

1 Leveraging a new data resource to define the response of *C. neoformans* to environ-
2 mental signals

3 How host-like signals drive gene expression and capsule expansion in *Cryptococcus*
4 *neoformans*

5

6 Yu Sung Kang^{1,2,3}, Jeffery Jung^{1,2,3}, Holly Brown³, Chase Mateusiak³, Tamara L.
7 Doering⁵, and Michael R. Brent^{2,3,4,6}

8

9 1. These authors contributed equally.

10 2. Center for Genome Sciences and Systems Biology, Washington University School of
11 Medicine, St. Louis, MO 63110

12 3. Department of Computer Science and Engineering, Washington University, St. Louis,
13 MO 63108

14 4. Department of Genetics, Washington University School of Medicine, St. Louis, MO
15 63110

16 5. Department of Molecular Microbiology, Washington University School of Medicine, St.
17 Louis, MO 63110

18 6. Corresponding author

19

20 Michael Brent

21 brent@wustl.edu

22 <http://mblab.wustl.edu>

23 314-660-2205

24 Campus Box 8510

25 Washington University

26 Saint Louis, MO 63130

27

28 ABSTRACT

29 *Cryptococcus neoformans* is an opportunistic fungal pathogen with a polysaccharide
30 capsule that becomes greatly enlarged in the mammalian host and during *in vitro*
31 growth under host-like conditions. To understand how individual environmental signals
32 affect capsule size and gene expression, we grew cells in all combinations of five sig-
33 nals implicated in capsule size and systematically measured cell and capsule sizes. We
34 also sampled these cultures over time and performed RNA-Seq in quadruplicate, yield-
35 ing 881 RNA-Seq samples. Analysis of the resulting data sets showed that capsule in-
36 duction in tissue culture medium, typically used to represent host-like conditions, re-
37 quires the presence of either CO₂ or exogenous cyclic AMP (cAMP). Surprisingly, add-
38 ing either of these pushes overall gene expression in the opposite direction from tissue
39 culture media alone, even though both are required for capsule development. Another
40 unexpected finding was that rich medium blocks capsule growth completely. Statistical
41 analysis further revealed many genes whose expression is associated with capsule
42 thickness; deletion of one of these significantly reduced capsule size. Beyond illuminat-
43 ing capsule induction, our massive, uniformly collected dataset will be a significant re-
44 source for the research community.

45

46 IMPORTANCE

47 *Cryptococcus neoformans* is an opportunistic yeast that kills ~150,000 people each year. This
48 major impact on human health makes it imperative to understand the basic biology of *C.*
49 *neoformans* and the factors that mediate its virulence. One key virulence factor is a polysaccha-
50 ride capsule that expands greatly during infection. To help define capsule synthesis and fungal
51 biology, we provided cells with many different combinations of host-like signals and sampled the
52 cultures over time for transcriptional analysis. The resulting time resolved data set is by far the
53 largest gene expression resource ever produced for *C. neoformans* (881 RNA-seq samples),
54 further enriched by accompanying capsule images and measurements. It revealed surprising
55 findings, including that rich medium suppresses capsule size regardless of other signals. This
56 landmark data resource will be enormously valuable to the research community as it continues
57 to define the relationships between environmental signals and cryptococcal gene expression,
58 biology, and virulence.

59 Late in the 19th century, several scientific articles described a budding yeast with a distinctive capsule, now called *Cryptococcus neoformans*. Today, we know *C. neoformans* as the main causative agent of a deadly meningitis that kills close to 150,000 people each year worldwide¹. We also know much about the capsule that surrounds this pathogen, including the chemical structure of the polysaccharides that compose it, its key role in disease, and the fact that it is exquisitely sensitive to environmental conditions.² Upon entry to a mammalian host, the capsule dramatically increases in thickness, from a barely perceptible structure to a distinctive shell whose thickness can exceed the cell's diameter.³ Enlarged capsules inhibit phagocytosis of the yeast by host immune cells and shed capsule polysaccharides inhibit host defenses.⁴ The importance of this material in cryptococcal pathogenesis is amply supported by the reduced virulence of strains in which capsule is altered or dysregulated.²

70
71
72 Multiple *in vitro* conditions induce the growth of cryptococcal capsule.⁵⁻¹⁰ Conditions that reflect aspects of the mammalian host environment are of particular interest, such as those that incorporate tissue culture medium (TCM) or mammalian serum⁹, human body temperature (37 °C), physiological pH (7.35-7.45),^{6,9-12} host-like CO₂ concentrations (~5%)⁶, or nutrient limitations typical of the host environment.⁷

73
74
75
76
77 Cyclic AMP (cAMP) signaling is required for capsule growth and virulence of *C. neoformans*.^{3,13} This pathway has been well described in *Saccharomyces cerevisiae*^{14,15} and much of the machinery is also found in *C. neoformans*.¹³ Cellular levels of cAMP reflect its formation from ATP by Cac1 (adenylyl cyclase) and degradation by Pde1 and Pde2 (phosphodiesterases). cAMP binds the repressive subunit of the protein kinase A (PKA) complex, Pkr1, causing it to separate from the catalytic subunit, Pka1. This activates Pka1, allowing it to phosphorylate transcription factors that are central in capsule regulation, including Nrg1¹⁶ and Rim101¹⁷. In growth conditions where capsule is normally induced, strains lacking Cac1^{3,18} or Pka1^{17,19} fail to do so. In the same conditions Pkr1-deficient mutants make larger capsules than wild-type (WT) cells^{3,20}.

78
79
80
81
82
83
84
85
86
87 In this paper, we assess key features of capsule inducing conditions, which we call *signals*, focusing on five of them: tissue-culture medium (DMEM or RPMI), temperature (37 °C), CO₂ (5%), exogenous cAMP, and the addition of buffer. We previously showed that 1,10-phenanthroline, which inhibits transcription, completely blocks capsule growth.^{21,22} We have now systematically explored the effects of these signals on gene expression, cell size, and capsule size, both individually and in combination, over time. We also assessed the effects of deleting several cAMP pathway genes. Our analysis of almost 900 RNA-seq samples and over 5,000 micrographs has allowed us to trace capsule-inducing signals through their effects on gene expression to their ultimate effects on capsule size. This large, uniformly collected dataset, which will be a significant resource for the research community, also enabled us to identify the changes in gene expression that are most consistently associated with capsule growth across a wide range of growth conditions and genetic perturbations. We further discovered that capsule induction is blocked by rich medium under multiple growth conditions and identified new genes that are required for normal capsule thickness.

103

104 RESULTS

105

106 Effects of signals on capsule size.

107

108 To tease out the effects of various environmental signals on capsule size, we examined
109 all possible combinations of the following growth condition variables: medium (YPD,
110 DMEM, RPMI), CO₂ (room air, 5%), temperature (30 °C, 37 °C), HEPES buffer pH 7.0
111 (none, 25 mM), and cAMP (none, 20 mM). For these studies we used *C. neoformans*
112 strain KN99α, which was derived from the reference strain H99.²³ For rigor of the stud-
113 ies, we grew at least four replicates in each combination of conditions and measured
114 capsule sizes for fifteen fields of view per replicate (totaling 96 annotated cells on aver-
115 age).

116

117 We first examined how each individual variable affects capsule size, adjusting for the
118 independent effects of all other variables. To do this, we built a linear regression model
119 with the environmental variables as predictors of capsule size. The resulting regression
120 coefficients showed that the factor with the biggest impact on capsule size was RPMI
121 medium, which increased capsule width an average of 1.12 μm, followed by DMEM
122 (0.67 μm), cAMP (0.53 μm) and CO₂ (0.51 μm), (Fig. 1A).

123

124 We observed no statistically significant effect of increasing temperature from 30 °C to
125 37 °C or adding HEPES buffer (Fig. 1A). We therefore combined replicates, regardless
126 of temperature or HEPES, and plotted capsule size for all possible combinations of me-
127 dium, CO₂, and cAMP (Fig. 1B). Strikingly, there was no capsule induction in any condi-
128 tion with YPD, regardless of CO₂ or cAMP addition. DMEM alone yielded negligible in-
129 duction, but adding cAMP, CO₂, or both yielded progressively thicker capsules. Results
130 in RPMI were similar, except that it produced larger capsules than DMEM in every con-
131 dition. In RPMI, cAMP also had a larger effect than in DMEM, such that its effect was
132 similar to that of CO₂.

133

134 To further explore how the signals that affect capsule size interact, we identified the
135 conditions under which each signal had the greatest impact. DMEM and RPMI each had
136 their biggest effects in the presence of both CO₂ and cAMP. cAMP had its biggest effect
137 in RPMI without CO₂ at 30°, while CO₂ had its biggest effect in DMEM with cAMP at 37
138 °C (Fig. 1C). These observations guided our choice of media in the analyses below.

139

140 Taking these results together, the most surprising result was that no combination of
141 temperature, CO₂, cAMP, or HEPES buffer induced capsule at all in YPD (Fig. 1B; all P-
142 values > 0.2). This suggested to us the novel idea that this rich medium has a repres-
143 sive effect on capsule (see Discussion). Our data set also allowed us to make several
144 other observations. First, RPMI generally led to greater capsule width than DMEM, hold-
145 ing all other variables constant (linear model, P<10⁻⁸). Second, CO₂ or cAMP each in-
146 creased capsule size in either tissue culture medium (DMEM ± CO₂, P<10⁻³; RPMI ±

147 CO_2 , $P < 10^{-3}$; DMEM \pm cAMP, $P < 0.058$; RPMI \pm cAMP, $P < 10^{-3}$), and the two together
148 yielded the largest capsules.

149 Effects of signals on gene expression

150 To examine the transcriptional response to various combinations of signals, we collected
151 samples for RNA-Seq upon initial exposure to the signals and after 30, 90, 180, and
152 1440 min. After quality control (see Methods), we were left with RNA-Seq data for 720
153 samples. These included at least four replicates for each combination of environmental
154 signals, which had been grown and libraries prepared on separate days to account for
155 day-to-day variability in both processes. Each growth batch and library preparation
156 batch also included a control culture grown in our standard non-inducing laboratory
157 conditions: YPD, 30°, no CO_2 , no cAMP, no added buffer. This design allowed us to re-
158 gress out batch (date) effects, which often dominate experimental factors in large-scale
159 gene expression studies.

160

161 To assess the magnitude of signal effects on overall gene expression, we computed
162 principal components and plotted PC1 and PC2 for each sample. Time of growth had
163 the biggest effect on both PC1 and PC2 (Fig. 2A), as can be seen by the progression
164 towards the upper right of data points from successive sampling times. The next greatest
165 effect was due to medium, as shown for the 24 h timepoints in Fig. 2B, where YPD
166 samples (blue) are clearly separated from those in TCM (green and orange). Samples
167 grown in TCM with various combinations of cAMP or CO_2 were also distinct in terms of
168 transcriptional response (Fig. 2C, showing PC1 and PC3). Together, these results show
169 that the primary differences in gene expression are driven by experimental factors, rather
170 than batch effects, demonstrating the quality of the data. Furthermore, TCM, which
171 has the greatest effect on capsule size at 24 h, also has the greatest effect on gene ex-
172 pression at 24 h.

173 Effects of DMEM and CO_2 on gene expression

174 In the analyses above, capsule growth required both a tissue culture medium and either
175 CO_2 or cAMP. To identify the biological functions of the genes that were most responsive
176 to these signals, we started with the response to CO_2 in DMEM, a combination that
177 had large effects on capsule width (Fig. 1). To assess transcriptional changes we ran
178 DESeq2²⁴ on these datasets with a linear model that predicts log normalized gene ex-
179 pression levels from signals and extracted shrunken log fold changes in response to
180 each signal (see Methods).

181 Next, we carried out over-representation analysis on the most responsive genes
182 at each time point using Gene Ontology (GO) biological process terms together with
183 additional functional categories of interest. Examples of enriched biological functions
184 are shown in Figure 2D, as a heatmap showing the average expression levels of all
185 genes annotated with each term (not just the significantly differentially expressed
186 genes). For each time point, we show the effects of DMEM relative to YPD, the effects

187 of DMEM+CO₂ relative to DMEM alone, and the combined effects of DMEM+CO₂ relative to YPD alone.

189 We first examined genes that are upregulated by DMEM alone. The genes that
190 were most strongly induced are involved in phosphate transport (Fig. 2D, top row), con-
191 sistent with recent reports that these genes are induced by another capsule-inducing
192 growth condition, 10% Sabouraud's dextrose medium.²⁵ Other biological functions that
193 were strongly upregulated in DMEM include environmental stress response (Fig. 2D,
194 fourth row) and the functions designated as Group 1 (Fig. 2D; see gene lists in Supple-
195 mental File S5). This group includes several functions that are notable for their involve-
196 ment in cell wall synthesis (cell wall organization and chitin metabolism) as well as car-
197 bohydrate biosynthesis. The individual expression patterns of each gene in this catego-
198 ry are shown in Fig. 2E, plotted as the ratio of expression in the indicated conditions at
199 each time point (so they may reflect differences in either or both conditions). The ex-
200 pression ratio for many of these genes was upregulated by at least 2-fold (colored
201 lines), including for those involved in gluconeogenesis (*PCK1*, *TPI1*, *PYC2*), glycogen
202 synthesis (*GLC3*, *GSY1*), and trehalose synthesis (*TSP1* and *TSP2*, both of which are
203 required for virulence in *C. neoformans*²⁶). All of these genes showed peak expression
204 difference from YPD at 30 minutes with a slow convergence back to YPD levels over
205 time (see Discussion).

206 Another category of interest was genes implicated in capsule synthesis (genes
207 annotated with a capsule phenotype in FungiDB, shown in the third row of Fig. 2D).
208 These were, on average, upregulated by DMEM and barely affected by CO₂ (see Dis-
209 cussion). Finally, we noted that homologs of yeast genes expressed specifically during
210 the M/G phases of the cell cycle (identified in ref.²⁷) were upregulated by DMEM and
211 slightly down regulated by CO₂, while those expressed at other cell cycle phases were
212 generally downregulated by DMEM, relative to YPD (see Discussion).

213 Overall, the gene sets that were most strongly down regulated in response to
214 DMEM (Fig. 2D, group 2) are growth related: ribosome biogenesis, steroid biosynthesis,
215 cell division, and chromosome segregation. Expression of each individual gene in the
216 last category (Fig. 2F) shows that, like upregulated genes, the most dramatic differ-
217 ences from YPD levels occurred by the first time point (30 min), with expression in the
218 two cultures becoming more similar by the end of the 24-hour period. The category of
219 carbohydrate transport was also strongly down-regulated relative to YPD for most time
220 points, but then up-regulated at 24 hours (Fig. 2D, second row). Among these carbohy-
221 drate transport genes are *LPI8*, whose product promotes cryptococcal uptake by phag-
222 ocytes²⁸, and *GMT2*, which encodes a GDP-mannose transporter required for the syn-
223 thesis of capsule and other glycoconjugates.²⁹

224 Interestingly, the effect of CO₂, when added to DMEM, was in the opposite direc-
225 tion from the effect of DMEM relative to YPD for most gene sets in the heat map. How-
226 ever, the CO₂ response was weaker, so the overall effect of DMEM+CO₂ was in the

227 same direction as that of DMEM alone. Exceptions to this pattern include ribosome bio-
228 genesis and mRNA splicing, both of which were consistently reduced.

229 Effects of cyclic AMP on capsule and cell size

230 Cyclic AMP signaling is essential for capsule growth.^{3,13,18} To investigate the effects of
231 exogenous cAMP on capsule size and gene expression, we performed experiments in
232 conditions in which capsule is normally small, but addition of cAMP generates much
233 larger capsules: RPMI, 30°, room air, no HEPES (Fig. 1B). We found that increasing
234 cAMP yielded a consistent dose response in capsule width (Fig. 3A), with the logarithm
235 of exogenous cAMP concentration a highly significant predictor of average capsule
236 thickness ($P < 10^{-10}$). On average, increasing cAMP by a factor of 1.8 increased the cap-
237 sule width by 0.2 μ m, although the final step from 11 mM to 20 mM had a much bigger
238 effect (Figure 3A).

239 Exogenous cAMP also increased the average cell body radius, excluding the
240 capsule, (Fig. 3B; ANOVA $P < 3 \times 10^{-5}$), with a 1.8 fold increase in cAMP causing an av-
241 erage increase of 0.11 μ m (Fig. 3B). Unlike the effect on capsule width, this effect was
242 greater at lower concentrations. Notably, the effect of cAMP on cell size does not ex-
243 plain its effect on capsule width, since the capsule index (capsule width as a fraction of
244 total radius) increased with cAMP concentration (Fig. S1).

245 We took advantage of mutants in the cAMP pathway to further investigate the
246 role of cAMP in capsule enlargement. We first measured the capsules of cells lacking
247 *PDE1*, which encodes a phosphodiesterase capable of degrading intracellular cAMP.
248 We observed little effect on capsule width in either YPD or RPMI (both at 30° with no
249 CO_2 or cAMP; Fig 3C), consistent with previous reports³⁰. We next examined cells lack-
250 ing *PKR1*, which encodes the repressive moiety of the Protein Kinase A (PKA) complex.
251 cAMP causes *Pkr1* to dissociate from the complex, activating the kinase moiety, so a
252 *pkr1* deletion mutant might be expected to have an enlarged capsule. Indeed, we saw
253 that, when grown in RPMI alone, the *pkr1* mutant's capsule was similar to that of WT
254 grown in RPMI with 20 mM cAMP (Fig. 3C). We also saw an increase in capsule width
255 of *pkr1* grown in YPD. No other perturbation we tested, including 20 mM exogenous
256 cAMP, yielded increased capsule size in YPD (Fig. 1B; see Discussion). Meanwhile, cell
257 body size was only modestly changed in the mutants in each growth condition (Fig. 3D).

258 Effects of cAMP on gene expression

259 In our experiments, cAMP had the greatest impact on WT capsule size in RPMI
260 with no CO_2 (Figure 1C, right-most panel). For this reason, we characterized gene ex-
261 pression changes over time in response to these conditions (Fig. 3E), examining the
262 same functional categories we had for DMEM and CO_2 (Fig. 2D). The responses to
263 RPMI and DMEM were broadly similar (compare Figs. 3E and 2D). Furthermore, adding
264 cAMP or CO_2 tended to moderate the responses to TCM more often than it reinforced
265 them. However, we did observe some differences. For example, while RPMI and DMEM
266 both reduced the expression of ribosome biogenesis genes, adding CO_2 reinforced that
267 effect at all time points, while adding cAMP moderated it at later time points. We also

268 noted that genes involved in carboxylic acid metabolic processes (mainly nitrogen as-
269 similation and amino acid metabolism) responded differently to RPMI+cAMP and
270 DMEM+CO₂, especially at early time points.

271 Nitrogen source is another factor that has been implicated in capsule regulation.

272 ⁶ Nitrogen catabolite repression (NCR) is a process that represses the expression of
273 certain genes when preferred nitrogen sources, such as glutamine (the main nitrogen
274 source in DMEM and RPMI) are available.³¹ In RPMI, the genes in this category were
275 indeed slightly repressed compared to YPD (Fig. 3E, left columns). However, adding
276 cAMP released NCR rapidly, most notably at 30 min (Fig. 3E, middle columns), sug-
277 gesting that the cells responded to cAMP as though they had been moved to a less pre-
278 ferred nitrogen source (despite the presence of glutamine in the medium; see Discus-
279 sion). This is consistent with the general role of cAMP in cryptococcal stress response.
280 cAMP addition also overcame the RPMI effect, so that their combined effect was to re-
281 lieve NCR (Fig. 3E, right columns). The detailed effect of adding cAMP to RPMI is
282 shown in Fig. 3F.

283 Finally, to evaluate the effects of signals across all genes, rather than on specific
284 processes, we calculated the global correlations between pairs of signals at each time
285 point. As we had observed for selected groups of genes (Fig. 3E), the effects on gene
286 expression of the two tissue culture media (DMEM and RPMI) are highly correlated (Fig.
287 3G). The effects of CO₂ and cAMP were positively correlated with each other, consistent
288 with previous evidence that CO₂/HCO₃ stimulate adenylyl cyclase, which generates
289 cAMP.³²

290 Expression of multiple genes is associated with capsule size

291 Next, we set out to identify genes whose expression is strongly associated with capsule
292 development. Our approach was to dichotomize capsule size into “induced” or “not in-
293 duced” and the expression of each gene into “high” or “low” and analyze the relationship
294 between expression and capsule induction for each gene separately. We considered a
295 sample to be “induced” if its median capsule width after 24 hours exceeded 1.13 um,
296 three standard deviations above the mean of all WT cells in YPD. For each gene at
297 each RNA-Seq time point, we then searched for a threshold to divide high and low ex-
298 pression for that gene that was most associated with induction status. Specifically, we
299 calculated the χ^2 statistic for association between induction status and gene expression
300 status (Fig. 4A; see Methods for details). We were not concerned with P-values here,
301 but with using the statistic itself to rank genes by their association with capsule size.
302 The maximum χ^2 value, over all time points, was assigned to the gene and the genes
303 with high χ^2 values were identified as potentially involved in capsule induction (Table
304 S1). However, we were mindful that these associations can arise in many ways and do
305 not necessarily reflect a causal role in capsule induction.

306 New genes whose deletion affects capsule size

307 As noted above, the same conditions that induce capsule and stimulate changes in ex-
308 pression of genes essential for capsule growth also affect expression of genes involved

309 in multiple other processes, including cell division, nutrient utilization, or other cellular
310 processes (see Figs. 2D and 3E). We therefore expected only a small subset of the
311 genes whose expression is correlated with capsule thickness to be essential for capsule
312 development. To seek such genes, we examined deletion strains. Mutants correspond-
313 ing to 24 of the 33 genes in Table S1 were available in a publicly available deletion col-
314 lection³³ or in our own collections. We grew each mutant in the conditions we found to
315 induce large capsules (RPMI, 37 °C, 5% CO₂, no cAMP) and measured their capsules
316 using our rigorous protocols (see Methods).

317 We were excited to identify a mutant that was not previously known to influence
318 capsule width. Deletion of CNAG_00368, which encodes a homolog of *S. cerevisiae*
319 Vps53, reduced mean capsule width by 0.44 μm (Fig. 4B,C). A scatter plot of capsule
320 width versus expression for this gene is shown in Fig. 4A.

321 An adventitious finding in these studies was that a strain deleted for
322 CNAG_05977 had mean capsule width 0.54 um smaller than wild-type cells (see Dis-
323 cussion). This strain was not chosen as described above – we had intended to test
324 CNAG_06050, but routine genome sequencing for quality control showed that the strain
325 we tested in fact had a deletion of CNAG_05977. We verified the genotypes of both de-
326 letion strains by whole-genome sequencing.

327 DISCUSSION

328 This work makes significant contributions in three areas. First, we have generat-
329 ed a major dataset that will be a tremendous resource for researchers in the field. Sec-
330 ond, we have used these data to make interesting observations about how cells react to
331 environmental conditions that induce capsule. Third, we identified a set of genes whose
332 expression correlates with capsule size and discovered two new genes that influence
333 capsule thickness.

334 When we undertook this project, it was known that capsule growth requires both
335 new transcription^{6,22} and an intact cAMP/PKA pathway.^{3,13,18} It was also known that, in
336 tissue culture medium (TCM), capsule can be induced by increasing the concentration
337 of dissolved CO₂/HCO₃⁻, achieved by growth in a high CO₂ atmosphere, addition of
338 NaHCO₃, or both.⁶ We set out to determine how various combinations of capsule induc-
339 ing signals would affect gene expression and capsule size. This led to a massive, freely
340 available dataset consisting of RNA-Seq in biological quadruplicate in 42 combinations
341 of potentially capsule-inducing signals, as well as cAMP titrations and mutants in the
342 cAMP signaling pathway (881 total RNA-Seq samples). Each RNA-Seq experiment
343 comes with matched India ink images and capsule width measurements. The dataset
344 also includes images and capsule-width measurements for selected gene deletion mu-
345 tants, yielding a total of 47,458 annotated cells in 5,175 images of 392 biological sam-
346 ples.

347 We found that either a 5% CO₂ atmosphere or cAMP could induce capsule in
348 TCM, but YPD, a rich medium containing yeast extract and peptone, completely blocks
349 capsule growth. This repressive effect is upstream of PKA activation, since deleting

350 *PKR1* increases capsule sizes of cells growing in YPD (Fig. 3C). However, adding 20
351 mM exogenous cAMP, which is thought to act directly on the Pka1/Pkr1 complex, does
352 not enlarge the capsules of cells growing in YPD (Fig. 1B). It may be that cAMP cannot
353 completely inactivate Pkr1 or that cells do not maintain a high enough internal concen-
354 tration for long enough to fully inactivate it.

355 RPMI alone caused capsules to enlarge slightly, whereas DMEM alone produces
356 a barely detectable enlargement (Fig. 1B). RPMI contains less of most nutrients than
357 DMEM, making it a generally more stressful condition. One possible explanation for
358 these observations is the absence of iron in RPMI (DMEM contains 10^{-4} g/L ferric ni-
359 trate). These results are reminiscent of observations concerning titan cells, extremely
360 large cells that form during infection and specific *in vitro* conditions.³⁴ Interestingly, titan
361 cell formation can be induced by low-density inoculation into RPMI at 37 °C with 5%
362 CO₂, but substitution of DMEM for RPMI prevents this. The critical differences in this
363 case were identified as the presence of iron in DMEM and the presence of para-
364 aminobenzoic acid in RPMI.³⁵

365 In addition to the conditions we studied, capsule growth is known to be stimulat-
366 ed by specific stressors, some of which resemble stresses encountered in a mammalian
367 host. For example, growth in mammalian serum without added nutrients induces cap-
368 sule growth at 30 °C or 37 °C, with or without CO₂, although this does not occur in
369 Sabouraud dextrose broth, a rich medium like YPD.⁹ Sabouraud medium alone, diluted
370 to 10% normal concentration and buffered to pH 7.4 (termed CAP medium), is reported
371 to induce capsule.⁸ Iron deprivation in LIM medium, which consists of 5 g/L glucose, 5
372 g/L asparagine, minerals, and 55 mM EDDA at pH 7.4, can also induce capsule.⁷ Thus,
373 rich media consistently block capsule induction while several forms of nutrient depriva-
374 tion induce it. Nutrient deprivation is likely the normal state of *Cryptococcus*, whether in
375 a mammalian host or in the environment, so we suggest that it makes more sense to
376 think of rich media as blocking capsule growth than to think of TCM as inducing it.

377 Low pH (6.1) can also block capsule induction.⁶ High osmolarity appears to re-
378 duce capsule thickness, although there has been speculation about whether this is a
379 cellular response or simply physical compression of capsule.¹² A cellular response is
380 consistent with the observation that deletion of *HOG1*, a key component of the high os-
381 molarity response, increases capsule size in DMEM+CO₂ induction.^{3,36} Studying the ef-
382 ffects of these stimuli on gene expression may provide additional insights about which
383 changes in gene expression are essential for capsule growth.

384 Turning to gene expression, tissue culture media (TCM) have several interesting
385 effects. First, they decrease the expression of genes associated with growth and in-
386 crease that of genes associated with stress. Further, gene expression in TCM suggests
387 an accumulation of cells in the M/G1, post-mitotic phase of the cell cycle. Finally, TCM
388 tends to engage nitrogen catabolite repression, probably because of its glutamine con-
389 tent.

390 Surprisingly, both CO₂ and cAMP moderate or reduce most of the effects of TCM
391 on gene expression. The fact that either of these components can act as the necessary
392 partner with TCM for capsule induction, but their overall effects on gene expression are
393 opposite that of TCM, poses intriguing questions: When CO₂ is added to TCM, which of

394 the resulting gene expression changes are critical for capsule induction and do those
395 changes work by dialing down the effects of TCM on key genes, by reinforcing the ef-
396 fects of TCM on the few genes that respond in the same direction, or by acting on
397 genes that do not respond to TCM?

398 Both phosphate and nitrogen availability have been suspected as regulators of
399 capsule size. Both nutrients activate sensors that stimulate the PKA pathway.³⁷⁻³⁹ It has
400 also been reported that expression of phosphate acquisition genes is strongly induced
401 in CAP medium and that subsequent addition of KH_2PO_4 reduces capsule width as well
402 as cell size.¹⁰ We found that phosphate transporters were also strongly induced by
403 TCM, although this effect was much reduced by addition of CO_2 or cAMP.

404 Regarding nitrogen availability, it has also been reported that YNB medium (trace
405 nutrients, $(\text{NH}_4)_2\text{SO}_4$, and glucose) with bicarbonate and 5% CO_2 induces capsule, but
406 only if the $(\text{NH}_4)_2\text{SO}_4$ is replaced by arginine.⁶ Both are considered preferred nitrogen
407 sources for *S. cerevisiae*³¹, so the cells may be responding to amino acids, rather than
408 the quality of the nitrogen source. Further linking amino acids and capsule, several
409 genes with expression levels that are associated with capsule size encode proteins that
410 act in transport of amino acids or oligopeptides, such as CNAG_01119 and
411 CNAG_02539, which are orthologs of the *S. cerevisiae* oligopeptide transporter *PTR2*
412 and amino acid transporter *DIP5*, respectively (Tables S1).

413 As mentioned earlier, conditions that induce capsule also impact multiple cellular
414 response pathways. Nonetheless, we hypothesized that we might be able to identify
415 genes required for normal capsule size among those genes whose expression was best
416 correlated with capsule thickness and tested this using deletion mutants. Unfortunately,
417 there is no deletion mutant in the Madhani collection for many of the genes whose ex-
418 pression is most predictive of capsule thickness (Tables S1). Our own attempts to de-
419 lete five of these genes also failed, suggesting that they may be essential. Studying
420 their effects on capsule thickness, therefore, may require construction of over-
421 expression strains or development of more robust tunable promoter systems than are
422 currently available for *C. neoformans*.

423 When a mutant was available for a gene whose expression was statistically as-
424 sociated with capsule thickness, we assayed it for this characteristic. Unsurprisingly,
425 most mutants did not show a significant change in capsule size. Some of the corre-
426 sponding genes may indeed have no role in capsule elaboration, their correlation with
427 capsule size resulting from parallel pathways activated by the same stressful conditions
428 that lead to capsule growth. Others may play a role in capsule growth that can also be
429 filled by other proteins. Deletion of still others may affect capsule in ways that our meth-
430 ods do not detect, such as changes in glycan composition, structure, or other features.
431 An alternative approach that hypothesizes capsule phenotypes for genes whose ex-
432 pression pattern is similar to those of known capsule genes was recently reported to be
433 effective, with 6 of 12 tested mutants having altered capsule width.⁴⁰

434 We did identify two genes, not previously known to influence capsule, whose de-
435 letion affects capsule size in inducing conditions. Deletion of CNAG_00368 reduced
436 mean capsule thickness by 0.44 um. This gene encodes an ortholog of *S. cerevisiae*
437 *Vps53*, which is involved in recycling proteins from endosomes to the late Golgi. *Vps53*

438 not been studied in *Cryptococcus*, but a protein that is part of a different complex in-
439 volved in recycling proteins from endosomes, Vps23, is known to be required for cap-
440 sule elaboration.⁴¹ Reinforcing the theme of protein and peptide recycling, deletion of
441 CNAG_05977 (proteasome activator subunit 4) reduced capsule size by 0.54 um. Future
442 work will be needed to define the specific mechanisms by which these genes influ-
443 ence capsule.

444 Our dataset of matched RNA-Seq time courses and capsule thickness mea-
445 surements has yielded insights into the environmental signals and gene expression
446 changes that affect capsule size. However, this is only the beginning. We expect that
447 future analyses by our group and other researchers will yield additional insights, not only
448 into capsule biology but into numerous aspects of cryptococcal physiology, many with
449 importance for disease.

450
451

METHODS

452 Additional details for all methods can be found in the online supplement.

Cell growth

453 To maximize reproducibility of RNA-seq and capsule imaging studies, cell recovery from
454 frozen stocks, initial culture in YPD, inoculation into preconditioned media, and growth
455 followed strictly controlled protocols. These methods are detailed in the Supplemental
456 Material.

Microscopy and manual image annotation

457 1-ml samples were collected for imaging from the stock cell suspension prior to inocula-
458 tion of flasks or from cultures at 1440 min, fixed, resuspended in PBS, and mixed with
459 India ink (5 parts cells:2 parts ink) for brightfield microscopy. Images were manually an-
460notated using a custom annotation interface written in Mathematica / Wolfram Language
461 (available on request). Fifteen fields were annotated for each replicate of each combina-
462 tion, yielding an average of 96 annotated cells per replicate (min 31; max 361; standard
463 deviation 54).

Analysis of capsule thickness in gene deletion mutants

464 Effects of deletion mutants on capsule thickness were evaluated using a Linear Mixed
465 Models framework with individual cells' thicknesses as the datapoints. The model had
466 fixed effects for intercept and genotype; each specific biological sample was used as a
467 grouping variable with a random intercept for each group.

RNA-Seq

468 Libraries were constructed using the NEBNext Ultra Directional RNA Library Prep Kit
469 from Illumina and samples were pooled at 10 nM. The pools were sequenced on a
470 NextSeq 500 using the High75v2 kit as 1x75 (single end).

RNA-Seq Computational Pipeline and Analysis

471 Documented code implementing the process described below is available on our public
472 github repository: <https://github.com/BrentLab/brentlabRnaSeqTools>. Reads were
473 aligned with Novoalign (version 4.03.02) and quantified with HTSeq (0.9.1) using the

479 FungiDB KN99 α genome sequence (FungiDB accession ASM221672v1). Custom
480 scripts were used to verify the strain in each sample by calculating coverage over the
481 open reading frame of the putatively deleted genes and over marker genes, ensuring
482 that the former were absent and the latter present. Documented code and parameters
483 for strain validation and QC can be found here:
484 https://brentlab.github.io/brentlabRnaSeqTools/articles/QC_Library_Quality.html#crypto_coccus. RNA-Seq samples that passed strain validation were subjected to two phases
485 of QC. In Phase 1, files were labeled as ‘passing’ if they contained at least 10^6 reads
486 aligned to protein coding regions and less than 7% of all reads failed to align.
487

488 In Phase 2, we evaluated replicate agreement using the Regularized Log Ex-
489 pression (RLE)⁴². First, we used DESeq2 (version 1.34.0) to estimate the effect of the
490 library date (the known batch effect). We removed the batch effect using the DESeq co-
491 efficients for the library dates such that the data were standardized to a single date, re-
492 sulting in adjusted expression levels on a \log_2 normalized scale. To compute the RLE
493 value for a given gene, the median expression level of that gene, across all samples in
494 a replicate set, was subtracted from the expression level of the gene in each sample.
495 For each sample, we then calculated the interquartile range of the distribution of these
496 RLE values across genes. If the interquartile range of RLEs of a given sample was
497 greater than 1, indicating that more than half of genes deviated from their respective
498 medians by a factor of 2 in adjusted count, the sample was considered an outlier and
499 failed for replicate agreement. 22 samples (2.75%) failed replicate agreement and were
500 discarded.
501

502 Gene set overrepresentation analysis

503 Differential expression analysis was conducted using DESeq2 with a model containing
504 the main effect of time, represented as a categorical variable, and the interaction effects
505 of time with environmental signals. The interaction effects indicate how the normal effect
506 of time in standard laboratory conditions (YPD, no CO₂, 30 °C, no cAMP, no HEPES) is
507 modulated by the presence of other factors at each time point. For each time-
508 point:signal interaction, a gene was considered to be differentially expressed if the ab-
509 solute value of its shrunken \log_2 fold change (LFC) reached 1.0. (DESeq shrinkage re-
510 duces the estimated LFCs of factors with greater replicate-to-replicate variance).
511 Overrepresentation analysis was carried out using GOTermFinder (see online supple-
512 ment for additional details).⁴³ Gene annotations came from UniProtKB, release
513 2020_01, and were supplemented with several annotations derived from literature (see
514 Online Supplement and File S5).

515 Selection of potential capsule-associated genes: Chi-squared method

516 The following procedure was carried out separately for samples at each time point. To
517 calculate the χ^2 statistic for each gene, we first classified all samples with average cap-
518 sule width greater than 1.13 μm (3 S.D. above the mean of all YPD conditions) as in-
519 duced. Other samples were classified as uninduced. Samples were also classified by
520 high or low expression of each gene, yielding a 2x2 contingency table. For each gene,
521 we tried all possible thresholds of high versus low expression, constructed the contin-
522 gency table, and calculated the χ^2 statistic. Finally, we chose the threshold that yielded
523 largest χ^2 statistic. These statistics were only used to characterize the degree of associ-

524 ation between the expression of a gene in a sample and that sample's induction status.
525 They were not used for hypothesis testing.

526 Genes were ranked for likelihood of the corresponding deletion strain exhibiting a
527 capsule phenotype by the maximum of their χ^2 values, across all time points. Genes
528 with high χ^2 statistics were selected for testing. For genes that were positively correlated
529 with capsule size, the gene deletion mutant was tested in inducing conditions (RPMI, 37
530 °C, 5% CO₂) with the prediction that deletion would reduce capsule size compared to
531 WT grown in the same conditions. For negatively correlated genes, the gene deletion
532 mutant was tested in non-inducing conditions (YPD, 37 °C, 5% CO₂) and in 'almost-
533 inducing' conditions (RPMI, 37 °C, room air); the rationale for the latter was that the
534 conditions were quite close to inducing conditions and perhaps favor capsule synthesis.

535 Forming metagenes as features for machine learning

536 From the original gene expression data matrix, we sought to decrease the number of
537 features by filtering and combining genes. We first removed low variance genes by fil-
538 tering out genes whose expression in $\geq 95\%$ samples was within one log₂ of their
539 mean, indicating that less than 5% of samples showed substantial changes. We next
540 combined highly correlated genes into metagenes (correlation threshold > 0.8). The
541 "expression level" of a metagene was then set to the mean of the expression levels of
542 its constituent genes. We repeated this process to combine genes into metagenes until
543 we had combined all highly correlated genes into metagenes.

544
545

546 COMPETING INTERESTS

547 The authors declare that they have no competing interests.

548

549 AVAILABILITY OF DATA AND MATERIALS

550 All RNA-Seq data are available from NCBI GEO under accession numbers GSE226255,
551 GSE226637, or GSE226651, which are subseries of GSE226656. All capsule size
552 measurements are available as supplemental files. Corresponding India ink images and
553 mutant strains are available on request.

554

555 FUNDING

556 This work was supported by NIH awards AI087794 (Doering) and GM141012 (Brent).

557

558 REFERENCES CITED

559

560

561 1. Denning, D.W. Global incidence and mortality of severe fungal disease. *Lancet Infect Dis* (2024).
562 2. Kwon-Chung, K.J. et al. *Cryptococcus neoformans* and *Cryptococcus gattii*, the Etiologic Agents of
563 Cryptococcosis. *Cold Spring Harb Perspect Med* **4** (2014).
564 3. Maier, E.J. et al. Model-driven mapping of transcriptional networks reveals the circuitry and
565 dynamics of virulence regulation. *Genome Res* **25**, 690-700 (2015).

566 4. O'Meara, T.R. & Alspaugh, J.A. The *Cryptococcus neoformans* capsule: a sword and a shield. *Clinical microbiology reviews* **25**, 387-408 (2012).

567 5. Littman, M.L. Capsule synthesis by *Cryptococcus neoformans*. *Trans N Y Acad Sci* **20**, 623-48 (1958).

568 6. Granger, D.L., Perfect, J.R. & Durack, D.T. Virulence of *Cryptococcus neoformans*. Regulation of capsule synthesis by carbon dioxide. *The Journal of clinical investigation* **76**, 508-16 (1985).

569 7. Vartivarian, S.E. et al. Regulation of cryptococcal capsular polysaccharide by iron. *J Infect Dis* **167**, 186-90 (1993).

570 8. Zaragoza, O. & Casadevall, A. Experimental modulation of capsule size in *Cryptococcus neoformans*. *Biol Proced Online* **6**, 10-15 (2004).

571 9. Zaragoza, O., Fries, B.C. & Casadevall, A. Induction of capsule growth in *Cryptococcus neoformans* by mammalian serum and CO₂. *Infect Immun* **71**, 6155-64 (2003).

572 10. Denham, S.T. et al. A dissemination-prone morphotype enhances extrapulmonary organ entry by *Cryptococcus neoformans*. *Cell Host Microbe* **30**, 1382-1400 e8 (2022).

573 11. Farhi, F., Bulmer, G.S. & Tacker, J.R. *Cryptococcus neoformans* IV. The Not-So-Encapsulated Yeast. *Infect Immun* **1**, 526-31 (1970).

574 12. Dykstra, M.A., Friedman, L. & Murphy, J.W. Capsule size of *Cryptococcus neoformans*: control and relationship to virulence. *Infect Immun* **16**, 129-35 (1977).

575 13. Caza, M. & Kronstad, J.W. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in *Cryptococcus neoformans*. *Front Cell Infect Microbiol* **9**, 212 (2019).

576 14. Zaman, S., Lippman, S.I., Zhao, X. & Broach, J.R. How *Saccharomyces* responds to nutrients. *Annu Rev Genet* **42**, 27-81 (2008).

577 15. Conrad, M. et al. Nutrient sensing and signaling in the yeast *Saccharomyces cerevisiae*. *FEMS microbiology reviews* **38**, 254-99 (2014).

578 16. Cramer, K.L., Gerald, Q.D., Nichols, C.B., Price, M.S. & Alspaugh, J.A. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in *Cryptococcus neoformans*. *Eukaryot Cell* **5**, 1147-56 (2006).

579 17. O'Meara, T.R. et al. Interaction of *Cryptococcus neoformans* Rim101 and protein kinase A regulates capsule. *PLoS Pathogens* **6**, e1000776 (2010).

580 18. Alspaugh, J.A. et al. Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of *Cryptococcus neoformans*. *Eukaryot Cell* **1**, 75-84 (2002).

581 19. Hu, G. et al. Transcriptional regulation by protein kinase A in *Cryptococcus neoformans*. *PLoS Pathog* **3**, e42 (2007).

582 20. D'Souza, C.A., Hagen, F., Boekhout, T., Cox, G.M. & Heitman, J. Investigation of the basis of virulence in serotype A strains of *Cryptococcus neoformans* from apparently immunocompetent individuals. *Curr Genet* **46**, 92-102 (2004).

583 21. Haynes, B.C. et al. Toward an Integrated Model of Capsule Regulation in *Cryptococcus neoformans*. *PLoS Pathogens* **7**, e1002411 (2011).

584 22. Gish, S.R. et al. Computational Analysis Reveals a Key Regulator of Cryptococcal Virulence and Determinant of Host Response. *MBio* **7** (2016).

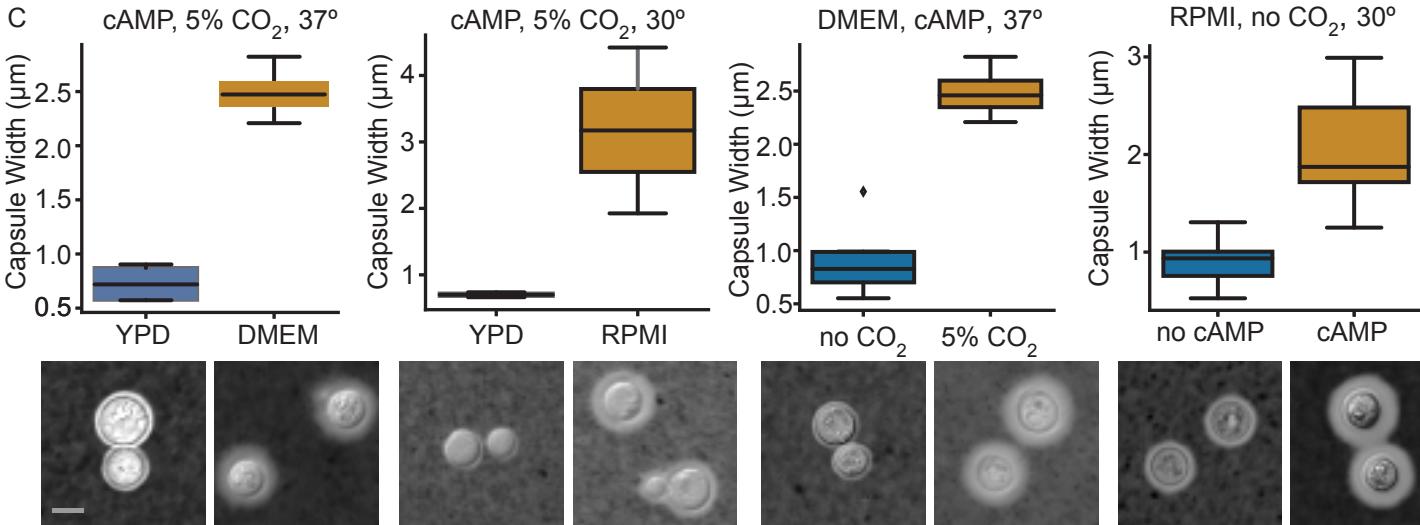
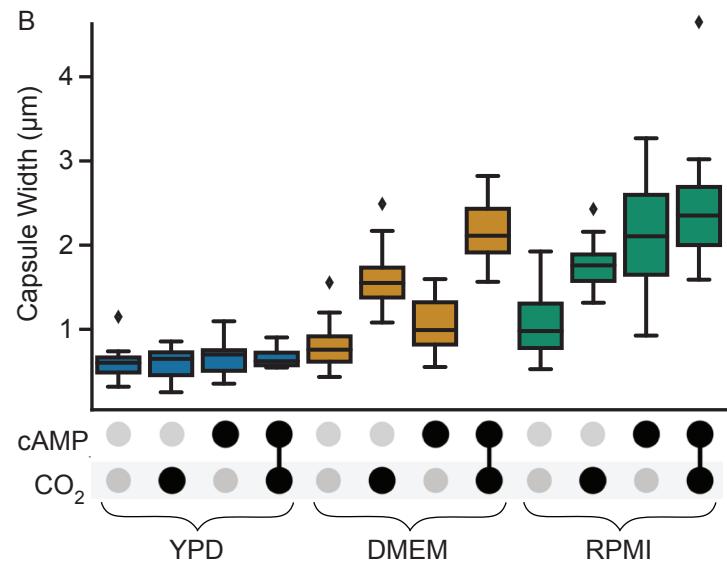
585 23. Nielsen, K. et al. Sexual cycle of *Cryptococcus neoformans* var. *grubii* and virulence of congenic a and alpha isolates. *Infect Immun* **71**, 4831-41 (2003).

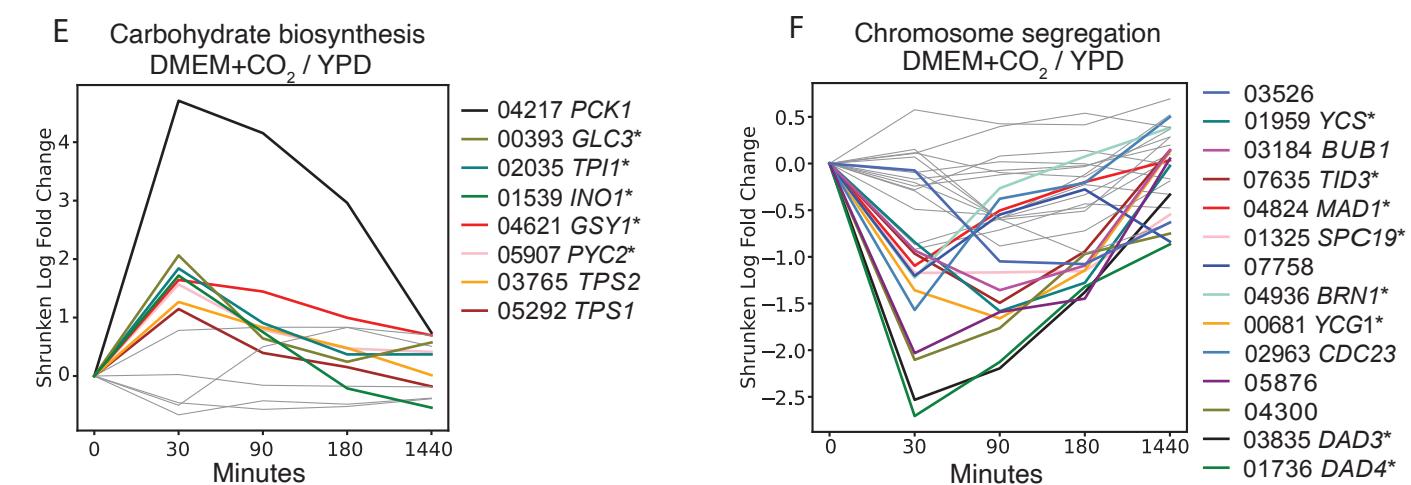
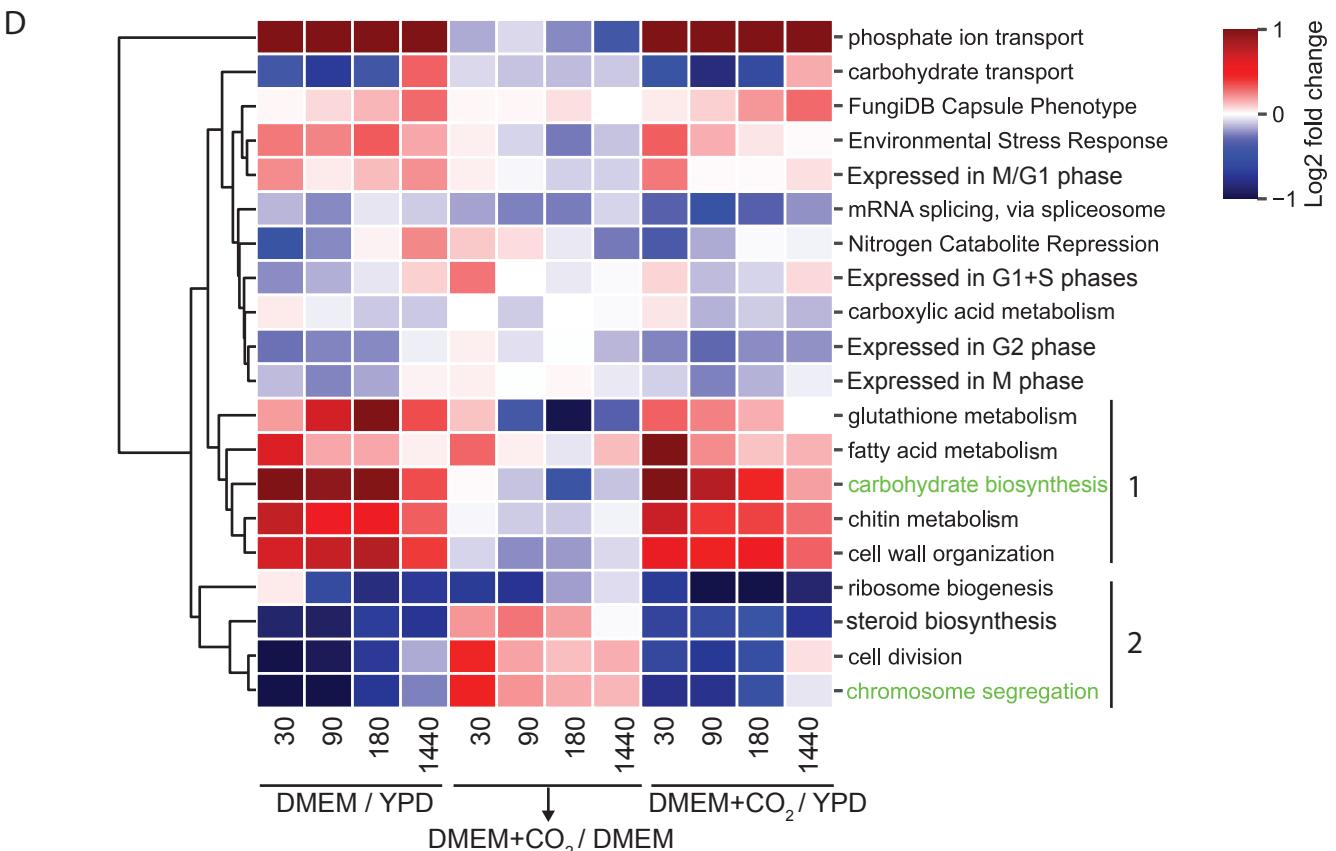
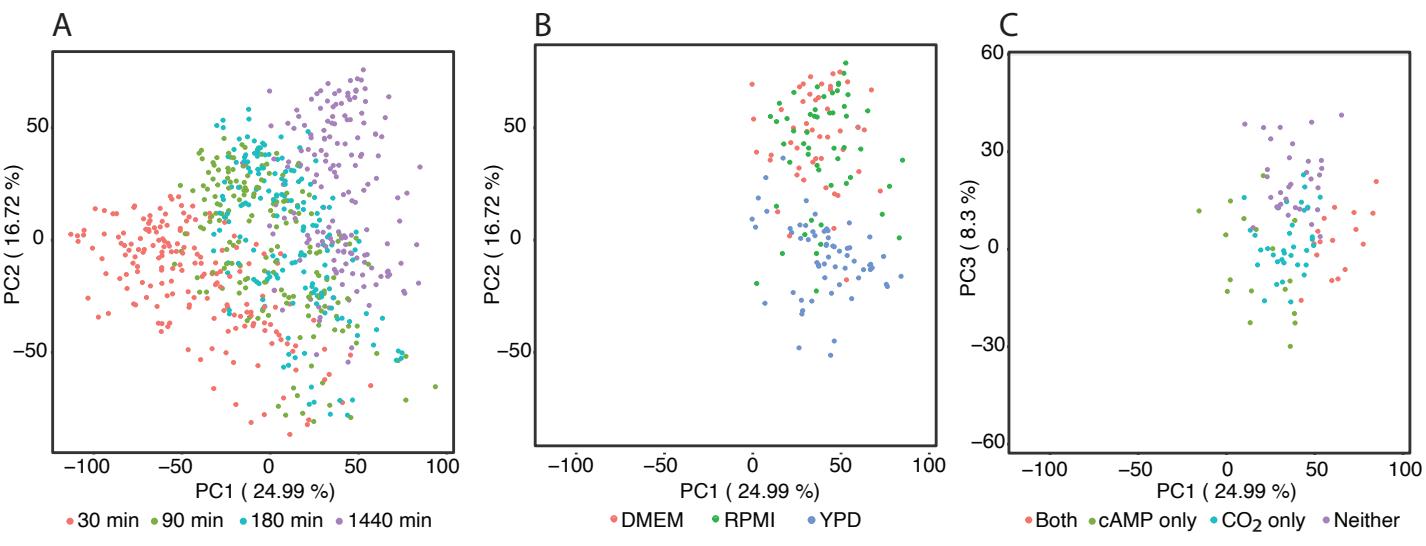
586 24. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

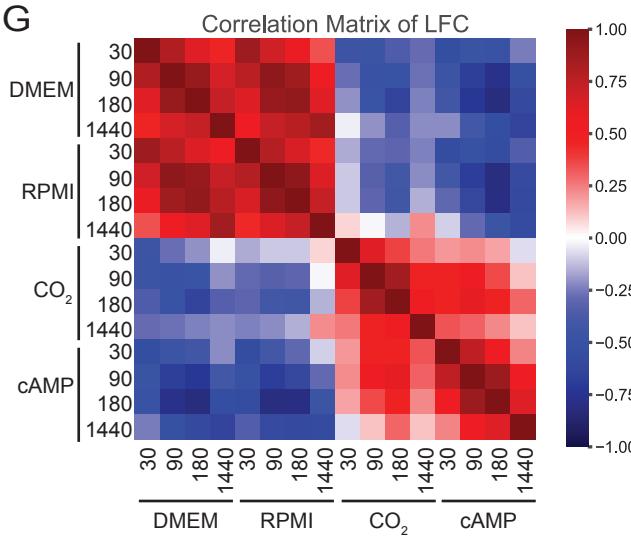
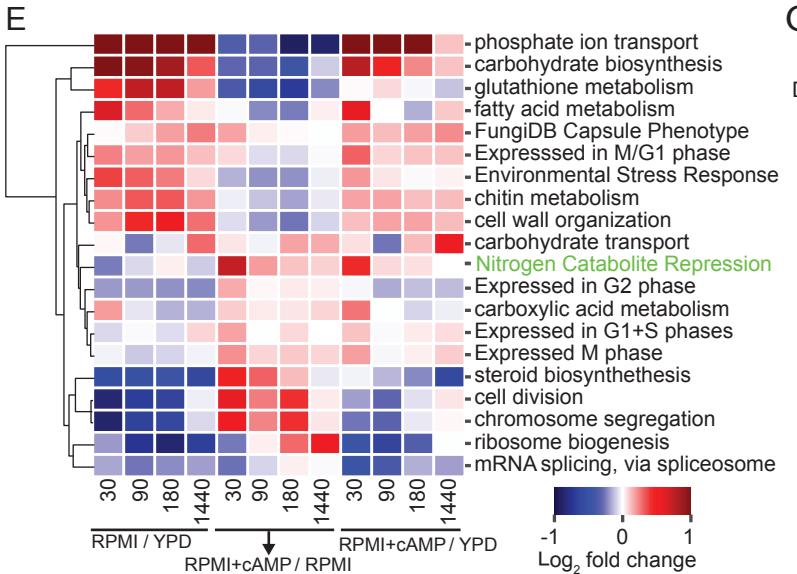
587 25. Denham, S.T. et al. Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell Infiltration into the Central Nervous System. *Infect Immun* **86** (2018).

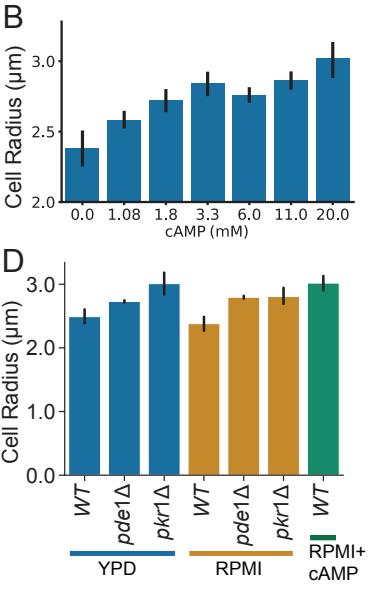
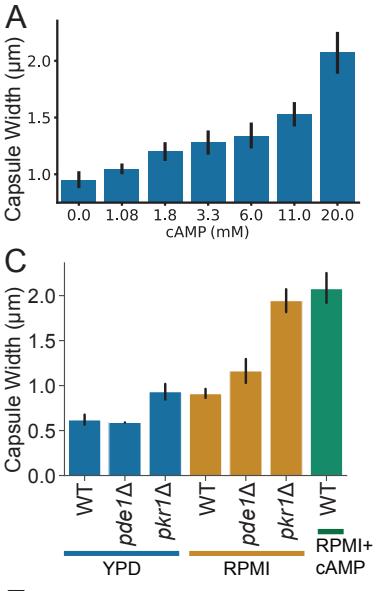
613 26. Petzold, E.W. et al. Characterization and regulation of the trehalose synthesis pathway and its
614 importance in the pathogenicity of *Cryptococcus neoformans*. *Infect Immun* **74**, 5877-87 (2006).
615 27. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast
616 *Saccharomyces cerevisiae* by microarray hybridization. *Mol Biol Cell* **9**, 3273-97 (1998).
617 28. Santiago-Tirado, F.H., Peng, T., Yang, M., Hang, H.C. & Doering, T.L. A Single Protein S-acyl
618 Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress
619 Tolerance, and Pathogenic Outcome. *PLoS Pathog* **11**, e1004908 (2015).
620 29. Cottrell, T.R., Griffith, C.L., Liu, H., Nenninger, A.A. & Doering, T.L. The pathogenic fungus
621 *Cryptococcus neoformans* expresses two functional GDP-mannose transporters with distinct
622 expression patterns and roles in capsule synthesis. *Eukaryot Cell* **6**, 776-85 (2007).
623 30. Hicks, J.K., Bahn, Y.S. & Heitman, J. Pde1 phosphodiesterase modulates cyclic AMP levels
624 through a protein kinase A-mediated negative feedback loop in *Cryptococcus neoformans*.
625 *Eukaryot Cell* **4**, 1971-81 (2005).
626 31. Ljungdahl, P.O. & Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate
627 metabolism in *Saccharomyces cerevisiae*. *Genetics* **190**, 885-929 (2012).
628 32. Klengel, T. et al. Fungal adenylyl cyclase integrates CO₂ sensing with cAMP signaling and
629 virulence. *Current biology : CB* **15**, 2021-6 (2005).
630 33. Liu, O.W. et al. Systematic genetic analysis of virulence in the human fungal pathogen
631 *Cryptococcus neoformans*. *Cell* **135**, 174-88 (2008).
632 34. Zaragoza, O. & Nielsen, K. Titan cells in *Cryptococcus neoformans*: cells with a giant impact. *Curr
633 Oper Microbiol* **16**, 409-13 (2013).
634 35. Saidykhan, L. et al. An in vitro method for inducing titan cells reveals novel features of yeast-to-
635 titan switching in the human fungal pathogen *Cryptococcus gattii*. *PLoS Pathog* **18**, e1010321
636 (2022).
637 36. Bahn, Y.S., Kojima, K., Cox, G.M. & Heitman, J. Specialization of the HOG pathway and its impact
638 on differentiation and virulence of *Cryptococcus neoformans*. *Mol Biol Cell* **16**, 2285-300 (2005).
639 37. Xue, C., Bahn, Y.S., Cox, G.M. & Heitman, J. G protein-coupled receptor Gpr4 senses amino acids
640 and activates the cAMP-PKA pathway in *Cryptococcus neoformans*. *Molecular biology of the cell*
641 **17**, 667-79 (2006).
642 38. Steyfekens, F., Zhang, Z., Van Zeebroeck, G. & Thevelein, J.M. Multiple Transceptors for Macro-
643 and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A
644 Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in
645 Human Cells. *Front Pharmacol* **9**, 191 (2018).
646 39. Samyn, D.R. et al. Mutational analysis of putative phosphate- and proton-binding sites in the
647 *Saccharomyces cerevisiae* Pho84 phosphate:H(+) transceptor and its effect on signalling to the
648 PKA and PHO pathways. *Biochem J* **445**, 413-22 (2012).
649 40. O'Meara, M.J. et al. CryptoCEN: A Co-Expression Network for *Cryptococcus neoformans* reveals
650 novel proteins involved in DNA damage repair. *PLoS Genet* **20**, e1011158 (2024).
651 41. Hu, G. et al. *Cryptococcus neoformans* requires the ESCRT protein Vps23 for iron acquisition
652 from heme, for capsule formation, and for virulence. *Infect Immun* **81**, 292-302 (2013).
653 42. Gandolfo, L.C. & Speed, T.P. RLE plots: Visualizing unwanted variation in high dimensional data.
654 *PLoS One* **13**, e0191629 (2018).
655 43. Boyle, E.I. et al. GO::TermFinder--open source software for accessing Gene Ontology
656 information and finding significantly enriched Gene Ontology terms associated with a list of
657 genes. *Bioinformatics* **20**, 3710-5 (2004).
658
659

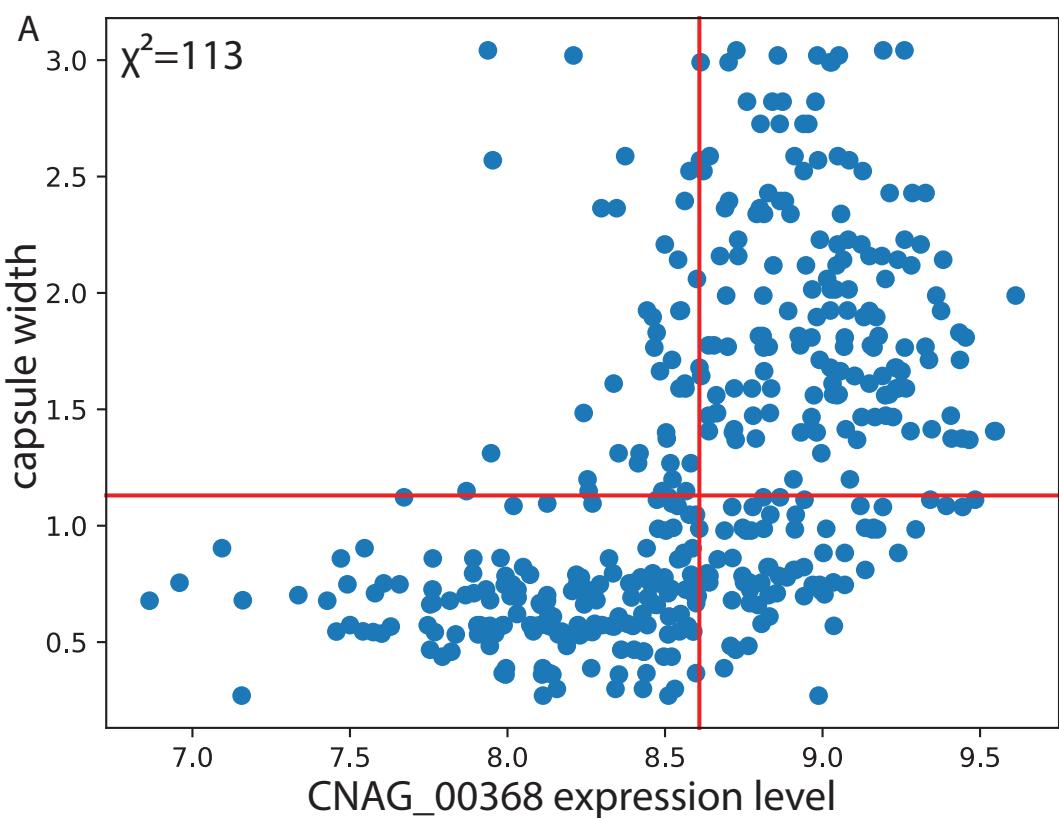
660 FIGURE LEGENDS



661 **Figure 1** (A) Average effects of environmental signals on capsule size, relative to YPD,
662 in a linear model without interaction terms (N = 232). *** P<0.001 compared to YPD. (B)
663 Capsule sizes for all combinations of media, cAMP, and CO₂ signals. Horizontal line:
664 median; box: quartile 1 to quartile 3; fence: 1.5 times quartile range; diamonds: individ-
665 ual outlier points. (C) Conditions in which individual signals had their biggest effects on
666 capsule size. None of these conditions includes HEPES buffer. India ink-stained micro-
667 graphs of cells grown in each condition, chosen to match the mean capsule width, are
668 shown below. All images are to the same scale; scale bar, 5mm.

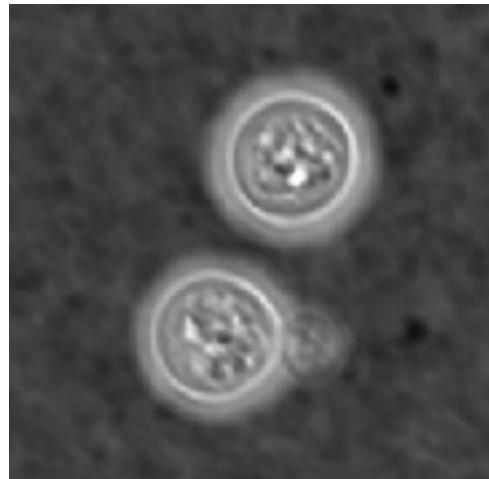
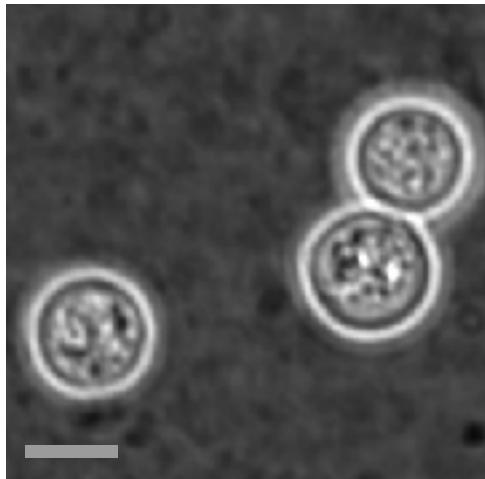



669 **Figure 2** (A-C) Principal Components (PC) plots. (A) PC1 and PC2. (B) 24 h samples
670 only, PC1 and PC2. (C) 24 h samples in tissue culture medium (TCM) only, PC1 and
671 PC3. (D) Log₂ fold changes (LFCs) for all genes in the indicated categories in DMEM
672 relative to YPD at the same time point (DMEM / YPD), in DMEM with CO₂ relative to
673 DMEM without CO₂ (DMEM + CO₂ / DMEM), or in DMEM with CO₂ relative to YPD
674 (DMEM + CO₂ / YPD). Colors indicate the average LFC for all genes in the category,
675 including those that are not significantly differentially expressed. Most LFCs were in the
676 -1 to +1 range; in order to maximize visual discriminability those outside that range were
677 truncated at -1 or +1. Lower case: GO terms; Capitalized terms: other gene sets (see
678 Supplemental File S5 and Methods). Group 1: processes that are strongly upregulated
679 by DMEM; Group 2: processes that are strongly downregulated by DMEM. Green text
680 highlights categories that are expanded in subsequent panels. N=695 samples (E-F)
681 LFCs of individual genes (denoted by the numeric part of CKF44 gene IDs) that are an-
682 noted as being involved in carbohydrate synthesis (C) or chromosome segregation
683 (D). Colored lines indicate genes with absolute LFC > 1 at some time point. Asterisk:
684 Gene name provided is that of the *S. cerevisiae* ortholog. N=695.

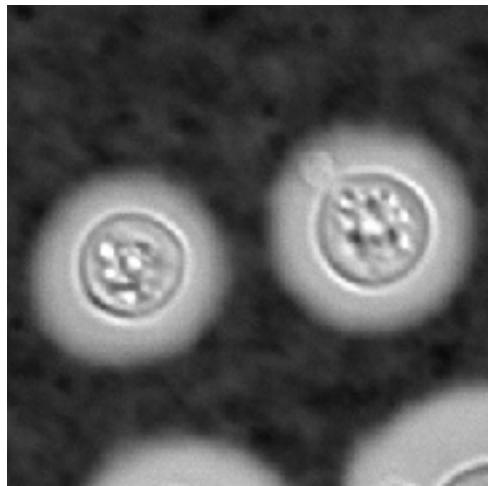
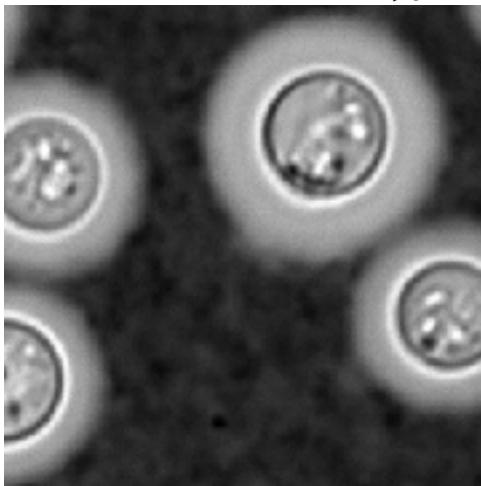





685 **Figure 3** (A) Capsule width or (B) cell body radius as a function of added cAMP. Mean -
686 /+ SD is shown. (C) Capsule width or (D) cell body radius in the indicated strains. Each
687 bar represents 2-3 independent experiments done on different days. (E) Log₂ fold
688 changes (LFC) for all genes in the indicated functional categories in RPMI (no cAMP)
689 relative to YPD at the same time point (RPMI / YPD), in RPMI with 20 mM cAMP relative
690 to RPMI without cAMP at the same time point (RPMI + cAMP / RPMI), or in RPMI with
691 20 mM cAMP relative to YPD at the same time point (RPMI + cAMP / YPD). Colors indi-
692 cate the average LFC for all genes in the category, including those that are not signifi-
693 cantly differentially expressed. LFCs were truncated at -1 and +1 to maximize visual
694 discriminability in that range. (F) LFCs of individual genes (denoted as in Fig. 2) that are
695 repressed by the Nitrogen Catabolite Repression (NCR) pathway. Colored lines indicate
696 genes with absolute LFC > 1 at some time point. (G) Correlations between the effects
697 of tissue culture media, CO₂, and cAMP on expression of all genes. DMEM and RPMI
698 are relative to YPD, all in room air. CO₂ and cAMP are added to DMEM and RPMI, re-
699 spectively, and compared to the tissue culture medium alone. Panels E-G are based on
700 a model with 695 RNA-Seq samples.


701 **Figure 4** (A) Example gene with high χ^2 , reflecting the visual relationship between its
702 expression level and capsule size. Cells with capsules larger than the horizontal lines
703 are considered induced while genes with expression levels to the right of the vertical red

704 lines are considered highly expressed. Expression levels are \log_2 of counts, +1 pseudo
705 count, after normalization by DESeq2 and batch effect removal. (B-C) Example micro-
706 graphs of cells of the indicated strain, stained with India ink. All images are to the same
707 scale; scale bar, 5 mm.

B CNAG_00368 deletion strain

C Wild type KN99a strain

