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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA
molecules that bind to target sites in different
gene regions and regulate post-transcriptional gene
expression. Approximately 95% of human multi-
exon genes can be spliced alternatively, which
enables the production of functionally diverse
transcripts and proteins from a single gene. Through
alternative splicing, transcripts might lose the
exon with the miRNA target site and become
unresponsive to miRNA regulation. To check this
hypothesis, we studied the role of miRNA target
sites in both coding and noncoding regions using
six cancer data sets from The Cancer Genome
Atlas (TCGA). First, we predicted miRNA target sites
on mRNAs from their sequence using TarPmiR.
To check whether alternative splicing interferes
with this regulation, we trained linear regression
models to predict miRNA expression from transcript
expression. Using nested models, we compared the
predictive power of transcripts with miRNA target
sites in the coding regions to that of transcripts
without target sites. Models containing transcripts
with target sites perform significantly better. We
conclude that alternative splicing does interfere with
miRNA regulation by skipping exons with miRNA
target sites within the coding region.

INTRODUCTION

MicroRNAs (miRNAs) are short (16-27 nucleotides (1))
non-coding RNAs that regulate post-transcriptional gene
expression. They usually repress the target gene by
destabilizing its transcript and/or by repressing its translation
(2). Through a complementary target site (position 2-8 from
the 5’ end, commonly referred to as seed sequence) they bind
to their target mRNA and guide the RNA-induced silencing
complex (RISC) to degrade it (3). In mammals, miRNAs
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regulate more than 60% of all protein-coding genes (4). They
play an important role in health and disease. For example,
tissue-specific miRNAs control cell differentiation (5) and
miRNA downregulation is associated with tumorigenesis,
e.g., the downregulation of liver-specific miRNA miR-122
in hepatocellular carcinoma (HCC) (6, 7). By analyzing the
expression of 11 major human cancers from the Cancer
Genome Atlas (TCGA), Li et al. (8) showed that the
correlation between miRNA and target gene expression is
reduced in tumors compared to normal tissue. Since individual
miRNAs are able to simultaneously downregulate several
target genes and thereby affect whole pathways, they are
interesting therapeutical targets (9).

MiRNAs are known to bind to the 3’ untranslated region
(3’-UTR) of their targets (10). However, Lytle et al. (11)
moved a target site of let-7a miRNA from the 3’-UTR to
the 5’-UTR in human HeLa cells and demonstrated that both
5’-UTR and 3’-UTR can be targeted. Lee et al. (12) found that
not only the 5’-end of miRNAs can interact with the 3’-UTR
of mRNAs but also vice versa. They identified many mRNAs
that simultaneously contain 5’-end and 3’-end target sites
enabling combinatorial interactions between a single miRNA
and both UTRs of an mRNA. While previous experiments
found the reduction of protein levels by around 40%–60%
when using only 3’-UTR (5), the authors observed an even
greater reduction of protein abundance by also including
miRNA target sites in the 5’-UTR. They validated their
findings experimentally using hsa-miR-34a binding to both
3’-UTR and 5’-UTR of AXIN2.

A gene’s coding region can also contain potential miRNA
target sites. Forman et al. (13) analyzed publicly available
proteomics datasets and demonstrated that miRNA target
sites in coding regions are functional but less conserved
and effective in repression or inhibition of target genes
than 3’-UTR sites. Hausser et al. (14) analyzed putative
miRNA target sites in coding regions that were predicted
computationally or inferred based on expression changes upon
miRNA transfection. Target sites in the coding regions were
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found to have a smaller impact on mRNA stability but to
be more effective in inhibiting translation, while 3’-UTR
sites trigger mRNA degradation more efficiently. The authors
concluded that a combination of both enables fine-tuning of
the miRNA regulatory effects.

The miRNA-mediated regulation through interaction with
target sites in the coding regions might be affected by
alternative splicing. Approximately 95% of human multi-
exon genes can be spliced alternatively (15), which leads to
different combinations of exons in resulting transcripts. If the
exon with the miRNA target site is spliced out, the transcript
might evade miRNA regulation. However, the impact of
alternative splicing on miRNA-mediated mRNA regulation
has been previously addressed only in one study. Han et al.
(16) studied the impact of alternative splicing and alternative
polyadenylation of 3’-UTRs on miRNA-mediated repression
efficiency in bladder cancer. They demonstrated that miRNA
might fail to regulate alternatively spliced transcripts missing
3’-UTR exons.

The following open questions remain: Does alternative
splicing of exons in the coding region affect miRNA-mediated
regulation? How does this effect generalize to other tissues and
conditions?

We address these questions and evaluate the impact of
alternative splicing of coding regions on miRNA regulation
on a transcriptome-wide scale for several types of cancer.
To that end, we computationally predict miRNA target
sites using TarPmiR (17) and filter out miRNA-gene pairs
based on their expression level and correlation between gene
and miRNA expression. We then construct nested linear
regression models to predict miRNA expression based on the
expression of transcripts with and without miRNA target sites
and conclude that alternative splicing does indeed interfere
with miRNA-mediated mRNA regulation.

MATERIALS AND METHODS

Workflow

Figure 1 illustrates the workflow we used to investigate
the impact of alternative splicing on miRNA-mediated gene
expression regulation. Human miRNA and mRNA sequences
were input to TarPmiR for miRNA target site prediction on
the mRNAs (Figure 1.1 , for details see Methods below).
Based on the binding probability and the location of a target
site for each miRNA-transcript pair, we categorized transcripts
into four types (Figures 1.2, 2A): a) non-binding transcripts;
b) transcripts with binding in the coding region; c) transcripts
with binding in non-coding regions; d) transcripts with
binding in both coding and non-coding regions. The number
of miRNA-transcript pairs in each category is shown in
Figure 3B. To investigate the role of miRNA target sites in
coding regions opposite to non-coding regions, from here on
the same steps were performed separately for each of the three
settings (Figure 2B):

• all transcripts (ALLT): the full models contain all
transcripts; the reduced models contain non-binding
transcripts. This setting allows us to investigate the role
of miRNA target sites independent of their location in
the gene.

• transcripts not binding in non-coding regions
(TNBN): the full models contain non-binding
transcripts and transcripts only binding in coding
regions; the reduced models contain non-binding
transcripts. This setting allows us to investigate the
impact of miRNA target sites in coding regions in the
absence of miRNA target sites in non-coding regions.

• transcripts binding in non-coding regions (TBN): the
full models contain transcripts binding in non-coding
regions and transcripts with binding in both coding
and non-coding regions; the reduced models contain
transcripts binding in non-coding regions. This setting
allows us to investigate the impact of miRNA target sites
in coding regions in the presence of miRNA target sites
in the non-coding regions.

After filtering (Figure 1.3), we constructed nested linear
regression models for each remaining miRNA-gene pair
to predict miRNA expression from transcript expression
(Figure 1.4) and filtered the models by the root mean squared
error (RMSE) (Figure S2). This procedure was repeated on
both random subsets (Figure 1.5) and random subsets with
additionally permuted labels (Figure 1.6). Finally, between
each pair of full and reduced models we performed a
likelihood ratio test (Figure 1.7).

Prediction of miRNA target sites

Sequence data We downloaded 2,656 human mature miRNA
sequences from miRBase (18) (release 22.1). The Ensembl
database (19) release 100 (GRCh38.p13 assembly) was used
as a source for the 249,750 mRNA sequences (228,116
primary assembly sequences + 21,634 alternative assembly
sequences), as well as coding region annotation. We converted
all uracil bases to thymine bases as cDNA format is necessary
for miRNA target site prediction.

miRNA target site prediction with TarPmiR For prediction
of miRNA target sites, we used the state-of-the-art tool
TarPmiR (17). We chose TarPmiR because of its better recall
and precision compared to other commonly used methods
such as TargetScan (20), miRanda (21), and miRmap (22).
We executed TarPmiR on the Ensembl mRNA sequences
and miRBase mature miRNA sequences using the default
parameters. The final output file contains miRNA target site
candidates with binding probabilities > 50% (Figure S1).
As computational prediction of target sites can lead to
false-positive predictions, we kept only transcripts that contain
target sites with binding probabilities > 80% (’binding
transcripts’) and transcripts that contain no target sites
with binding probabilities > 50% (’non-binding’ transcripts)
(Figure 3A). The TarPmiR default is 50% but we raised the
threshold to 80% to focus on high-confidence predictions
(Figure S3). Transcripts that contain only target sites with a
binding probability between 50% and 80% were filtered out to
avoid noise.

The predicted target sites were then mapped back onto the
exons and categorized into target sites in the coding region and
target sites in the non-coding region (5’-UTR and 3’-UTR).
Target sites overlapping both coding and non-coding regions
were assigned to both categories.
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Figure 1. Analysis pipeline using miRNA and mRNA expression and sequence data. 1) TarPmiR target site prediction, 2) categorization in non-binding vs.

binding transcripts, 3) filtering a) for expression and variance above the chosen thresholds (see Methods), b) alternatively spliced genes, c) negative correlation of
miRNA and gene expression, 4) per miRNA-gene pair nested linear regression: non-binding transcript regression and all transcript regression, 5) subsampling of
nested models, 6) subsampling and label randomization of nested models, 7) likelihood ratio test between nested model pairs. The pipeline was run for the three
settings ALLT (all transcripts), TNBN (transcripts not binding in non-coding region) and TBN (transcripts binding in non-coding region) separately from step 2)
on.

Expression filter To further reduce the number of potential
false-positive predictions, we applied an expression filter.
MiRNA and mRNA expression data were collected from
The Cancer Genome Atlas (TCGA). We used the Xena
platform (23) to download the batch effect corrected,
TPM normalized, and log-transformed gene expression data
(version 2016-09-01), transcript expression data (version
2019-02-25) and miRNA mature strand expression data
(version 2016-12-29) from the TCGA Pan-Cancer (PANCAN)
cohort. We investigated the following cancer types: Brain
lower grade glioma (LGG), Kidney chromophobe carcinoma
(KICH), Liver hepatocellular carcinoma (LIHC), Kidney renal
cell carcinoma (KIRC), and Breast Invasive Carcinoma:
Invasive Lobular Carcinoma (ILC) and Invasive Ductal
Carcinoma (IDC). We selected tissues with a high proportion
of alternatively spliced genes such as Brain tissue (LGG),
Liver tissue (LIHC) and Kidney tissue (KICH, KIRC). Breast
tissue (IDC, ILC) was chosen for comparison due to the high
number of samples available in TCGA (24). We filtered out
miRNAs with expression variance smaller than 0.2 between
samples within a cancer type dataset to reduce noise and to
prevent overfitting of the model. We filtered out genes and
transcripts that are not expressed in 25% or more samples
within a dataset.

Alternative splicing filter To account for alternative splicing,
we kept only miRNA-gene pairs where a gene has at least
one transcript containing a miRNA target site with TarPmiR
probability > 80% in the investigated region and at least

one other transcript containing no miRNA target site with
TarPmiR probability > 50% in the same investigated region.

Correlation filter miRNAs most frequently repress the
expression of their targets (25, 26). Therefore, we expect a
negative correlation between miRNA expression and target
gene expression. To focus on the down-regulating effect that
most miRNAs have on target gene expression, the Pearson
standard correlation coefficient between miRNA expression
and gene expression was calculated for all miRNA-gene
pairs. We kept only pairs with a negative Pearson correlation
coefficient for further analysis.

Nested linear regression on expression

Full and reduced models The samples for all miRNA-gene
pairs were divided into training (80%) and test sets (20%). We
constructed nested linear regression models to predict miRNA
expression from transcript expression. Per miRNA-gene pair
a full model was trained on all transcripts and accordingly a
reduced model was trained on the transcripts without target
sites in the investigated region, both using the ordinary least
squares method (see Workflow Description below).

For the resulting models, the RMSE was calculated on the
test sets. All nested models with an error smaller than 0.7
for the reduced and corresponding full models were kept.
The threshold was set by visually examining the number of
models left after filtering (Figure S2). The likelihood ratio
test was used between the reduced and full model, applying
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Figure 4. The ratio of models with statistically significant (<0.05) corrected p-values of the likelihood ratio test statistic calculated between nested regression
models is shown as the dashed green line. To estimate the distribution, the ratio was calculated 1,000 times for random subsets of miRNA-gene pairs (green
histogram) and to estimate the impact of alternative splicing, the ratio was calculated 1,000 times for random subsets of miRNA-gene pairs while randomizing the
transcript binding labels within a gene (yellow histogram). Dist describes the difference between the average ratio of models based on subsampled real miRNA-
gene pairs and after randomizing the transcript category labels. This is shown separately for diseases Brain lower grade glioma (LGG) and Kidney chromophobe
carcinoma (KICH) for settings ALLT, TNBN, and TBN.

the intermediate numbers of miRNA-gene pairs after the
single filtering steps and Figure S5 additionally shows the
distribution of the number miRNAs per gene and vice
versa after filtering. We filtered for miRNA-gene pairs with
expression above the chosen thresholds, alternative splicing,
and negative Pearson correlation between miRNA and gene
expression (see Methods).

Impact of alternative splicing on miRNA-mediated
regulation

Previous studies focused on the role of miRNA target sites in
non-coding regions (10, 11, 12). First, using the ALLT setting,
we investigated the impact of miRNA binding on transcript
expression independent of the location of target sites. This
setting might reflect the mixed effect, where target sites in the
non-coding region have more impact compared to target sites
in the coding regions. To check this hypothesis, we developed
two other settings described below.

Target sites in the coding regions might be spliced out
due to alternative splicing, and if those target sites are
important for miRNA-mediated regulation, the resulting
transcript could evade miRNA regulation, i.e., its expression
will be independent of miRNA regulation. To investigate this
possibility, we used the TNBN setting.

Transcripts often contain a mixture of miRNA target sites
- both in coding and non-coding regions. Target sites in the
non-coding regions might fully overpower the effect of target
sites in coding regions. To investigate this possibility, we used
the TBN setting.

We calculated the likelihood ratio test between the nested
models for each miRNA-gene pair and compared the ratio

of models, where the full model statistically significantly
outperformed the reduced model for ALLT, TNBN, and TBN,
respectively. Next, we compared this ratio with the ratio
of such models after randomizing transcript category labels
(Figure 4 for LGG and KICH, Figure S6 for LIHC, KIRC,
ILC, IDC).

The full models were found to consistently outperform the
reduced models, whereas the magnitude of performance gain
varies between cancer types. For Invasive Lobular Carcinoma
(ILC) the effect is the weakest and the distribution of the ratios
overlaps between real and randomized experiments. In the
setting TNBN we see that also target sites in the coding region
have an effect, supporting the notion that active miRNA target
sites are not only found in non-coding regions.

For all analyzed cancer types and settings (ALLT, TNBN,
TBN), this difference is significant (Mann-Whitney U test
p-value < 0.05). This observation supports the hypothesis
that on transcriptome-wide scale, alternative splicing impacts
miRNA regulation by splicing out miRNA target sites in the
coding regions.

Gene Set Enrichment analysis

We performed a Gene Set Enrichment analysis of the top 500
genes that predict miRNA expression with most significant
p-values using the Molecular Signatures Database (27) (28)
for all six cancer types and settings. We overlayed the top
500 genes with all non-computational collections (C1, C2, C3,
C5, C6, C7 (29), C8, H (30)). For all the cancer types and
settings, we found cancer-related functions within the top ten
most significantly enriched genesets of the non-computational
collections for all diseases and settings besides for LGG
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setting TNBN (Supplementary Tables S2 - S19). Of those,
we found an overlap with a geneset related to the specific
cancer type for cancer type IDC in all settings, for ILC settings
TBN and ALLT, for KIRC setting ALLT, and for LIHC setting
TBN.

While overlaying the top 500 genes of all the cancer
types and settings with only oncogenic genesets (C6), we
found significant overlaps for all cancer types and settings
(Supplementary Tables S20 - S37).

DISCUSSION

We investigated the impact of miRNA target sites in the
coding regions based on miRNA and mRNA expression data
using a nested linear regression approach. On a transcriptome-
wide scale, we demonstrated that alternative splicing impacts
miRNA regulation, putatively by splicing out miRNA target
sites in the coding regions. We observe the same effect in six
cancer types.

While cancer-related terms were frequently observed
among the top ten genesets in the Gene Set Enrichment
analysis, several other enriched terms lacked a direct
association with cancer. These likely indicate tissue-specific
effects of miRNA regulation, which suggests that the interplay
of miRNA regulation and AS probably also plays a role in
tissue differentiation (31).

The interplay between miRNA regulation and alternative
splicing in cancer development has rarely been addressed
(16). However, several miRNA-gene pairs, for which we
showed a significant impact of alternative splicing, have been
demonstrated to be important for cancer subtypes.

It is known that microRNA-200 family miRNAs target
genes ZEB1 and ZEB2, which both are involved in EMT and
tumour metastasis (32). In our analysis, we found that miRNA
miR-141-5p regulates ZEB2 (p≈2.39e−4 in LGG setting
TBN and p≈9.00e−5 in LGG setting ALLT). miR-141-5p
inhibits glioma cell growth and migration by repressing ZEB1
expression (33). In pancreatic cancer, however, treatment of
MiaPaCa-2 cells with gemcitabine caused an upregulation of
the ZEB1 protein through alternative polyadenylation of the
transcript (34). Thereby the ZEB1 3’-UTR was shortened
and miRNA target sites in the last exon deleted. We were
able to observe gene ZEB1 evading regulation by miR-141-5p
through alternative splicing (p≈3.32e−5 in LGG using setting
TBN).

Tumor suppressor miR-30c is known to inhibit prostate
cancer by targeting the 3’-UTR of the SRSF1 splicing factor
oncoprotein to downregulate its expression in prostate cancer
(35). This expression is correlated with the pathological stage
of prostate cancer and biochemical recurrence. SRSF1 is
also known to be over-expressed in kidney tumor (36). We
found the miRNA miR-30c-1-3p and gene SRSF1 interaction
significant in KICH setting TNBN (p≈2.39e−2) and in KIRC
setting ALLT (p≈3.03e−2). In renal cancer 3’-UTR variants
of SRSF1 were discovered with differing miRNA target sites
(37), a differential regulation mechanism potentially existing
for miR-30c as well. We found SRSF1 also interacts with
miR-7 in lower grade glioma - more specifically with miR-
7-2-3p (p≈9.22e−8 for setting ALLT). The splicing factor
SRSF1 transcript, besides being repressed by miR-7, is also

targeting the miRNA through binding, thereby generating a
negative feedback loop (38).

In KIRC setting ALLT we found miR-18a-3p regulating
K-Ras expression (p≈1.41e−3), an interaction which was
previously shown experimentally (39). MiR-18a* acts as a
tumor suppressor by targeting oncogene K-Ras. K-Ras is
known to be alternatively spliced into two isoforms K-Ras
4B, which is anti-apoptotic and ubiquitously expressed, and
K-Ras 4A, which is pro-apoptotic and expressed in only a
subset of tissues such as kidney, lung and colon (40). In
renal cell carcinoma oncogene K-Ras 4A was observed as
upregulated and the isoform’s influence on cell survival and
proliferation shown (41).

Our study provides the first steps toward investigating the
role of alternative splicing in miRNA gene regulation. In
our analysis, we consider miRNA-gene interactions as binary,
while genes acting as competing endogenous RNAs actually
form a complex gene-regulatory network based on miRNA
competition (42, 43). We chose a simple binary model over
a more complex network model with n-to-n interactions as the
results are easier to interpret and clearly support our findings.
However, further work is needed to understand the impact of
AS on miRNA regulation on a network level. Furthermore,
many transcripts show target sites for several miRNAs (Figure
S7). The multi-mRNA effect should be taken into account in
the future to refine the miRNA-transcript relationship. In this
study, we focused exclusively on exon sequences for miRNA
target site prediction. Further work is needed to elucidate the
role of alternative splicing events other than exon skipping,
such as intron retention, on miRNA regulation. Another
interesting aspect worth considering in the future is the
question of the effect of miRNA regulation on the alternative
splicing machinery, as miRNAs can bind to splicing factors
and alter splicing activity (44). This work focuses on the
more common miRNA-mediated downregulation rather than
upregulation, as miRNA-mediated upregulation is rare and
currently not sufficiently understood (25, 45, 46).

The current availability of miRNA and mRNA expression
data from the same tissue and condition limits the study.
However, the effect is clearly seen in different cancer types,
which suggests that this effect might be commonly observed.

The most promising miRNA-gene pairs might be feasible
for experimental validation. However, the demonstrated effect
has a transcriptome-wide scale meaning that might not be
clearly observed for single miRNA-gene pairs. Nevertheless,
we published the list of significant cancer-specific miRNA-
gene interactions affected by alternative splicing (see Data
Availability), and provide a basis for further experimental
investigation of specific interactions and the influence of
alternative splicing. In the future, we are planning to provide
our findings as a user-friendly database where the miRNA-
gene pairs can be investigated visually.

CONCLUSION

We have developed a new computational method to assess the
influence of miRNA binding in coding regions on the whole
transcriptome. We studied the impact of alternative splicing
on miRNA regulation on the whole transcriptome for several
cancer types while focusing on the coding region. Using
sequence data, miRNA target sites were predicted on human
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mRNA and the difference in correlation between miRNA
expression and binding vs. non-binding transcript expression
was investigated using nested linear regression models. We
were able to show that miRNAs binding in coding regions are
effective at reducing transcript expression and that transcripts
that splice out the miRNA target site are less affected by
miRNA-mediated downregulation. Beyond the influence of
alternative splicing, we show evidence that the coding region
plays a role in miRNA regulation. Our findings suggest that
further clinical studies can be directed at studying miRNA
target sites in the coding region.

DATA AVAILABILITY

All data presented are derived from previously published
data sets as indicated. The used input data and output
data including miRNA-gene pairs with p-values and
the results of the Gene Set Enrichment analysis
for all six investigated cancer types are available at
https://doi.org/10.6084/m9.figshare.21821181.v2. The
code used for this study was written in Python and is available
at https://github.com/CGAT-Group/miRNA-AS.
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A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A. N., Zhu, J., and
Haussler, D. (2019) The UCSC Xena platform for public and private
cancer genomics data visualization and interpretation. bioRxiv, p. 326470.

24. Yeo, G., Holste, D., Kreiman, G., and Burge, C. B. (2004) Variation in
alternative splicing across human tissues. Genome Biol., 5(10), R74.

25. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010)
Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature, 466(7308), 835–840.

26. Arora, A. and Simpson, D. A. (2008) Individual mRNA expression
profiles reveal the effects of specific microRNAs. Genome biology, 9(5),
R82–R82.

27. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert,
B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R.,
Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis:
A knowledge-based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences, 102(43),
15545–15550.

28. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H.,
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