

1 CRACD suppresses neuroendocrinal plasticity of 2 lung adenocarcinoma

3
4
5 Bongjun Kim,^{1,†} Shengzhe Zhang,^{1,†} Yuanjian Huang,¹ Kyung-Pil Ko,¹ Gengyi Zou,¹ Jie
6 Zhang,¹ Sohee Jun,¹ Kee-Beom Kim,^{2,3} Youn-Sang Jung,⁴ Kwon-Sik Park,² Jae-II
7 Park^{1,5,6‡}

8
9 ¹Department of Experimental Radiation Oncology, Division of Radiation Oncology, The
10 University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

11 ²Department of Microbiology, Immunology, and Cancer Biology, University of Virginia
12 School of Medicine, Charlottesville, VA 22908, USA

13 ³BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook
14 National University, Daegu, 41566, Republic of Korea

15 ⁴Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea

16 ⁵Graduate School of Biomedical Sciences, The University of Texas MD Anderson
17 Cancer Center, Houston, TX 77030, USA

18 ⁶Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer
19 Center, Houston, TX 77030, USA

20 [†]These authors contributed equally.

21 [‡]Correspondence: Jae-II Park (jaeil@mdanderson.org)

22 Tel: 713-792-3659; Fax: 713-794-5369

23 **Keywords:** Cell plasticity, neuroendocrinal cell plasticity, CRACD, CRAD, KIAA1211,
24 lung adenocarcinoma, cell de-differentiation, tumor heterogeneity, therapy resistance,
25 single-cell transcriptomics

28 **Abstract**

29
30 Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance.
31 Through cell plasticity, lung adenocarcinoma (LUAD) cells transform into
32 neuroendocrinial (NE) tumor cells. However, the mechanisms of NE cell plasticity
33 remain unclear. CRACD, a capping protein inhibitor, is frequently inactivated in
34 cancers. *CRACD* knock-out (KO) de-represses NE-related gene expression in the
35 pulmonary epithelium and LUAD cells. In LUAD mouse models, *Cracd* KO increases
36 intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis
37 showed that *Cracd* KO-induced NE plasticity is associated with cell de-differentiation
38 and activated stemness-related pathways. The single-cell transcriptomes of LUAD
39 patient tumors recapitulate that the distinct LUAD NE cell cluster expressing NE genes
40 is co-enriched with SOX2, OCT4, and NANOG pathway activation, and impaired actin
41 remodeling. This study reveals an unexpected role of CRACD in restricting NE cell
42 plasticity that induces cell de-differentiation, providing new insights into cell plasticity
43 of LUAD.

44

45 **Introduction**

46

47 Cell plasticity, a process changing cell fate or state ¹⁻³, plays pivotal roles in
48 development, tissue homeostasis, and regeneration. During development, embryonic
49 progenitor cells change their cell fate ^{2,3}. Upon cell intrinsic or extrinsic signaling cues,
50 terminally differentiated cells undergo cell plasticity via de-differentiation or trans-
51 differentiation, contributing to homeostasis and regeneration of many tissues ⁴⁻¹⁰.

52

53 Cell plasticity plays also a crucial role in tumorigenesis ^{11,12}. Tumor cell plasticity
54 is associated with tumor progression, intratumoral heterogeneity, and therapy
55 resistance ¹¹⁻¹³. In LUAD, tumor cell plasticity changes the cancer subtype ^{12,14,15}. For
56 example, during EGFR targeted therapies, *EGFR* mutant LUAD tumor cells transform
57 into NE tumor cells ^{16,17}. A *Kras*^{G12C} inhibitor, AMG510, induces tumor cell plasticity
58 converting *KRAS*^{G12C} mutant LUAD tumor cells into squamous cancer cells ¹⁸. The ALK
59 inhibitor, crizotinib, changes *ALK*-mutant LUAD tumor cells into small cell lung cancer
60 (SCLC) ¹⁹. NE cell plasticity was also observed in melanoma ²⁰, pancreatic
61 adenocarcinoma ²¹ and prostate cancer ²². However, the mechanisms of NE cell
62 plasticity of LUAD remain elusive.

63

64 In this study, leveraging genetically engineered mouse models, organoids, and
65 single-cell transcriptomics, we found that CRACD tumor suppressor serves as a
66 gatekeeper restricting NE cell plasticity, which might be implicated in LUAD's therapy
67 resistance and tumor cell heterogeneity.

68

69

70 **Results**

71

72 ***Cracd* KO generates NE-like pulmonary epithelial cells**

73

74 Previously, we identified the CRACD (Capping protein inhibiting Regulator of Actin
75 Dynamics; also known as CRAD/KIAA1211) tumor suppressor, which promotes actin
76 polymerization by binding and inhibiting capping proteins to promote actin
77 polymerization²³. Interestingly, we observed SCLC-like lesions in the lungs of *Cracd*
78 KO mice²³. This observation led us to hypothesize that CRACD loss may drive NE-like
79 cell plasticity in the lung. To test this, we examined *Cracd* KO mouse lung tissues.
80 Unlike *Cracd* wild-type (WT), *Cracd* KO lung tissues showed NE-like hyperplasia in the
81 bronchiolar airway and alveoli (Fig. 1A). Immunofluorescent (IF) staining confirmed the
82 proliferative nature of this NE-like cell mass, as indicated by MKI67+ IF staining.
83 Furthermore, the mass expressed several NE markers, including KRT19, SYP, CGRP,
84 and CHGA (Fig. 1B). It is noteworthy that *Cracd* KO alone failed to develop lung tumors
85 in mice²³. We also assessed the expression of NE markers in lung organoids (LOs)
86 derived from pulmonary epithelial cells isolated from murine lung tissues (*Cracd* WT vs.
87 KO)²⁴ (Fig. 1C, D; fig. S1). We confirmed the generation of three different types of LOs:
88 alveolar (HOPX+, SPC+), bronchiolar (Ac-TUB+, SCGB1A1+), and bronchioalveolar
89 (HOPX+, SPC+, Ac-TUB+, SCGB1A1+) types (Fig. 1E). The *Cracd* KO LOs exhibited
90 increased expression of NE markers, CHGA and CGRP, in both bronchiolar and
91 alveolar LOs (Fig. 1F, G). These results suggest that CRACD loss is sufficient to induce
92 the expression of NE-like features in the pulmonary epithelium.

95 CRACD depletion upregulates NE marker genes in LUAD cells

96
97 Having observed NE-like features in *Cracd* KO lung, we investigated whether CRACD
98 depletion also induces NE marker expression in non-NE tumor cells, particularly LUAD
99 cells. We introduced CRACD shRNA into both mouse (KP-1, derived from *Kras*^{G12D};
100 *Trp53* KO mouse LUAD tumors)²⁵ and human (A549) LUAD cell lines. We found that
101 CRACD depletion upregulated the expression of NE marker genes in both KP-1 and
102 A549 cells, compared to control cells (Fig. 2A). Moreover, CRACD depletion led to a

103 reduction in the cytoplasmic-to-nuclear ratio with the loss of F-actin stress fibers (Fig.
104 2B, C), confirming the role of CRACD in maintaining actin polymerization.

105

106

107 **Cracd KO induces NE cell plasticity in LUAD driven by *Kras*^{G12D} and *Trp53* KO**

108

109 Next, we determined the impact of CRACD loss on the plasticity of LUAD tumor cells in
110 vivo. To genetically ablate *Cracd* alleles in vivo, we employed two approaches:
111 CRISPR-based somatic gene targeting²⁶ and germline deletion. For somatic
112 engineering, we administered adenovirus harboring Cas9-sgLacZ-Cre (control) or
113 Cas9-sgCracd-Cre into KP (*Kras*^{G12D/WT}; *Trp53*^{f/f (floxed/floxed)}) mice, a LUAD mice model, via
114 intratracheal instillation (Fig. 3A). Twelve weeks after adenovirus treatment, we
115 collected lung tissues for tumor analyses. Compared to *Cracd* WT KP-induced LUAD
116 (control), *Cracd* KO KP tumors exhibited significant heterogeneity in tumor cell
117 morphology (Fig. 3B, C, fig. S2). Moreover, unlike *Cracd* WT KP LUAD where NE
118 markers were rarely expressed, *Cracd* KO KP tumors showed the expression of NE
119 markers, such as CHGA, CGRP, and ASCL1 (Fig. 3D). We confirmed that the NE-
120 marker expressing *Cracd* KO KP cells are tumor cells by performing CDH1/E-cadherin
121 IF staining (Fig. 3E). Additionally, *Cracd* KO tumor cells showed disrupted actin
122 cytoskeleton (Fig. 3E). To complement the somatic engineering, we also established
123 the *Cracd* KO (heterozygous and homozygous); *Kras*^{G12D}; *Trp53*^{f/f} (CKP) compound
124 strain. To induce LUAD development, we administered Cre recombinase-expressing
125 adenovirus (Ad-Cre) to KP (control) and CKP mice via intratracheal instillation. Twelve
126 weeks after administration, we collected lung tumors for analyses (Fig. 3F). Consistent
127 with the results of somatic engineering, KP tumors carrying the germline mutation of
128 *Cracd* exhibited marked expression of CHGA, CGRP, and NEUROD1, and disrupted
129 actin structure, while *Cracd* WT KP tumors did not (Fig. 3G, H). Moreover, both *Cracd*
130 homozygous KO (-/-) and heterozygous (+/-) tumors showed increased intratumoral
131 heterogeneity (Fig. 3I, J). These results suggest that CRACD loss is sufficient to de-
132 repress NE-related genes and increase intratumoral heterogeneity in LUAD.

133

134

135 **NE cell plasticity is associated with cell de-differentiation of pulmonary epithelial
136 and LUAD cells**

137

138 To elucidate the mechanisms of *Cracd* KO-induced NE marker expression and cellular
139 heterogeneity increase in LUAD, we employed single-cell transcriptomics. We isolated
140 pulmonary epithelial cells from mouse lung tissues (*Cracd* WT or KO) and performed
141 single-cell RNA sequencing (scRNA-seq) and comparative analyses (fig. S3). Using
142 unsupervised clustering and annotations, we identified each pulmonary epithelial cell
143 type (Fig. 4A, B; fig. S3, Table S2). Consistent with the IF results (Fig. 1), the *Cracd* KO
144 lung tissue exhibited relatively higher expression of NE- and SCLC-related genes (Fig.
145 4C). Since cell plasticity is associated with cell de-differentiation or transdifferentiation,
146 we evaluated the impact of *Cracd* KO on cell differentiation and de-differentiation
147 states, we used the CytoTRACE package that infers cell differentiation state by RNA
148 content²⁷. Notably, the *Cracd* KO AT2 clusters (AT2-1~6 cell clusters) displayed
149 significantly less-differentiated states compared to those of *Cracd* WT (Fig. 4D). To
150 determine the signaling pathways involved in *Cracd* KO-induced NE cell plasticity, we
151 conducted fGSEA (fast Geneset Enrichment Analysis) and found that cell stemness-
152 related gene signatures, including OCT4, and NANOG targets (Table S3)²⁸, were highly
153 enriched in the AT2 cell clusters of the *Cracd* KO lung tissues compared to WT (Fig.
154 4E), which was shown by the dot and feature plots (Fig. 4F, G).

155

156 Subsequently, to assess the pathological relevance of the association between
157 NE cell plasticity and cell de-differentiation in LUAD, we analyzed scRNA-seq datasets
158 of non-small cell lung cancer (NSCLC) patient tumor samples²⁹. We re-analyze the pre-
159 processed dataset of epithelial compartments consisting of 342 datasets (90,243
160 tumor cells), and refined the clusters into different types of tumor cells, including LUAD
161 (mitotic, EMT, MSLN [MSLN high]), LUAD NE1-3 (neuroendocrine), and lung squamous
162 cell cancer (LUSC) cells (mitotic and EMT) (Fig. 4H), as previously described²⁹. We

163 then determined whether NE-related genes were co-expressed with stemness-related
164 genes in LUAD. Among all clusters, the LUAD NE1 cell cluster exhibited high NE score,
165 including NE-related genes (*CHGA*, *INSM1*, *SYP*, and *ASCL1*), and stemness-related
166 genes (target genes of *SOX2*, *OCT4*, and *NANOG* and stemness genes enriched in
167 embryonic stem cells [ES]) (Fig. 4I, Table S3)²⁸, which is consistent with the results
168 from the *Cracd* KO lung scRNA-seq analysis (Fig. 4E-G). Since CRACD loss impairs
169 actin remodeling and induces NE cell plasticity, we asked whether the LUAD NE1 cell
170 cluster is related to the disrupted actin pathway. Indeed, fGSEA analysis showed that
171 actin remodeling-related pathways were decreased in the LUAD NE1 clusters
172 compared to LUAD non-NE clusters (LUAD, LUAD mitotic, LUAD EMT, and LUAD
173 MSLN) (Fig. 4J, K). Since CRACD inhibits the WNT signaling²³, we also examined the
174 effect of *Cracd* KO on WNT signaling. The WNT pathway target genes were marginally
175 increased in *Cracd* KO lung compared to WT (fig. S4A). Similarly, the expression of
176 WNT signaling target genes was barely altered in LUAD NE1 clusters compared to
177 other clusters (fig. S4B). These results suggest that NE cell plasticity is associated with
178 cell de-differentiation of LUAD.

181 Discussion

182
183 The underlying mechanisms of NE cell plasticity in LUAD are not fully understood.
184 Genetic ablation of CRACD tumor suppressor was sufficient to de-repress NE-related
185 genes in organoids and mice. In mice, *Cracd* KO leads to increased intratumoral
186 heterogeneity with upregulation of NE markers. Single-cell transcriptomic analysis
187 showed that *Cracd* KO upregulates NE-related genes primarily in AT2 pulmonary
188 epithelial cells, accompanied by increased cell de-differentiation state. Single-cell
189 transcriptomes of LUAD patient tumors showed the distinct LUAD NE cell cluster co-
190 enriched with NE genes, cell stemness pathways, and impaired actin remodeling.

192 Tumor cell plasticity is implicated in tumor progression, intratumoral
193 heterogeneity, and therapy resistance^{11,12}. NE cell plasticity has been observed in lung
194 and prostate cancer as an outcome of cancer therapy^{14,17,30}. Our study found that NE
195 cell plasticity is associated with cell de-differentiation of pulmonary epithelial and LUAD
196 tumor cells. The genetic ablation of *Cracd* alone was sufficient to induce a less
197 differentiation state of cells (Fig. 4D). Moreover, cell stemness-related pathways were
198 activated in *Cracd* KO pulmonary epithelial cells (Fig. 4E-G). Analysis of human LUAD
199 single-cell transcriptomes also showed co-expression of NE and stemness-related
200 genes (Fig. 4I). These data suggest that NE cell plasticity is likely driven or
201 accompanied by cell de-differentiation, which implies the acquisition of cell stemness
202 through NE cell plasticity. Cell stemness is characterized by two major features: cellular
203 heterogeneity generation and self-renewal³¹. Thus, such acquired cell stemness might
204 explain why NE cell plasticity increases intratumoral heterogeneity observed in *Cracd*
205 KO LUAD tumors (Fig. 3). Similarly, since tumor cell plasticity also contributes to
206 therapy resistance^{11,12}, CRACD inactivation-induced NE cell plasticity might generate
207 therapy-resistant tumor cells. Cell plasticity is one of the hallmarks of cancer³².
208 Therefore, targeting NE cell plasticity would be an alternative option for overcoming the
209 therapy resistance of LUAD or LUAD NE.

210
211 The CRACD/KIAA1211 gene is frequently inactivated in SCLC³³⁻³⁶, which
212 somehow agrees with our finding of CRACD loss-induced NE cell plasticity since SCLC
213 tumor cells exhibit NE features. However, the specific mechanisms by which CRACD
214 loss-of-function takes places in LUAD remain to be determined. In colorectal cancer,
215 CRACD inactivation occurs through transcriptional downregulation (via promoter
216 hypermethylation) or genetic mutations (missense and nonsense).²³ Therefore,
217 combined analyses of exome-seq and scRNA-seq could help determine the
218 mechanism of CRACD inactivation in LUAD.

219
220 As a capping protein inhibitor, CRACD promotes actin polymerization. In
221 colorectal cancer, CRACD inactivation disrupts the cadherin-catenin-actin complex,

222 releasing β -Catenin for WNT signaling hyperactivation²³. Although WNT signaling was
223 slightly activated in *Cracd* KO lung tissues (fig. S4A), WNT signaling module score in
224 the LUAD NE cluster was barely increased (fig. S4B). Thus, it is unlikely that WNT
225 signaling mediates CRACD inactivation-induced NE plasticity. Instead, the LUAD NE
226 tumor cell cluster displayed relatively downregulated actin-related pathways (Fig. 4J,
227 K). Accumulating evidence suggests that actin remodeling modulates stemness and
228 lineage commitment³⁷⁻³⁹. Therefore, it is highly probable that dysregulated actin
229 remodeling might mediate CRACD loss-induced NE cell plasticity and increased cell
230 de-differentiation. Mechanistically, actin cytoskeleton-driven mechanical pulling force
231 modulates the NOTCH signaling that controls cell lineage-related genes^{40,41}.
232 Additionally, nuclear actin is engaged in transcriptional regulation^{42,43}. Thus, it is
233 possible that upon CRACD inactivation, NOTCH signaling dysregulation or epigenetic
234 reprogramming might trigger NE cell plasticity, which needs to be addressed in future
235 studies.

236

237 Collectively, this study reveals an unexpected role of CRACD tumor suppressor
238 in restricting cell plasticity and cell de-differentiation, providing new insights into NE
239 cell plasticity of LUAD.

240

241

242

243 **Acknowledgments**

244 This work was supported by the Cancer Prevention and Research Institute of Texas
245 (RP200315 to J.-I.P. and RP210028 to G.Z.), the National Cancer Institute (2R01
246 CA193297 and R03 CA256207 to J.-I.P.), and an Institutional Research Grant (MD
247 Anderson to J.-I.P.). The core facilities at MD Anderson (DNA Sequencing and
248 Genetically Engineered Mouse Facility) were supported by National Cancer Institute
249 Cancer Center Support Grant (P30 CA016672). The core facilities at Baylor College of
250 Medicine (Cytometry & Cell Sorting Core and Single Cell Genomics Core) were
251 supported by CPRIT (RP180672, RP200504) and the National Institutes of Health
252 (CA125123, RR024574).

253

254 **Author contributions**

255 B.K., S.Z., and J.-I.P. conceived and designed the experiments. B.K., S.Z., Y.H., K.-
256 P.K., G.Z., J.Z., and S.J. performed the experiments. K.-B.K. and K.-S.P. provided
257 adenoviruses for gene targeting. B.K., S.Z., K.-S.P., and J.-I.P. analyzed the data. B.K.,
258 S.Z., and J.-I.P. wrote the manuscript.

259

260 **Declaration of interests**

261 All authors declare that they have no competing interests.

262

263 **Figure legends**

264

265

266 **Figure 1. *Cracd* KO induces NE cell-like features in the pulmonary epithelium and**

267 **organoids.**

268 **A, B**, Hematoxylin and eosin (H&E) (A) and immunofluorescent (IF) (B) staining of
269 mouse lung sections (*Cracd* WT vs. KO) mice (n = 3 per group).

270 **C**, Illustration of lung organoid culture.

271 **D**, Bright-field images of lung organoids (LOs) at day 12.

272 **E**, H&E (upper panels) and IF (lower panels) staining of LOs.

273 **F**, IF staining of LOs derived from *Cracd* WT vs. KO mice.

274 **G**, Quantification of CHGA+ and CGRP+ cells in LOs (n = 10 per LO). Two-tailed
275 Student's *t*-test; error bars: SD.

276 Representative images were displayed.

277

278

279 **Figure 2. CRACD depletion de-represses NE gene expression in LUAD cells.**

280 **A**, qRT-PCR analysis of KP-1 cells (left panel) and A549 cells (right panel) stably
281 transduced with the lentiviruses encoding *shCracd* or *shCRACD*, respectively;
282 two-tailed Student's *t*-test; error bars: SD.

283 **B**, IF staining of A549 cells (*shCtrl* vs. *shCRACD*) for phalloidin, a marker for
284 filamentous actin (n = 3). Representative images were shown.

285 **C**, Quantification of cytosol-to-nucleus ratio of images (Fig. 2B) (n = 30).

286

287

288 **Figure 3. *Cracd* KO increases tumor heterogeneity with NE gene expression in**

289 **LUAD mouse models.**

290 **A**, Illustration of somatic gene targeting using adenovirus encoding sgRNAs and
291 Cre; (n = 3 per group).

292 **B, C**, Tumor heterogeneity analysis; H&E (B); intratumoral heterogeneity index (C) (n
293 = 12 per group).

294 **D, E**, Immunostaining of lung tumors; DAB (3,3'-Diaminobenzidine) (D); IF (E).

295 **F**, Experimental scheme of *Cracd*-deficient LUAD mice model using *Cracd* germline
296 KO mice.

297 **G, H**, Immunostaining of lung tumors; DAB (G); IF (H).

298 **I, J**, Tumor heterogeneity analysis; H&E (I); intratumoral heterogeneity index (J); WT
299 (n = 3) vs. heterozygous (n=11) vs. homozygous (n=2).

300 Representative images were shown. Two-tailed Student's *t*-test; error bars: SD.

301

302

303 **Figure 4. Association of NE cell plasticity with cell stemness in pulmonary**

304 **epithelial and LUAD tumor cells.**

305 **A**, Uniform manifold approximation and projection (UMAP) plots displaying
306 pulmonary epithelial cells from *Cracd* WT vs. KO mice.

307 **B**, UMAPs of each cell cluster annotated by cell types.
308 **C**, Feature plots showing the expression of NE- or SCLC-related genes.
309 **D**, Boxplots of CytoTRACE scores of each cell cluster; less/more diff: less/more
310 differentiated cell states.
311 **E**, GSEA of the AT2 clusters (*Cracd* WT vs. KO) using the datasets shown in Figure
312 4A.
313 **F**, Dot plots depicting transcriptional module scores of Sox2, Oct4, and Nanog in
314 AT2 clusters.
315 **G**, Feature plots showing the module scores (Sox2, Oct4, and Nanog).
316 **H**, UMAP of NSCLC tumor cells annotated by tumor cell types.
317 **I**, Dot plot depicting NE gene expression and transcriptional module scores of the
318 gene sets.
319 **J**, UMAP displaying the two subsets (LUAD NE1 vs. LUAD non-NE [LUAD, LUAD
320 mitotic, LUAD EMT, and LUAD MSLN]).
321 **K**, GSEA of LUAD NE1 vs. LUAD non-NE.
322

323 **STAR Methods**

325 **RESOURCE AVAILABILITY**

328 **Lead contact**

329 Additional information and requests for resources and reagents should be directed to
330 and will be fulfilled by the Lead Contact, Jae-II Park (jaeil@mdanderson.org).

331 **Materials availability**

332 The materials will be available upon request.

335 **Data and code availability**

336 scRNA-seq data are available via the Gene Expression Omnibus (GEO) and is publicly
337 available as of the date of publication. Accession numbers are listed in the key resource
338 table.

339 (Log-in token for reviewers:)

340 R packages and python packages used in this paper are listed in the key resource
341 table. The code used to reproduce the analyses described in this manuscript can be
342 accessed via Zenodo (<https://doi.org/>) and is available upon
343 request.

345 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

347 **Mice**

349 C57BL/6, *Trp53*^{f/f} (*floxed/floxed*) (JAX no. 008179), and *Kras*^{G12D} (JAX no. 008462) mice were
350 purchased from the Jackson Laboratory. *Cracd* KO mice have been described
351 previously²³. *Kras*^{G12D}, *Trp53*^{f/f} (*floxed/floxed*) (KP), *Cracd*^{-/-}, *Kras*^{G12D}, *Trp53*^{t/t} and *Cracd*^{+-/-},
352 *Kras*^{G12D}, *Trp53*^{f/t} compound strains were generated by breeding, with validation of
353 genotypes as previously described^{23,25}. For LUAD tumor induction, the lungs of 10-
354 week-old mice were infected with adenoviral Cre (Ad-Cre) via intratracheal instillation
355 as previously described^{25,44}. Multiple cohorts of independent litters were analyzed to
356 control for background effects, and both male and female mice were used. For KP
357 *sgCracd* LUAD model, adenovirus containing *sgCracd*-Cre (Ad-*sgCracd*-Cre) or
358 *sgLacZ*-Cre (Ad-*sgLacZ*-Cre; control) were introduced into KP mice via intratracheal
359 instillation. Ad-*sgCracd*-Cre particles were produced in Vector Development
360 Laboratory at Baylor College of Medicine. Mice were euthanized by
361 CO₂ asphyxiation followed by cervical dislocation at the indicated time. Tumors
362 were harvested from euthanized mice, fixed with 10% formalin, embedded in paraffin,
363 and sectioned at 5-μm thickness. The sections were stained with hematoxylin and
364 eosin for histological analysis. All mice were maintained in compliance with the
365 guidelines of the Institutional Animal Care and Use Committee of the University of
366 Texas MD Anderson Cancer Center. All animal procedures were performed based on

367 the guidelines of the Association for the Assessment and Accreditation of Laboratory
368 Animal Care and institutionally approved protocols. This study was compliant with all
369 relevant ethical regulations regarding animal research.

370

371 **Lung cell isolation**

372 Lung tissues were harvested from euthanized mice after perfusing 10 ml of cold
373 phosphate-buffered saline (PBS) into the right ventricle. Lungs were minced after the
374 removal of extra-pulmonary tissues and digested in Leibovitz media (Gibco, USA, no.
375 21083-027) with 2 mg/ml collagenase type I (Worthington, CLS-1, LS004197), 2 mg/ml
376 elastase (Worthington, ESL, LS002294), and 0.4 mg/ml DNase I (Sigma, DN-25) for 45
377 min at 37 °C. To stop the digestion, fetal bovine serum (FBS, HyClone; Cytiva) was
378 added to a final concentration of 20%. The digested tissues were sequentially filtered
379 through a 70-µm and a 40-µm cell strainer (Falcon, 352350 and 352340, respectively).
380 The samples were incubated with 1 ml of red blood cell lysis buffer (15 mM NH₄Cl, 12
381 mM NaHCO₃, 0.1 mM EDTA, pH 8.0) for 2 min on ice. Leibovitz with 10% FBS and 1
382 mM EDTA was used for resuspension and washing for magnetic-activated cell sorting
383 (MACS).

384 For pulmonary epithelial cell isolation, cells were resuspended in 400 µl of buffer
385 with 30 µl of CD31 MicroBeads (130-097-418; Miltenyi Biotec, Bergisch Gladbach,
386 Germany), 30 µl of CD45 MicroBeads (130-052-301; Miltenyi Biotec), and 30 µl of anti-
387 Ter-119 MicroBeads (130-049-901; Miltenyi Biotec) and incubated for 30 min at 4 °C,
388 followed by negative selection according to the manufacturer's instructions. Cells were
389 then resuspended with 400 µl of buffer with 30 µl of CD326 (EpCAM) MicroBeads (130-
390 105-958; Miltenyi Biotec) and incubated for 30 min at 4 °C, followed by positive
391 selection according to the manufacturer's instructions. Isolated lung epithelial cells
392 were used for the lung organoid culture.

393 For lung endothelial cell (LuEC) isolation, cells were resuspended in 400 µl of
394 buffer with 30 µl of CD31 MicroBeads and incubated for 30 min at 4 °C, followed by
395 positive selection according to the manufacturer's instructions. Isolated LuECs were
396 cultured with EC growth media (DMEM; Corning; MT10013CV, 20% FBS, 1' glu-pen-
397 strep; Gibco, USA; 10378016, 100 µg/ml endothelial cell growth factor (ECGS); Sigma;
398 E2759, 100 µg/ml heparin; Sigma; H3149, 25 mM HEPES) on 0.1% gelatin (Sigma,
399 G1393)-coated plates. Cultured LuECs were then isolated with CD31 MicroBeads and
400 expanded until passage 3. Expanded LuECs were cryopreserved for lung organoid
401 culture.

402

403 **Lung organoids**

404 Lung epithelial cells (Ter119⁻/Cd31⁻/Cd45⁻/Epcam⁺) isolated from 7-10-week-old *Cracd*
405 WT mice or *Cracd* KO were cultured with lung stromal cells in a 3D organoid air-liquid
406 interface, as described previously^{24,45}. In brief, freshly sorted lung epithelial cells were
407 resuspended in 3D organoid media (Dulbecco's modified Eagle's medium [DMEM]/F12
408 [Gibco, USA]), 10% FBS [Thermo Fisher Scientific], 1' penicillin-streptomycin-glutamine
409 [Thermo Fisher Scientific], and 1' insulin-transferrin-selenium [Thermo Fisher
410 Scientific.]) and mixed with LuECs at a ratio of 1:1. Cells containing 3D media were
411 mixed with growth factor-reduced Matrigel (BD Biosciences) at a ratio of 1:1. The 100

412 ml of mixtures containing lung epithelial cells (5×10^3) and LuECs (5×10^4) were placed
413 in the transwell insert (0.4-mm pore, Corning, Lowell, MA). After incubation for 30 mins
414 at 37°C in an incubator, 500 ml of 3D media was placed in the bottom chamber to
415 generate the liquid-air interface. Media were exchanged every other day.

417 **Mammalian cell culture**

418 Human embryonic kidney 293T (HEK293T) and A549 cells were purchased from
419 American Type Culture Collection (ATCC). The murine KP-1 cells were previously
420 described²³. HEK293T cells were maintained in a DMEM medium containing 10% fetal
421 bovine serum and 1% penicillin and streptomycin. A549 cells were maintained in
422 Roswell Park Memorial Institute (RPMI) 1640 medium containing 10% fetal bovine
423 serum and 1% penicillin and streptomycin. Cells were cultured at 37°C in a humidified
424 incubator supplied with 5% CO₂ air. Mycoplasma contamination was examined using
425 the MycoAlert mycoplasma detection kit (Lonza).

427 **METHOD DETAILS**

430 **qRT-PCR**

431 RNAs were extracted by TRIzol (Invitrogen) and used to synthesize cDNAs using the
432 iScript cDNA synthesis kit (Biorad). qRT-PCR was performed using an Applied
433 Biosystems 7500 Real-Time PCR machine with the primers Target gene expression was
434 normalized to that of mouse *Hprt1* and human *HPRT1*. Comparative $2^{-\Delta\Delta Ct}$ methods were
435 used to quantify qRT-PCR results. (see Table S1 for primer information).

437 **Histology**

438 **Lung tissue.** Lung tissues were perfused with cold PBS pH 7.4 into the right
439 ventricle, fixed with 10% formalin, embedded in paraffin, and sectioned at 5-μm
440 thickness. For H&E staining, sections were incubated in hematoxylin for 3-5 min and
441 eosin Y for 20-40 s. For the immunohistochemistry analysis, sections were
442 immunostained according to standard protocols²⁵. For antigen retrieval, sections
443 were subjected to heat-induced epitope retrieval pre-treatment at 120 °C using
444 citrate-based antigen unmasking solution (Vector Laboratories, Burlingame, CA,
445 USA). For immunofluorescence, after blocking with 10% goat serum in PBS for 30
446 min at ambient temperature, sections were incubated with primary antibodies
447 (MKI67 [1:200], KRT19 [1:200], SYP [1:200], CGRP [1:200], CHGA [1:200], CDH1
448 [1:200], and ACTB [1:200]) overnight at 4 °C and secondary antibody (1:200) for 1 hr
449 at ambient temperature. Sections were mounted with ProLong Gold antifade
450 reagent with DAPI (Invitrogen). For chemically immuno-staining, sections were
451 incubated with primary antibodies (CGRP [1:200], CHGA [1:200], ASCL1 [1:200], and
452 NEUROD1 [1:200]) overnight at 4 °C and secondary antibody (1:200) for 1 hr at
453 ambient temperature. 3,3'Diaminobenzidine (DAB) (Vector Laboratory) was used as
454 the chromogens. Then, sections were dehydrated and were mounted with Permount
455 (Thermo Fisher Scientific). Images were captured with the fluorescence microscope
(Zeiss; AxioVision). See key resource table for antibody information.

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

Lung organoids (LOs). LOs were harvested in ice-cold PBS. Then Matrigel was removed using cell recovery solution (Corning, Lowell, MA) for 1 hr at 4°C. Collected LOs were washed with ice-cold PBS two times, fixed with 10% formalin, embedded in paraffin, and sectioned at 5-μm thickness. For H&E staining, sections were incubated in hematoxylin for 3-5 min and eosin Y for 20-40 s. For the immunohistochemistry analysis, sections were immunostained according to standard protocols²⁵. For antigen retrieval, sections were subjected to heat-induced epitope retrieval pre-treatment at 120 °C using citrate-based antigen unmasking solution (Vector Laboratories, Burlingame, CA, USA). For immunofluorescence, after blocking with 10% goat serum in PBS for 30 min at ambient temperature, sections were incubated with primary antibodies (CGRP [1:200], CHGA [1:200], HOPX [1:100], SPC [1:200], SCGB1A1 [1:200], and Ac-Tub [1:200]) overnight at 4 °C and secondary antibody (1:200) for 1 hr at ambient temperature. Sections were mounted with ProLong Gold antifade reagent with DAPI (Invitrogen). Images were captured with the fluorescence microscope (Zeiss; AxioVision). See key resource table for antibody information.

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

Cell lines. Cells were fixed for 20 min in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100 (in PBS) for 10 min. After three PBS washes, cells were blocked with 2% bovine serum albumin (BSA) for 30 min at ambient temperature. Cells were then incubated with antibodies diluted in 2% BSA at 4°C overnight. After three PBS washes, the cells were incubated with phalloidin (Invitrogen) by shaking at ambient temperature in the dark for 1 h. Cells were washed three times with PBS in the dark and mounted in Prolong Gold Antifade Reagent (Invitrogen).

Microscopy. Immunofluorescent staining was observed and analyzed using a fluorescent microscope (ZEISS) and ZEN software (ZEISS).

Analyzing tumor heterogeneity index

Tumor heterogeneity was calculated based on the histomorphology of H&E staining. Each unique histomorphology in one tumor burden was scored as tumor heterogeneity index (Fig. S2)

Virus production and transduction

Lentiviruses were produced using the 2nd-generation packaging vectors in 293T cells. 293T cells were cultured until 70%-80% confluent, and the media were replaced with antibiotics-free DMEM (10% FBS). After 1 hr of media exchange, cells were transfected with vector mixtures in Opti-MEM (Gibco, USA). To generate a vector mixture, pMD2.G (1.3 pmol), psPAX2 (0.72 pmol), DNA (1.64 pmol), and polyethyleneimine (PEI, 39 mg) were added to 800 ml of Opti-MEM and incubated for 15 mins. After 12 hrs of transfection, the media were exchanged with complete media (DMEM, 10% FBS, and 1× penicillin-streptomycin). The virus supernatant was collected after 24 hrs and 48 hrs and filtered with a 0.45-mm syringe filter (Thermo Fisher, CA, USA). pLenti-shCtrl (negative silencing control; Dharmacon), pLenti-shCRACD (Dharmacon;

502 V3LHS_367334), and pLenti-shCracd (Dharmacon; V2LMM_57028) vectors were used
503 for lentivirus generation. A549 and KP-1 cells were transduced by lentivirus containing
504 shCtrl (control), or shCRACD or shCracd, respectively, with polybrene (8 µg/ml).
505 Infected cells were selected using puromycin (2 µg/ml; Sigma). Adenovirus containing
506 Ad-Cre, Ad-Cre-sgLacZ, and Ad-Cre-sgCracd vector were generated by Gene Vector
507 Core at BCM. see Table S1 for shRNA and sgRNA sequences.

508

509 scRNA-seq library preparation

510 **Tissue preparation.** Whole lungs were harvested from euthanized mice (Cracd WT or
511 Cracd KO) after perfusing 10 ml of cold phosphate-buffered saline (PBS) into the
512 right ventricle. The lung was digested in Leibovitz's medium (Invitrogen) with 2
513 mg/mL Collagenase Type I (Worthington), 2 mg/mL Elastase (Worthington), and 2
514 mg/mL DNase I (Worthington) at 37 °C for 45 min. The tissue was triturated with a
515 pipet every 15 min of digestion until homogenous. The digestion was stopped with
516 FBS (Invitrogen) to a final concentration of 20%. The cells were filtered with a 70 µm
517 cell strainer (Falcon) and spun down at 5,000 r/min for 1 min. The cell pellet was
518 resuspended in red blood cell lysing buffer (Sigma) for 3 min, spun down at 5,000
519 r/min for 1 min, and washed with 1 mL ice-cold Leibovitz's medium with 10% FBS.
520 In single-cell RNA sequencing (scRNA-seq), digested lung cells were resuspended
521 in 400 µl of buffer with 5 µl of anti-CD31-FITC (BD Biosciences, CA, USA), 5 µl of
522 anti-CD45-APC (BD Biosciences), and 5 µl of anti-CD326 (EpCAM)-PE-Cy7
523 (Biolegend) and incubated for 30 min at 4 °C. Cells were then washed twice,
524 followed by sorting of the epithelial cells (EpCAM+ / CD31- / CD45-) by
525 fluorescence-activated cell sorting at the Cytometry and Cell Sorting Core at the
526 Baylor College of Medicine.

527 **Library.** Single-cell Gene Expression Library was prepared according to the guideline
528 for the Chromium Single Cell Gene Expression 3v3.1 kit (10× Genomics). Briefly,
529 single cells, reverse transcription (RT) reagents, Gel Beads containing barcoded
530 oligonucleotides, and oil were loaded on a Chromium controller (10× Genomics) to
531 generate single-cell GEMS (Gel Beads-In-Emulsions), where full-length cDNA was
532 synthesized and barcoded for each single cell. Subsequently, the GEMS were
533 broken and cDNAs from each single cell were pooled, followed by cleanup using
534 Dynabeads MyOne Silane Beads and cDNA amplification by PCR. The amplified
535 product was then fragmented to optimal size before end-repair, A-tailing, and
536 adaptor ligation. The final library was generated by amplification. The library was
537 performed at the Single Cell Genomics Core at the Baylor College of Medicine.

538

539 scRNA-seq data analysis

540 **Data processing, clustering, and annotation.** The Cell Ranger was used for
541 demultiplexing, barcoded processing, and gene counting. The loom files were
542 generated using the *velocyto* package⁴⁶. The R package *Seurat*⁴⁷ and Python
543 package *Scanpy*⁴⁸ were used for pre-processing and clustering of scRNA-seq data
544 with the loom files. UMAP was used for dimensional reduction, and cells were
545 clustered in *Seurat* or *Scanpy*. Datasets were pre-processed, normalized separately.
546 Each dataset was normalized separately and clustered by the “Leiden” algorithm⁴⁹.

547 *Cracd* WT and *Cracd* KO datasets were combined using “ingest” function in
548 Scanpy. Scanpy was used to concatenate the *Cracd* WT vs. KO dataset. Cells with
549 more than 7000 counts reads were removed. Gene expression for each cell was
550 normalized and log-transformed. The percentages of mitochondrial reads were
551 regressed before scaling the data. Dimensionality reduction and Leiden clustering
552 (resolution 0.5 ~ 1) was carried out, and cell lineages were annotated based on
553 algorithmically defined marker gene expression for each cluster
554 (`sc.tl.rank_genes_groups`, `method='wilcoxon'`). Each cluster-specific gene list is
555 shown in Table S2.

556
557 **Gene set enrichment analysis (GESA).** AT2 cell clusters were isolated and then the
558 DEGs between *Cracd* KO vs. *Cracd* WT in the AT2 clusters were identified by the
559 Wilcoxon sum test and AUROC statistics using the Presto package v. 1.0.0. They
560 were then subjected to GSEA using the fgsea package v. 1.16.0. The curated gene
561 sets (C5) in the Molecular Signature Database (MsigDB) v. 7.5.1 were used for the
562 GSEA using the msigdbr package.

563
564 **Pathway score analysis.** Scanpy with the ‘`scanpy.tl.score_genes`’ function or Seurat
565 with the ‘`AddModuleScore`’ function were used for the pathway score analysis. The
566 analysis was performed with default parameters and the reference genes from the
567 gene ontology biological process or the Kyoto Encyclopedia of Genes and Genomes
568 database^{50,51}. The gene list for the score analysis is shown in Table S3.

569
570 **Developmental state analysis.** CytoTRACE (v. 0.3.3)²⁷ was used to predict the
571 relative differentiation state of a single cell. The cells were given a CytoTRACE score
572 according to their differentiation potential, with a higher score indicating higher
573 stemness/fewer differential characteristics.

574
575 **Human scRNA-seq data analysis**

576 The public large cohort of scRNA-seq data sets (29 datasets; 556 samples;
577 <https://doi.org/10.5281/zenodo.6411867>) were downloaded and analyzed²⁹. We
578 analyzed only epithelial cell compartments (90,243 cells; 342 samples; 236 patients).
579 The clusters were refined based on the neuroendocrine marker genes. For GSEA
580 analysis, LUAD, LUAD mitotic, LUAD EMT, LUAD MSLN clusters were combined into
581 as name of LUAD non-NE, and then GSEA of LUAD NE1 vs LUAD non-NE were
582 analyzed described above.

583
584 **QUANTIFICATION AND STATISTICAL ANALYSIS**

585 GraphPad Prism 9.4 (Dogmatics) was used for statistical analyses. The Student’s *t*-test
586 was used to compare two samples. *P* values < 0.05 were considered statistically
587 significant. Error bars indicate the standard deviation (s.d.) otherwise described in
588 Figure legends. All experiments were performed three or more times independently
589 under identical or similar conditions.

592 **Supplementary information**

593

594

595 **Supplementary Figures**

596

597 **Figure S1. Illustration of the experimental scheme of lung organoid culture.**

598 Experimental scheme of LO culture. The lung epithelial cells were isolated from
599 *Cracd* WT or *Cracd* KO murine lungs by magnetic-activated cell sorting (MACS).
600 The lung epithelial cells (Ter119-/Cd31-/Cd45-/Epcam+) were co-cultured with lung
601 endothelial cells (Cd31+) at a liquid-air interface to generate LOs.

602

603 **Figure S2. Evaluation of intratumoral heterogeneity by tumor heterogeneity index
604 (THI).**

605 Intratumoral heterogeneity was assessed by calculating THI of each tumor. THI was
606 determined based on the number of histologically different tumor types assessed
607 by histomorphology of H&E staining.

608

609 **Figure S3. scRNA-seq of the murine pulmonary epithelial cells isolated from mice
610 (*Cracd* WT vs. KO).**

611 **A**, UMAP of each cell cluster annotated by cell types.
612 **B**, Dot plots depicting the expression of indicated lung epithelial cell type marker
613 genes.
614 **C**, Feature plots showing the expression of indicated lung epithelial cell type marker
615 genes.
616 **D**, Heatmap of each cluster-specific genes.

617

618 **Figure S4. Analysis of WNT signaling activity**

619 **A**, Dot plots depicting the expression of indicated genes and module score of β -
620 Catenin target genes in AT2 cell clusters shown in Figure 4A.
621 **B**, Dot plots depicting the expression of indicated genes and module score of β -
622 Catenin target genes in scRNA-seq data shown in Figure 4H.

623

624

625

626 **Supplementary Tables**

627

628 Table S1. Sequence information of primers and gRNA.

629

630 Table S2. Cluster specific gene list of scRNA-seq data.

631

632 Table S3. List of genes of each gene sets for module score analysis.

633

634

635

636 References

- 638 1. Tata, A., Chow, R.D., and Tata, P.R. (2021). Epithelial cell plasticity: breaking
639 boundaries and changing landscapes. *EMBO Rep* 22, e51921.
640 10.15252/embr.202051921.
- 641 2. Nieto, M.A. (2013). Epithelial plasticity: a common theme in embryonic and
642 cancer cells. *Science* 342, 1234850. 10.1126/science.1234850.
- 643 3. Scheibner, K., Schirge, S., Burtscher, I., Büttner, M., Sterr, M., Yang, D.,
644 Böttcher, A., Ansarullah, Irmler, M., Beckers, J., et al. (2021). Epithelial cell
645 plasticity drives endoderm formation during gastrulation. *Nat Cell Biol* 23, 692-
646 703. 10.1038/s41556-021-00694-x.
- 647 4. Tata, P.R., Mou, H., Pardo-Saganta, A., Zhao, R., Prabhu, M., Law, B.M.,
648 Vinarsky, V., Cho, J.L., Breton, S., Sahay, A., et al. (2013). Dedifferentiation of
649 committed epithelial cells into stem cells *in vivo*. *Nature* 503, 218-223.
650 10.1038/nature12777.
- 651 5. Yanger, K., Zong, Y., Maggs, L.R., Shapira, S.N., Maddipati, R., Aiello, N.M.,
652 Thung, S.N., Wells, R.G., Greenbaum, L.E., and Stanger, B.Z. (2013). Robust
653 cellular reprogramming occurs spontaneously during liver regeneration. *Genes*
654 *Dev* 27, 719-724. 10.1101/gad.207803.112.
- 655 6. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A., and Humphreys, B.D. (2014).
656 Differentiated kidney epithelial cells repair injured proximal tubule. *Proc Natl
657 Acad Sci U S A* 111, 1527-1532. 10.1073/pnas.1310653110.
- 658 7. Thorel, F., Népote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., and Herrera,
659 P.L. (2010). Conversion of adult pancreatic alpha-cells to beta-cells after
660 extreme beta-cell loss. *Nature* 464, 1149-1154. 10.1038/nature08894.
- 661 8. Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K., Begthel,
662 H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., et al. (2016).
663 Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their
664 Enterocyte-Lineage Daughters. *Cell Stem Cell* 18, 203-213.
665 10.1016/j.stem.2016.01.001.
- 666 9. Mascré, G., Dekoninck, S., Drogat, B., Youssef, K.K., Broheé, S., Sotiropoulou,
667 P.A., Simons, B.D., and Blanpain, C. (2012). Distinct contribution of stem and
668 progenitor cells to epidermal maintenance. *Nature* 489, 257-262.
669 10.1038/nature11393.
- 670 10. Painter, M.W., Brosius Lutz, A., Cheng, Y.C., Latremoliere, A., Duong, K., Miller,
671 C.M., Posada, S., Cobos, E.J., Zhang, A.X., Wagers, A.J., et al. (2014).

672 Diminished Schwann cell repair responses underlie age-associated impaired
673 axonal regeneration. *Neuron* 83, 331-343. 10.1016/j.neuron.2014.06.016.

674 11. Torborg, S.R., Li, Z., Chan, J.E., and Tammela, T. (2022). Cellular and molecular
675 mechanisms of plasticity in cancer. *Trends Cancer* 8, 735-746.
676 10.1016/j.trecan.2022.04.007.

677 12. Shi, Z.D., Pang, K., Wu, Z.X., Dong, Y., Hao, L., Qin, J.X., Wang, W., Chen, Z.S.,
678 and Han, C.H. (2023). Tumor cell plasticity in targeted therapy-induced
679 resistance: mechanisms and new strategies. *Signal Transduct Target Ther* 8,
680 113. 10.1038/s41392-023-01383-x.

681 13. Meacham, C.E., and Morrison, S.J. (2013). Tumour heterogeneity and cancer
682 cell plasticity. *Nature* 501, 328-337. 10.1038/nature12624.

683 14. Rubin, M.A., Bristow, R.G., Thienger, P.D., Dive, C., and Imielinski, M. (2020).
684 Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on
685 Progression and Response in Prostate and Lung Cancers. *Mol Cell* 80, 562-577.
686 10.1016/j.molcel.2020.10.033.

687 15. Oser, M.G., Niederst, M.J., Sequist, L.V., and Engelman, J.A. (2015).
688 Transformation from non-small-cell lung cancer to small-cell lung cancer:
689 molecular drivers and cells of origin. *Lancet Oncol* 16, e165-172.
690 10.1016/s1470-2045(14)71180-5.

691 16. Sequist, L.V., Waltman, B.A., Dias-Santagata, D., Digumarthy, S., Turke, A.B.,
692 Fidias, P., Bergethon, K., Shaw, A.T., Gettinger, S., Cosper, A.K., et al. (2011).
693 Genotypic and histological evolution of lung cancers acquiring resistance to
694 EGFR inhibitors. *Sci Transl Med* 3, 75ra26. 10.1126/scitranslmed.3002003.

695 17. Lee, M., Patel, D., Jofre, S., Fidvi, S., Suhrland, M., Cohen, P., and Cheng, H.
696 (2022). Large Cell Neuroendocrine Carcinoma Transformation as a Mechanism
697 of Acquired Resistance to Osimertinib in Non-small Cell Lung Cancer: Case
698 Report and Literature Review. *Clin Lung Cancer* 23, e276-e282.
699 10.1016/j.cllc.2021.08.002.

700 18. Awad, M.M., Liu, S., Rybkin, II, Arbour, K.C., Dilly, J., Zhu, V.W., Johnson, M.L.,
701 Heist, R.S., Patil, T., Riely, G.J., et al. (2021). Acquired Resistance to
702 KRAS(G12C) Inhibition in Cancer. *N Engl J Med* 384, 2382-2393.
703 10.1056/NEJMoa2105281.

704 19. Levacq, D., D'Haene, N., de Wind, R., Remmelink, M., and Berghmans, T.
705 (2016). Histological transformation of ALK rearranged adenocarcinoma into
706 small cell lung cancer: A new mechanism of resistance to ALK inhibitors. *Lung
707 Cancer* 102, 38-41. 10.1016/j.lungcan.2016.10.012.

708 20. Pisani, D., Micallef, D., Scerri, J., Betts, A., Degaetano, J., and Baldacchino, S.
709 (2023). Neuroendocrine Transdifferentiation in Cutaneous Melanoma: A Case
710 Report and Review of the Literature. *Am J Dermatopathol* 45, 264-268.
711 10.1097/dad.0000000000002377.

712 21. Farrell, A.S., Joly, M.M., Allen-Petersen, B.L., Worth, P.J., Lanciault, C., Sauer,
713 D., Link, J., Pelz, C., Heiser, L.M., Morton, J.P., et al. (2017). MYC regulates
714 ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma
715 associated with poor outcome and chemoresistance. *Nat Commun* 8, 1728.
716 10.1038/s41467-017-01967-6.

717 22. Wang, Y., Wang, Y., Ci, X., Choi, S.Y.C., Crea, F., Lin, D., and Wang, Y. (2021).
718 Molecular events in neuroendocrine prostate cancer development. *Nat Rev Urol*
719 18, 581-596. 10.1038/s41585-021-00490-0.

720 23. Jung, Y.S., Wang, W., Jun, S., Zhang, J., Srivastava, M., Kim, M.J., Lien, E.M.,
721 Shang, J., Chen, J., McCrea, P.D., et al. (2018). Dereulation of CRAD-
722 controlled cytoskeleton initiates mucinous colorectal cancer via β -catenin. *Nat*
723 *Cell Biol* 20, 1303-1314. 10.1038/s41556-018-0215-z.

724 24. Lee, J.H., Bhang, D.H., Beede, A., Huang, T.L., Stripp, B.R., Bloch, K.D.,
725 Wagers, A.J., Tseng, Y.H., Ryeom, S., and Kim, C.F. (2014). Lung stem cell
726 differentiation in mice directed by endothelial cells via a BMP4-NFATc1-
727 thrombospondin-1 axis. *Cell* 156, 440-455. 10.1016/j.cell.2013.12.039.

728 25. Kim, M.J., Cervantes, C., Jung, Y.S., Zhang, X., Zhang, J., Lee, S.H., Jun, S.,
729 Litovchick, L., Wang, W., Chen, J., et al. (2021). PAF remodels the DREAM
730 complex to bypass cell quiescence and promote lung tumorigenesis. *Mol Cell*
731 81, 1698-1714.e1696. 10.1016/j.molcel.2021.02.001.

732 26. Kim, K.B., Kabra, A., Kim, D.W., Xue, Y., Huang, Y., Hou, P.C., Zhou, Y.,
733 Miranda, L.J., Park, J.I., Shi, X., et al. (2022). KIX domain determines a selective
734 tumor-promoting role for EP300 and its vulnerability in small cell lung cancer.
735 *Sci Adv* 8, eabl4618. 10.1126/sciadv.abl4618.

736 27. Gulati, G.S., Sikandar, S.S., Wesche, D.J., Manjunath, A., Bharadwaj, A., Berger,
737 M.J., Ilagan, F., Kuo, A.H., Hsieh, R.W., Cai, S., et al. (2020). Single-cell
738 transcriptional diversity is a hallmark of developmental potential. *Science* 367,
739 405-411. 10.1126/science.aax0249.

740 28. Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and
741 Weinberg, R.A. (2008). An embryonic stem cell-like gene expression signature in
742 poorly differentiated aggressive human tumors. *Nat Genet* 40, 499-507.
743 10.1038/ng.127.

744 29. Salcher, S., Sturm, G., Horvath, L., Untergasser, G., Kuempers, C., Fotakis, G.,
745 Panizzolo, E., Martowicz, A., Trebo, M., Pall, G., et al. (2022). High-resolution
746 single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in
747 non-small cell lung cancer. *Cancer Cell* **40**, 1503-1520.e1508.
748 10.1101/j.ccell.2022.10.008.

749 30. Yuan, T.C., Veeramani, S., and Lin, M.F. (2007). Neuroendocrine-like prostate
750 cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma
751 cells. *Endocr Relat Cancer* **14**, 531-547. 10.1677/erc-07-0061.

752 31. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells,
753 cancer, and cancer stem cells. *Nature* **414**, 105-111. 10.1038/35102167.

754 32. Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. *Cancer Discov* **12**,
755 31-46. 10.1158/2159-8290.Cd-21-1059.

756 33. Gardner, E.E., Lok, B.H., Schneeberger, V.E., Desmeules, P., Miles, L.A., Arnold,
757 P.K., Ni, A., Khodos, I., de Stanchina, E., Nguyen, T., et al. (2017).
758 Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-
759 SLFN11 Axis. *Cancer Cell* **31**, 286-299. 10.1101/j.ccell.2017.01.006.

760 34. George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu,
761 X., Fernandez-Cuesta, L., Bosco, G., et al. (2015). Comprehensive genomic
762 profiles of small cell lung cancer. *Nature* **524**, 47-53. 10.1038/nature14664.

763 35. Rudin, C.M., Durinck, S., Stawiski, E.W., Poirier, J.T., Modrusan, Z., Shames,
764 D.S., Bergbower, E.A., Guan, Y., Shin, J., Guillory, J., et al. (2012).
765 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene
766 in small-cell lung cancer. *Nat Genet* **44**, 1111-1116. 10.1038/ng.2405.

767 36. Gay, C.M., Stewart, C.A., Park, E.M., Diao, L., Groves, S.M., Heeke, S., Nabet,
768 B.Y., Fujimoto, J., Solis, L.M., Lu, W., et al. (2021). Patterns of transcription
769 factor programs and immune pathway activation define four major subtypes of
770 SCLC with distinct therapeutic vulnerabilities. *Cancer Cell* **39**, 346-360 e347.
771 10.1101/j.ccell.2020.12.014.

772 37. Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskeleton.
773 *Nature* **463**, 485-492. 10.1038/nature08908.

774 38. Davidson, P.M., and Cadot, B. (2021). Actin on and around the Nucleus. *Trends
775 Cell Biol* **31**, 211-223. 10.1101/j.tcb.2020.11.009.

776 39. Guo, J., Wang, Y., Sachs, F., and Meng, F. (2014). Actin stress in cell
777 reprogramming. *Proc Natl Acad Sci U S A* **111**, E5252-5261.
778 10.1073/pnas.1411683111.

779 40. Luca, V.C., Kim, B.C., Ge, C., Kakuda, S., Wu, D., Roein-Peikar, M.,
780 Haltiwanger, R.S., Zhu, C., Ha, T., and Garcia, K.C. (2017). Notch-Jagged
781 complex structure implicates a catch bond in tuning ligand sensitivity. *Science*
782 355, 1320-1324. 10.1126/science.aaf9739.

783 41. Wang, X., and Ha, T. (2013). Defining single molecular forces required to activate
784 integrin and notch signaling. *Science* 340, 991-994. 10.1126/science.1231041.

785 42. Huang, Y., Zhang, S., and Park, J.I. (2022). Nuclear Actin Dynamics in Gene
786 Expression, DNA Repair, and Cancer. *Results Probl Cell Differ* 70, 625-663.
787 10.1007/978-3-031-06573-6_23.

788 43. Olave, I.A., Reck-Peterson, S.L., and Crabtree, G.R. (2002). Nuclear actin and
789 actin-related proteins in chromatin remodeling. *Annu Rev Biochem* 71, 755-781.
790 10.1146/annurev.biochem.71.110601.135507.

791 44. DuPage, M., Dooley, A.L., and Jacks, T. (2009). Conditional mouse lung cancer
792 models using adenoviral or lentiviral delivery of Cre recombinase. *Nature*
793 protocols 4, 1064-1072.

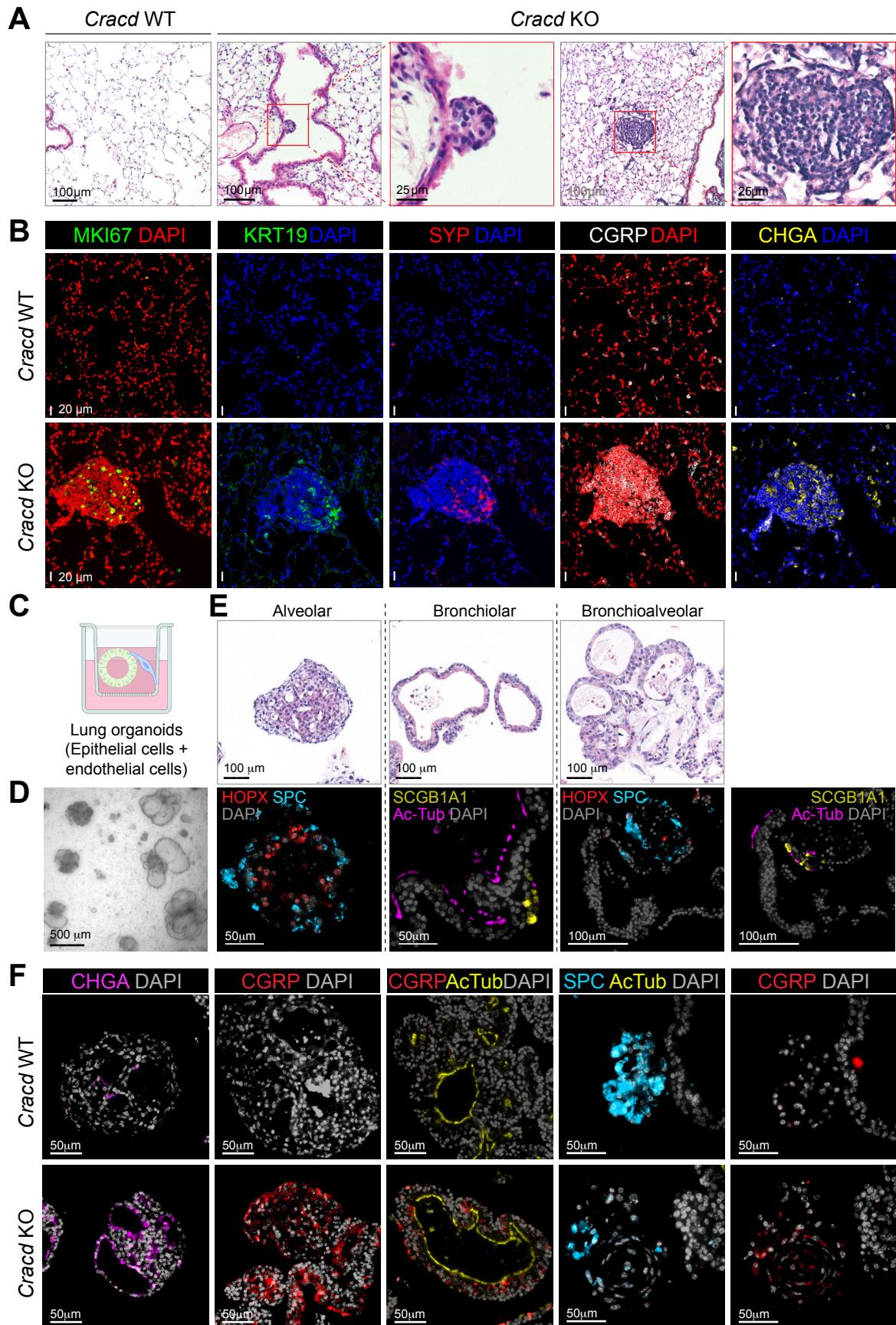
794 45. Dost, A.F.M., Moye, A.L., Vedaie, M., Tran, L.M., Fung, E., Heinze, D., Villacorta-
795 Martin, C., Huang, J., Hekman, R., Kwan, J.H., et al. (2020). Organoids Model
796 Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial
797 Progenitor Cells. *Cell Stem Cell* 27, 663-678.e668. 10.1016/j.stem.2020.07.022.

798 46. La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
799 Lidschreiber, K., Kastriti, M.E., Lönnberg, P., Furlan, A., et al. (2018). RNA
800 velocity of single cells. *Nature* 560, 494-498. 10.1038/s41586-018-0414-6.

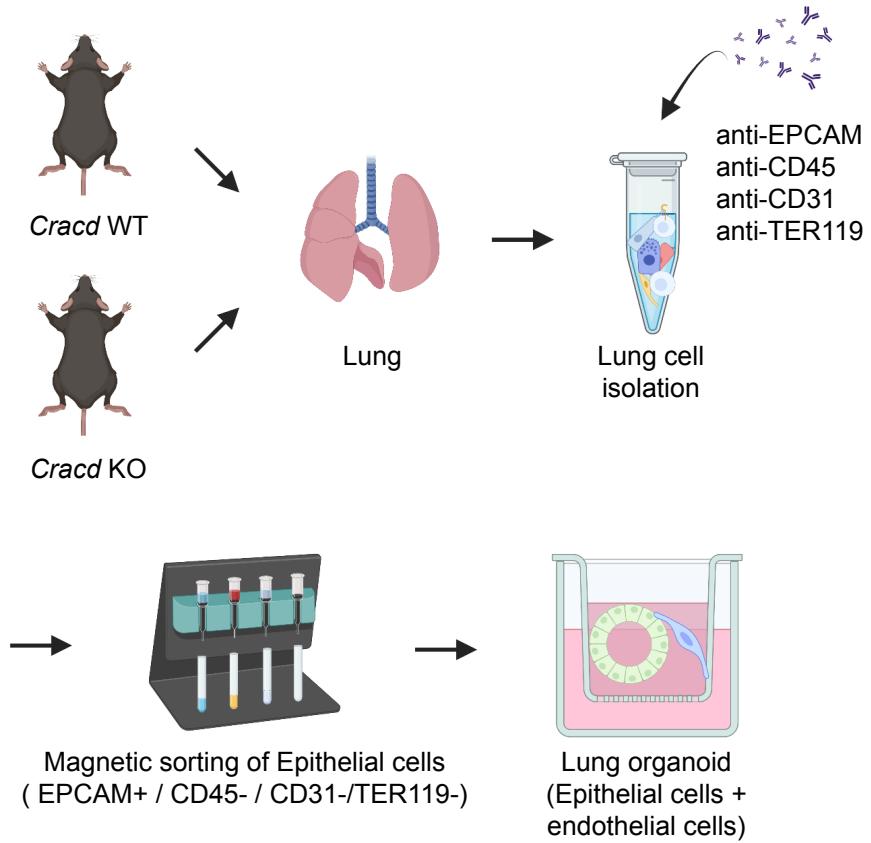
801 47. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck III, W.M., Zheng, S., Butler, A.,
802 Lee, M.J., Wilk, A.J., Darby, C., and Zager, M. (2021). Integrated analysis of
803 multimodal single-cell data. *Cell* 184, 3573-3587. e3529.

804 48. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell
805 gene expression data analysis. *Genome Biology* 19, 15. 10.1186/s13059-017-
806 1382-0.

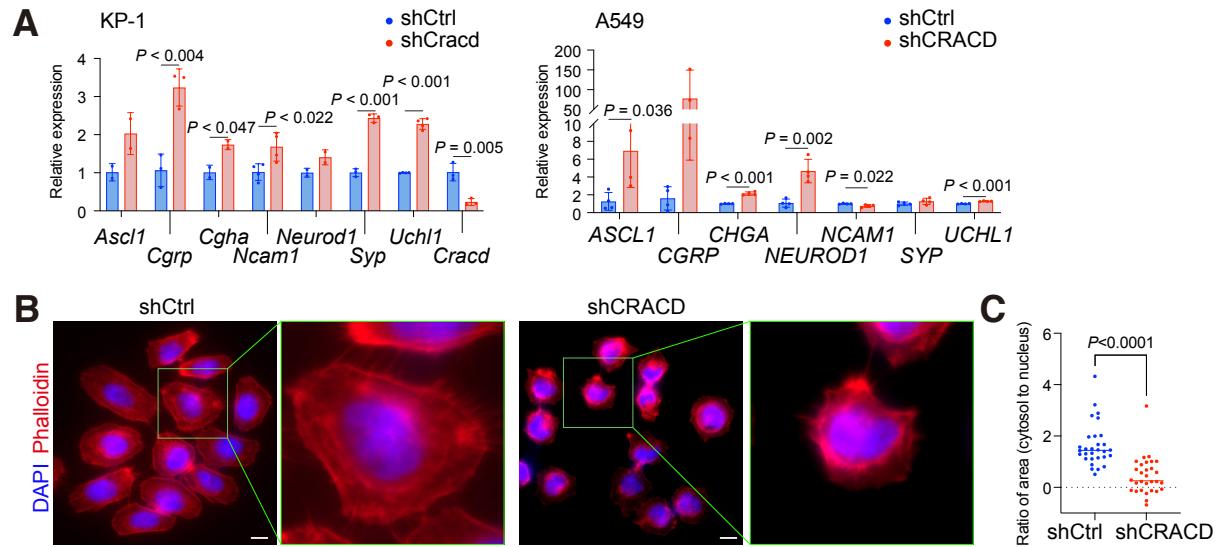
807 49. Traag, V.A., Waltman, L., and Van Eck, N.J. (2019). From Louvain to Leiden:
808 guaranteeing well-connected communities. *Scientific reports* 9, 1-12.

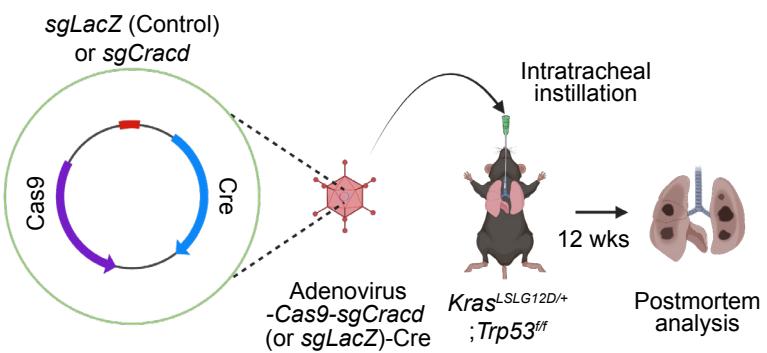

809 50. Kanehisa, M. (1996). Toward pathway engineering: a new database of genetic
810 and molecular pathways. *Sci. Technol. Jap.* 59, 34-38.

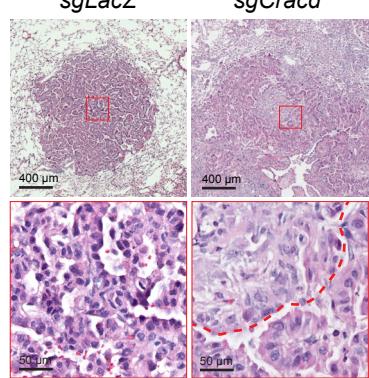
811 51. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
812 Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology:

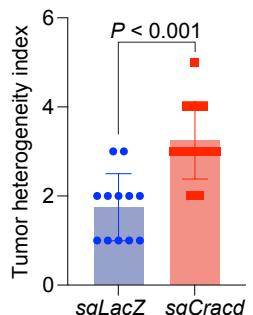

813
814
815

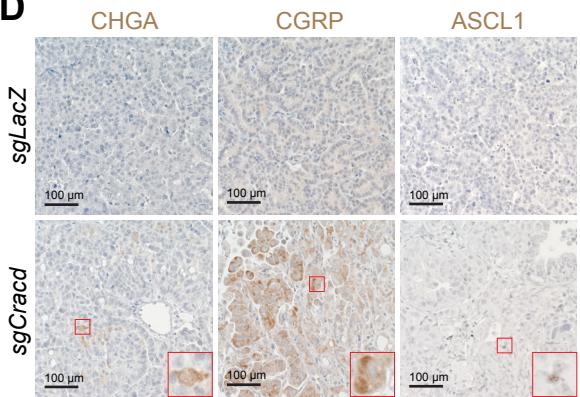
tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 25, 25-29. 10.1038/75556.

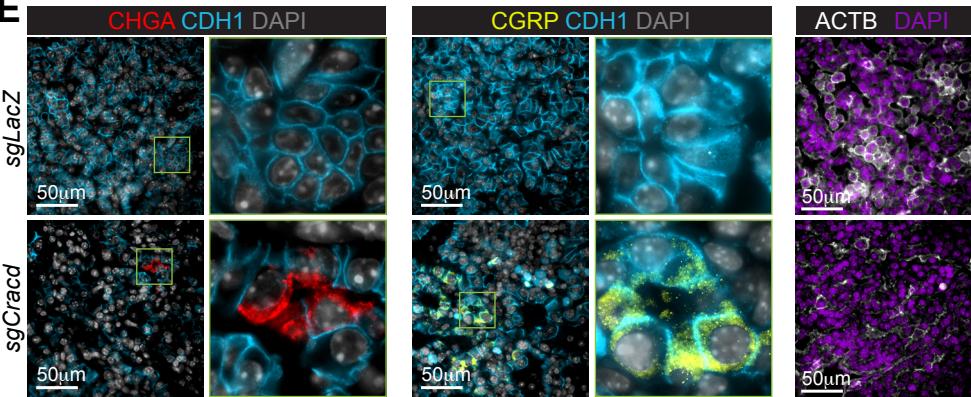

Figure 1 *Cracd* WT

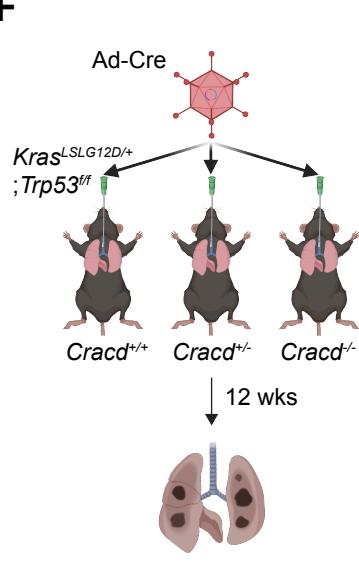

Supplementary Figure 1

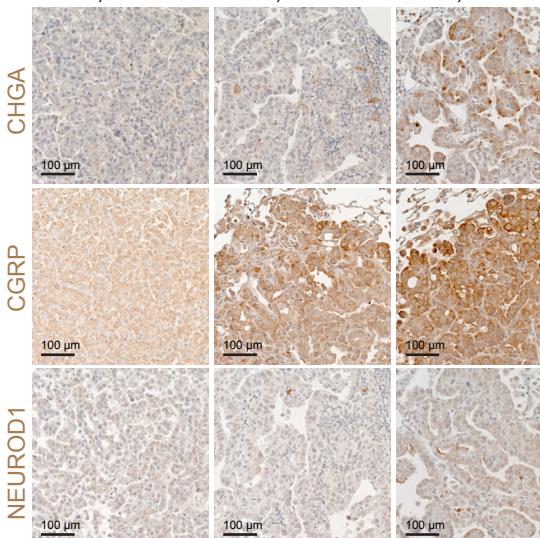

Figure 2

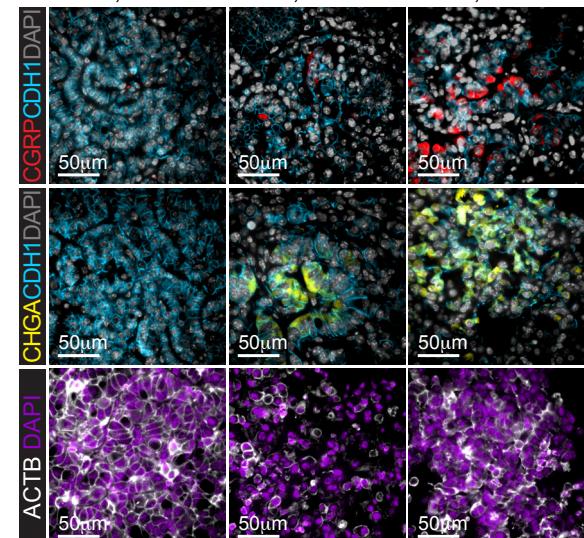

A

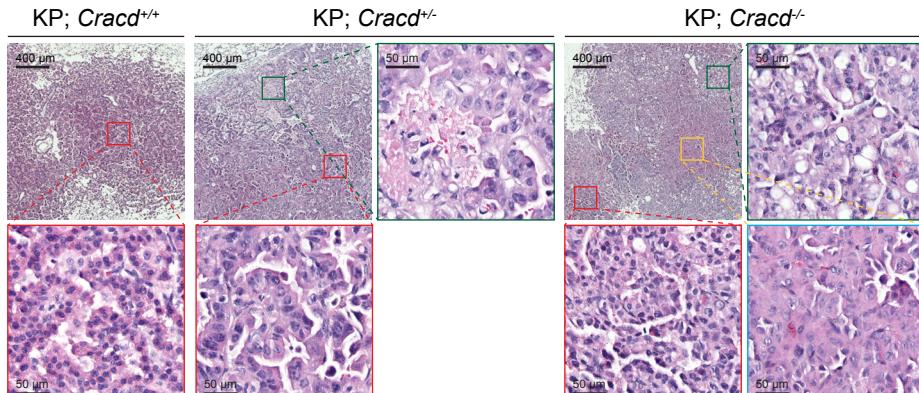

B

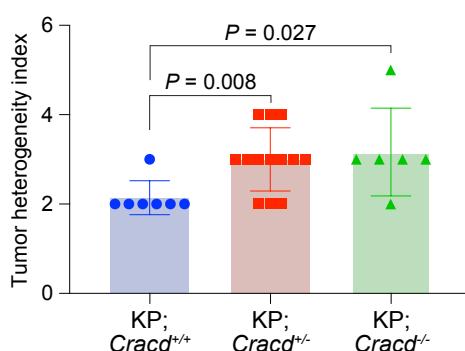

C

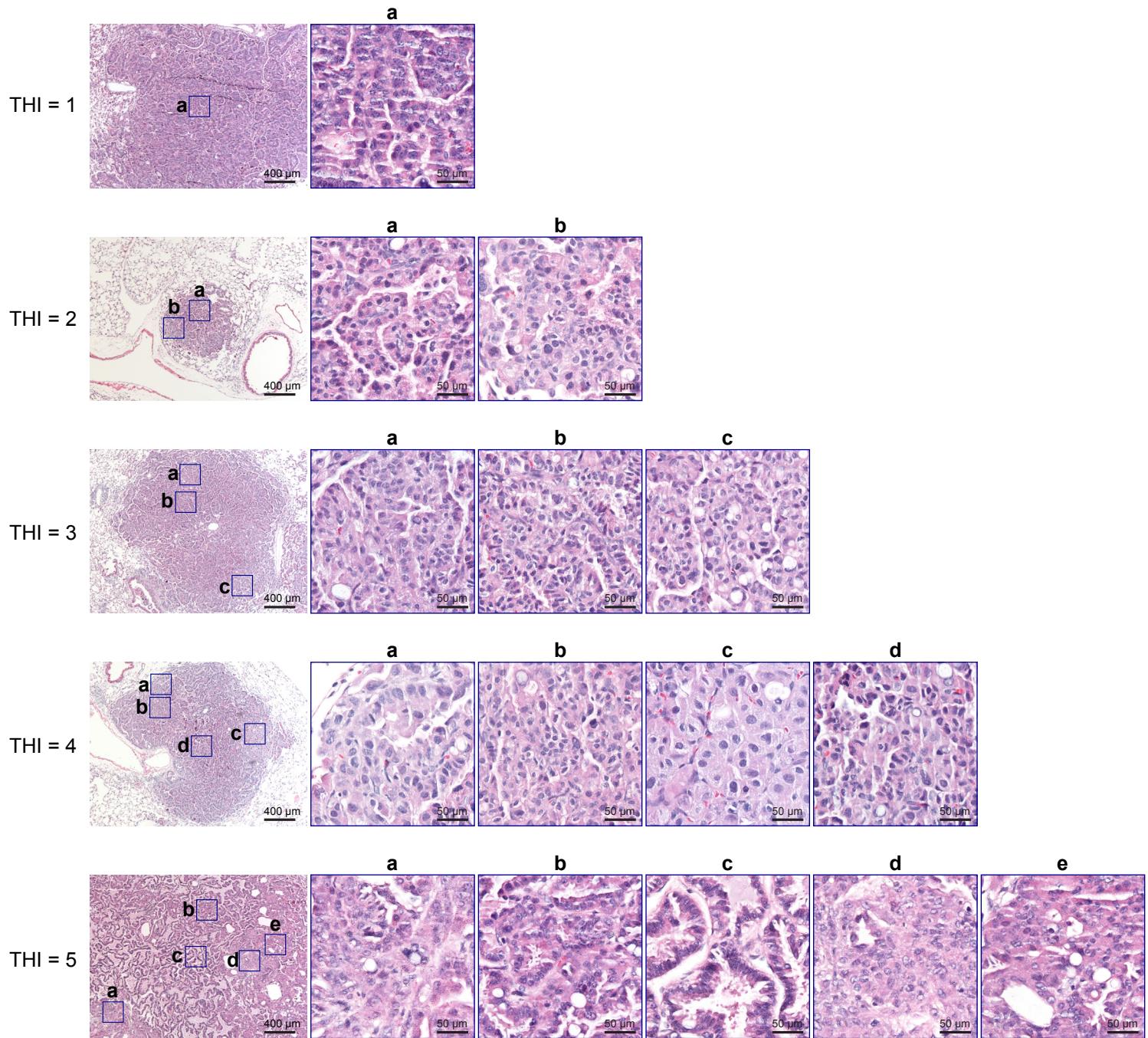

D

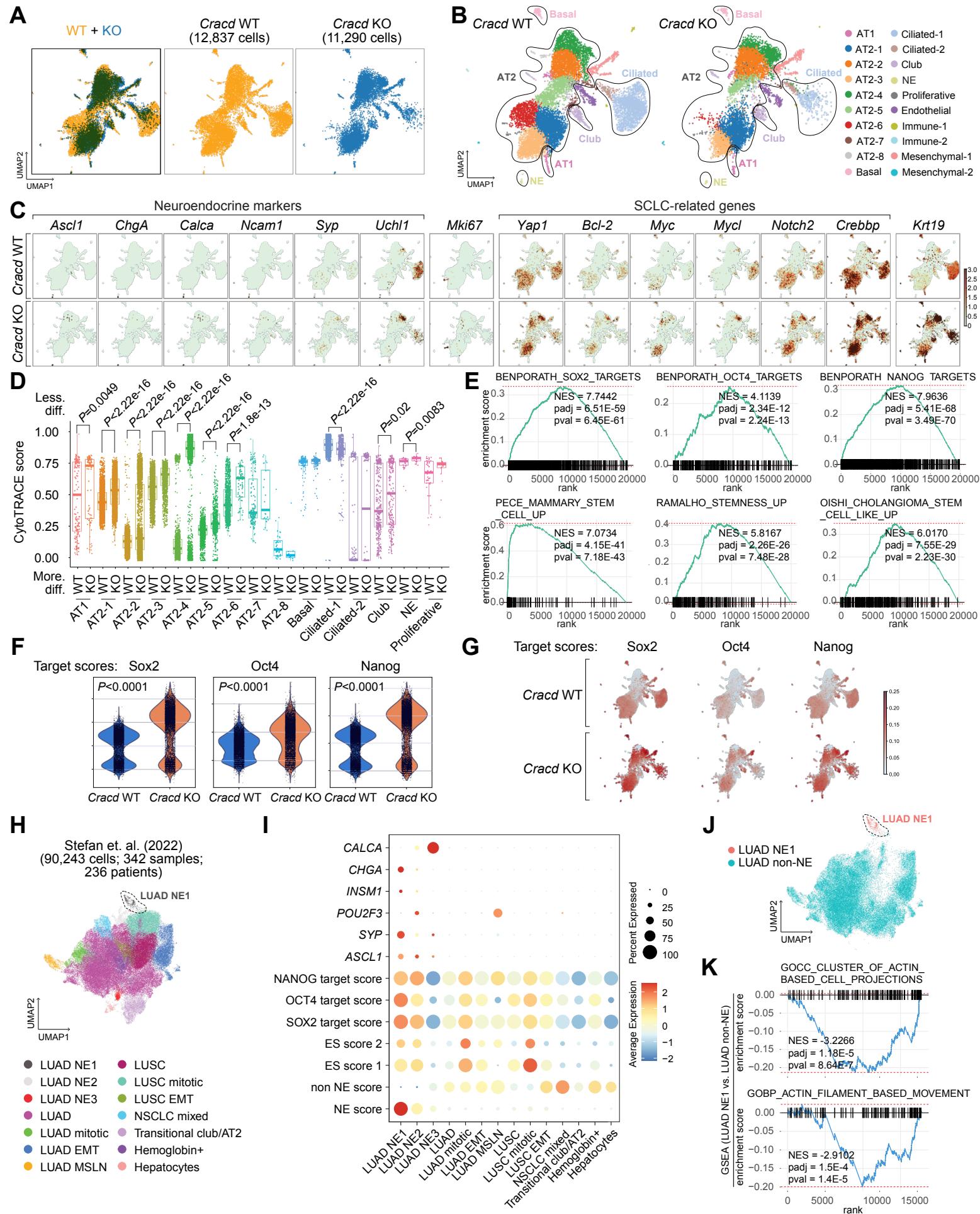

E


F

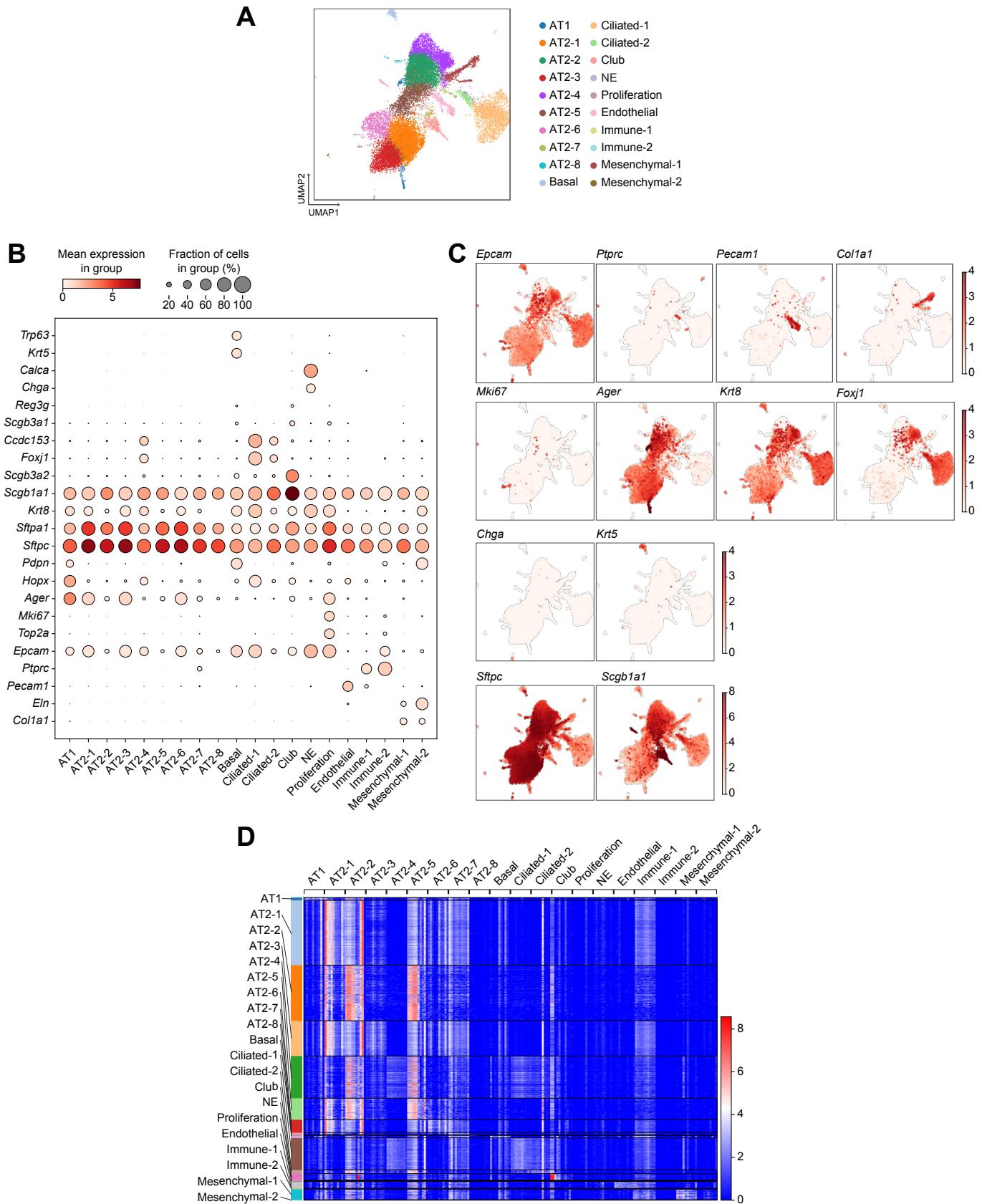

G


H

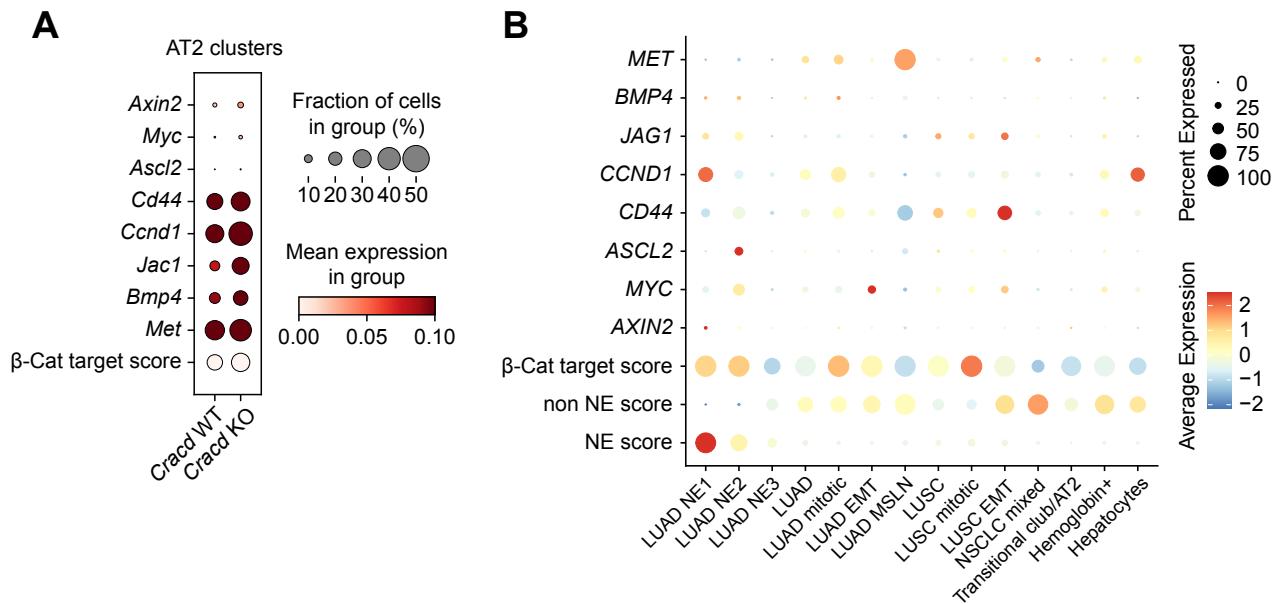

I



J



Tumor Heterogeneity Index (THI)



Supplementary Figure S3

Supplementary Figure S4

