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Abstract  

Deployment and access to state-of-the-art diagnostic technologies remains a fundamental 

challenge in providing equitable global cancer care to low-resource settings. The expansion of 

digital pathology in recent years and its interface with computational biomarkers provides an 

opportunity to democratize access to personalized medicine. Here we describe a low-cost 

platform for digital side capture and computational analysis composed of open-source 

components. The platform provides low-cost ($200) digital image capture from glass slides and 

is capable of real-time computational image analysis using an open-source deep learning (DL) 

algorithm and Raspberry Pi ($35) computer. We validate the performance of deep learning 

models' performance using images captured from the open-source workstation and show similar 

model performance when compared against significantly more expensive standard institutional 

hardware.   

 

Introduction  

The global burden of cancer is increasing as mortality associated with communicable diseases, 

starvation, and war declines. In the past a majority of cancer cases and cancer-related deaths 

occurred in higher income countries. However, the demographics of cancer are shifting: 

incidence of cancer in low Human Development Index countries is projected to double between 

2008 and 2030 and increase by 81% in middle Human Development Index countries. Advances 

in cancer care disproportionately benefit people in high HDI countries: fewer cancer-related 

gains in life expectancy are seen in low versus high HDI countries [1, 2]. It is therefore crucial to 

adapt the complex cancer diagnostics currently used in high-resource settings for broader 

application. A hallmark of cancer diagnosis worldwide is pathological analysis with hematoxylin 

and eosin (H&E) stained tumor biopsy sections, and additional molecular tests can help aid 
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treatment decision-making. Access to extensive molecular testing is currently limited by cost, so 

as the demographics of disease change and a growing number of people are diagnosed with 

cancers that require more complex diagnostic techniques, there is a growing need to close the 

diagnostic gap between high- and low-income regions.   

  

Digital pathology involves the acquisition and analysis of digital histopathological images in 

place of conventional microscopy [3-5]. As digitized whole slide images (WSIs) of 

histopathologic slides become more widely available, computer vision and machine learning 

methods in digital pathology have the potential to automate diagnosis based on images of H&E 

slides. Deep learning (DL), which is a subdomain of machine learning that uses multi-layered 

convolutional neural networks to identify patterns and features in complex datasets [6, 7], can 

automate diagnostic workflows and reduce costs [8, 9] while still providing the same information 

that a human pathologist identifies in each histologic image [4, 10]. In addition, DL algorithms 

analyze higher-order image characteristics to identify important histologic and clinically 

actionable features including distinguishing cancerous from non-cancerous tissue, survival, 

treatment response, and genetic alterations [7, 11, 12].  

 

Deep learning algorithms remain largely out of reach in low resource settings, where automation 

could offer an opportunity to address personnel shortages and lack of equipment as well as 

reduce costs associated with precision cancer care. Governments and corporations invest 

extensive resources into oncologic research to develop advanced diagnostics and targeted 

therapies, yet implementation barriers limit the ability of these advances to reduce the global 

burden of cancer. Specific advantages of digital pathology include the ability to share images in 

real time to allow for remote collaboration, easy acquisition of large amounts of data for 

analysis, and the potential to lower costs by reducing the amount of human pathologist review 

needed to make a diagnosis [5, 13]. These features make digital pathology well-suited for 

improving access to precision medicine in under-resourced areas.   

 

However, state of the art DL-based methods for digital pathology diagnostics fail to integrate 

their technology with hardware and computing resources commonly found in lower-resource 

settings. As of November 2022, only one FDA-approved commercial AI technology for digital 

pathology exists, and no open-source technologies have gained approval [14, 15]. Purchasing 

commercial software, computing resources, and whole slide image scanners needed for 

currently available AI pathology tools costs hundreds of thousands of dollars, making them 

unusable in low resource settings. Additionally, validation of existing digital pathology DL 

methods has only been performed with high-cost equipment in high-income countries.   

 

To overcome the cost barrier in digital pathology analysis, we compiled a fully integrated set of 

open-source, low-cost hardware and software components to compare DL model performance 

against high-cost methods. Several studies have shown that digital images from diagnostic 

glass slides can be captured with low-cost equipment at sufficient resolution for DL model 

analysis [16-20]. We constructed a workflow consisting of entirely open-source resources that 

integrates images captured with low-cost hardware, low-cost computing equipment, and publicly 

available DL models, thereby producing an end-to-end low-cost digital histology deep learning 
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analysis toolkit [21]. We developed and tested a novel, $200 platform for image capture of 

histopathological slides and used an open-source DL pipeline run on a $35 Raspberry Pi 

computer to classify tissue samples from two distinct datasets. We show that model 

performance on images captured with low-cost equipment matches that of images captured with 

gold standard high-cost equipment and validated our pipeline for automated digital pathology 

biomarker-based classification of head and neck squamous cell carcinoma (HNSCC) and lung 

cancer subtypes.  

 

Materials and Methods   

Data were collected to train DL models to perform various classification tasks. To predict human 

papillomavirus (HPV) status in HNSCC and lung cancer subtype, we collected publicly available 

histology images, which were captured using an Aperio ScanScope or other Aperio slide 

scanner and stored in SVS format from The Cancer Genome Atlas (TCGA). Tissue samples in 

these TCGA datasets originate from patients who live primarily in the United States and Europe 

[22]. Most patients’ primary tumor sites were classified as oral cavity tumors. To perform 

external validation on models trained with data from TCGA, we collected whole slide images 

(WSIs) from the University of Chicago Medical Center (UCMC), in accordance with University of 

Chicago IRB protocol 20-0238. For TCGA and UCMC datasets, pathologists identified and 

annotated tumor regions of interest (ROI) within each WSI. Patient demographics in the UCMC 

dataset were similar to those in the TCGA dataset.   

  

HPV status HNSCC dataset preparation  

In this retrospective study, 472 digitized whole slide images (WSI) of H&E tissue samples from 

patients with HNSCC and a known HPV status were collected in SVS format from TCGA. 

Among this TCGA cohort, 52 patients were classified as HPV positive and 407 were classified 

as HPV negative. For HNSCC HPV status model testing, we used a UCMC external validation 

dataset consisting of ten histopathology glass slides collected from patients with HNSCC and a 

known HPV status. Of these patients, five had HPV positive and five had HPV negative cancers.   

  

Lung cancer dataset preparation  

941 digitized whole slide images (WSI) of H&E tissue samples from patients with lung cancer of 

a known subtype were also collected in SVS format from TCGA. 472 tissue samples from this 

cohort were classified as lung adenocarcinoma and 469 were classified as squamous cell 

carcinoma. We also performed external validation of the lung classification model using a 

dataset from UCMC consisting of ten histopathology glass slides collected from patients with 

lung cancer of known subtype. Of these patients, five had lung adenocarcinoma and five had 

squamous cell carcinoma.   

  

Current standard imaging hardware and acquisition   

For baseline “gold standard” validation image capture, we used a shared resource 3DHISTECH 

($200,000) digital pathology microscope slide scanner for acquisition of images at 40X 

magnification. The 3DHISTECH scanner captures images in MRXS format.   

  

Open-source microscopy manufacture and image acquisition   
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To assess a cost-efficient alternative to professional grade microscopes, we used the 

OpenFlexure Microscope v6 design and assembled it with a fused deposition modeling 3D-

printer (Creality CR-10s), which includes optics, illumination, and stage modules. Our current 

model of the device differs from the published OpenFlexure design in that it excludes the 

motorized stage. We used manual rather than motorized stage actuators to maximize stage 

mobility and attached the optics and illumination modules to the stage piece with the system of 

rails in the OpenFlexure design, securing the parts with m3 hex head screws. This microscope 

was then paired with a low-cost Raspberry Pi Model 4B ($35) and associated Camera Module 2 

($30) to acquire partial-slide images from ten UCMC HNSCC glass slides and ten UCMC lung 

cancer glass slides [21, 23].  

 

Raw images captured at 10X magnification provided using the OpenFlexure device were 

generally clear, but most images had some degree of blur, color distortion, and/or spherical 

aberration. After manual calibration, effective optical magnification was determined to be 

approximately 0.4 microns per pixel. The Raspbian-OpenFlexure operating system provided the 

software needed to visualize the glass slide on a monitor as well as capture and save images. 

Images captured from the OpenFlexure device were saved in JPEG format on-device and used 

for subsequent analysis. 

 

  

  

  

  

Figure 1. Low-cost, open-source 

digital pathology workstation 

components. Left: Assembled 

hardware and software components 

with projected digital pathology content 

running Slideflow software on 

Raspberry Pi computer. Below: 

Hardware and software components 

with respective costs and licenses.   
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Histology image processing  

To assess the impact of low- vs high-cost image capture methods, we produced two sets of 

scanned histology images for the UCMC validation cohorts: 1) WSIs from a clinical-grade 

microscope, and 2) partial-slide images from the OpenFlexure device. Slides from the validation 

dataset were first scanned with the high-cost 3DHISTECH microscope, producing whole-slide 

images (WSIs) for each glass slide. For a subset of the slides in the validation studies, partial-

slide images were then captured using the OpenFlexure microscope. As the OpenFlexure 

device is not yet capable of WSI capture, only partial slide images could be captured. For these 

slides, we captured predetermined Regions of Interest (ROIs) containing strongly predictive 

morphological features. This partial-slide, proof-of-concept data capture enabled us to 

demonstrate that histopathological images acquired using low-cost equipment can be accurately 

classified with open-source deep learning algorithms. We captured 100 images of the 

predetermined morphologically informative regions at 10X magnification using OpenFlexure 

software (OpenFlexure Connect) on the Raspberry Pi, five from each of the ten slides in the 

HPV validation dataset and five from each of the ten slides in the lung cancer validation dataset 

[21]. For both whole-slide (3DHISTECH) and partial-slide (OpenFlexure) images, DL predictions 

were generated on smaller image tiles (tile width 299 pixels and 302 μm), and final slide-level 

predictions were calculated by averaging tile predictions.  All image processing was performed 

using Slideflow [24]. 

  

Deep learning models  

The HPV DL classification model was trained on the full HNSCC TCGA dataset to predict 

whether samples came from patients with HPV-positive or HPV-negative tumors. This model 

was then validated on the small institutional dataset from UCMC. The lung cancer classification 

model was trained to classify tumor tissue as either adenocarcinoma or squamous cell 

carcinoma on the full TCGA lung cancer dataset, and then validated on the UCMC institutional 

dataset. Weakly-supervised DL model training was performed using a convolutional neural 

network with an Xception-based architecture, ImageNet pretrained weights, and two hidden 

layers of width 1024 with dropout of 0.1 after each hidden layer [25]. Tiles received data 

augmentation with flipping, rotating, JPEG compression, and Gaussian blur. Model training was 

performed with 1 epoch and 3-fold cross-validation, using the Adam optimizer, a learning rate of 

10-4. Models were trained using Slideflow version 1.2.3 [24] with the Tensorflow backend 

(version 2.8.2) in Python 3.8. All hyperparameters are listed in Supplementary Table 1.   

  

Computational resources  

DL models require central processing units (CPUs) and graphical processing units (GPUs) with 

sufficient computational power to generate predictions. DL classification of the images captured 

using the 3DHISTECH microscope with Slideflow was carried out with an NVIDIA Titan RTX 

GPU ($3000) that is representative of the high-cost computational resources currently used for 

automated analysis of WSIs. To demonstrate the feasibility of using low-cost computational 

hardware to generate DL predictions, the images captured using the OpenFlexure device were 

classified using Slideflow hosted on a $35 Raspberry Pi 4B computer with a Broadcom 

BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor and 4 GB of RAM. 
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User interface  

Slideflow includes an open-source graphical user interface (GUI) that allows for interactive 

visualization of model predictions from histopathological images (Figure 2). The Slideflow GUI 

can flexibly accommodate a variety of trained models for digital pathology image classification 

and can generate predictions from both Raspberry Pi camera capture, partial-slide images, and 

whole-slide images. We optimized this interface for deployment on low-memory, ARM-based 

edge devices including the Raspberry Pi and used the interface to generate predictions for all 

images captured on the OpenFlexure device.  

 

 
Figure 2. Open-source user interface for interactive visualization and generation of model 

predictions. Slideflow can be used to deploy a variety of trained models for digital pathology 

image classification, generating predictions for both partial-slide and whole-slide images. 

Predictions can be rendered for whole slides (rendered as a heatmap, as shown) or focal areas 

(rendered as individual tiles, as shown in the bottom right corner). The Slideflow user interface 

has been optimized for both x86 and low-power ARM-based devices. The above screenshot 

displays a heatmap of a WSI prediction, captured on the Raspberry Pi 4B. 

 

The user interface utilizes a Python wrapper of Dear Imgui [25] for GUI rendering. The interface 

supports displaying and navigating both partial-slide and whole-slide images (JPEG, SVS, 

NDPI, MRXS, TIFF) with panning and zooming. Slide images are read using VIPS [26] and 

rendered using OpenGL 2.1+.  Loading and navigating a whole-slide image utilizes <2 GB of 

RAM and provides a smooth experience, rendering slides at an average of 18 frames per 

second (FPS) while actively panning and zooming. Models trained in both PyTorch and 

Tensorflow can be loaded, allowing focal predictions of specific areas of a slide or whole-slide 

predictions and heatmaps of an entire image. All necessary preprocessing, including optional 

stain normalization, is encoded in model metadata and performed on-the-fly. Predictions can 

also be generated for WSIs, rendering a final slide-level prediction and displaying tile-level 
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predictions as a heatmap. We implemented and optimized a low-memory mode for this interface 

to support whole-slide predictions on Raspberry Pi hardware. In low memory mode, partial-slide 

and whole-slide predictions are generated using a batch size of 4 without multiprocessing. 

Active CPU cooling is recommended for systems generating WSI predictions due to high 

thermal load associated with persistent CPU utilization. 

 

Statistical analysis   

Deep learning model performance was assessed at patient- and tile-level using confusion 

matrices and area under the receiver operating curve (AUROC). For each classification model, 

linear regression was performed and an R2 value was calculated to assess the correlation 

between predictions made on images captured with OpenFlexure versus those captured with 

3DHISTECH.   

Results  

 

Benchmarking DL predictions on the Raspberry Pi 

We benchmarked deep learning inference speed on the OpenFlexure microscope using 24 

model architectures, four different tile sizes (71x71, 128x128, 256x256, and 299x299 pixels), 

and a variety of batch sizes (Supplementary Table 2). Deep learning benchmarks were 

performed using the Tensorflow backend of Slideflow. Our frequently utilized, standard 

classification architecture (Xception at 299x299 pixels) allowed predictions at 1.04 images / 

second. At all tile sizes, the fastest architecture was MobileNet, allowing 4.64 img/sec at 

299x299 pixels, 6.30 img/sec at 256x256 pixels, 16.72 img/sec at 128x128 pixels, and 28.50 

img/sec at 71x71 pixels.  

 

Using the whole-slide user interface, focal predictions from a model trained on 299 x 299 pixel 

images could be generated at approximately 1 image per second, utilizing 2.2 GB of RAM on 

average.  WSI predictions at 10x magnification required an average of 15 minutes for a typical 

slide with ~0.8 cm2 tumor area and utilized all 4 GB of RAM. The swap file size needed to be 

increased to 1 GB to generate WSI predictions. Thermal throttling was observed during WSI 

predictions when using standard passive CPU cooling. 

 

HNSCC HPV status model performance with open-source pipeline  

When comparing predictions made on images from the UCMC external validation cohort 

captured by the 3DHISTECH versus OpenFlexure microscopes, the HNSCC HPV status model 

predictions had an R2 of 0.97 (Figure 3). Figure 4 shows confusion matrices of predictions 

made when images were captured using the 3DHISTECH or the OpenFlexure device. With a 

sample size of ten patients, the AUROC for the model tested with images captured by 

3DHISTECH and OpenFlexure microscopes were 0.92 and 1.00 at the patient-level and 0.71 

and 0.75 at the tile-level, respectively (Figure 5).   

  

Lung cancer subtype model performance with open-source pipeline  

Predictions made on images from the UCMC external validation cohort captured by the 

3DHISTECH and the OpenFlexure microscopes had an R2 of 0.87 (Figure 3). Confusion 

matrices of model predictions on images captured with 3DHISTECH and OpenFlexure are 
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shown in Figure 4. The patient-level and tile-level AUROCs for the model tested on images 

captured with 3DHISTECH were 1.0 and 0.91, respectively. The model tested on images 

captured by OpenFlexure performed with a patient-level and tile-level AUROC of 1.0 and 0.95 

(Figure 5).  

 

 
  

Figure 3: Correlation between DL numerical predictions made on images captured by 

3DHISTECH vs OpenFlexure device.  
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Figure 4: Confusion matrices showing patient-level accuracy when predictions were made 

using images captured with the 3DHISTECH or OpenFlexure device.  
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Figure 5: AUROC compares tile-level accuracy  

between high-cost 3DHISTECH and low-cost  

OpenFlexure image acquisition hardware.  

  

 

Discussion  

Open-source technology is key to ensuring access of artificial intelligence-based diagnostic 

tools to a wider range of providers and communities. It also allows users globally to contribute to 

the development of the clinical tools that serve the needs of their patient populations. Our 

results serve as proof-of-concept that it is possible to preserve model accuracy while 

dramatically reducing the cost of image acquisition and computational hardware. We show the 

feasibility of using low-cost, open-source hardware for the image acquisition and computational 

steps required to apply machine learning methods to digital pathology and cancer diagnostics.  

 

Model performance for both HPV and lung classification was maintained with an open source, 

3D-printed device for image acquisition despite it costing orders of magnitude less than the 

clinical-grade microscopes currently used. Further studies should study the influence of 

hardware on ML predictive accuracy in digital pathology to find more opportunities to reduce 

cost while maintaining quality. This work confirms the need to study the influence of image 

acquisition hardware on model performance before ML methods can be applied clinically.  

 

Despite the presence of color distortion and blur prior to image normalization and lower 

resolution, images captured using the low-cost OpenFlexure microscope and the Raspberry Pi 

camera were classified by our DL model with equal accuracy as images captured on a clinical 

grade microscope. Model accuracy was maintained whether the task involved predicting HPV 

status or lung cancer subtype, supporting the idea that significant reduction in image quality 

associated with reduced hardware costs does not hinder model performance and can be 

applied to histopathologic cancer diagnostics more broadly.   
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Model accuracy can be further optimized by exploring strategies to computationally augment 

lower-quality images or to modify the training dataset such that the model can be trained on 

images whose quality reflects those captured by low-cost devices could improve model 

performance [11]. Given that stain normalization appears to have contributed to the success of 

the OpenFlexure device, it will be useful to explore how model performance changes without 

stain normalization as well as with variations in stain normalization methods. Slideflow 

computationally alters the training dataset by introducing random blur and JPEG compression 

augmentation. It will also be important to determine the influence of these techniques on model 

performance.   

 

There are several limitations to this study, including the small quantity of validation data, the 

limited number of models tested, and the intentional use of highly informative regions of tissue 

for image capture to test the OpenFlexure device. Additionally, we have not accounted for any 

potential site/batch effects or issues including out of distribution data and domain shift [27, 28], 

we have not explored whether higher-level features often used as clinical biomarkers, such as 

breast cancer receptor status and microsatellite instability, can be identified and used to make 

accurate predictions with lower-resolution images such as those captured by the OpenFlexure 

device [12]. The TCGA data used for model training comes primarily from patients in the United 

States and Europe, which may limit model performance on populations with a wider range of 

demographics. It is crucial that DL models are trained on datasets that are representative of the 

intended patient populations [14]. Further studies concerned with the implementation of DL 

technologies in low-resource settings should explore how dataset demographics affect model 

performance prior to the deployment of these technologies in clinical settings.  

 

Design improvements in the OpenFlexure microscope to improve image quality, reduce costs, 

and ease construction and transport are ongoing. The next iteration of the device will include an 

automated mechanism for whole slide image capture to ease the process of preparing scanned 

images for classification by the DL model. In addition, parts of the device are currently 3D 

printed, which might limit availability and ease of assembly.   

 

Although this work is limited in scope, the results are promising. Further validation of existing DL 

models on future iterations of the OpenFlexure device and testing prediction of higher-level 

phenotypes, grading, and treatment response is essential to developing novel, low-cost 

equipment and methods for image acquisition and analysis in digital pathology that can be used 

to increase access to precision cancer care in lower-resource clinical settings.  
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