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Abstract

Deployment and access to state-of-the-art diagnostic technologies remains a fundamental
challenge in providing equitable global cancer care to low-resource settings. The expansion of
digital pathology in recent years and its interface with computational biomarkers provides an
opportunity to democratize access to personalized medicine. Here we describe a low-cost
platform for digital side capture and computational analysis composed of open-source
components. The platform provides low-cost ($200) digital image capture from glass slides and
is capable of real-time computational image analysis using an open-source deep learning (DL)
algorithm and Raspberry Pi ($35) computer. We validate the performance of deep learning
models' performance using images captured from the open-source workstation and show similar
model performance when compared against significantly more expensive standard institutional
hardware.

Introduction

The global burden of cancer is increasing as mortality associated with communicable diseases,
starvation, and war declines. In the past a majority of cancer cases and cancer-related deaths
occurred in higher income countries. However, the demographics of cancer are shifting:
incidence of cancer in low Human Development Index countries is projected to double between
2008 and 2030 and increase by 81% in middle Human Development Index countries. Advances
in cancer care disproportionately benefit people in high HDI countries: fewer cancer-related
gains in life expectancy are seen in low versus high HDI countries [1, 2]. It is therefore crucial to
adapt the complex cancer diagnostics currently used in high-resource settings for broader
application. A hallmark of cancer diagnosis worldwide is pathological analysis with hematoxylin
and eosin (H&E) stained tumor biopsy sections, and additional molecular tests can help aid
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treatment decision-making. Access to extensive molecular testing is currently limited by cost, so
as the demographics of disease change and a growing number of people are diagnosed with
cancers that require more complex diagnostic techniques, there is a growing need to close the
diagnostic gap between high- and low-income regions.

Digital pathology involves the acquisition and analysis of digital histopathological images in
place of conventional microscopy [3-5]. As digitized whole slide images (WSIs) of
histopathologic slides become more widely available, computer vision and machine learning
methods in digital pathology have the potential to automate diagnosis based on images of H&E
slides. Deep learning (DL), which is a subdomain of machine learning that uses multi-layered
convolutional neural networks to identify patterns and features in complex datasets [6, 7], can
automate diagnostic workflows and reduce costs [8, 9] while still providing the same information
that a human pathologist identifies in each histologic image [4, 10]. In addition, DL algorithms
analyze higher-order image characteristics to identify important histologic and clinically
actionable features including distinguishing cancerous from non-cancerous tissue, survival,
treatment response, and genetic alterations [7, 11, 12].

Deep learning algorithms remain largely out of reach in low resource settings, where automation
could offer an opportunity to address personnel shortages and lack of equipment as well as
reduce costs associated with precision cancer care. Governments and corporations invest
extensive resources into oncologic research to develop advanced diagnostics and targeted
therapies, yet implementation barriers limit the ability of these advances to reduce the global
burden of cancer. Specific advantages of digital pathology include the ability to share images in
real time to allow for remote collaboration, easy acquisition of large amounts of data for
analysis, and the potential to lower costs by reducing the amount of human pathologist review
needed to make a diagnosis [5, 13]. These features make digital pathology well-suited for
improving access to precision medicine in under-resourced areas.

However, state of the art DL-based methods for digital pathology diagnostics fail to integrate
their technology with hardware and computing resources commonly found in lower-resource
settings. As of November 2022, only one FDA-approved commercial Al technology for digital
pathology exists, and no open-source technologies have gained approval [14, 15]. Purchasing
commercial software, computing resources, and whole slide image scanners needed for
currently available Al pathology tools costs hundreds of thousands of dollars, making them
unusable in low resource settings. Additionally, validation of existing digital pathology DL
methods has only been performed with high-cost equipment in high-income countries.

To overcome the cost barrier in digital pathology analysis, we compiled a fully integrated set of
open-source, low-cost hardware and software components to compare DL model performance
against high-cost methods. Several studies have shown that digital images from diagnostic
glass slides can be captured with low-cost equipment at sufficient resolution for DL model
analysis [16-20]. We constructed a workflow consisting of entirely open-source resources that
integrates images captured with low-cost hardware, low-cost computing equipment, and publicly
available DL models, thereby producing an end-to-end low-cost digital histology deep learning
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analysis toolkit [21]. We developed and tested a novel, $200 platform for image capture of
histopathological slides and used an open-source DL pipeline run on a $35 Raspberry Pi
computer to classify tissue samples from two distinct datasets. We show that model
performance on images captured with low-cost equipment matches that of images captured with
gold standard high-cost equipment and validated our pipeline for automated digital pathology
biomarker-based classification of head and neck squamous cell carcinoma (HNSCC) and lung
cancer subtypes.

Materials and Methods

Data were collected to train DL models to perform various classification tasks. To predict human
papillomavirus (HPV) status in HNSCC and lung cancer subtype, we collected publicly available
histology images, which were captured using an Aperio ScanScope or other Aperio slide
scanner and stored in SVS format from The Cancer Genome Atlas (TCGA). Tissue samples in
these TCGA datasets originate from patients who live primarily in the United States and Europe
[22]. Most patients’ primary tumor sites were classified as oral cavity tumors. To perform
external validation on models trained with data from TCGA, we collected whole slide images
(WSIs) from the University of Chicago Medical Center (UCMC), in accordance with University of
Chicago IRB protocol 20-0238. For TCGA and UCMC datasets, pathologists identified and
annotated tumor regions of interest (ROI) within each WSI. Patient demographics in the UCMC
dataset were similar to those in the TCGA dataset.

HPV status HNSCC dataset preparation

In this retrospective study, 472 digitized whole slide images (WSI) of H&E tissue samples from
patients with HNSCC and a known HPV status were collected in SVS format from TCGA.
Among this TCGA cohort, 52 patients were classified as HPV positive and 407 were classified
as HPV negative. For HNSCC HPV status model testing, we used a UCMC external validation
dataset consisting of ten histopathology glass slides collected from patients with HNSCC and a
known HPV status. Of these patients, five had HPV positive and five had HPV negative cancers.

Lung cancer dataset preparation

941 digitized whole slide images (WSI) of H&E tissue samples from patients with lung cancer of
a known subtype were also collected in SVS format from TCGA. 472 tissue samples from this
cohort were classified as lung adenocarcinoma and 469 were classified as squamous cell
carcinoma. We also performed external validation of the lung classification model using a
dataset from UCMC consisting of ten histopathology glass slides collected from patients with
lung cancer of known subtype. Of these patients, five had lung adenocarcinoma and five had
squamous cell carcinoma.

Current standard imaging hardware and acquisition

For baseline “gold standard” validation image capture, we used a shared resource 3DHISTECH
($200,000) digital pathology microscope slide scanner for acquisition of images at 40X
magnification. The 3DHISTECH scanner captures images in MRXS format.

Open-source microscopy manufacture and image acquisition
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To assess a cost-efficient alternative to professional grade microscopes, we used the
OpenFlexure Microscope v6 design and assembled it with a fused deposition modeling 3D-
printer (Creality CR-10s), which includes optics, illumination, and stage modules. Our current
model of the device differs from the published OpenFlexure design in that it excludes the
motorized stage. We used manual rather than motorized stage actuators to maximize stage
mobility and attached the optics and illumination modules to the stage piece with the system of
rails in the OpenFlexure design, securing the parts with m3 hex head screws. This microscope
was then paired with a low-cost Raspberry Pi Model 4B ($35) and associated Camera Module 2
($30) to acquire partial-slide images from ten UCMC HNSCC glass slides and ten UCMC lung
cancer glass slides [21, 23].

Raw images captured at 10X magnification provided using the OpenFlexure device were
generally clear, but most images had some degree of blur, color distortion, and/or spherical
aberration. After manual calibration, effective optical magnification was determined to be
approximately 0.4 microns per pixel. The Raspbian-OpenFlexure operating system provided the
software needed to visualize the glass slide on a monitor as well as capture and save images.
Images captured from the OpenFlexure device were saved in JPEG format on-device and used
for subsequent analysis.

Figure 1. Low-cost, open-source
digital pathology workstation
components. Left: Assembled
hardware and software components
with projected digital pathology content
running Slideflow software on
Raspberry Pi computer. Below:
Hardware and software components
with respective costs and licenses.

Component of workflow Cost License

Creative Commons Attribution 4.0 International License

OpenFlexure Microscope $150 (CC BY 4.0)

Creative Commons Attribution-NoDerivatives 4.0

Raspberry Pi 4 Model B 5100 International (CC BY-ND)
Hardware
Rasoberrv Pi camera module $75 Creative Commons Attribution-NoDerivatives 4.0
pherry International (CC BY-ND)
Monitor <5100 Variable
Raspbian-OpenFlexure OS Free GNU General Public License (v3)
(OpenFlexure Connect)
Software Raspberry Pi OS Free The 3-Clause BSD License

Slideflow Free GNU General Public License v3.0
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Histology image processing

To assess the impact of low- vs high-cost image capture methods, we produced two sets of
scanned histology images for the UCMC validation cohorts: 1) WSIs from a clinical-grade
microscope, and 2) partial-slide images from the OpenFlexure device. Slides from the validation
dataset were first scanned with the high-cost 3DHISTECH microscope, producing whole-slide
images (WSiIs) for each glass slide. For a subset of the slides in the validation studies, partial-
slide images were then captured using the OpenFlexure microscope. As the OpenFlexure
device is not yet capable of WSI capture, only partial slide images could be captured. For these
slides, we captured predetermined Regions of Interest (ROIs) containing strongly predictive
morphological features. This partial-slide, proof-of-concept data capture enabled us to
demonstrate that histopathological images acquired using low-cost equipment can be accurately
classified with open-source deep learning algorithms. We captured 100 images of the
predetermined morphologically informative regions at 10X magnification using OpenFlexure
software (OpenFlexure Connect) on the Raspberry Pi, five from each of the ten slides in the
HPV validation dataset and five from each of the ten slides in the lung cancer validation dataset
[21]. For both whole-slide (3DHISTECH) and partial-slide (OpenFlexure) images, DL predictions
were generated on smaller image tiles (tile width 299 pixels and 302 pym), and final slide-level
predictions were calculated by averaging tile predictions. All image processing was performed
using Slideflow [24].

Deep learning models

The HPV DL classification model was trained on the full HNSCC TCGA dataset to predict
whether samples came from patients with HPV-positive or HPV-negative tumors. This model
was then validated on the small institutional dataset from UCMC. The lung cancer classification
model was trained to classify tumor tissue as either adenocarcinoma or squamous cell
carcinoma on the full TCGA lung cancer dataset, and then validated on the UCMC institutional
dataset. Weakly-supervised DL model training was performed using a convolutional neural
network with an Xception-based architecture, ImageNet pretrained weights, and two hidden
layers of width 1024 with dropout of 0.1 after each hidden layer [25]. Tiles received data
augmentation with flipping, rotating, JPEG compression, and Gaussian blur. Model training was
performed with 1 epoch and 3-fold cross-validation, using the Adam optimizer, a learning rate of
10*. Models were trained using Slideflow version 1.2.3 [24] with the Tensorflow backend
(version 2.8.2) in Python 3.8. All hyperparameters are listed in Supplementary Table 1.

Computational resources

DL models require central processing units (CPUs) and graphical processing units (GPUs) with
sufficient computational power to generate predictions. DL classification of the images captured
using the 3DHISTECH microscope with Slideflow was carried out with an NVIDIA Titan RTX
GPU ($3000) that is representative of the high-cost computational resources currently used for
automated analysis of WSIs. To demonstrate the feasibility of using low-cost computational
hardware to generate DL predictions, the images captured using the OpenFlexure device were
classified using Slideflow hosted on a $35 Raspberry Pi 4B computer with a Broadcom
BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor and 4 GB of RAM.
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User interface

Slideflow includes an open-source graphical user interface (GUI) that allows for interactive
visualization of model predictions from histopathological images (Figure 2). The Slideflow GUI
can flexibly accommodate a variety of trained models for digital pathology image classification
and can generate predictions from both Raspberry Pi camera capture, partial-slide images, and
whole-slide images. We optimized this interface for deployment on low-memory, ARM-based
edge devices including the Raspberry Pi and used the interface to generate predictions for all
images captured on the OpenFlexure device.

) y=6161 mpp

Figure 2. Open-source user interface for interactive visualization and generation of model
predictions. Slideflow can be used to deploy a variety of trained models for digital pathology
image classification, generating predictions for both partial-slide and whole-slide images.
Predictions can be rendered for whole slides (rendered as a heatmap, as shown) or focal areas
(rendered as individual tiles, as shown in the bottom right corner). The Slideflow user interface
has been optimized for both x86 and low-power ARM-based devices. The above screenshot
displays a heatmap of a WSI prediction, captured on the Raspberry Pi 4B.

The user interface utilizes a Python wrapper of Dear Imgui [25] for GUI rendering. The interface
supports displaying and navigating both partial-slide and whole-slide images (JPEG, SVS,
NDPI, MRXS, TIFF) with panning and zooming. Slide images are read using VIPS [26] and
rendered using OpenGL 2.1+. Loading and navigating a whole-slide image utilizes <2 GB of
RAM and provides a smooth experience, rendering slides at an average of 18 frames per
second (FPS) while actively panning and zooming. Models trained in both PyTorch and
Tensorflow can be loaded, allowing focal predictions of specific areas of a slide or whole-slide
predictions and heatmaps of an entire image. All necessary preprocessing, including optional
stain normalization, is encoded in model metadata and performed on-the-fly. Predictions can
also be generated for WSIs, rendering a final slide-level prediction and displaying tile-level
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predictions as a heatmap. We implemented and optimized a low-memory mode for this interface
to support whole-slide predictions on Raspberry Pi hardware. In low memory mode, partial-slide
and whole-slide predictions are generated using a batch size of 4 without multiprocessing.
Active CPU cooling is recommended for systems generating WSI predictions due to high
thermal load associated with persistent CPU utilization.

Statistical analysis

Deep learning model performance was assessed at patient- and tile-level using confusion
matrices and area under the receiver operating curve (AUROC). For each classification model,
linear regression was performed and an R? value was calculated to assess the correlation
between predictions made on images captured with OpenFlexure versus those captured with
3DHISTECH.

Results

Benchmarking DL predictions on the Raspberry Pi

We benchmarked deep learning inference speed on the OpenFlexure microscope using 24
model architectures, four different tile sizes (71x71, 128x128, 256x256, and 299x299 pixels),
and a variety of batch sizes (Supplementary Table 2). Deep learning benchmarks were
performed using the Tensorflow backend of Slideflow. Our frequently utilized, standard
classification architecture (Xception at 299x299 pixels) allowed predictions at 1.04 images /
second. At all tile sizes, the fastest architecture was MobileNet, allowing 4.64 img/sec at
299x299 pixels, 6.30 img/sec at 256x256 pixels, 16.72 img/sec at 128x128 pixels, and 28.50
img/sec at 71x71 pixels.

Using the whole-slide user interface, focal predictions from a model trained on 299 x 299 pixel
images could be generated at approximately 1 image per second, utilizing 2.2 GB of RAM on
average. WSI predictions at 10x magnification required an average of 15 minutes for a typical
slide with ~0.8 cm? tumor area and utilized all 4 GB of RAM. The swap file size needed to be
increased to 1 GB to generate WSI predictions. Thermal throttling was observed during WSI
predictions when using standard passive CPU cooling.

HNSCC HPV status model performance with open-source pipeline

When comparing predictions made on images from the UCMC external validation cohort
captured by the 3DHISTECH versus OpenFlexure microscopes, the HNSCC HPV status model
predictions had an R?of 0.97 (Figure 3). Figure 4 shows confusion matrices of predictions
made when images were captured using the 3DHISTECH or the OpenFlexure device. With a
sample size of ten patients, the AUROC for the model tested with images captured by
3DHISTECH and OpenFlexure microscopes were 0.92 and 1.00 at the patient-level and 0.71
and 0.75 at the tile-level, respectively (Figure 5).

Lung cancer subtype model performance with open-source pipeline

Predictions made on images from the UCMC external validation cohort captured by the
3DHISTECH and the OpenFlexure microscopes had an R?of 0.87 (Figure 3). Confusion
matrices of model predictions on images captured with 3DHISTECH and OpenFlexure are
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shown in Figure 4. The patient-level and tile-level AUROCs for the model tested on images

captured with 3DHISTECH were 1.0 and 0.91, respectively. The model tested on images

captured by OpenFlexure performed with a patient-level and tile-level AUROC of 1.0 and 0.95

(Figure 5).
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HPV Model Prediction Scores on OpenFlexure and 3DHISTECH Images
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Figure 3: Correlation between DL numerical predictions made on images captured by
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Head and Neck Cancer HPV Status Model with 3DHISTECH vs. OpenFlexure Images Confusion Matrices
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Figure 4: Confusion matrices showing patient-level accuracy when predictions were made
using images captured with the 3DHISTECH or OpenFlexure device.
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Discussion

Open-source technology is key to ensuring access of artificial intelligence-based diagnostic
tools to a wider range of providers and communities. It also allows users globally to contribute to
the development of the clinical tools that serve the needs of their patient populations. Our
results serve as proof-of-concept that it is possible to preserve model accuracy while
dramatically reducing the cost of image acquisition and computational hardware. We show the
feasibility of using low-cost, open-source hardware for the image acquisition and computational
steps required to apply machine learning methods to digital pathology and cancer diagnostics.

Model performance for both HPV and lung classification was maintained with an open source,
3D-printed device for image acquisition despite it costing orders of magnitude less than the
clinical-grade microscopes currently used. Further studies should study the influence of
hardware on ML predictive accuracy in digital pathology to find more opportunities to reduce
cost while maintaining quality. This work confirms the need to study the influence of image
acquisition hardware on model performance before ML methods can be applied clinically.

Despite the presence of color distortion and blur prior to image normalization and lower
resolution, images captured using the low-cost OpenFlexure microscope and the Raspberry Pi
camera were classified by our DL model with equal accuracy as images captured on a clinical
grade microscope. Model accuracy was maintained whether the task involved predicting HPV
status or lung cancer subtype, supporting the idea that significant reduction in image quality
associated with reduced hardware costs does not hinder model performance and can be
applied to histopathologic cancer diagnostics more broadly.
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Model accuracy can be further optimized by exploring strategies to computationally augment
lower-quality images or to maodify the training dataset such that the model can be trained on
images whose quality reflects those captured by low-cost devices could improve model
performance [11]. Given that stain normalization appears to have contributed to the success of
the OpenFlexure device, it will be useful to explore how model performance changes without
stain normalization as well as with variations in stain normalization methods. Slideflow
computationally alters the training dataset by introducing random blur and JPEG compression
augmentation. It will also be important to determine the influence of these techniques on model
performance.

There are several limitations to this study, including the small quantity of validation data, the
limited number of models tested, and the intentional use of highly informative regions of tissue
for image capture to test the OpenFlexure device. Additionally, we have not accounted for any
potential site/batch effects or issues including out of distribution data and domain shift [27, 28],
we have not explored whether higher-level features often used as clinical biomarkers, such as
breast cancer receptor status and microsatellite instability, can be identified and used to make
accurate predictions with lower-resolution images such as those captured by the OpenFlexure
device [12]. The TCGA data used for model training comes primarily from patients in the United
States and Europe, which may limit model performance on populations with a wider range of
demographics. It is crucial that DL models are trained on datasets that are representative of the
intended patient populations [14]. Further studies concerned with the implementation of DL
technologies in low-resource settings should explore how dataset demographics affect model
performance prior to the deployment of these technologies in clinical settings.

Design improvements in the OpenFlexure microscope to improve image quality, reduce costs,
and ease construction and transport are ongoing. The next iteration of the device will include an
automated mechanism for whole slide image capture to ease the process of preparing scanned
images for classification by the DL model. In addition, parts of the device are currently 3D
printed, which might limit availability and ease of assembly.

Although this work is limited in scope, the results are promising. Further validation of existing DL
models on future iterations of the OpenFlexure device and testing prediction of higher-level
phenotypes, grading, and treatment response is essential to developing novel, low-cost
equipment and methods for image acquisition and analysis in digital pathology that can be used
to increase access to precision cancer care in lower-resource clinical settings.
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