

1 **Altered neutrophil extracellular traps in response to *Mycobacterium tuberculosis* in**
2 **persons living with HIV with no previous TB and negative TST and IGRA**

3

4 Authors: EE Kroon^{1*}, W Correa-Macedo^{2,3,4}, R Evans^{5,6}, A Seeger⁷, L Engelbrecht⁸, JA
5 Kriel⁸, B Loos⁹, N Okugbeni^{1,10}, M Orlova^{2,3,4}, P Cassart^{2,3}, CJ Kinnear^{1,10}, GC Tromp¹, M
6 Möller¹, RJ Wilkinson^{7,11,12}, AK Coussens^{7,5,6}, E Schurr^{2,3,4} and EG Hoal¹.

7

8 ¹ DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African
9 Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology
10 and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University,
11 Cape Town, South Africa.

12 ² Program in Infectious Diseases and Immunity in Global Health, The Research Institute of
13 the McGill University Health Centre, 1001 boul Décarie, Site Glen Block E, Room EM3.3210,
14 Montréal, QC H4A3J1, Canada

15 ³ McGill International TB Centre, McGill University, Montréal, QC, Canada

16 ⁴ Department of Biochemistry, McGill University, Montréal, QC, Canada

17 ⁵ Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of
18 Medical Research, Parkville, VIC,3052, Australia

19 ⁶ Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences,
20 University of Melbourne, Parkville, VIC,3052, Australia

21 ⁷ Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease
22 and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory
23 7925, South Africa

24 ⁸ Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South
25 Africa

26 ⁹ Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South
27 Africa

28 ¹⁰ South African Medical Research Council Genomics Platform, Tygerberg 7505, South
29 Africa

30 ¹¹ Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom

31 ¹² The Francis Crick Institute, London, NW1 1AT, United Kingdom

32

33 * Corresponding author

34 Email: elouise_k@sun.ac.za

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 Abstract

58 Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After
59 prolonged and repeated exposure, some PLWH never develop TB and test persistently
60 negative in tests of immune sensitization tuberculin skin test (TST) and interferon gamma
61 release assays (IGRA) for *Mycobacterium tuberculosis* (*Mtb*). This group has been identified
62 and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate
63 potential innate mechanisms unique to individuals with the HITTIN phenotype we compared
64 their neutrophil *Mtb* infection response to that of PLWH, with no TB history, but who test
65 persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17
66 HITTIN (PMN_{HITTIN}) and 11 HIT (PMN_{HIT}) were isolated and infected with *Mtb* H37Rv for 1h
67 and 6h. RNA was extracted and used for RNAseq analysis. At 1h of *Mtb* infection, PMN_{HITTIN}
68 displayed 151 significantly upregulated and 40 significantly downregulated differentially
69 expressed genes (DEGs) and PMN_{HIT} 98 significantly upregulated and 11 significantly
70 downregulated DEGs. At the 6h timepoint, PMN_{HITTIN} displayed 3106 significantly
71 upregulated and 3548 significantly downregulated DEGs while PMN_{HIT} had 3816 significantly
72 up- and 3794 significantly downregulated DEGs. There was no significant differential
73 transcriptional response at 1h between infected PMN_{HITTIN} and PMN_{HIT}. However, when
74 contrasting the log₂FC 6h infection response to *Mtb* from PMN_{HITTIN} against PMN_{HIT}, 2285
75 genes showed significant differential response between the two groups. Apoptosis and
76 NETosis were key pathways linked to the enrichment of genes in PMN_{HITTIN} when contrasted
77 to PMN_{HIT} after 6h infection with *Mtb*. Fluorescence microscopy revealed relatively lower
78 neutrophil extracellular trap formation and cell loss in PMN_{HITTIN} compared to PMN_{HIT},
79 showing that PMN_{HITTIN} have a distinct response to *Mtb*.

80

81 Introduction

82 Worldwide, tuberculosis (TB) remains the leading cause of death by a single bacterial agent
83 (1). People who are living with HIV (PLWH) have an increased risk of TB (2,3). We
84 previously identified a cohort of PLWH, living in a community with high TB burden in the
85 Western Cape, South Africa, who are persistently TB, tuberculin skin test (TST) and
86 interferon gamma release immune assay (IGRA) negative (HITTIN) (4–6). TST and IGRA
87 measure persistent adaptive immune memory to *Mycobacterium tuberculosis* (*Mtb*) protein
88 antigens and are used as a surrogate for prior *Mtb* infection. Despite these persons having
89 a history of previously low CD4+ T-cell counts, prior to antiretroviral therapy (ART), they
90 display no canonical evidence of prior *Mtb* infection or history of disease (4). However, we

91 did detect circulating *Mtb*-specific antibodies, despite absence of canonical T-cell memory to
92 dominant *Mtb* antigens, suggesting these individuals may possess a unique immune
93 mechanism of TB protection, not reliant on conventional T-cell help.

94 We hypothesized that the innate immune system, and specifically neutrophils, play an
95 inherent role in the protective control of *Mtb* infection in HITTIN. Neutrophils are the most
96 abundant leukocytes and among the first responders to *Mtb* infection in the lung in animal
97 models as well as humans (7). They are armed with an arsenal of antimicrobial granules
98 known to restrict *Mtb* growth and are key players in the inflammatory response against *Mtb*
99 (8–11). Neutrophils can control *Mtb* growth during acute infection (8,11,12). Household
100 pulmonary TB contacts with higher initial peripheral neutrophil counts were less likely to
101 become infected with *Mtb* (11). Despite lower RNA expression in neutrophils (PMN)
102 compared to other innate immune cells, pathogen-triggered gene expression changes
103 underlie microbial responses by PMN (13,14).

104 The mechanism of cell death can influence the outcome of *Mtb* infection control. Neutrophils
105 control inflammation, predominantly through apoptotic and cell clearance mechanisms with
106 efferocytosis of *Mtb*-infected apoptotic neutrophils by macrophages favoring a beneficial host
107 outcome (14–18). Neutrophil extracellular traps (NETs) were recently highlighted as a
108 potentially important mechanism of resistance to TST/IGRA conversion in a Ugandan cohort
109 (19). As a primary cell death effector mechanism, neutrophils decondense their chromatin
110 following histone modification, unraveling their DNA, which is then coated in cytoplasmic
111 granular proteins before the DNA/histone/protein complex is expelled from the lysing
112 neutrophil. This released web-like structured NET is able to capture extracellular microbes
113 and kill them using the attached granule-derived antimicrobial peptides and histones (20,21).
114 *Mtb*-induced NETs are phagocytosis and reactive oxidative species (ROS) dependent, but
115 have been suggested to lack *Mtb* microbicidal activity (22,23). Recent studies point to
116 potential crosstalk of NETs and forms of necrotic cell death pathways such as pyroptosis,
117 despite the classical definition of NETosis as a unique mechanism of cell death (24).
118 Necrotic neutrophil cell death, uncontrolled type 1 interferon (IFN) responses and abundant
119 ROS drive a hyperinflammatory neutrophil phenotype and contribute to TB severity (18,25–
120 28).

121 The aim of this study was to gain insight into mechanisms underlying early neutrophil
122 responses to *Mtb* in HITTIN persons with apparent protection from *Mtb* infection as inferred
123 from the absence of canonical T-cell memory. Specifically, we tested if neutrophils from
124 HITTIN study participants (PMN_{HITTIN}) displayed a transcriptional response to *Mtb* infection
125 that was significantly different from that found in neutrophils from PLWH who have a robust

126 *Mtb*-specific T-cell response, testing persistently TST and IGRA positive, but also with no
127 history of TB (HIT). We demonstrated that the *in vitro* *Mtb*-induced gene expression
128 changes in neutrophils from the HITTIN and HIT participants were significantly different.
129 Genes differentially regulated by *Mtb* between the two groups were enriched for key
130 regulators of ROS and NET formation. Fluorescence microscopy images corroborated the
131 transcriptomic findings with PMN_{HIT} demonstrating a greater response to *Mtb* with more
132 NETs forming after infection. PMN_{HITTIN} responded with less NETs and lower counts of key
133 genes associated with nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)
134 activity and ROS formation possibly contributing to greater effector control of *Mtb*.

135 **Results**

136 **Study participants and samples**

137 Individuals included in the HITTIN and HIT groups were a part of the large ResisTB cohort
138 (4). Neutrophils obtained from 17 HITTIN and 11 HIT individuals, all PLWH and established
139 on ART, were used in the final analysis (Table 1). These samples were part of stringently
140 defined and highly selected groups who are PLWH, living in a high TB burden community,
141 with previously low CD4+ counts prior to ART, yet never developed TB.

142 The average age of participants in the HITTIN group was 43.71 (± 6.43) years and that of HIT
143 was 44.09 (± 6.89) (Table 1). There were no significant differences between the ratio of
144 females to males in each group ($p=0.6$, Fisher's exact test), age ($p=0.9$, Wilcoxon rank sum
145 test), or BMI ($p=0.6$, Wilcoxon rank sum test) of the participants. All but one participant had
146 CD4+ counts of < 200 cells/mm³ prior to starting ART. Participants had controlled viral
147 loads. One participant was on isoniazid *Mtb* prophylactic therapy (IPT) at the time of the
148 enrolment, this was corrected for during the analysis. All PLWH receive IPT according to
149 national guidelines in South Africa. There was no significant difference between the groups
150 in terms of having taken prior IPT and time spent on IPT ($p=0.2$, Fisher's exact test). HITTIN
151 and HIT have a similar distribution of chronic disease ($p=0.4$, Fisher's exact test), and social
152 habits such as cigarette smoking ($p=0.5$, Fisher's exact test), alcohol use ($p=0.2$, Fisher's
153 exact test) and cannabis use ($p=0.4$, Fisher's exact test).

154

155 **Gene expression analysis showed a strong transcriptional 156 response of PMN to *Mtb* in HITTIN and HIT**

157 Neutrophils were isolated from whole blood and infected with *Mtb* H37Rv for 1h and 6h.
158 Purity of isolated neutrophils was confirmed by flow cytometry, with similar proportions of
159 CD45+CD15+CD66b+CD16+ neutrophils isolated for HITTIN and HIT individuals ($p=0.28$,
160 Wilcoxon rank sum test) (S1 and S2 Tables). RNA was extracted from uninfected and
161 infected neutrophils (PMN) at 1h and 6h timepoints and differential gene expression
162 analyses performed by RNAseq. Significant differentially expressed genes (DEGs) were
163 defined by an absolute cutoff of a log2FC of 0.2 and a false discovery rate (FDR) adjusted p-
164 value of 5% (Table 2, S3 Table).

165 *Mtb* infection triggered significant gene expression changes when compared to uninfected
166 PMN at 1h: 151 up- and 40 downregulated genes for PMN_{HITTIN} while 98 genes were up- and
167 11 were downregulated for PMN from the HIT group (PMN_{HIT}) (Figs 1A and B, S3 Table). A
168 higher number of *Mtb* activated gene expression changes were observed at 6h post infection
169 compared to 6h uninfected with 3106 up- and 3548 downregulated DEGs for HITTIN and
170 3816 up- and 3794 downregulated DEGs for HIT (Figs 1D and E, S3 Table).

171

172 **Differential gene expression analysis showed a lower
173 overall fold change difference during *Mtb* infection of PMN
174 from HITTIN compared to HIT**

175 Given the high number of DEGs at 6h for both PMN_{HITTIN} and PMN_{HIT} we next compared the
176 overall difference in transcriptomic response to *Mtb* between the two PMN groups.
177 Consistent with different numbers of DEGs identified for each phenotypic group, when we
178 evaluated the statistical significance of expression changes between the HITTIN and HIT
179 groups, we identified an overall damped 6h transcriptomic response in PMN_{HITTIN}
180 compared to PMN_{HIT} (Fig 2). Next, by correlating the expression changes of up- and
181 downregulated DEGs, identified for each PMN infection phenotype, we observed that
182 differential expression across phenotypes was correlated with the log₂FC. Despite
183 differences in log₂FC between groups, we observed a strong correlation of log₂FC values
184 between groups after 6h infection ($R = 0.96$) whilst the 1h correlation was weaker ($R = 0.75$)
185 (Fig 3).

186 When comparing transcriptional responses of infected PMN_{HITTIN} and PMN_{HIT} directly, no
187 significant DEG were identified at the log₂FC cutoff of 0.2 with FDR < 0.05, at 1h (Fig 1C).
188 However, contrasting the log₂FC from PMN_{HITTIN} against PMN_{HIT}, at 6h post *Mtb* infection, we
189 identified 2285 genes with significant differential response between the two groups (Fig 1F).

190 Since the 1h time point showed limited differences in gene induction by *Mtb*, we focused on
191 the 6h time point differences between PMN phenotypes in subsequent analyses. Irrespective
192 of up- or downregulation of specific genes, the absolute response to *Mtb* after 6h was always
193 smaller in PMN_{HITTIN}.

194

195 **Pathway and Gene Ontology (GO) enrichment analysis for**
196 **DEGs between PMN_{HITTIN} and PMN_{HIT} after 6h *Mtb* infection**

197 We next investigated the 2285 genes with significant differential transcriptional response of
198 PMN_{HITTIN} and PMN_{HIT} to *Mtb* after 6 hours infection by examining the different pathways and
199 analyzing the biological processes that are characterized by these genes. We conducted
200 separate term enrichment analyses of up- and downregulated genes and a third analysis
201 that considered both up- and downregulated genes. GO terms and Kyoto Encyclopedia of
202 Genes and Genomes (KEGG) and Reactome pathways were considered significant if a term
203 was enriched for at least 5 DEGs and a FDR cutoff of 10%. An overview of the results is
204 shown in Table 2. By focusing on all DEGs significantly different between PMN_{HITTIN} and
205 PMN_{HIT}, we observed a total of 496 enriched KEGG, Reactome and GO terms (Table 2).
206 When evaluating genes more strongly triggered in PMN_{HITTIN} we detected 29 terms.
207 Conversely, when focusing on genes less strongly triggered in PMN_{HITTIN} and comparatively
208 to PMN_{HIT}, we detected 719 terms (Table 2).

209 Manhattan plots for the three term analyses at 6h are shown in Fig 4 with significantly
210 different terms and pathways of interest indicated. Amongst the enriched terms in PMN_{HITTIN},
211 were “Apoptosis”, “Neutrophil extracellular trap formation”, and “NADPH regeneration”,
212 which are terms that directly relate to a possible increased microbicidal activity of PMN_{HITTIN}
213 (Fig 4). By comparison, terms with genes triggered relatively less strongly in PMN_{HITTIN}
214 compared to PMN_{HIT} were dominated by genes involved in neutrophil chemotaxis, neutrophil
215 degranulation, necroptosis and necrotic death (Fig 4 C). We focused on the DEGs
216 associated with the “Neutrophil extracellular trap formation” pathway in KEGG and followed
217 this by functional verification using fluorescent microscopy to evaluate the biological
218 outcome in the total amount of NETs observed between HITTIN vs HIT (Table 3).

219

220 **DEGs in HITTIN vs HIT after 6h *Mtb* infection in the**
221 **“Neutrophil extracellular trap formation” pathway**

222 As the major functional pathway of interest, we next investigated the DEGs associated with
223 the “Neutrophil extracellular trap formation” enriched in the combined KEGG pathway (Fig
224 4A, Table 3). Compared to PMN_{HIT}, *Mtb* infection of PMN_{HITTIN}, triggered a lower
225 upregulation of genes involved in the multiple-protein NADPH oxidase complex including
226 *Rac family small GTPase 2 (RAC2)*, and the transmembrane catalytic [cytochrome b-245 -
227 alpha (CYBA) and -beta (CYBB)]. NADPH oxidase Nox2 (NOX2, encoded by CYBB)
228 oxidizes NADPH and is one of the multiple cellular processes required for ROS production
229 and NET formation (29–31). CYBB is a nuclear factor kappa B (NF- κ B) transcriptional target
230 and together with *NFKB1* was also less upregulated in PMN_{HITTIN}. Interestingly, *NCF2*, the
231 gene encoding neutrophil cytosolic factor 2 (NCF-2 or p67-phox) was downregulated in
232 PMN_{HITTIN} and upregulated in PMN_{HIT}. PMN_{HITTIN}, also showed enrichment for DEGs related
233 to “NADPH regeneration” (Fig 4B). NADPH can dually aid in ROS detoxification or
234 production and is key for ROS mediated NET formation (30,32,33).

235 Histone deacetylases (HDACs) play a key role in NET formation and allow for
236 peptidylarginine deiminase 4 (PAD4) mediated histone citrullination the initial step in
237 chromatin decondensation (34,35). Compared to PMN_{HIT}, PMN_{HITTIN} had a less
238 downregulated response in *HDAC1*, *HDAC3*, *HDAC4* and *PADI4* at 6h of *Mtb* infection.
239 *Gasdermin D (GSDMD)* which plays a key role perforating the nuclear membrane to aid
240 release of the decondensed chromatic during NET formation (36,37), also displayed the
241 same pattern of expression regulation. *Caspase 1 (CASP1)* and *4 (CASP4)* which activate
242 *GSDMD* have a lower upregulation in PMN_{HITTIN} compared to PMN_{HIT} after 6h *Mtb* infection
243 (38).

244 Other DEGs enriched in the KEGG NET pathway, are also involved in additional neutrophil
245 functional responses. Cell membrane receptors *TLR2* and *TLR4* were less upregulated in
246 PMN_{HITTIN} in response to 6h *Mtb* infection. Downstream of TLR4, pathway activation of NF- κ B, Protein Kinase B (AKT) and phosphoinositide 3-kinase (PI3-K) lead to pro-survival
247 mechanisms (39). Integral to this TLR signaling system is mitogen-activated protein kinase
248 (MAPK) and PI3-K. Dysregulation in especially the PI3-K/AKT signaling system contributes
249 to an imbalance in neutrophil chemotaxis and can heighten inflammation and decrease
250 pathogen clearance (40,41). *MAP2K2* was less upregulated while *MAPK1*, *MAPK3*, *AKT1*,
251 *AKT2* and *PIK3CD* were less downregulated in PMN_{HITTIN}. Azurocidin 1 (AZU1), the only
252 antimicrobial peptide gene also included in the NET term, was downregulated after 6h *Mtb*
253 infection in PMN_{HITTIN} whilst upregulated in infected PMN_{HIT} (Table 3).

255

256 **NET area change difference between HITTIN and HIT from** 257 **1 to 6h after *Mtb* infection**

258 Finally, to functionally validate whether the differential NET-associated DEGs response
259 between PMN_{HITTIN} and PMN_{HIT} resulted in a difference in NET formation, we used
260 fluorescent microscopy to quantify the area of NETs induced at 1h and 6h infection, as well
261 as the remaining nuclei. We stained fixed cells which were processed in parallel with the
262 cells used for RNAseq. NETs were stained using anti-H2AH2B/DNA (PL2-3) which detects
263 decondensed chromatin and nuclear DNA stained with Hoechst, and the area of both
264 features was quantified.

265 As a measure of cellular viability over time we compared the total change in cell nuclei area
266 between cells fixed at 1h and 6h of infection with *Mtb*. There was no significant two way
267 interaction between PMN_{HITTIN} and PMN_{HIT} and the infection status, $F(1,12)=1.1870$, $p=0.30$,
268 including a similar trend in direction of response for both PMN. However, there was a
269 significant *Mtb* infection effect, $F(1,12)=9.7290$, $p=0.009$, with pairwise comparisons
270 showing a significantly greater decrease in total cell nuclei area between 1h and 6h after *Mtb*
271 infection for PMN_{HIT} compared to PMN_{HITTIN} ($p=0.04$, pairwise t-test) (Fig 5 and S1 Fig).

272 When then comparing difference in NET area at 1h vs 6h, there was a statistically significant
273 interaction between the PMN groups and infection status, $F(1, 10.5924) = 5.3398$, $p <$
274 0.0421). The simple main effect of phenotype group, considering the Bonferroni adjusted p-
275 value was significant for *Mtb* infection ($p=0.0007$), but not for non-infection ($p=1$). Consistent
276 with the greater viability of PMN_{HITTIN} at 6h of infection, pairwise comparisons show that
277 PMN_{HITTIN} also induce a significantly smaller change in NETs produced between 1h and 6 h
278 of infection, compared to PMN_{HIT} ($p=0.0003$) (Fig 5 and S1 Fig).

279

280 **Discussion**

281 HITTIN remain persistently TST, IGRA and TB negative despite prolonged *Mtb* exposure
282 and antibody evidence of prior infection. This suggests HITTIN have different protective
283 mechanisms in the early response to *Mtb* infection to that which occurs in HIT who convert
284 to a positive TST and IGRA following *Mtb* infection. Here we investigated the DEGs of
285 PMN_{HITTIN} to determine whether they are a distinct and previously undefined group that
286 contribute to HITTINs unique ability to control *Mtb* infection, prevent progression to TB, and
287 interact with the adaptive immune response while possibly limiting persisting *Mtb*-specific
288 IFN- γ T-cell memory responses. Using RNAseq analysis of ex vivo *Mtb* infected PMN we

289 found that PMN_{HITTIN} had an overall lower transcriptional FC response to *Mtb* after 6h of
290 infection relative to PMN_{HIT}. Positively enriched terms and pathways included apoptosis,
291 NETosis, NADPH regeneration and ROS formation, with pathways related to necrotic cell
292 death, necroptosis, neutrophil chemotaxis, degranulation and immune exhaustion which
293 were triggered less strongly in PMN_{HITTIN} compared to PMN_{HIT} after 6h infection with *Mtb*.
294 Using fluorescence microscopy, we demonstrate that after 6h of infection PMN_{HITTIN} have
295 undergone less NETosis than PMN_{HIT}, corroborating the overall lower transcriptional
296 response to *Mtb* infection after 6h seen in PMN_{HITTIN}. The question arises whether the less
297 pronounced response by PMN_{HITTIN} facilitates rapid *Mtb* control and a more contained
298 neutrophil response, thereby preventing overt damage and an exacerbated inflammatory
299 cascade, associated with TB. Their relatively lower induction of genes in response to *Mtb*
300 suggests this is likely, requiring future functional studies for confirmation.

301 Neutrophil degranulation and NET formation processes were observed 1-6 months prior to
302 persons developing TB and play an important role in *Mtb* infection progression to disease as
303 well as potential lung destruction (42). This highlights the important regulatory mechanism
304 of NET formation by neutrophils in the inflammatory response against *Mtb* infection.

305 After infection with *Mtb*, *Mtb*-induced ROS, mediated necrosis in neutrophils and decreased
306 the ability of macrophages to control *Mtb* growth (18). Transcription of different groups of
307 genes are regulated by NETosis-specific kinase cascades (43). NETs are triggered by a
308 NADPH/ROS dependent or an independent mechanism through
309 TLR2/TLR4/lipopolysaccharide (LPS) activation (44,45). The multi-protein NADPH oxidase
310 complex consists of multiple subunits (including cytosolic p40-phox, p47phox and p67-phox,
311 as well as the catalytic gp91-phox subunit) and other proteins (transmembrane p22-phox
312 and nucleotide-binding Rac2) and is involved in the process to produce ROS (46). ROS is
313 mostly known to modulate a pro-inflammatory effect, with increased levels positively
314 correlated to higher levels of TNF and a greater control of *Mtb* infection (47). High levels of
315 ROS can be damaging, but at lower levels ROS can mediate an anti-inflammatory effect in
316 mouse neutrophils by inhibiting p-AKT and NF- κ B and inducing apoptosis (48–53). In our
317 data, within the “Neutrophil extracellular trap formation” pathway in KEGG, several
318 significantly under-stimulated genes in the pathway suggest potential relatively lower ROS
319 levels in PMN_{HITTIN} which could account for the relatively lower NET formation after 6h
320 infection with *Mtb*. Another alternative mechanism PMN_{HITTIN} displayed for inflammation
321 control was enrichment of “NADPH regeneration”. NADPH may play a role in neutralizing
322 rather than producing ROS in PMN_{HITTIN}.

323 The lower upregulation of *CYBA*, *CYBB* (aka *NOX2*) as well as *RAC2* in PMN_{HITTIN} could
324 point to a mechanism to decrease ROS formation and prevent or decrease necrosis with
325 consequently lower ROS mediated NET formation. Strikingly, *NCF2* was downregulated in
326 PMN_{HITTIN} and upregulated in PMN_{HIT}. The G allele of *NCF2* rs10911362 is associated with
327 protection against TB in the Western Chinese Han population (54). In another study also
328 investigating Chinese Han persons, a rs3794624 polymorphism in *CYBA* was also linked
329 with decreased TB susceptibility (46,54). PMN_{HITTIN} exhibit an interesting potential *NCF2*-
330 mediated mechanism driving less ROS and NET formation with consequently potentially
331 lower necrotic cell death.

332 TLR2/4 ROS independent mechanisms could also mediate NET formation. A lower
333 upregulation of *TLR2* and *TLR4* in PMN_{HITTIN} likely balance potential inflammatory effects of
334 NET release with downstream upregulation of apoptosis. NETs can also be triggered by
335 activated *CASP1* and *ELANE* cleaving *GSDMD* (55). *CASP1* was less up- and *GSDMD* less
336 downregulated in PMN_{HITTIN}. Although NETs have not been shown to control *Mtb* infection,
337 the granular components associated with NETs could contribute (56). Azurocidin 1 (AZU1)
338 can interact with pentraxin 3 (PTX3) to enhance microbial function. The mechanism of this
339 interaction is not known. PTX3 is a soluble pattern recognition receptor with increased
340 levels seen in sepsis and TB (57). PTX3 was significantly upregulated by *Mtb* infection in
341 both PMN_{HITTIN} and PMN_{HIT} but there was not a statistically significant difference between
342 these. The fact that DEGs for other granule proteins were not identified is likely because
343 they are mostly transcribed in immature neutrophils and this degranulation is reflective of
344 their potentially different action (58–60).

345 HDAC1 has been implicated as a key regulator of innate immunity in monocytes isolated
346 from HIV negative persons who tested persistently TST negative after household TB
347 exposure (61). HDAC inhibitors in macrophages such as phenylbutyrate improved *Mtb*
348 control (61,62). This inhibition was synergistically improved with vitamin D (62). Less
349 downregulation of *HDAC1* in PMN_{HITTIN} translated into a decreased inflammatory response,
350 with a lower upregulation of genes in the NF- κ B signaling pathway (Fig 4A and C).
351 This corroborates a more repressive or anti-inflammatory role in PMN_{HITTIN}.

352 Increased NETs can potentiate local damage due to release of granular components, but
353 NET formation has also been shown to limit inflammation through degradation of
354 chemokines and cytokines (63). This intricate balance is likely maintained by PMN_{HITTIN}
355 which despite an abundance of genes associated with NETs make relatively lower total
356 NETs in response to *Mtb* infection. The formation of NETs itself is likely not problematic as
357 PMN_{HITTIN} could potentially effectively localize and trap *Mtb* through NETs and activate other

358 innate cells such as macrophages (22). The balance of NETosis with other cell death
359 mechanisms may play an additional role to determine the fate of *Mtb*.

360 **Study limitations**

361 Future work is needed to determine if there is a measured difference in ROS released by
362 PMN_{HITTIN} compared to PMN_{HIT}. In addition, neutrophil *Mtb* killing assays will determine if
363 PMN_{HITTIN} show improved *Mtb* infection clearance. Multiple studies have identified neutrophil
364 subpopulations and it is possible that a specific subpopulation could be driving the response
365 differences we observed (64–66). Flow cytometry for identification of potential
366 subpopulations as well as single cell RNA sequencing would be highly informative.

367 **Conclusion**

368 In general, for TB, neutrophils are mostly linked to hyperinflammatory responses and more
369 severe disease. Here we showed a distinctive gene expression profile for neutrophil
370 responses from HITTIN individuals, who appeared protected from TB despite a lack of
371 canonical *Mtb*-specific T-cell memory. These findings put neutrophils at the forefront of
372 potential innate immune cell mechanisms of *Mtb* infection resistance. They highlight a
373 distinct phenotypic response to *Mtb* in PMN_{HITTIN} compared to neutrophils from persons
374 otherwise defined as sensitized by *Mtb*.

375 Contrary to *Mtb* inducing necrotic cell death mechanisms as in most neutrophils, DEGs in
376 PMN_{HITTIN} showed decreased transcriptional responses for necrosis, with an enrichment of
377 terms related to apoptotic cell death and NETosis. Fluorescence imaging corroborated
378 significant reduction in NET formation between PMN_{HITTIN} and PMN_{HIT}, likely driven by lower
379 ROS transcriptional pathways with a downregulation of *NCF2*, a key mediator in ROS
380 formation, in PMN_{HITTIN}. These molecular data implicated neutrophils as key effector cells in
381 *Mtb* infection resistance. Further increased understanding of the crucial pathways of *Mtb*
382 infection control highlighted in the study could be harnessed for the development of *Mtb*
383 prevention and treatment strategies.

384 **Materials and Methods**

385 **Ethics Statement**

386 The study was approved by the Health Research Ethics Committee of Stellenbosch
387 University (S18/08/175(PhD)). Samples used in this study were leveraged from the ResisTB
388 study. The Health Research Ethics Committee of Stellenbosch University (N16/03/033 and

389 N16/03/033A) and the Faculty of Health Sciences Human Research Ethics Committee of the
390 University of Cape Town (755/2016 and 702/2017) approved participant recruitment for
391 ResisTB. Additional approval was obtained from the City of Cape Town and Western Cape
392 government for access to the relevant clinics.

393 **Participant recruitment**

394 Samples were collected from 29 participants recruited to the ResisTB study in Cape Town,
395 South Africa. The ResisTB study recruited a group of participants between the ages of 35-
396 60 years old. The recruitment of this group for the ResisTB study has been fully described
397 previously (4). Briefly, the participants had to be living with HIV in an area of high *Mtb*
398 transmission and have no history of previous or current TB. They had to have a history of
399 living with a low CD4+ count (either with two CD4+ <350 cells/mm³ counts at least 6 months
400 apart or a single CD4+ count <200 cells/mm³) prior to initiating antiretroviral therapy (ART),
401 and be immune reconstituted on ART for at least one year at time of enrolment with the last
402 CD4+ count >200 cells/mm³ (4). Exclusion criteria included pregnancy, previous TB,
403 symptoms suggestive of active TB disease, participation in other interventional studies, and
404 any AIDS defining illness in the year prior to enrolment. Participants were seen at three
405 visits. During the enrolment visit, blood samples were taken for an IGRA using the
406 QuantiFERON®-TB Gold Plus (QFT®-Plus) in tube test. For follow up, whole blood was
407 collected in an EDTA tube for Ficoll gradient separation and neutrophil isolation as well as a
408 second IGRA, followed by TST administration with PPD RT23 (Statens Serum Institute).
409 After 3 days the TST reading was taken and participants who tested IGRA negative from the
410 first visit had bloods taken for a third and final IGRA. This ensured that any T-cell response
411 that would be boosted by TST administration would be identified by IGRA to ensure
412 participants with low level T-cell memory were correctly identified.

413 For this study, samples were leveraged from 17 older HITTIN and 11 HIT participants. Age
414 was used as a surrogate for increased exposure frequency to *Mtb* since most persons are
415 infected with *Mtb* by the age of 30-35 in the Western Cape of South Africa, where the study
416 was conducted (67,68).

417 **Neutrophil isolation**

418 Neutrophils were isolated by Ficoll gradient separation. Whole blood diluted 1:1 with 1x
419 Phosphate buffered saline (PBS, Sigma-Aldrich, USA) was layered over the density gradient
420 separation medium (Histopaque / Ficoll-Paque, Sigma-Aldrich, USA). Cells were centrifuged
421 for 25 minutes at 400 x g. After this, cells were washed twice with 4°C PBS and centrifuged
422 each time at 400 x g for 10 minutes at 4°C. Peripheral blood mononuclear cells were

423 removed first and then the remaining plasma and Ficoll-Paque layer. A red blood cell (RBC)
424 lysis buffer (component concentrations) was added in a ratio of 1:10 or topped up to 50ml, if
425 a 50 ml centrifuge tube was used, to the remaining bottom layer and incubated for 10
426 minutes at 4°C. RBC lysis buffer (8% Ammonium chloride [NH₄Cl], 0.8% Sodium
427 bicarbonate [NaHCO₃, Sigma-Aldrich, USA] and 0.4% Ethylenediaminetetraacetic acid
428 [EDTA, Sigma-Aldrich, USA]).

429 After RBC lysis, samples were centrifuged at 400 x g for 10 minutes at 4°C and then washed
430 twice with PBS (4°C) and centrifuged at 400 x g for 10 minutes at 4°C. After the cell count, 1
431 x 10⁷ cells in RPMI-1640 with L-glutamine and sodium bicarbonate (Sigma-Aldrich, USA),
432 were seeded evenly over each row of 3 wells in a 6-well plate cell culture plate (Nest
433 Scientific USA Inc., USA) at 0.33 x 10⁷ cells per well for the RNA sequencing experiment
434 and 2 x 10⁵ cells per well in a 96-well (M0562, Greiner, Sigma Aldrich, USA) for microscopy.
435 For each participant two 6-well plates (one for each time-point i.e., 1 and 6h, with 3 wells for
436 no infection and 3 wells for *Mtb* infection) were seeded. Cells were incubated for 1h-2h at
437 37°C and 5% CO₂. An aliquot of remaining neutrophils was fixed with 4% Paraformaldehyde
438 (PFA, cat.no. 43368, Alfa Aesar, USA) and then stored overnight at -80°C before transferred
439 to and stored in liquid nitrogen.

440 **Staining for flow cytometry**

441 The fixed neutrophil aliquots were thawed and washed in Dulbecco's phosphate buffered
442 saline (DPBS, Cat. No. 14190144, Thermo Fisher Scientific, Australia). 1.5 x 10⁶ cells per
443 participant were resuspended in surface staining buffer comprised of DPBS + 3% Foetal
444 Bovine Serum (FBS, Cat. No. SFBS-AU, Bovogen Biologicals Pty Ltd, Australia).
445 Fluorescently conjugated antibodies for cell surface staining (Supplementary Table 1) were
446 prepared in Brilliant Stain Buffer (Cat. no. 556349, BD Biosciences, Australia) and incubated
447 with cells in a 96 well plate (Cat. no. COR3894, Corning, In Vitro Technologies Pty Ltd,
448 Australia) for 30 minutes at room temperature. Cells were washed using surface staining
449 buffer, permeabilised using a 10-minute incubation in Perm/Wash Buffer (P/W, cat. no.
450 554723, BD Biosciences, Australia) and washed once with P/W. The remaining antibodies
451 listed in Supplementary Table 1 were prepared in Brilliant Stain Buffer and incubated with
452 cells in a 96 well plate for 45 minutes at 4°C. Cells were washed twice with P/W and flow
453 cytometry data was acquired using the Cytek Aurora Spectral Flow Cytometer (5 laser, 64
454 detector configuration). Data was unmixed using SpectroFlo (Version 3.0.3) and analysed
455 using FlowJo (FlowJo 10.8.2) and GraphPad Prism 8.0.1 (see methods section **Flow data**
456 **analysis**, S2 Fig). Cell single-stained controls were prepared using the same protocol as
457 experimental samples.

458

459 **Mycobacterial cultures and neutrophil *in vitro* infection**

460 *Mtb* single cells stocks for infection were prepared as previously described (62). *Mtb* H37Rv
461 was grown in a liquid culture of Middlebrook 7H9 medium (Difco, Becton Dickinson, USA)
462 with albumin-dextrose-catalase (ADC, Becton Dickinson, USA) and 0.05% Tween-80
463 (Sigma-Aldrich, USA) at 37°C as a standing culture in a tray and mixed by swirling every few
464 days to disperse clumps for 10 days. After 10 days, a liquid culture of 7H9 ADC, without
465 Tween-80, was inoculated with 1/100th volume of day 10 end-exponential growing phase *Mtb*
466 and incubated in static standing culture, only swirled periodically, at 37°C for 10 days. After
467 this, cultures were centrifuged for 5 minutes at 2500RPM. Glass beads were used to break
468 the pellet after which it was resuspended in PBS. The upper part of the bacterial suspension
469 was harvested and spun for 10 minutes at 1400RPM. Then the upper part of the bacterial
470 suspension was harvested again and mixed with glycerol (5% final volume) and aliquots
471 were stored at -80°C. Aliquots were serially diluted before and after freezing and plated on
472 Middlebrook 7H10 agar (Becton Dickinson, USA) plates with oleic acid-albumin-dextrose-
473 catalase (OADC, Becton Dickinson, USA) for colony forming unit (CFU) determination. Prior
474 to infection, aliquots were thawed at room temperature.

475 Neutrophils were infected at a multiplicity of infection (MOI) of 1:1 for 1h, and 6h at 37°C
476 under 5% CO₂. For the 3 wells in row 1 of each of the two plates, 1ml was removed from
477 each well (3ml per plate giving a total of 6ml from the two plates). After this 2 x 10⁷ *Mtb*
478 H37Rv was added to the 6ml, carefully pipetted to mix and then 1ml (0.33 x 10⁷ *Mtb* H37Rv)
479 was returned to each of these wells for infection. For each infection experiment, *Mtb*
480 infection MOI were confirmed by CFU counts of serially diluted inoculum plated on 7H10
481 OADC agar.

482 **Staining for microscopy**

483 Of the neutrophils isolated from 17 older HITTIN and 11 HIT participants, neutrophils from 12
484 HITTIN and 10 HIT were plated and stained for microscopy imaging. Cell staining was
485 performed on 2 x 10⁵ neutrophils per well for uninfected vs infected with *Mtb* H37Rv for each
486 timepoint 1 and 6h. For each time point (1h, 6h) two wells (A, B) were plated for neutrophils
487 to be infected with *Mtb* and two wells for no infection (C,D). At the designated timepoints the
488 supernatant was discarded and replaced with 4% PFA (cat.no. 43368, Alfa Aesar, USA).
489 The plates were incubated at 4°C for 24h, before removing the plates from the BSL-3. PFA
490 was replaced with PBS and plates stored at 4°C.

491 For immunofluorescence labelling, wells were stained with 1° [1:500 mouse mAB PL2/3,
492 kindly gifted by Arturo Zychlinsky (nucleosomal complex of Histone 2A, Histone 2B and
493 chromatin)] and 2° antibody cocktail [1:1000 α -mouse-Cy3 (cat.no. 715-166-150, Amersham,
494 UK) and 10 μ g/ml Hoechst 33342 (cat.no. 14533, Sigma-Aldrich, USA)] (69–71). Prior to
495 staining PBS was removed from all wells and replaced with Perm/Quench Buffer (50mM
496 NH4Cl, 0.2% saponin in PBS) for a 15-minute incubation period. After removing
497 Perm/Quench, PGAS Buffer (0.2% bovine serum albumin (BSA), 0.02% saponin and 0.02%
498 Azide (NaN₃) was added for a 5-minute incubation. Once the PGAS was removed the 1°
499 antibody cocktail was added and left to incubate overnight at 4°C. The following day the 1°
500 antibody cocktail was discarded, and two washes were completed with PGAS buffer before
501 adding the 2° antibody cocktail and incubating in the dark for 1h at room temperature. The
502 staining was completed by removing the 2° antibody cocktail and completing three washes
503 with PGAS buffer. Each well was filled with PGAS buffer to the brim. The plates were
504 covered with foil and stored at 4°C for imaging.

505 **Image acquisition**

506 Image tile scans were acquired with the Zeiss AxioObserver Z1 microscope, equipped with a
507 Colibri 7 light source for excitation of Hoechst 33342 (cat.no. 14533, Sigma-Aldrich) with LED-
508 module 385nm, and Cy3 with LED-module 511nm. A quadruple band pass filter and triple
509 band pass filter were used respectively for detection of Hoechst (wavelength range 412-
510 438nm) and Cy3 (wavelength range 546-564 nm). Images were acquired with a LD A-Plan
511 40x/0.55 objective as a 6 x 8 tile scan to acquire a total area of 1.21mmx1.21mm (S1 Fig).

512 **Imaging processing**

513 Tiles were stitched together into single images using Zeiss ZenPro software (version 2.6),
514 which were imported into FIJI/ImageJ (version 1.53t). Image tiles were split into separate
515 channels, after which background subtraction (ranging from 50-100 pixels) and Otsu based
516 thresholding was conducted on a per image basis to generate a binarized map of each
517 image. Binary images were further processed by using the binary closing function in FIJI, as
518 well as a top hat filter of 1-2 pixels to remove small non-specific pixels. For the nuclear
519 quantification, an additional watershed function was applied to separate borders more
520 accurately. Thereafter, morphometric data were obtained by specifying the area and
521 circularity ranges of particles to be analysed through the Analyze Particles function in FIJI to
522 determine the total area covered.

523 **Preparation of RNASeq libraries**

524 Uninfected and infected neutrophils (1×10^7 cells for each) were lysed with TRIzol (Invitrogen
525 TRIzol Reagent, Fisher Scientific, USA) after 1h and 6h after infection, and stored at -80°C.
526 The miRNeasy kit (Qiagen, Germany) was used for total RNA extraction. One sample per
527 participant and condition was used. RNA integrity (RIN) was assessed with the Agilent 2100
528 Bioanalyzer (Agilent Technologies, Germany). Samples with RIN >7 were selected for
529 library preparation using TruSeq RNA Library Preparation Kit v2, Set A (Illumina, USA).
530 Samples were sequenced in two batches (S4 Table). Batch 1 was a preliminary test batch
531 for exploratory analysis and to confirm data quality from PMN, consisting of samples from 3
532 HITTIN (18%) and 4 HIT (36%) participants. This was sequenced as unstranded, 100bp,
533 single-end (SE) on an Illumina HiSeq4000 sequencer at Genome Quebec, Montreal,
534 Canada. Batch 2 with samples from 14 HITTIN (82%) and 7 HIT (64%) participants was
535 sequenced as unstranded, 150bp paired-end (PE) on an Illumina NovaSeq6000 sequencer
536 at Genome Quebec, Montreal, Canada. There was no significant difference in the
537 distribution of the samples used for each batch ($p=0.4$, Fisher's exact test) (S4 Table).

538 **Quality control and raw data pre-processing**

539 The quality of the raw sequence data was accessed by FastQC (v0.11.5) and MultiQC
540 (72,73). The mean quality of reads was high with the mean sequence quality score (Phred
541 Score) >35 for both batches. Duplicates were observed in both batches. For batch 1,
542 sequenced as single-end reads (SE), we detected a fraction of 0.41-0.63 duplicates which
543 fall within and below the expected range (0.66–0.74) of duplicates according to the Universal
544 Human Reference RNA (UHRR) (74). The fraction of duplicates (0.4-0.61) from batch 2 was
545 much higher than expected (0.087–0.18) for paired-end (PE) reads (74). With single-end
546 reads, fragmentation bias is usually the cause of these duplicates. For both SE and PE, de-
547 duplication is not recommended (74). To minimize bias, duplicates were not removed from
548 either of the batches.

549 Batch 1 and 2 were combined after read counts were generated. For read count generation
550 the same method was applied to both batches. After initial raw sequence quality check by
551 FastQC, data was filtered and trimmed using HTStream (72,75). The occurrences of rRNA
552 read contamination was counted but not removed and contamination with PhiX, a control in
553 Illumina runs, was removed by hts_SeqScreener (75). Adapters were trimmed with
554 hts_AdapterTrimmer and poly(A) tails were removed with hts_PolyATTrim (75). Any
555 remaining N characters (unassigned bases) were removed with hts_NTrimmer and
556 hts_QWindowTrim for quality trimming the end of the reads (75). Reads less than seventy-
557 five base pairs long were removed by hts_LengthFilter(75).

558 The genome was indexed using GRCh38.p13 v34 (ENSEMBLE v100) and reads were
559 aligned to the genome with STAR (v2.5.3a) in a bam format (76–78). More than 80% of the
560 reads were uniquely mapped. The reads per gene output files were combined before the
561 final unstranded read counts matrix was extracted for all. The gene read count matrix was
562 input in R (v4.0.3) for further analysis (79). The untransformed and raw count matrix was
563 adjusted for batch effect using ComBat-seq while preserving the signal of the biological
564 variables of interest namely the phenogroups (HITTIN vs HIT), the timepoints and infection
565 (80)(S3 Fig).

566 **Differential gene expression analysis**

567 Raw counts were transformed to counts per million (CPM) and filtered using “filterByExpr” in
568 the edgeR package (81). Briefly, the function kept genes at least 25 read counts or more in
569 at least a minimum of samples (calculated as 70% of the samples in the smallest group).
570 For this dataset genes with a CPM of 1.32 in at least 8 (70% of the smallest group of 11
571 samples) are retained, leaving 14602/60622 (24%) of the genes for further differential
572 expression analysis (S4 Fig). Normalization scaling factors were generated by
573 “calcNormfactors” in edgeR using the method of trimmed mean of M-values (TMM)(81).
574 Outlier samples were observed in the multidimensional scaling (MDS) plots (S3 Fig).
575 Instead of removing the outliers, limma’s function “voomWithQualityWeights” allows for
576 variations in samples by taking sample-specific variability as well as the ‘global intensity-
577 dependent variability trends’ as accounted for by ‘voom’, into consideration (82). The
578 expression matrix was normalized and transformed to log2 CPM and sample specific
579 weights were incorporated with abundance dependent weights using limma’s (v3.46.0)
580 function “voomWithQualityWeights” (82,83) (S5 Fig).

581 **Data exploration**

582 Data was visualized with multidimensional scaling (MDS) plots and principal components
583 analysis (PCA) Scree plot (S6 and S7 Figs). Normalized counts were plotted without
584 covariate correction to examine data for potential covariate effect. Initially clear separation
585 was seen by batch effect, but this was corrected for (S3 Fig). The post batch corrected data
586 was reviewed (S8-15 Figs). Sex and smoking showed some separation and would need
587 further investigation (S8 and S9 Figs). No separation could be seen for age, BMI, chronic
588 disease history, previous INH used, duration of INH and alcohol use (S10-15 Figs). Using
589 the paired design with blocking, accounted for the covariates effects by blocking on the
590 effect of each individual and are discussed below.

591 Model design

592 For the analysis we used a paired design and created the model with subject IDs (for
593 blocking in a paired design), group (HITTIN and HIT), time of infection (1 and 6h) and *Mtb*
594 infection status (uninfected and infected) as factors in the model using model.matrix from the
595 stats package (v4.0.3).

596

597 In the individual blocking, individuals were defined per timepoint, due to large variance
598 introduced to each individual due to time effect (Figs 7 and 8). The three factors group, time
599 of infection and *Mtb* infection status were grouped together as a single interaction term and
600 was modelled with the subject effect as a means model:

601

602
$$E(G_i)_{\text{Model1}} \sim \beta_0 + \sum_{j=1}^n \beta_{jkl} x_j + \beta_{Hkl} \cdot x_{Hkl} + \beta_{Nkl} \cdot x_{Nkl} + \epsilon$$

603

604 Where G_i is the $\log_2(\text{CPM})$ expression for each gene i ($n = 14602$) and $E(G_i)$ is the expected
605 gene expression. β_0 represents the intercept. β_{jkl} represents the mean expression for each
606 individual j ($j=1$ to total of n) at time k ($k= 1\text{h}$ or 6h) for *Mtb* infection state l ($l= \text{uninfected}$ or
607 infected). H represents HIT and N represents HITTIN. x_j is a variable representing the n
608 samples in the data. The β value is the mean expression for each specified group after
609 blocking on the individual averages. ϵ is the residual term and is assumed to be normally
610 distributed with a constant variance across the range of data.

611

612 Contrasts were made using makeContrasts and defined as:

- 613 i) Group specific effects at 1h infected
- 614 ii) Group specific effects at 6h infected
- 615 iii) Differential response between groups at 1h infected
616 $(\beta_{\text{HITTIN}1\text{inf}}) - (\beta_{\text{HIT}1\text{inf}})$
- 617 iv) Differential response between groups at 6h infected
618 $(\beta_{\text{HITTIN}6\text{inf}}) - (\beta_{\text{HIT}6\text{inf}})$

619

620 Linear models were fitted with lmFit and eBayes to calculate the gene-wise test statistics
621 (moderated t-statistic, p-values and B-statistic). Criteria for DEGs was defined by a
622 Benjamini Hochberg FDR procedure as genes with an absolute $\log_{10}(\text{FC}) \geq 0.2$ and adjusted p
623 value ≤ 0.05 .

624

625 DEGs were used in a gene set enrichment analysis for pathways and Gene ontology (GO)
626 enrichment using ReactomePA v1.34.0 and clusterProfiler v3.18.1 (84). enrichGO was used
627 to test GO biological process, enrichKEGG for KEGG pathways and Reactome with
628 enrichPathway. An FDR ≤ 0.1 was used for Benjamini- Hochberg's multiple testing
629 correction. Pathways and GO terms with less than five assigned genes were excluded.
630

631 **Flow data analysis**

632
633 CD15+CD66b+ and CD15-CD66b- cells were calculated as a percentage of total CD45+
634 single cells. Each subset CD15+CD66b+ and CD15-CD66b- was then further stratified into
635 the relevant subpopulation contribution, which were then expressed as a percentage of each
636 subset. CD15+CD66b+ was stratified as CD16+ (neutrophils) and CD16-CD14_{low}
637 (eosinophils), and CD15-CD66b- into CD3+ (T-cells), CD3- CD14+ (Monocytes) and CD3-
638 CD14- (Other). Wilcoxon rank sum test was used to calculate if there was a significant
639 ($p < 0.05$) difference in the median percentage contribution of each subset in HITTIN vs HIT
640 using GraphPad Prism 8.0.1 (Supplementary Table 2).
641

642 **Confocal Image analysis**

643 Image from total of 9 HITTIN and 5 HIT neutrophil were included in the final analysis.
644 Results of the Hoechst cell nuclei area count as well as the total NETs area (chromatin
645 channel) were analysed in R studio. The log ratio of total nuclei area (Hoechst channel) at
646 6h to 1h was used to compare the infection effect of *Mtb* between and within groups on the
647 change in area of cells (as a proxy for cell counts, since masking often under or
648 overestimated cell counts, especially with neutrophil nuclei with trinucleate structures and
649 cell clumps) over 1h to 6h (Fig 5i, S1 Fig). The total NET area change was determined by
650 the total NET area (chromatin channel) to the total cell area (Hoechst channel) as
651 determined for each timepoint and non-infection or infection with *Mtb*. To investigate if there
652 is a difference in NET area change from 1h to 6h between PMN_{HITTIN} and PMN_{HIT} in
653 response to infection, we calculated the log transformed ratio of the NET area change at 6h
654 to 1h in uninfected and *Mtb* infected for each subject (Fig 5ii, S1 Fig).

655 A two-way mixed ANOVA analysis approach was used with the phenotype group (HITTIN vs
656 HIT) describing the between-subject factor and *Mtb* infection status (non-infected vs
657 infected) the within subject factor. Assumptions of normality, homogeneity of variances and
658 homogeneity of covariances were met. After the removal of the initial extreme outlier, there
659 were still some 3 outliers in the remaining analysis. These outliers were not removed, and a

660 robust ANOVA was performed using the WRS2 package in R (85). Further pairwise
661 comparisons were done between PMN_{HITTIN} and PMN_{HIT} for non-infection as well as infection
662 with *Mtb*, using a pairwise t-test and Bonferroni adjusted p-values.

663

664 Acknowledgements

665 This study was approved by the Health Research Ethics Committee (HREC) of Stellenbosch
666 University [S18/08/175(PhD)]. The ResisTB study was approved by the Health Research
667 Ethics Committee (HREC) of Stellenbosch University [N16/03/033 and N16/03/033A] and
668 the Faculty of Health Sciences Human Research Ethics Committee of the University of Cape
669 Town [HREC 755/2016 and 702/2017]. Additional approval was obtained from the City of
670 Cape Town and Western Cape government for access to the relevant clinics.

671 The work was funded by the South African Medical Research Council through its Division of
672 Research Capacity Development under the SAMRC Clinician Researcher M.D PhD
673 Development programme and the Walter and Eliza Hall Institute of Medical Research. The
674 content of any Publications from any studies during this Degree are solely the responsibility
675 of the authors and do not necessarily represent the official views of the South African
676 Medical Research Council. This publication is supported by NeutroTB which is part of the
677 EDCTP2 programme supported by the European Union (grant number TMA2018CDF-2353-
678 NeutroTB). The views and opinions of authors expressed herein do not necessarily state or
679 reflect those of EDCTP. RJW is supported by the Francis Crick Institute which is funded by
680 Wellcome (CC2112), UKRI (CC2112) and CRUK (CC2112). He is also supported by
681 Wellcome (203135). We acknowledge the support of the DSI-NRF Centre of Excellence for
682 Biomedical Tuberculosis Research, South African Medical Research Council Centre for
683 Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of
684 Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

685 For the purposes of open access, the author has applied a CC-BY public copyright licence to
686 any author accepted manuscript arising from this submission.

687 Special acknowledgement to Dr Tracey Jooste for her manuscript input as well as Dr
688 Sihaam Boolay and Dr Nasiema Allie for laboratory assistance and support and
689 Arturo Zychlinsky for kind supply of PL2/3 mAb.

690

691 References

692 1. WHO W. Global tuberculosis report 2022 [Internet]. 2022 [cited 2023 Mar 14]. Available
693 from: <https://www.who.int/publications-detail-redirect/9789240061729>

694 2. Lawn SD, Wilkinson RJ. ART and prevention of HIV-associated tuberculosis. *Lancet*
695 *HIV*. 2015 Jun;2(6):e221-222.

696 3. Houben RMGJ, Crampin AC, Ndhlovu R, Sonnenberg P, Godfrey-Faussett P, Haas
697 WH, et al. Human immunodeficiency virus associated tuberculosis more often due to
698 recent infection than reactivation of latent infection. *Int J Tuberc Lung Dis*. 2011 Jan
699 1;15(1):24-31.

700 4. Kroon EE, Kinnear CJ, Orlova M, Fischinger S, Shin S, Boolay S, et al. An
701 observational study identifying highly tuberculosis-exposed, HIV-1-positive but
702 persistently TB, tuberculin and IGRA negative persons with *M. tuberculosis* specific
703 antibodies in Cape Town, South Africa. *EBioMedicine*. 2020 Nov 1;61:103053.

704 5. Verver S, Warren RM, Munch Z, Vynnycky E, van Helden PD, Richardson M, et al.
705 Transmission of tuberculosis in a high incidence urban community in South Africa. *Int J*
706 *Epidemiol*. 2004 Apr;33(2):351-7.

707 6. TB Statistics for South Africa | National & provincial [Internet]. TBFACTS. [cited 2019 Oct
708 31]. Available from: <https://tbfacts.org/tb-statistics-south-africa/>

709 7. Blomgran R, Ernst JD. Lung Neutrophils Facilitate Activation of Naive Antigen-Specific
710 CD4+ T Cells during *Mycobacterium tuberculosis* Infection. *J. Immunol*. 2011 Jun
711 15;186(12):7110-9.

712 8. Kisich KO, Higgins M, Diamond G, Heifets L. Tumor Necrosis Factor Alpha Stimulates
713 Killing of *Mycobacterium tuberculosis* by Human Neutrophils. *Infect Immun*. 2002
714 Aug;70(8):4591-9.

715 9. Ellison MA, Gearheart CM, Porter CC, Ambruso DR. IFN- γ alters the expression of
716 diverse immunity related genes in a cell culture model designed to represent maturing
717 neutrophils. *PLOS ONE*. 2017 Oct 5;12(10):e0185956.

718 10. Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrøm T, et al. Azurophil
719 Granule Proteins Constitute the Major Mycobactericidal Proteins in Human Neutrophils
720 and Enhance the Killing of Mycobacteria in Macrophages. *PLOS ONE*. 2012 Dec
721 14;7(12):e50345.

722 11. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al.
723 Neutrophil-mediated innate immune resistance to mycobacteria. *J Clin Invest*. 2007
724 Jul;117(7):1988-94.

725 12. Lowe DM, Demaret J, Bangani N, Nakiwala JK, Goliath R, Wilkinson KA, et al.
726 Differential Effect of Viable Versus Necrotic Neutrophils on *Mycobacterium tuberculosis*
727 Growth and Cytokine Induction in Whole Blood. *Front Immunol*. 2018; 9: 903.
728 doi: [10.3389/fimmu.2018.00903](https://doi.org/10.3389/fimmu.2018.00903)

729 13. Subrahmanyam YV, Yamaga S, Prashar Y, Lee HH, Hoe NP, Kluger Y, et al. RNA
730 expression patterns change dramatically in human neutrophils exposed to bacteria.
731 *Blood*. 2001 Apr 15;97(8):2457-68.

732 14. Lakschevitz FS, Visser MB, Sun C, Glogauer M. Neutrophil transcriptional profile
733 changes during transit from bone marrow to sites of inflammation. *Cell. Mol. Immunol.*
734 2014 Jun 9;12:53.

735 15. Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. Down-Regulation of
736 Proinflammatory Capacity During Apoptosis in Human Polymorphonuclear Leukocytes.
737 *J Immunol.* 2003 Mar 15;170(6):3357–68.

738 16. Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and
739 Death. *Front Cell Infect Microbiol.* 2017; 7: 159. doi: [10.3389/fcimb.2017.00159](https://doi.org/10.3389/fcimb.2017.00159)

740 17. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsch E, Hirsh E, Sozzani S, Cassatella MA.
741 Regulating neutrophil apoptosis: new players enter the game. *Trends Immunol.* 2011
742 Mar;32(3):117–24.

743 18. Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, et al. *M. tuberculosis*-
744 Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following
745 Phagocytosis by Macrophages. *Cell Host Microbe.* 2017 Oct 11;22(4):519-530.e3.

746 19. McHenry ML, Benchek P, Malone L, Nsereko M, Mayanja-Kizza H, Boom WH, et al.
747 Resistance to TST/IGRA conversion in Uganda: Heritability and Genome-Wide
748 Association Study. *EBioMedicine.* 2021 Dec;74:103727.
749 doi:10.1016/j.ebiom.2021.103727.

750 20. Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of
751 neutrophils. *J Clin Invest.* 2016 May 2;126(5):1612–20.

752 21. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al.
753 Neutrophil Extracellular Traps Kill Bacteria. *Science.* 2004 Mar 5;303(5663):1532–5.

754 22. Braian C, Hogaia V, Stendahl O. *Mycobacterium tuberculosis*-Induced Neutrophil
755 Extracellular Traps Activate Human Macrophages. *J Innate Immun.* 2013;5(6):591–
756 602.

757 23. Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, Gonzalez-Pozos S,
758 Muñiz-Hernandez S, Rojas-Espinosa O, et al. Neutrophil extracellular traps are induced
759 by *Mycobacterium tuberculosis*. *Tuberculosis.* 2009 Jan 1;89(1):29–37.

760 24. Sollberger G. Approaching Neutrophil Pyroptosis. *J Mol Biol.* 2022 Feb
761 28;434(4):167335.

762 25. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An interferon-
763 inducible neutrophil-driven blood transcriptional signature in human tuberculosis.
764 *Nature.* 2010 Aug;466(7309):973.

765 26. Dallenga T, Linnemann L, Paudyal B, Repnik U, Griffiths G, Schaible UE. Targeting
766 neutrophils for host-directed therapy to treat tuberculosis. *Int J Med Microbiol.* 2018
767 Jan;308(1):142-147. doi: 10.1016/j.ijmm.2017.10.001.

768 27. Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of
769 *Mycobacterium tuberculosis* from oxidative killing by neutrophils. *Cell Microbiol.* 2012
770 Jul;14(7):1109–21.

771 28. Borkute RR, Woelke S, Pei G, Dorhoi A. Neutrophils in Tuberculosis: Cell Biology,
772 Cellular Networking and Multitasking in Host Defense. *Int J Mol Sci.* 2021 Apr
773 30;22(9):4801.

774 29. Morgan MJ, Liu Z gang. Crosstalk of reactive oxygen species and NF- κ B signaling. *Cell Res.* 2011 Jan;21(1):103–15.

776 30. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death
777 program leads to neutrophil extracellular traps. *J Cell Biol.* 2007 Jan 15;176(2):231–41.

778 31. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and
779 myeloperoxidase regulate the formation of neutrophil extracellular traps. *J Cell Biol.*
780 2010 Nov 1;191(3):677–91.

781 32. Fernandez-Marcos PJ, Nóbrega-Pereira S. NADPH: new oxygen for the ROS theory of
782 aging. *Oncotarget.* 2016 Jul 20;7(32):50814–5.

783 33. Rosazza T, Warner J, Sollberger G. NET formation - mechanisms and how they relate
784 to other cell death pathways. *FEBS J.* 2021 Jun;288(11):3334–50.

785 34. Poli V, Pui-Yan Ma V, Di Gioia M, Broggi A, Benamar M, Chen Q, et al. Zinc-dependent
786 histone deacetylases drive neutrophil extracellular trap formation and potentiate local
787 and systemic inflammation. *iScience.* 2021 Nov 19;24(11):103256.

788 35. Hamam HJ, Khan MA, Palaniyar N. Histone Acetylation Promotes Neutrophil
789 Extracellular Trap Formation. *Biomolecules.* 2019 Jan 18;9(1):32.

790 36. Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, et al.
791 Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil
792 extracellular traps. *Sci Immunol.* 2018 Aug 24;3(26):eaar6676.

793 37. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic
794 inflammation. *Blood.* 2019 May 16;133(20):2178–85.

795 38. Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, et al. Structural Mechanism for
796 GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. *Cell.* 2020 Mar
797 5;180(5):941-955.e20.

798 39. McCracken JM, Allen LAH. Regulation of Human Neutrophil Apoptosis and Lifespan in
799 Health and Disease. *J Cell Death.* 2014 May 8;7:15–23.

800 40. Leisching GR. Susceptibility to Tuberculosis Is Associated With PI3K-Dependent
801 Increased Mobilization of Neutrophils. *Front Immunol.* 2018 Jul 17;9:1669. doi:
802 10.3389/fimmu.2018.01669

803 41. Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, et al.
804 Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward
805 targeted treatments for immunosenescence. *Blood.* 2014 Jan 9;123(2):239–48.

806 42. Meier S, Seddon JA, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, et al.
807 Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-
808 induced in whole blood up to six months before tuberculosis diagnosis. *PLOS ONE.*
809 2022;17(12):e0278295.

810 43. Khan MA, Palaniyar N. Transcriptional firing helps to drive NETosis. *Sci Rep.* 2017 Feb
811 8;7(1):41749.

812 44. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious
813 disease. *Nat Med.* 2017 Mar 7;23(3):279–87.

814 45. Ronchetti L, Boubaker NS, Barba M, Vici P, Gurtner A, Piaggio G. Neutrophil
815 extracellular traps in cancer: not only catching microbes. *J Exp Clin Cancer Res.* 2021
816 Jul 14;40(1):231.

817 46. Liu Q, Wu S, Xue M, Sandford AJ, Wu J, Wang Y, et al. Heterozygote Advantage of the
818 rs3794624 Polymorphism in CYBA for Resistance to Tuberculosis in Two Chinese
819 Populations. *Sci Rep.* 2016 Nov 30;6:38213.

820 47. Juan-García J, García-García S, Guerra-Laso JM, Raposo-García S, Diez-Tascón C,
821 Nebreda-Mayoral T, et al. In vitro infection with *Mycobacterium tuberculosis* induces a
822 distinct immunological pattern in blood from healthy relatives of tuberculosis patients.
823 *Pathog Dis.* 2017 Nov 30;75(8).

824 48. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. Exposure to
825 hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. *J Biol Chem.* 2010 Oct 22;285(43):33154–64.

827 49. Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, et al. Antiinflammatory effects
828 of hydrogen peroxide in neutrophil activation and acute lung injury. *Am J Respir Crit
829 Care Med.* 2009 Apr 15;179(8):694–704.

830 50. Park DW, Zmijewski JW. Mitochondrial Dysfunction and Immune Cell Metabolism in
831 Sepsis. *Infect Chemother.* 2017 Mar;49(1):10–21.

832 51. Lopes F, Coelho FM, Costa VV, Vieira ÉLM, Sousa LP, Silva TA, et al. Resolution of
833 neutrophilic inflammation by H₂O₂ in antigen-induced arthritis. *Arthritis Rheum.* 2011
834 Sep;63(9):2651–60.

835 52. Chelombitko MA. Role of Reactive Oxygen Species in Inflammation: A Minireview.
836 *Moscow Univ BiolSci Bull.* 2018 Oct 1;73(4):199–202.

837 53. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH
838 Oxidase Activation and Bacterial Resistance. *Front Cell Infect Microbiol.* 2017 Aug
839 25;7:373. doi: 10.3389/fcimb.2017.00373

840 54. Jiao L, Song J, Ding L, Liu T, Wu T, Zhang J, et al. A Novel Genetic Variation in *NCF2*,
841 the Core Component of NADPH Oxidase, Contributes to the Susceptibility of
842 Tuberculosis in Western Chinese Han Population. *DNA Cell Biol.* 2020 Jan;39(1):57–
843 62.

844 55. Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol.
845 *J Lipid Res.* 2019 Apr;60(4):721–7.

846 56. Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, et al. Neutrophils:
847 Innate Effectors of TB Resistance? *Front Immunol.* 2018;9:2637.

848 57. Daigo K, Hamakubo T. Host-protective effect of circulating pentraxin 3 (PTX3) and
849 complex formation with neutrophil extracellular traps. *Front Immunol.* 2012 Dec
850 13;3:378.

851 58. Garratt LW. Current Understanding of the Neutrophil Transcriptome in Health and
852 Disease. *Cells*. 2021 Sep 13;10(9):2406.

853 59. Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic,
854 Daily Balancing Act. *Trends Immunol*. 2019 Jul;40(7):598–612.

855 60. Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule Protein
856 Processing and Regulated Secretion in Neutrophils. *Front Immunol*. 2014 Sep
857 19;5:448. doi: 10.3389/fimmu.2014.00448

858 61. Seshadri C, Sedaghat N, Campo M, Peterson G, Wells RD, Olson GS, et al.
859 Transcriptional networks are associated with resistance to *Mycobacterium tuberculosis*
860 infection. *PLOS ONE*. 2017;12(4):e0175844.

861 62. Coussens AK, Wilkinson RJ, Martineau AR. Phenylbutyrate Is Bacteriostatic against
862 *Mycobacterium tuberculosis* and Regulates the Macrophage Response to Infection,
863 Synergistically with 25-Hydroxy-Vitamin D₃. *PLOS Pathog*. 2015 Jul 2;11(7):e1005007.

864 63. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated
865 neutrophil extracellular traps limit inflammation by degrading cytokines and
866 chemokines. *Nat Med*. 2014 May;20(5):511–7.

867 64. Deng Y, Ye J, Luo Q, Huang Z, Peng Y, Xiong G, et al. Low-Density Granulocytes Are
868 Elevated in Mycobacterial Infection and Associated with the Severity of Tuberculosis.
869 *PLOS ONE*. 2016 Apr 13;11(4):e0153567.

870 65. La Manna MP, Orlando V, Paraboschi EM, Tamburini B, Di Carlo P, Cascio A, et al.
871 *Mycobacterium tuberculosis* Drives Expansion of Low-Density Neutrophils Equipped
872 With Regulatory Activities. *Front Immunol*. 2019; 10: 2761. doi:
873 10.3389/fimmu.2019.02761

874 66. Silvestre-Roig C, Hidalgo A, Soehnlein O. Neutrophil heterogeneity: implications for
875 homeostasis and pathogenesis. *Blood*. 2016 May 5;127(18):2173–81.

876 67. Wood R, Liang H, Wu H, Middelkoop K, Oni T, Rangaka MX, et al. Changing
877 prevalence of TB infection with increasing age in high TB burden townships in South
878 Africa. *Int J Tuberc Lung Dis*. 2010 Apr;14(4):406–12.

879 68. Gallant CJ, Cobat A, Simkin L, Black GF, Stanley K, Hughes J, et al. The impact of age
880 and sex on anti-mycobacterial immunity of children and adolescents in an area of high
881 tuberculosis incidence. *Int J Tuberc Lung Dis*. 2010;14(8):952–8.

882 69. Losman MJ, Fasy TM, Novick KE, Monestier M. Monoclonal autoantibodies to
883 subnucleosomes from a MRL/Mp(-)+/ mouse. Oligoclonality of the antibody response
884 and recognition of a determinant composed of histones H2A, H2B, and DNA. *J*
885 *Immunol*. 1992 Mar 1;148(5):1561–9.

886 70. Brinkmann V, Goosmann C, Kühn LI, Zychlinsky A. Automatic quantification of in vitro
887 NET formation. *Front Immunol*. 2013 Jan 9;3:413.

888 71. Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunningham AJ, et al.
889 Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. *Sci Immunol*.
890 2019 Oct 18;4(40):eaaw0336.

891 72. Andrews, S. Babraham Bioinformatics - FastQC A Quality Control tool for High
892 Throughput Sequence Data [Internet]. 2010 [cited 2021 Aug 20]. Available from:
893 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

894 73. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for
895 multiple tools and samples in a single report. *Bioinformatics*. 2016 Oct 1;32(19):3047–
896 8.

897 74. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on
898 differential expression analyses by RNA-seq. *Sci Rep*. 2016 May 9;6(1):25533.

899 75. Library C Digital Initiatives, University of Idaho. HTStream: A Toolkit for High
900 Throughput Sequencing Analysis [Internet]. Theses and Dissertations Collection. [cited
901 2021 Aug 20]. Available from:
902 https://www.lib.uidaho.edu/digital/etd/items/streett_idaho_0089n_11229.html

903 76. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018.
904 *Nucleic Acids Res*. 2018 04;46(D1):D754–61.

905 77. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
906 universal RNA-seq aligner. *Bioinformatics*. 2013 Jan 1;29(1):15–21.

907 78. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. *Curr Protoc Bioinformatics*.
908 2015 Sep 3;51:11.14.1-11.14.19.

909 79. R Core Team. R: a language and environment for statistical computing [Internet].
910 Vienna, Austria.: R Foundation for Statistical Computing. 2018 [cited 2019 Aug 30].
911 Available from: <https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing>

913 80. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. *NAR Genom Bioinform*. 2020 Sep;2(3):lqaa078.

915 81. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
916 expression analysis of digital gene expression data. *Bioinformatics*. 2010 Jan
917 1;26(1):139–40.

918 82. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling
919 sample and observational level variability improves power in RNA-seq analyses.
920 *Nucleic Acids Res*. 2015 Sep 3;43(15):e97.

921 83. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential
922 expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res*.
923 2015 Apr 20;43(7):e47.

924 84. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
925 themes among gene clusters. *OMICS*. 2012 May;16(5):284–7.

926 85. Mair P, Wilcox R. Robust statistical methods in R using the WRS2 package. *Behav Res
927 Methods*. 2020 Apr;52(2):464–88.

928

929

930 **Table 1: Participant characteristics**

Characteristic	HITTIN ^a , N = 17 [*]	HIT ^b , N = 11 [*]	p-value ^{**}
Age	43.71 (6.43)	44.09 (6.89)	0.9
Sex			0.6
Female	13 / 17 (76%)	10 / 11 (91%)	
Male	4 / 17 (24%)	1 / 11 (9.1%)	
Weight	75.81 (17.26)	84.09 (18.12)	0.3
(Missing)	1	0	
Height	1.63 (0.09)	1.67 (0.06)	0.2
BMI^c	28.87 (7.38)	30.15 (5.70)	0.3
(Missing)	1	0	
Time on ART ^d			
More than 1 year	17 / 17 (100%)	11 / 11 (100%)	
CD4 prior to starting ART^d			0.4
< 200 CD4+ cells/mm ³	17 / 17 (100%)	10 / 11 (91%)	
Between 200-350 CD4+ cells/mm ³	0 / 17 (0%)	1 / 11 (9.1%)	
Last CD4 prior to enrolment	557.76 (229.70)	486.73 (236.91)	0.5
Last VL^e			0.9
≤100	4 / 17 (24%)	4 / 11 (36%)	
124	1 / 17 (5.9%)	0 / 11 (0%)	
LDL ^f	12 / 17 (71%)	7 / 11 (64%)	
Current IPT^g	1 / 17 (5.9%)	0 / 11 (0%)	>0.9
Previous IPT treatment as per months of treatment			0.2
0	2 / 17 (12%)	3 / 11 (27%)	
2	0 / 17 (0%)	1 / 11 (9.1%)	
3	0 / 17 (0%)	0 / 11 (0%)	
4	0 / 17 (0%)	0 / 11 (0%)	
6	0 / 17 (0%)	2 / 11 (18%)	
12	10 / 17 (59%)	5 / 11 (45%)	
24	1 / 17 (5.9%)	0 / 11 (0%)	
36	3 / 17 (18%)	0 / 11 (0%)	
Current	1 / 17 (5.9%)	0 / 11 (0%)	
Chronic Illness	2 / 17 (12%)	3 / 11 (27%)	0.4
Alcohol Use	7 / 17 (41%)	2 / 11 (18%)	0.2
Smoker	2 / 17 (12%)	0 / 11 (0%)	0.5
Recreational Substance (Cannabis) use	0 / 17 (0%)	1 / 11 (9.1%)	0.4

*Mean (SD); n / N (%) ^Wilcoxon rank sum test; Fisher's exact test

^aHITTIN (HIV-1-infected persistently TB, tuberculin and IGRA negative), ^bHIT (HIV-1-infected IGRA positive tuberculin positive), ^cBMI (body mass index) was calculated as weight (kg)/height²(m), ^dART (antiretroviral therapy), ^eVL (viral load), ^fLDL (lower than detectable level), ^gIPT (Isoniazid preventive therapy)

933 **Table 2: Number of differentially expressed genes and their pathway and GO term**
 934 **enrichment for PMN_{HITTIN} and PMN_{HIT} in response to *Mtb***

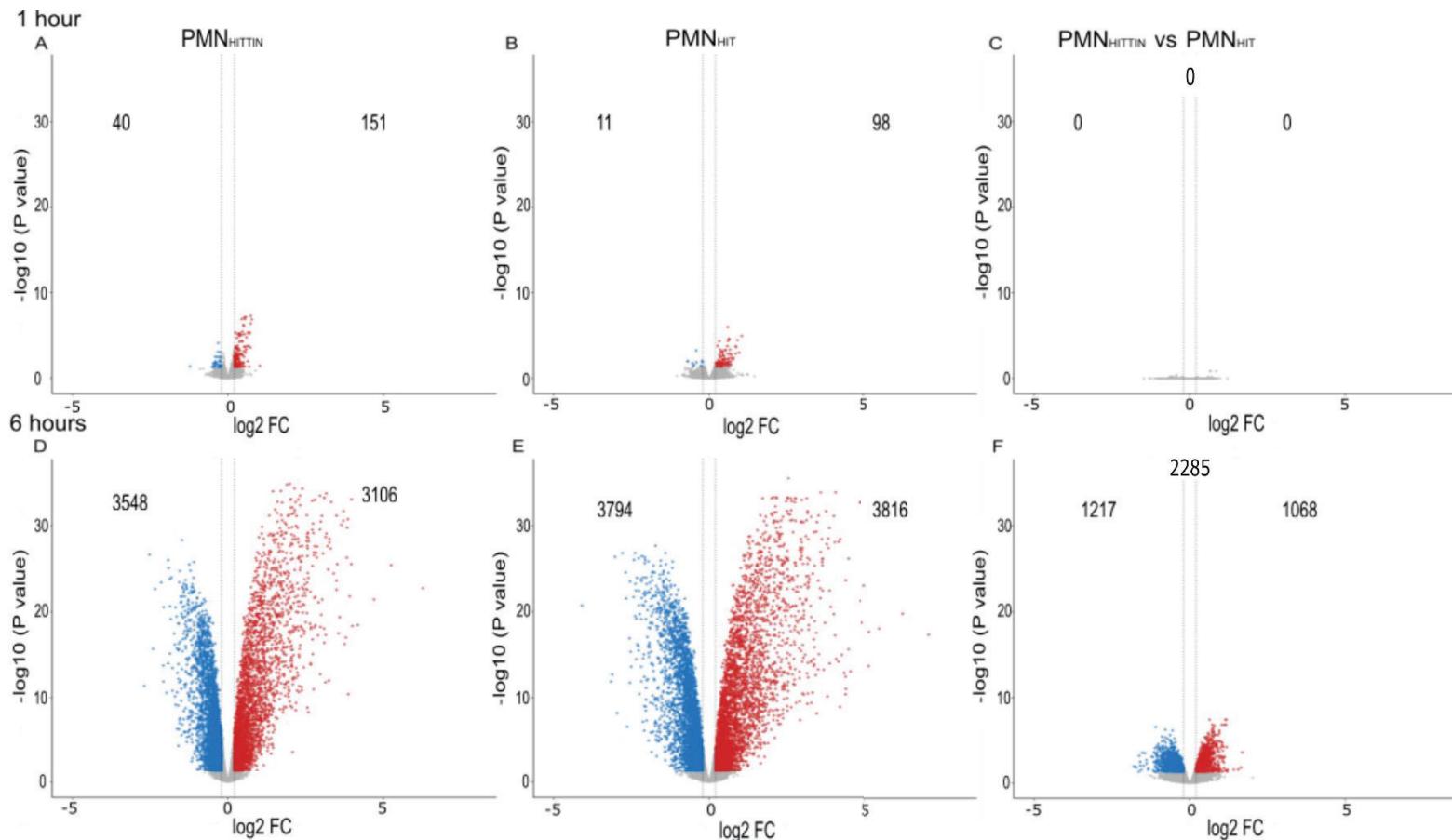
Contrast	DEGs ^a	# Genes FDR ^b ≤ 0.05	# combined terms	KEGG FDR ≤ 0.1	Reactome FDR ≤ 0.1	GO BP ^c FDR ≤ 0.1
PMN_{HIT}^d 1hour(h) infected vs uninfected	Total	109	209	32	12	165
	Upregulated	98	215	33	13	169
	Downregulated	11	0	0	0	0
PMN_{HITTIN}^e 1h infected vs uninfected	Total	191	349	38	19	292
	Upregulated	151	383	40	20	323
	Downregulated	40	0	0	0	0
PMN_{HITTIN} - PMN_{HIT} 1h infected^f	Total	0	0	0	0	0
	Upregulated	0	0	0	0	0
	Downregulated	0	0	0	0	0
PMN_{HIT} 6h hours infected vs uninfected	Total	7610	701	65	15	621
	Upregulated	3816	915	53	51	811
	Downregulated	3794	10	0	10	0
PMN_{HITTIN} 6h infected vs uninfected	Total	6654	498	51	16	431
	Upregulated	3106	769	54	30	685
	Downregulated	3548	7	0	6	1
PMN_{HITTIN} - PMN_{HIT} 6h infected^g	Total ^h	2285	496	111	86	299
	Less Upregulated ⁱ	1217	719	48	55	616
	Less Downregulated ⁱ	1068	29	13	12	4

^a DEGs (Differentially expressed genes), ^b FDR (false discovery rate), ^c GO BP (Gene Ontology Biological Processes), ^d PMN_{HIT} (HIV-1-infected IGRA positive tuberculin positive), ^e PMN_{HITTIN} (neutrophils from HIV-1-infected persistently TB, tuberculin and IGRA negative), ^f Refers to the interaction test looking at the difference in response to *Mtb* infection after 1h between PMN_{HITTIN} and PMN_{HIT}, ^g Refers to the interaction test looking at the difference in response to *Mtb* infection after 6h between PMN_{HITTIN} and PMN_{HIT}, ^h Refers to combined responses with significant positive and negative log2 fold change (log2FC) from the interaction test, ^{i,j} Refers to the negativeⁱ and positive^j log2FC results from the interaction test

935
 936
 937
 938
 939
 940
 941
 942

943 **Table 3: Top significantly differentially expressed up- and downregulated genes of**
 944 **interest in the “Neutrophil Extracellular Trap Formation” KEGG pathway, at 6hr of *Mtb***
 945 **infection between PMN_{HITTIN} and PMN_{HIT}**

Ensembl gene ID	Gene	Log2FC after 6h <i>Mtb</i> infection			
		PMN _{HITTIN} ^a	PMN _{HIT} ^b	PMN _{HITTIN} x PMN _{HIT} ^c	adj.P.Val ^d
ENSG00000125730	C3	2,167	3,0342	-0,8672	7,24E-05
ENSG00000172232	AZU1	-0,2334	0,4615	-0,6949	0,0457
ENSG00000103569	AQP9	1,4303	1,9949	-0,5646	5,15E-05
ENSG00000165168	CYBB	0,603	1,0804	-0,4775	0,0003
ENSG00000109320	NFKB1	2,1359	2,6025	-0,4666	0,0089
ENSG00000169032	MAP2K1	0,5357	0,9572	-0,4216	0,0004
ENSG00000196954	CASP4	0,539	0,96	-0,421	0,0004
ENSG00000137462	TLR2	0,3467	0,7557	-0,409	0,0154
ENSG00000136869	TLR4	0,8416	1,2239	-0,3823	0,006
ENSG00000137752	CASP1	1,028	1,4004	-0,3724	0,0085
ENSG00000145675	PIK3R1	-0,1129	0,253	-0,3659	0,0182
ENSG00000197548	ATG7	1,4527	1,808	-0,3553	0,0094
ENSG00000051523	CYBA	0,9853	1,3244	-0,3391	0,0196
ENSG00000128340	RAC2	0,3795	0,6811	-0,3015	0,0012
ENSG00000116701	NCF2	-0,1042	0,1583	-0,2625	0,0073
ENSG00000197405	C5AR1	-0,2218	-0,0056	-0,2162	0,0258
ENSG00000105221	AKT2	-0,1992	-0,4116	0,2124	0,0123
ENSG00000075624	ACTB	-0,3289	-0,5483	0,2195	0,045
ENSG00000126934	MAP2K2	-0,2818	-0,5169	0,2351	0,0304
ENSG00000171608	PIK3CD	-0,0918	-0,3555	0,2637	0,0151
ENSG00000005844	ITGAL	-0,0544	-0,3497	0,2952	0,0005
ENSG00000113648	MACROH2A1	-1,2462	-1,5613	0,3151	0,0234
ENSG00000197943	PLCG2	-0,5073	-0,8366	0,3293	0,0007
ENSG00000166501	PRKCB	-0,4236	-0,758	0,3343	0,0005
ENSG00000116478	HDAC1	-0,1265	-0,505	0,3785	0,0011
ENSG00000159339	PADI4	-0,2054	-0,5956	0,3902	0,0007
ENSG00000171720	HDAC3	-0,4041	-0,81	0,4059	0,0004
ENSG00000100030	MAPK1	-0,6563	-1,0774	0,4211	0,0004
ENSG00000164032	H2AZ1	-0,2065	-0,6703	0,4638	0,0002
ENSG00000246705	H2AJ	0,0745	-0,3918	0,4663	0,0078
ENSG00000102882	MAPK3	-0,7807	-1,2548	0,474	0,0009
ENSG00000110876	SELPLG	-1,5235	-2,0183	0,4948	0,0153
ENSG00000068024	HDAC4	-0,3348	-0,8415	0,5067	5,05E-05
ENSG00000142208	AKT1	-0,4288	-0,9999	0,5711	3,15E-05
ENSG00000197837	H4-16	-0,0671	-0,6704	0,6033	0,0073
ENSG00000104518	GSDMD	-0,2606	-0,9556	0,6951	0,0004
ENSG00000277224	H2BC7	-0,6019	-1,6061	1,0041	0,0252


946 ^a The average log2FC *Mtb* infection compared to the uninfected response for neutrophils from HITTIN at 6h.

947 ^b The average log2FC *Mtb* infection compared to the uninfected response for neutrophils from HIT at 6h.

948 ^c The average log2FC response difference between neutrophils from HITTIN and HIT in response to *Mtb* infection at 6h
 949 (interaction test).

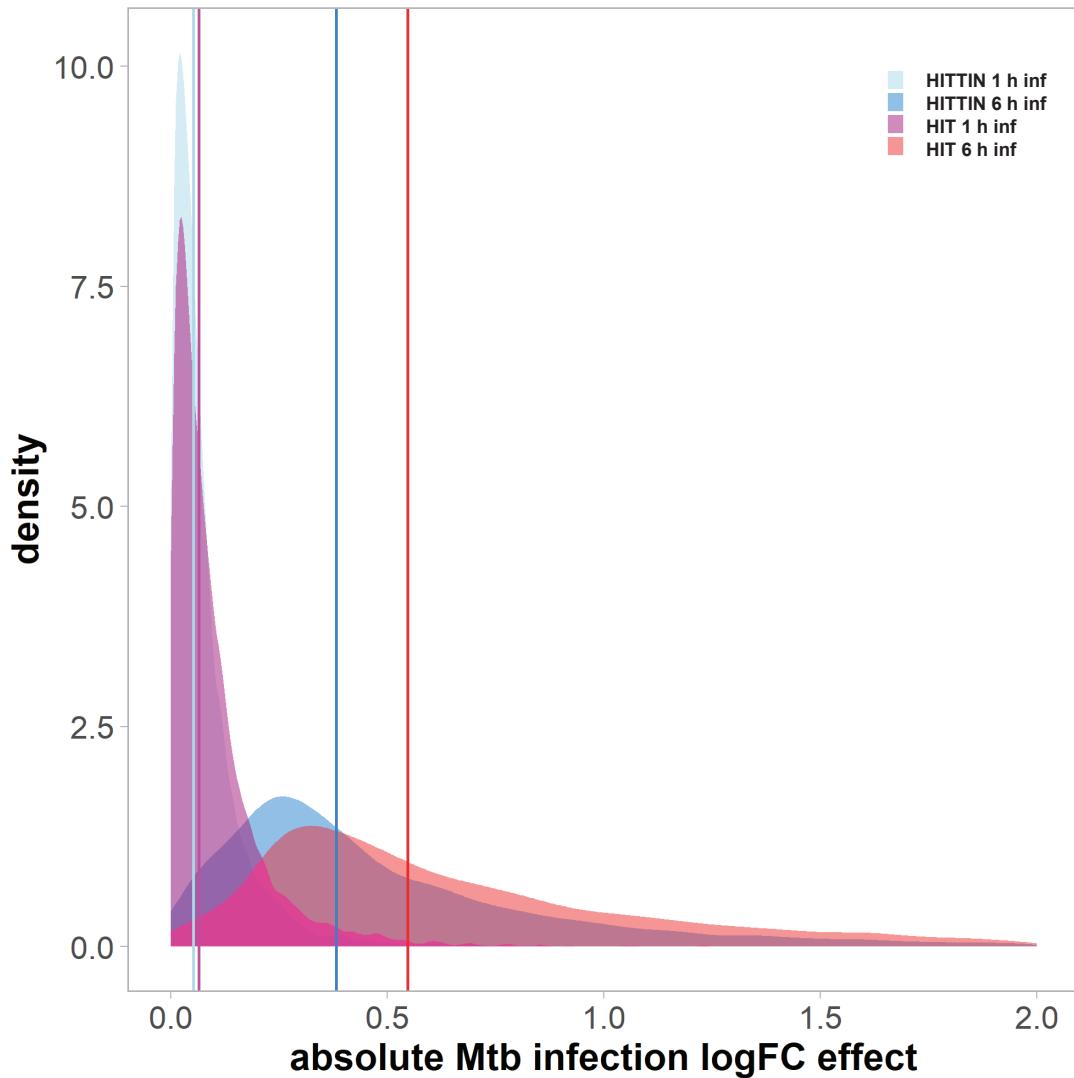
950 ^d The adjusted p-value after the Benjamini Hochberg correction for multiple testing for interaction test looking at the differential
 951 response of HITTIN to HIT at 6h infected (“PMN_{HITTIN} x PMN_{HIT}”)

952 Significant genes were defined as genes with an absolute log2FC ≥ 0.2 and adjusted p value ≤ 0.05

953

954 **Fig 1: Volcano plots of differential gene expression at 1h and 6h *Mtb* infection by PMN**
955 **from HITTIN and HIT**

956 Volcano plot for transcriptional responses to *Mtb* challenge for neutrophils from HITTIN (PMN_{HITTIN})
957 and HIT (PMN_{HIT}) participants at 1h (A-C) and 6h (D-F) post *Mtb* infection. The y-axis shows the
958 negative log₁₀ unadjusted P value and the x-axis the log₂ fold change (FC). The vertical dashed lines
959 represent log₂FC thresholds of -0.02 and 0.02. Each gene is represented by a dot. Genes which are
960 downregulated or upregulated as determined by the FDR $\leq 5\%$ are shown in blue and red,
961 respectively. Genes with non-significant expression changes and below the log 2FC threshold are
962 shown in grey. Differentially expressed genes at 1 h post-infection compared to 1h uninfected PMN
963 from HITTIN (PMN_{HITTIN}) (A) and HIT participants (PMN_{HIT}) (B). Significant differentially triggered
964 genes between PMN_{HITTIN} and PMN_{HIT} at 1h post infection (C). Differentially expressed genes at 6h
965 post-infection compared to 6h uninfected PMN from HITTIN (PMN_{HITTIN}) (D) and HIT participants
966 (PMN_{HIT}) (E). Significant differentially triggered genes between PMN_{HITTIN} and PMN_{HIT} at 6h post
967 infection (F).


968

969

970

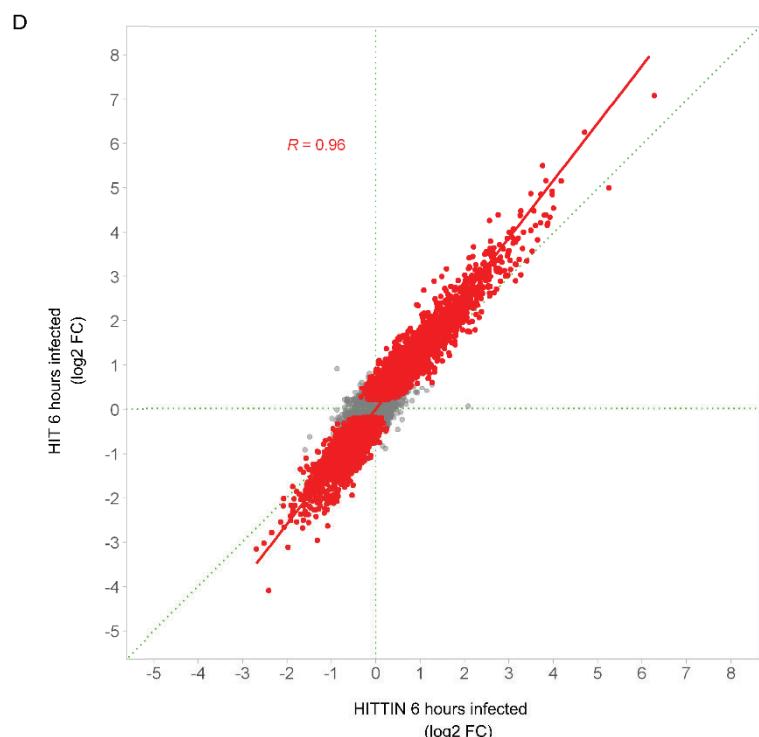
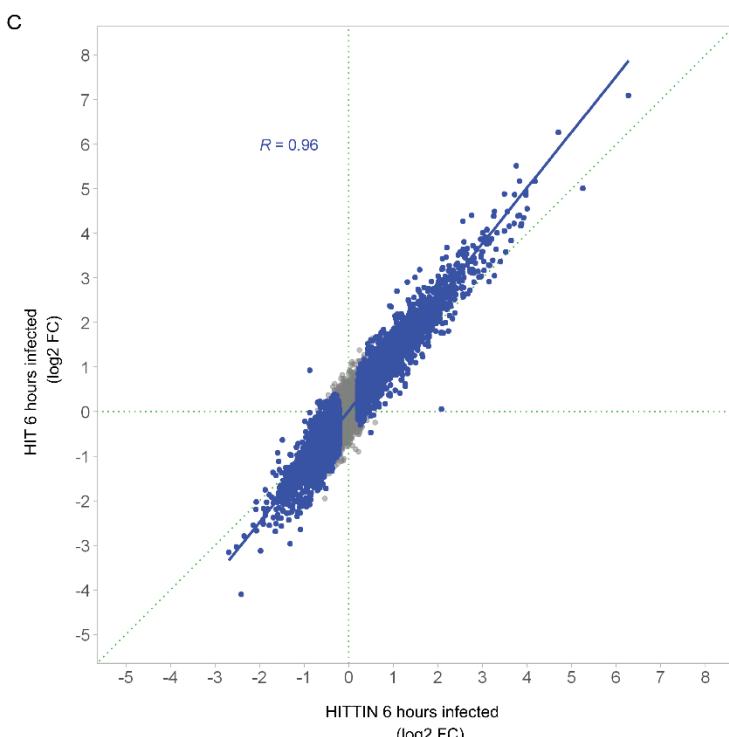
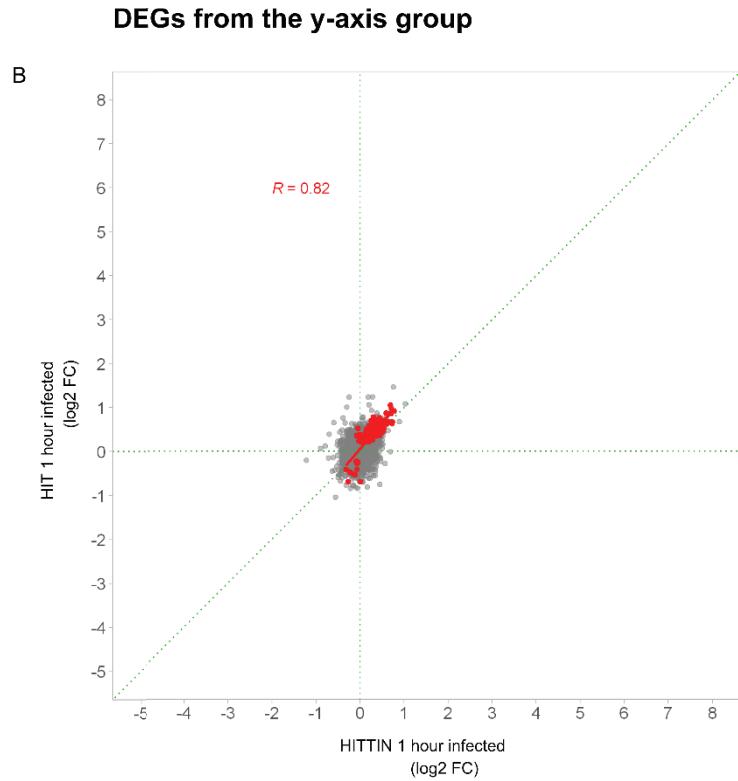
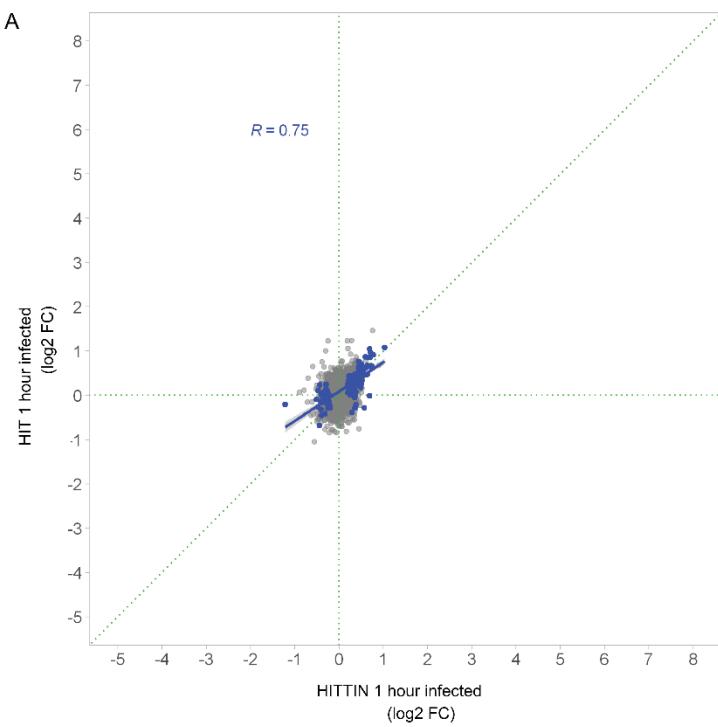
971

972

973

974 **Fig 2: The absolute log fold change *Mtb* infection effect at 1 and 6 h for PMN_{HITTIN} and**

975 PMN_{HIT}





976 The density plot shows the absolute log fold change (logFC) *Mtb* infection effect of each group at 1h
977 and 6h. All DEGs from Fig 1 had their logFC converted to absolute values and plotted using density
978 function. Absolute values for neutrophil DEGs from HITTIN participants are shown in light blue at 1h
979 and a darker blue at 6h. Absolute values for neutrophil DEGs from HIT participants are shown in
980 magenta at 1h and red at 6h. Vertical coloured lines indicate the mean of absolute values. PMN_{HITTIN}
981 show a lower logFC response to *Mtb* infection which is more pronounced at 6h compared to 1h of
982 infection with *Mtb*.

983

984

985

DEGs from the x-axis group

986

987 **Fig 3: Correlation plots of log2FC gene expression after *Mtb* infection of PMN from**
988 **HITTIN and HIT**

989 "HITTIN 1h infected" represents the log2FC gene expression effect when comparing the 1h *Mtb*
990 infection to the 1h uninfected response in neutrophils (PMN) from HIV-1-positive persistently TB,
991 tuberculin and IGRA negative individuals (PMN_{HITTIN})(x-axis). "HITTIN 6h infected" is the same but for
992 6h. "HIT 1h infected" represents the log2FC gene expression effect when comparing the 1h *Mtb*
993 infection to the 1h uninfected response in PMN from HIV-1-positive, IGRA positive, tuberculin positive

994 individuals (PMN_{HIT})(y-axis). “HIT 6h infected” is the same but for 6h. Scatterplots display the
995 correlation of the log2FC gene expression as defined for each group at 1h (**A and B**) or 6h (**C and D**).
996 Each grey dot represents a differentially expressed gene (DEGs). The grey dots show combined
997 DEGs from both groups represented on the x and y axis. Blue coloured dots indicate DEGs from the
998 x-axis group and red dots indicate the y-axis group. Pearson correlation (R value) was calculated for
999 the coloured DEGs. The log2FC for each group is plotted with the y-axis as the reference group.
1000 Differential gene expression is more pronounced in genes with the highest log2FC, with the majority
1001 of genes displaying good correlation between phenotype groups.

1002

1003

1004

1005

1006

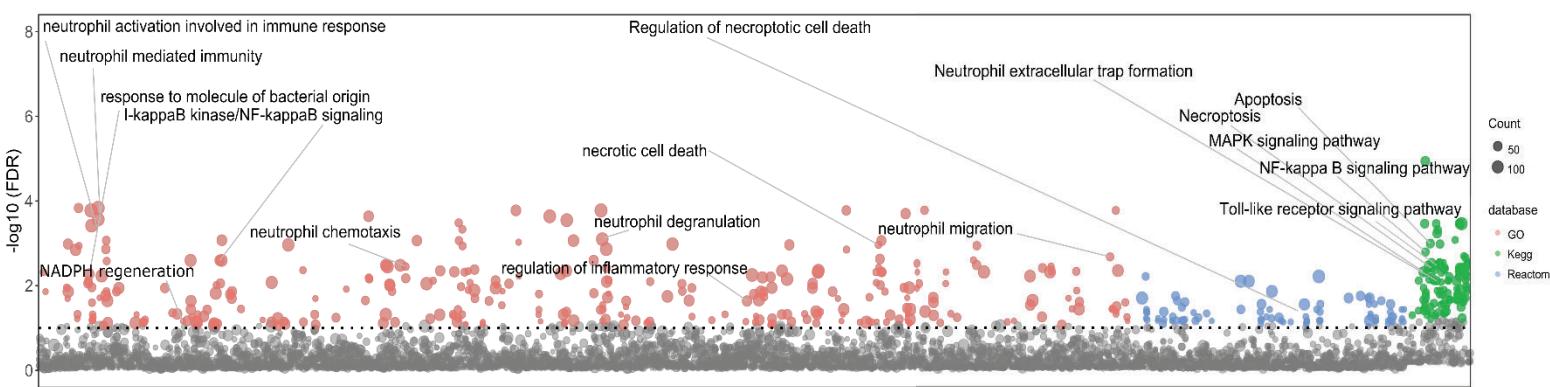
1007

1008

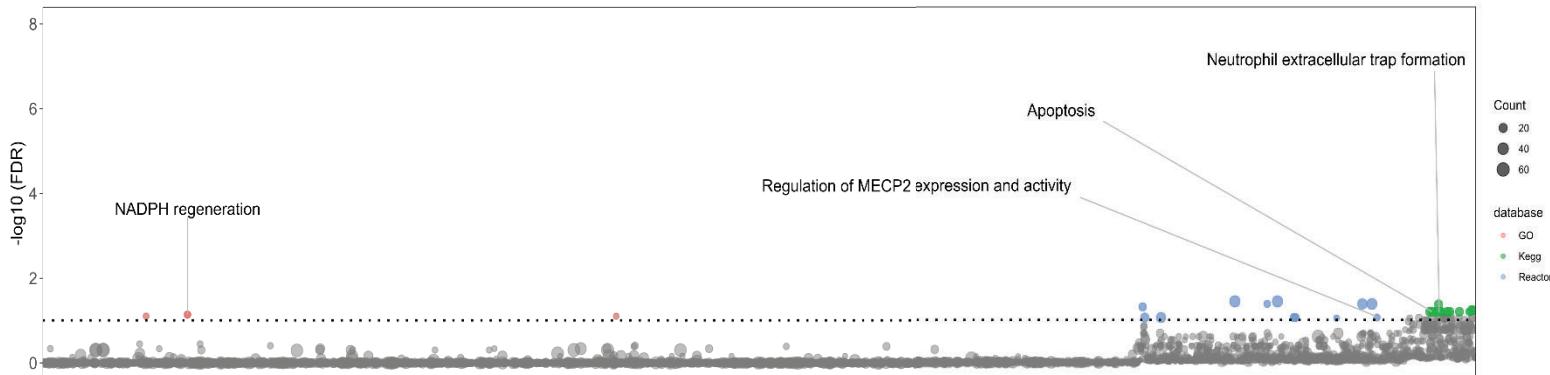
1009

1010

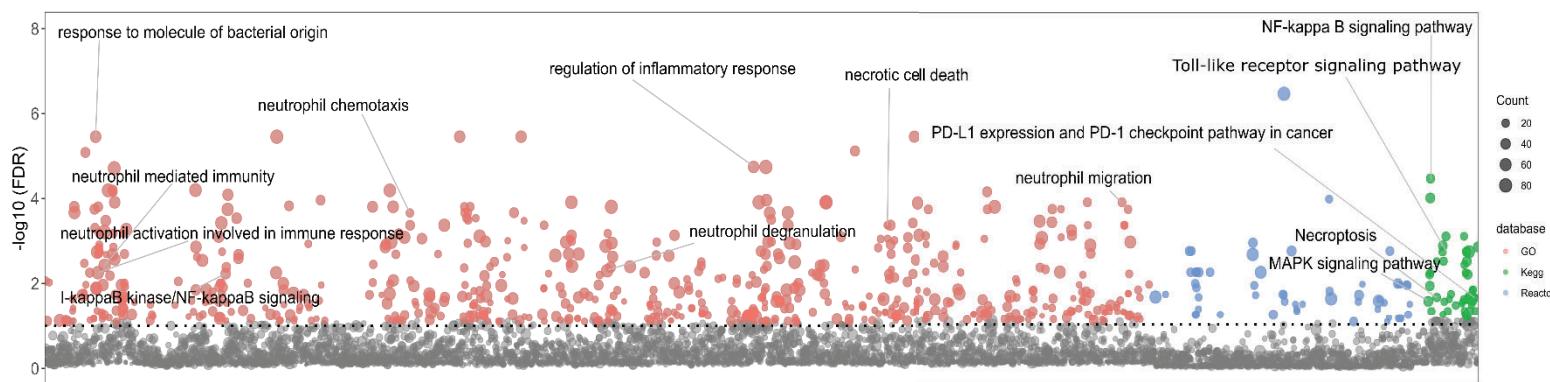
1011


1012

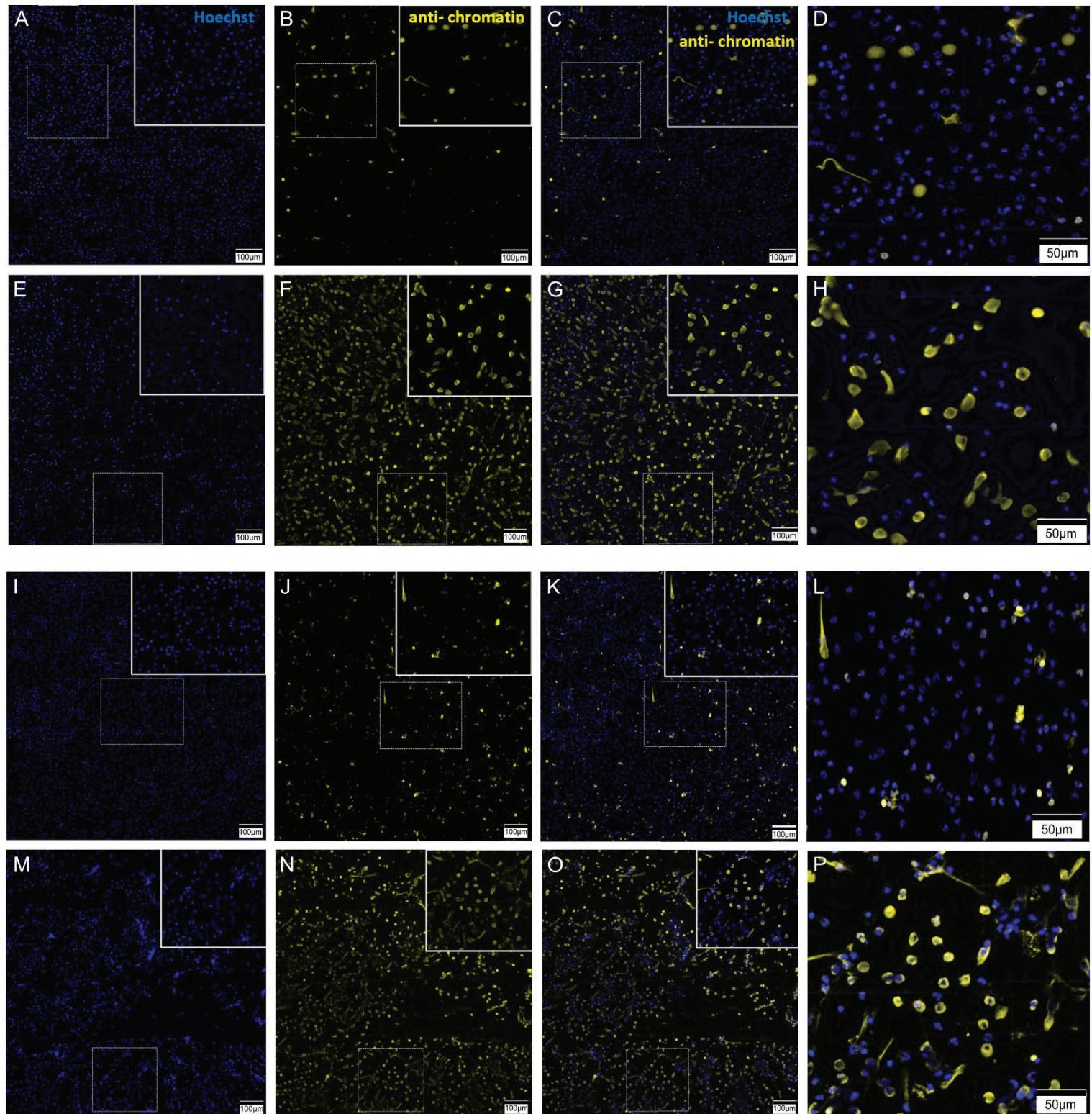
1013


1014

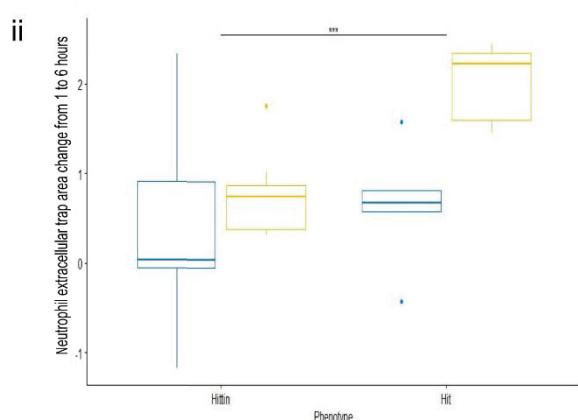
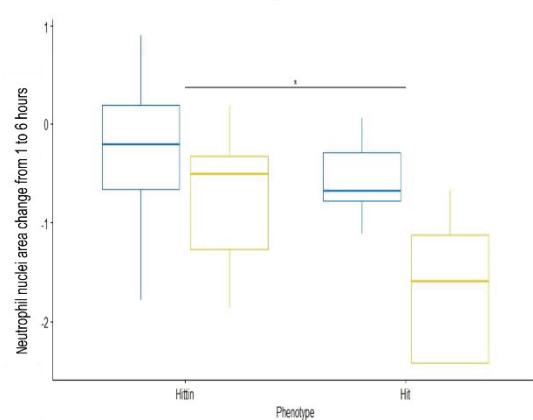
1015


A.

B.


C.

1017



1018 **Fig 4: Manhattan plot for enrichment tests of GO terms and Kegg and Reactome**
 1019 **pathways**

1020 The Manhattan plot shows pathways and GO terms for the DEGs triggered significantly differentially
 1021 by *Mtb* in neutrophils from HITTIN versus neutrophils from HIT participants after 6h of infection. The
 1022 tested terms are distributed along the x-axis. The y-axis represents the negative log 10 false
 1023 discovery rate (FDR) result with the horizontal dotted line indicating the 10% FDR significance cut-off.
 1024 Grey dots represent terms not meeting the significance threshold. Coloured dots represent significant
 1025 terms from GO (red), Kegg (green) and Reactome (blue). The number of DEGs in each term is
 1026 represented by the scaled size of the dot. Panel (A) shows the terms detected by all significantly
 1027 different DEGs in the HITTIN vs HT contrast. Panel (B) shows significant terms which are driven by
 1028 genes with significant positive FC/less downregulated by PMN from HITTIN participants while panel
 1029 (C) displays terms for genes significantly less upregulated for PMN from HITTIN participants as
 1030 compared to PMN_{HIT} after 6h of *Mtb* infection.

Infection

Infection

1032 **Fig 5: Representative images and quantification of the change in NET and nuclei area**
1033 **following *Mtb* infection of neutrophils from HITTIN and HIT.**

1034 PMN_{HITTIN} (A-H) and PMN_{HIT} (I-P) following *Mtb* infection for 1h (A-D and I-L) and 6h (E-H and M-P).
1035 *Mtb* infected neutrophils at 1h and 6h were stained with Hoechst 33342 (**A, E, I, M**) and PL2-3 (**B, F,**
1036 **J, N**). Overlap between the two stains is shown in (C, G, K, O) with enlarged box panels in (**D, H, L,**
1037 **P**; blue, DNA; yellow, chromatin); **(i)** Boxplots for total log change in nuclei area (Hoescht stain,
1038 calculated as shown in S1 Fig) from 1h to 6h uninfected and infected with *Mtb* in HITTIN vs HIT.
1039 There was a significant *Mtb* infection effect, $F(1,12)=9.729$, $p=0.009$ with pairwise comparisons
1040 showing a significant difference between the total change in cell nuclei area from 1h to 6h after *Mtb*
1041 infection in HITTIN compared to HIT ($p=0.04^*$, pairwise t-test), **(ii)** Boxplots for total log change in
1042 NET area (corrected for by the change in cell nuclei area, calculated as shown in S1 Fig) (PL2-3 anti-
1043 chromatin stain) from 1h to 6h uninfected and infected with *Mtb* in HITTIN vs HIT. There was a
1044 significant *Mtb* infection effect, $F(1, 10.5924) = 5.3398$, $p < 0.0421$ with pairwise comparisons showing
1045 a significantly difference between the total changed in cell nuclei area from 1h to 6h after *Mtb* infection
1046 in HITTIN compared to HIT ($p=0.0003^{***}$, pairwise t-test). The scale bars represent 100 μm (**A-C, E-**
1047 **G, I-K, M-O**) and 50 μm (**D, H, L, P**).

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069