/day, where the validation data is shown as gray error bars. The first data 
point was used to set initial conditions for the corresponding simulations. E) The trained model was 
used to make predictions made for two different scenarios not done during the Topiramate study: 
increasing the energy intake with 1200 kcal/day for 1 year, without topiramate treatment (solid 
purple line) and with 192 mg/day topiramate treatment (dashed purple line). F) Predictions of meal 
responses before the predicted diet and topiramate intervention (blue solid line), after 1 year of 
energy intake increase without treatment (red solid line) and with treatment (purple dashed line) for 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 on the organ/tissue level, and G) 𝐼𝐼𝐼𝐼𝐼𝐼1− 𝑝𝑝 and 𝑃𝑃𝑃𝑃𝑃𝑃308 − 𝑝𝑝 
on the cell level. 

 

Outline of possible future clinical usage 

Predictions such as the ones made in Fig. 4 and Fig. 5E-G can, among other things, potentially be 
used in health care. More specifically, an active version of a digital twin, which has been personalized 
using data from one person (Fig. 6A), can be used to simulate and predict different scenarios (Fig. 
6B). For example, it is possible simulate how different diets can result in either an increase or 
decrease in weight, such as the two scenarios shown in Fig. 6B. Such simulated scenarios can then be 
compared with each other, either for pedagogical and motvational purposes or for treatment 
evaluation. When used for pedagogical and motivational purposes, the simulations can be used to 
increase the understanding of the physiological effects that different lifestyles and/or treatments 
have on your physiology over extended periods of time. Such an increased understanding could then 
hopefully lead to better motivation to follow a certain lifestyle or treatment intervention. When 
using the simulations for treatment evaluation, the scenarios can be compared in order to chose the 
lifestyle and/or treatment most suited for the particular person using it, both in terms of outcome 
(e.g. which diet results in the most decreased risk of diabetes) and what changes you can and are 
willing to do in your life (e.g. which diet with a good enough outcome could you see yourself comply 
to). Finally, the multi-time scale and multi-level aspect of the model can potentially be utilized to get 
continuous feedback on the chosen lifestyle and/or treatment (Fig. 6C), by zooming in on shorter 
time scales (as in Fig. 6C big blue box) and comparing with collected data, or simulating something 
else in the digital twin (e.g. the glucose response in plasma following a meal, as in Fig. 6C left and 
right small boxes). This feedback can help to evaluate the life style – does this chosen intervention 
seem to work for me as predicted?  
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Figure 6: A) Personalizing a digital twin using data from one person to train and validate a passive 
digital twin, such as the one presented herein, and making the digital twin active. B) Using the digital 
twin to predict and compare scenarios with different lifestyles and/or treatments. In this example, the 
digital twin is used to predict two scenarios. In scenario 1, the digital twin simulates an increase in 
energy intake for 40 years (from 40 to 80 years of age) and a resulting increase in BMI – from 
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overweight to obese levels (BMI over 25 and 30 kg/m2, respectively) - and an increase in fasting 
plasma glucose – from prediabetic to diabetic levels (fasting glucose above 5.6 and 7 mmol/l, 
respectively). In Scenario 2, the digital twin simulates a decrease in energy intake with a weight-loss 
drug such as topiramate, resulting in a decrease to healthy levels of BMI and fasting plasma glucose. 
C) Following the chosen lifestyle and getting continuous feedback by zooming in on 4 weeks of the 
predicted fasting plasma glucose (solid line) and comparing with data (blue squares) collected by the 
user. Zooming in even more and looking at meal response glucose before and after the 4 weeks, one 
can see that the glucose curve is higher before (left box) compared to after (right box), indicating an 
improvement in meal response glucose levels as well. 
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Discussion  
 

Summary of main findings 

Herein, we have presented a first multi-level, multi-timescale, and mechanistic model of the 
progression of insulin resistance in humans. The model describes insulin resistance development on 
three different biological levels: whole-body composition (Fig. 2A, 3BC, 4A, and 5C), plasma glucose 
and insulin (Fig. 2B, 3D, 4B, and 5D), and intracellular adipocyte insulin signaling (Fig.  2C, 3G, 4DE and 
5E). The model agrees with the multi-level dataset from the Fast-food study (17,18), both describing 
estimation data (Fig.  3B) and correctly predicting independent validation data (Fig.  3CDG). For this 
weight-increase study, we predict traditional biomarkers which had not been measured, such as oral 
glucose tolerance test and other intracellular signaling intermediaries (Fig.  4). The model also agrees 
with whole-body weight-loss data from the Topiramate study (Fig.  5BC) (22). Moreover, for this study, 
we use the model to predict changes in a glucose tolerance test and intracellular insulin signaling (Fig.  
5DE). Finally, we illustrate how this model potentially can be used to improve health in future eHealth 
technologies (Fig.  6). 

 

New strengths and possibilities with our new modular and multi-scale model for insulin resistance  

An important strength of this model is that it combines three well-determined and validated models 
into an interconnected multi-scale model. Having a multi-scale model is an important strength since 
the progression of diabetes in reality is multi-scale, as seen in the data (Fig.  3). Despite this importance, 
there existed no previously available multi-scale model that could describe such data. Nevertheless, 
there exists models that describe the different levels separately: the Hall model for whole-body weight 
describes changes over months and years (3); the Dalla Man model for the meal response describes 
the interplay between plasma glucose and insulin (4); and the Brännmark model that describes 
intracellular insulin signaling data in adipocytes (6,7). However, these three models had previously not 
been connected into a single model, in part because the arguably most central connection between 
them – adiposity-driven insulin resistance – had not previously been modelled. Herein, we have for 
the first time connected these three well-established models and levels into a multi-scale model, by 
introducing a new model for the progression of insulin resistance. This is the first such human, multi-
scale insulin resistance model. The connecting kit, the adiposity-driven insulin resistance model, has 
been adopted from a corresponding multi-scale model for mice (11), even though the three 
constituent models for the three levels and timescales, come from existing models that were specific 
to humans. Moreover, the cell level model has also been adjusted to allow a continuous development 
of insulin resistance, by allowing some of the model’s steady states to instead change over time. A final 
important aspect of this multi-scale model is that it is modular, meaning that the different subsystems 
and organs described in the model can be changed to other models with more or less details (25,26).  

Another strength with our new model is that it can describe not only estimation data, but also correctly 
predict independent validation data, and can thus also be used to predict non-measured variables. The 
model correctly describes estimation data of weight change from both the Fast-food study (Fig.  3B) 
and the Topiramate study (Fig.  5C). Furthermore, the model also correctly described independent 
validation data from both these studies. For the Fast-food study, the model describes independent 
data on changes in fat mass and fat free mass (Fig.  3C), fasting glucose and insulin concentrations (Fig.  
3D), and the insulin response of the intracellular signaling metabolites (Fig.  3E). In all these predictions, 
the model only changed one parameter: the scale difference between mice and humans in the insulin 
resistance model. For the Topiramate study, the model describes independent data for weight change 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.20.537480doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.20.537480
http://creativecommons.org/licenses/by/4.0/


using a dosage of topiramate that was not used for fitting, 96 mg/day (Fig.  5D). Because of the success 
of these validation tests, we then used the model to make predictions of the gradual changes of some 
of the things that were not measured in the original study. For example, we could predict how the 
glucose levels and fluxes changes during the studies, as well as how intracellular signaling is changing. 
These kinds of predictions are something that the earlier model cannot do, since they require the 
interplay between the different layers. These predictions of additional non-measured variables can in 
principle be tested by doing new studies where these variables are measured, and this could either 
validate the current model even further, or reject the model, and both these outcomes would provide 
new mechanistic insights regarding the progression of insulin resistance. 

 

Limitations with our model 

The current version of the model has some limitations. One such limitation is that the implementation 
of the fat-dependent insulin resistance is a minimal model, using simple relatively expressions. 
Specifically, the model lacks relevant details and hypotheses assumed to be involved in insulin 
progression. One such mechanistic hypothesis is ectopic fat storage and inflammation in liver and 
pancreas (27,28). Inflammation is also often believed to play a role in the adipose tissue itself, as is the 
varying cell size distributions of adipocytes (29,30). These things could be included in future, more 
detailed versions, of the model. However, all of these are processes that are not covered by the 
model’s current level of detail, and among processes currently included, the progression of insulin 
resistance is mechanistic, in the sense that it affects the right included mechanisms. For instance, the 
EGP-production of glucose from the liver is known to be impacted by insulin resistance, and this impact 
is included, even though the underlying mechanisms for this impact are not included. To include such 
underlying mechanisms would allow us to simulate a wider array of drugs, including e.g. anti-
inflammatory drugs like cd44-inhibitors (31,32), or drugs that influence the size of adipocytes like 
metformin (33). These potential additions could thus be useful for both drug development and 
individualized prevention. Apart from this lack of mechanistic detail, the current implementation of 
insulin resistance progression is given by a logarithmic expression (Eq. 3-5,10-12). This expression thus 
excludes potential transient and/or adjustment processes in the body. Also, the current progression of 
insulin resistance has only been validated on a relatively small weight span and population, meaning 
that higher or lower weight changes and other time scales might not be accurately represented by the 
model. 

Another potential limitation with the current model concerns how the interconnection was 
introduced. Specifically, the interconnection is top down only – the whole-body level only influences 
the organ/tissue level only goes in one direction, that is from the top-level (whole-body) to the lower 
level (organ/tissue/cell), and is not reversible. This implementation of the connection means that the 
meal response or meal response dynamics does not affect the whole-body composition changes, 
which, in reality, it does. A future implementation of the interconnection could describe how short-
term changes in meal response dynamics would lead to short-term changes in ectopic fat storage, 
which over time would lead to long-term changes in fat mass, and therefore also overall body weight. 
To implement such a two-way interconnection between the levels, the model should represent fat 
tissue in greater detail, including e.g., proliferation and death of adipocytes, the effects of differently 
sized adipocytes, the amount of fat in each adipocyte, and ectopic fat storage. (29,30,34,35). Other 
more realistic interconnections include for example different hunger and fat-mass regulating 
hormones (such as leptin, adiponectin, various inflammation mechanisms, intracellular mechanisms 
on more organs than fat tissue), as well as the interplay between glucose, proteins, and fat (20,36–39).  
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A third potential drawback is that the model is heavily focused on adipose tissue and the adipocytes, 
and their involvement in insulin resistance. This adipocentric explanation is one of the most popular 
ones for the progression of insulin resistance, but not the only one. Other explanations do exist, such 
as various genetic explanations, inflammation in other organs and/or due to ectopic fat storage 
(29,29,34,35,40–42). It is also possible that there are several mechanisms leading to insulin progression 
that are true at the same time or for different clusters of people with insulin resistance. There are also 
at least some evidence for the existence of a range of different diabetic subtypes (43,44), and that 
there are also different possible pathways to diabetes and insulin resistance (9). Ideally, all different 
hypotheses should be implemented and compared.  

 

Future applications of our multi-scale model: digital twins, eHealth, and drug development 

The multi-scale model presented herein is a so called passive digital twin. A passive digital twin is, in 
contrast to an active digital twin, not personalized using individual data, even though it could be. Both 
active and passive digital twins can be useful in an eHealth scenario. Passive twins can for example be 
used to describe general dynamics of disease progression and be used as a medical pedagogics tool. 
For example, when looking at the progression of insulin resistance, the model can show how an 
increased energy intake can result in a weight increase, and eventually also to progression towards 
insulin resistance and type 2 diabetes. To simulate such illustrations of the effect of daily habits could 
both help to convey medical knowledge in a comprehensive way and motivate to making life-style 
changes. Active digital twins can also help with medical pedagogics and motivation, but with the 
additional benefit of being able to make personalized predictions. Such predictions could potentially 
also be used to help motivate patients to adhere to prescribed drugs or to more stringently follow their 
prescribed diet and exercise-schemes. Furthermore, mechanistically based, multi-scale models for the 
progression of insulin resistance and type 2 diabetes could potentially also be used to evaluate 
different care interventions. For example, when using weight loss as a prevention or treatment for 
diabetes, a digital twin can be used for comparison of different options - topiramate could be 
compared to other interventions, both by comparing the effects on weight loss and other relevant 
biomarkers. All of these potential applications of a digital twin could be further increased by connecting 
the digital twin with a machine learning risk model-based drug development, and systems 
pharmacology, creating a hybrid model. This hybrid model could then be used to calculate a 
personalized or general risk for different diseases, like diabetes or cardiovascular diseases, given a 
certain scenario simulated by the digital twin. Then, when comparing different weight-loss drugs, their 
relative effect on the risk of disease could also be compared (45,46). In conclusion, the multi-scale 
model presented herein constitutes the basis for an active or passive digital twin technology that could 
be used to aid medical pedagogics and increase motivation and compliance, and can as such aid in 
prevention and treatment of insulin resistance. 
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