bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Pyro: A Comprehensive Pipeline for Eukaryotic Genome
Assembly

Dean Southwood!, Rahul V. Rane?*3, Siu Fai Lee*?, John G. Oakeshott?, Shoba
Ranganathan’”

!School of Natural Sciences, Macquarie University, Sydney, NSW, Australia

2CSIRO, Canberra, ACT, Australia

3Applied Biosciences, Macquarie University, Sydney, NSW, Australia

*Correspondence:
Shoba Ranganathan
shoba.ranganathan@mgq.edu.au

Keywords: Snakemake, short reads, long reads, Nanopore, PacBio,
Singularity.

1 Abstract

The assembly of reference-quality, chromosome-level genomes for both model and novel
eukaryotic organisms is an increasingly achievable task for single research teams. However,
the broad variety of sequencing technologies, assembly algorithms, and post-assembly
processing tools currently available means that there is no clear consensus on a best-practice
computational protocol for eukaryotic de novo genome assembly. An ever-increasing field
of algorithms and packages with unique parameters, setup requirements, and environments
makes it difficult for groups to pick up and test new tools, despite potential benefits. Here,
we present a comprehensive Snakemake-based pipeline for eukaryotic genome assembly,
Pyro, to further assist future de novo assembly and benchmarking projects. Pyro combines
20 assembly and eight polishing packages, comprising 30 different assembly approaches and
up to 48 different polishing approaches in combination. These are available across Illumina
short-read, Nanopore and PacBio CLR long-read technologies in one container, complete
with data preparation, quality metric calculation and result reporting. We demonstrate Pyro’s
effectiveness by running Pyro on publicly available Illumina, Nanopore and PacBio CLR
read sets for Arabidopsis thaliana, producing 12 candidate assembly options with minimal
initial input or configuration, each with extremely high contiguity and completeness. Pyro
is highly customizable to expert needs, while also providing an accessible suggested set of

tools for more casual users based on simple inputs. Pyro is available as a Singularity

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

container suitable for execution on any Unix-compatible OS, and is freely available on

GitHub (https://github.com/genomeassembler/pyro). This pipeline provides a one-stop

solution for a variety of de novo eukaryotic genome assembly needs, and will also assist in

the assessment of new tools as a convenient benchmark-generating platform.

2 Introduction

The last two decades have seen an explosion of genomics data, with the development of new
sequencing technologies and algorithms (Giani et al., 2020), and tools for pre- and post-
processing (Dohm et al., 2020). This has created a competitive field of options for those
wishing to assemble a high-quality de novo genome, highlighted by the variety of methods
and approaches used in recent publications (Jayakumar and Sakakibara, 2019; Logsdon et

al., 2020).

Next-generation and third-generation sequencing data both play significant roles in current
genome assembly practices, particularly when considering the de novo assembly of large
eukaryotic genomes with extensive repeats. Illumina short-read sequencing provides high
per-base-quality reads with low rates of error (Goodwin et al., 2016), but read sizes on the
order of 100-300 bases are often insufficient to fully resolve long repeats accurately, even
with paired-end sequencing (Tan et al., 2019). Oxford Nanopore long-read sequencing
provides ultra-long reads on the order of tens to hundreds of thousands of bases (Jain et al.,
2018Db), but individual bases have a significantly higher error rate than Illumina reads (Laver
et al., 2015). However, Oxford Nanopore reads are relatively cheap - current market prices
put them at approximately 250% the price of Illumina, per Gbp. PacBio continuous long
read (CLR) sequencing reads provide a compromise, with significantly longer reads than
[llumina, but less than Nanopore, and higher per-base quality than Nanopore, but less than
[Nlumina (Amarasinghe et al., 2020). However, these come with a higher price —
approximately 350% the price of Illumina, per Gbp. The introduction of PacBio circular
consensus sequencing (CCS), also known as PacBio HiFi, has provided a long read, high
accuracy alternative (Wenger et al., 2019), but for a significant price tag — approximately
1350% the price of Illumina, per Gbp. Given these differences, tools appropriate for each
sequencing data type have been tailored to particular features, promoting the development
of a wide library of algorithms and packages currently available, each with their own
parameters, terminology, dependencies, and runtime environments. Each sequencing
technology also requires its own tailored pre- and post-assembly steps such as error

correction and polishing, further adding to the number of tools available.

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

It is difficult to know what assembly package will work best on a given genome ahead of
time, and the best assembler for a task will often vary depending on the features of the
genome at hand, as well as the sequencing data type selected for the study (Wick and Holt,
2020). However, given the complexity of the field of options and the layers of
troubleshooting required when picking up a new tool, there can be a tendency for labs with
one reliable assembly package installation to use it for all tasks, regardless of possible
applicable options. Unique installation and input requirements for every assembler
inevitably dampens uptake of new tools by the wider community, and new users to tools
often require time to discover efficient and scalable ways of using them on their own

computing environment (Mangul et al., 2019).

Workflow management systems can help linearise inputs and facilitate scale-up of pipelines.
Current popular options for bioinformatic purposes vary from programming languages such
as CWL (Amstutz et al., 2016), to behind-the-scenes engines such as Cromwell (Voss et al.,
2017), to more self-contained systems such as Nextflow (Di Tommaso et al., 2017), Toil
(Vivian et al., 2017), Rabix (Kaushik et al., 2017), and Snakemake (Koster and Rahmann,
2012). The field of pipeline frameworks has been extensively reviewed in recent work
(Leipzig, 2017). There is active development of pipelines for Nanopore (de Lannoy et al.,
2019; Giesselmann et al., 2019; Cozzuto et al., 2020), and PacBio and Illumina (Korhonen
et al., 2019) sequencing data, but to our knowledge no pipelines have extensive inclusion
across all three technologies for genome assembly, despite their unique benefits (Southwood
et al., 2020, unpublished results), and despite groups increasingly sequencing across

platforms (Rupp et al., 2018; De Maio et al., 2019).

Here, we provide a comprehensive, scalable, and parallelisable pipeline for de novo
assembly and polishing of genomes. The pipeline, called Pyro, incorporates 20 different
assembly packages across three sequencing types, and eight polishing packages across both
short and long reads. The pipeline is completely customisable for expert users, with input
parameters across tools condensed into common settings. Pyro also recommends algorithms
for casual users based on input parameters such as estimated genome size, sequencing data
types, and computational resources available. We demonstrate the simplicity and
effectiveness of Pyro by processing publicly available read sets of Illumina, Nanopore, and
PacBio data for the model organism the thale cress, Arabidopsis thaliana (120 Mbp, approx.
36.7% repeats, five diploid chromosomes), producing 12 final candidate assemblies with
high contiguity and high completeness. We expect our pipeline will encourage greater

experimentation with, and uptake of, a wider variety of genome assembly tools in the

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

community, as well as greatly facilitate the benchmarking of new assembly and polishing

tools against currently available methods on standard datasets.

3 Method

3.1 Underlying Computational Structures

Given the increasing availability of extensive, high-quality genomic sequencing data, it is
more important than ever that computational solutions which handle that data be efficient,
parallelisable, and scalable. However, this must not come at the cost of reliability or validity.
The Pyro pipeline manages this balance by relying primarily on two underlying
computational workhorses: the workflow management system Snakemake, and the

containerization system Singularity (Kurtzer et al., 2017).

In terms of workflow management systems, Snakemake and Nextflow stand out as flexible
options with significant communities, documentation, and integrated support for useful
additional features such as high-performance computing (HPC) scheduling systems, and
containers. Both options present efficient solutions which scale well given sufficient
computational resources. Here, we have chosen to build Pyro with Snakemake due to its
pythonic nature, ease of use, and ability to be customised with simple additional Python

code.

However, given the extensive library of genome assembly options currently available to the
community, setting up so many unique systems and environments continues to present a
challenge, both in terms of troubleshooting as well as in version consistency. To reduce setup
overhead for users, and to increase reliability and reproducibility, we have chosen to
containerize all dependencies and components required for Pyro using Singularity. Current
popular tools for containerization are Singularity and Docker (Merkel, 2014). Docker has an
arguably larger library of base packages and Docker containers at present, while Singularity
is a newer solution to the market. However, the main differences between the two options
are the privileges and permissions required to run each. Docker requires root privileges,
presenting potential security issues for flawed or malicious code, and creating potential
issues on HPC systems, while Singularity only requires user-level privileges when being run
user-side, with root privileges only required during development, a process which can be
done pre-distribution (Kurtzer et al., 2017). Due to the extensive reliance at present on HPC
systems for genomics researchers, we have elected to containerise the dependencies and

components of Pyro with Singularity.

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Taken together, Snakemake and Singularity allow Pyro to be highly efficient, parallelisable,
and scalable, as well as flexible, reliable, and reproducible in distribution, even on very
different computing environments. Pyro is easy to pick up for new users, while maintaining
power and flexibility for experienced players in the field, and comes with thorough

documentation following best practice guidelines (Karimzadeh and Hoffman, 2018).

3.2 Overview of the Pyro Pipeline

The Pyro pipeline allows users to take raw sequencing data from Illumina short reads or
PacBio CLR or Oxford Nanopore long reads, and produce polished candidate assemblies, in
a completely automated manner if desired, using either user-selected or pipeline-
recommended assemblers and polishers. It also calculates common desired assembly metrics
for all assemblies, to allow users to compare the candidates in a meaningful, straightforward
manner. In addition, each module can be used independently to process other data supplied
by the user, presenting a modular solution that is easily integrable into other preferred
method workflows (Figure 1). However, if other intermediate programs are not required or
desired, it is recommended to run the entire Pyro pipeline from start to end as this will make
sure common formatting issues for particular packages are resolved, for example whether
the input data should be interleaved, have particular header formats, or be compressed or

uncompressed. The pipeline consists of four modules:

(1) Prep: using raw [llumina, PacBio CLR or Oxford Nanopore data as input, this
module performs low-level quality control to remove adapters, ambiguous bases,
and low-quality reads before assembly. Upon user request, this module will also
error-correct the supplied reads if desired.

(1) Build: using pre-processed reads from the Prep module, or as supplied by user,
this module assembles the reads using the selected or recommended
assembler(s), outputting draft FASTA assembly files.

(ii1)) Fix: using the draft assembly file(s) from the Build module, or as supplied by
user, this module polishes each draft assembly using the selected or
recommended polisher(s) for a selected or recommended number of iterations,
depending on input, outputting polished FASTA assembly files.

(iv) Check: using input from either the Prep, Build, or Fix modules, or as supplied by
user, this module performs metric calculations on the reads and/or assembly files
for common desired metrics, including read quality, assembly contiguity, gene
completeness, and repeat content. If a reference genome is supplied, this module

will also run reference-based comparison calculations to determine genome

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

fraction, as well as rates of common errors such as misassemblies, mismatches,
and insertions/deletions (indels), while also providing basic dot plots aligning

each candidate assembly to the reference.

trim_galore/Filtlong
QuorUM/Canu/

Ratatosk Build module

20 assemblers
Input: Raw Data

lllumina L Data

\

1

1

I

! f’ -

! Fix module

1
Nanopore ! = 8 polishers

:

I

1

1

1

1

PacBio CLR Processing

i Check module
1 FastQC
|+ BUSCO/BUSCOMP
!+ QUAST/Red

1 * Assembly-stats

1

FIGURE 1 | Overview of the Pyro pipeline for the construction of high-quality
eukaryotic genomes. The pipeline takes raw reads from any combination of [llumina
paired-end short reads, Oxford Nanopore long reads, and PacBio CLR technologies.
By default, the input reads are filtered and trimmed for quality and adapter sequences
using the Prep module, and a report of read quality before and after is prepared using
the Check module. Next, the reads are assembled using the Build module, using the
three most likely high-performing assemblers by default, based on estimated genome
size, read coverage, and computational resources available, with statistics calculated
based on the raw assembly using the Check module. Finally, the raw assemblies are
polished with available reads using the Fix module, with final assemblies compared
across standard contiguity and gene completeness metrics. All steps are highly
customisable to use as few or as many packages as desired.

3.3 Data Preparation Module: Prep

The first module of the Pyro pipeline, Prep, focusses on preparing data for input into genome
assembly algorithms. The steps in this preparation depend on the data supplied to the
pipeline, as well as what quality control measures are desired by the user. By default, the
Prep module performs adapter trimming and quality filtering of Illumina reads using the

trim_galore package,! and trimming and quality filtering of Oxford Nanopore and PacBio

! https://github.com/FelixKrueger/TrimGalore

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

CLR sequences using the Filtlong package.? In addition to this, the Prep module will also
format the input read files as necessary for use in assemblers by modifying headers,

uncompressing files, or interleaving reads as required.

Two additional features of the Prep module are not run by default, but are likely to be
common desired processes. First, Prep is able to perform read correction on short or long
reads, using a variety of packages, as can be selected by the user (Table 1). While our
experience with the assemblers and polishing algorithms available in Pyro is that they do
not necessitate prior error correction beyond quality filtering to achieve good results, we
acknowledge this may not hold true for all genomes or input data. If error-corrected data is
to be used downstream for assembly and/or polishing, the --use-corrected flag can be set in
subsequent modules. In addition to error correction, the Prep module can subsample the
supplied input reads to a desired level of coverage using the reformat.sh component of the
BBMap/BBTools package (Bushnell, 2014),> based on random seeds, to create smaller
coverage for downstream purposes, for example when benchmarking additional tools, or

when memory is at a premium.

By default, the Prep module additionally calls the Check module, as discussed below, to
provide reports on input read quality, both before and after any quality control, filtering, or
correction steps, using the FastQC package.* The FastQC component provides a HTML-
formatted report containing information such as per-base quality, GC content, the presence

of adapters, and length profiles.

3.4 Genome Assembly Module: Build

The second module of the Pyro pipeline, Build, takes input either from the Prep module
above, or as otherwise supplied by user, to construct a draft genome assembly. The Build
module can be run with no input aside from reads and information about computational
resources, and will produce three assemblies for each data type by default, running

assemblers based on resources and internally-estimated read coverage.

2 https://github.com/rrwick/Filtlong

3 https://sourceforge.net/projects/bbmap/

4 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

TABLE 1 | The third-party bioinformatic packages included in the Prep, Build, Fix, and
Check modules of the Pyro pipeline. The details and default parameters for each package
are available in Supplementary Tables S1-S4.

Module Package Citation Package Citation

Prep Trim_ Galore - QuorUM Margais et al., 2015
FiltLong - Canu Koren et al., 2017
BBMap Bushnell, 2014 Ratatosk Holley et al., 2020

Build ABySS Jackman et al., 2017 FALCON Chin et al., 2016
MaSuRCA Zimin et al., 2013 Flye Kolmogorov et al.,

2019
Meraculous Chapman et al., 2011 MECAT2 Xiao et al., 2017
Platanus Kajitani et al., 2014 Miniasm Li, 2016
Ray Boisvert et al., 2010 NECAT -
SOAPdenovo2 Luoetal., 2012 Raven Vaser and Sikic, 2020
SPAdes Bankevich et al., 2012 Shasta Shafin et al., 2020
SparseAssembler Ye et al., 2012 WTDBG2 Ruan and Li, 2020
w2rap Clavijo et al., 2017 DBG20OLC Yeetal., 2016
Canu Koren et al., 2017 HASLR Haghshenas et al.,
2020
Fix HyPo Kundu et al., 2019 POLCA Zimin and Salzberg,
2020
NextPolish Hu et al., 2020 Racon Vaser et al., 2017
ntEdit Warren et al., 2019 Arrow Chin et al., 2016
Pilon Walker et al., 2014 Medaka -

Check assembly-stats - GenomeScope Vurture et al., 2017
BUSCO Seppey et al., 2019 Mashmap Jain et al., 2018a
BUSCOMP Edwards, 2019 QUAST Mikheenko et al.,

2018
FastQC - Red Girgis, 2015
Jellyfish Gargais and

Kingsford, 2011

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

However, the Build module is completely customisable — the specific assembly packages
run, as well as the number of packages run, can be modified using either the --use-assembler
command-line flag to use one particular assembler, or using the assemblers setting in the
config file to select multiple assemblers. The Build module can run 20 different assembly
packages natively, depending on input data (Table 1), each supplied in the Pyro Singularity
container with no additional install required. In terms of setting parameters to be supplied to
each assembler, by default the Build module will use a core set of parameters which should
provide a reasonable assembly in most cases (Supplementary Table S2). However, the
performance of a given assembler on a particular set of input reads is difficult to predict.
Therefore, for intermediate users, Pyro provides the option of setting common parameters
for all assemblers simultaneously in the config file, which is then internally translated into
particular flags and parameter settings for each assembler as required. Common adjustments,
such as k-mer size for de Bruijn graph-based assemblers, can then be performed across
multiple assemblers with a single change. For expert users and those familiar with a
particular assembler and its parameters, the config file will also accept commands and
parameters as a string which will be directly supplied to the assembly package. It is worth
noting that such parameters will be supplied to the assembler as-is, and will overwrite any

other default options, so should be used with caution.

By default, the Build module additionally calls the Check module upon completion, as
discussed below, to present basic statistics about the assemblies generated, in order for users
to decide which assemblies are worth pursuing with further polishing, whether particular
parameters have worked as desired, or whether further polishing is required at all. The
default components of the Check module, which calculate assembly statistics and contiguity
metrics using assembly-stats,> GC content, and repeat percentages using Red (Girgis, 2015),°
provide a quick overview of useful information; however, if the --check-busco flag is
provided, or intermediate-busco parameter is set to True in the config file, the Check module
additionally runs the BUSCO (Seppey et al., 2019)’ and BUSCOMP (Edwards, 2019)?

packages to assess gene completeness of assemblies. For this to be run, it requires the

5 https://github.com/sanger-pathogens/assembly-stats

6 https://github.com/BioinformaticsToolsmith/Red

7 https://busco.ezlab.org/

8 https://github.com/slimsuite/buscomp

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

additional input of an OrthoDB (Waterhouse et al., 2013) dataset to be specified, either as a

local directory location, or by name, in which case it will be downloaded when required.

3.5 Polishing Module: Fix

The third module of the Pyro pipeline, Fix, takes as input either a set of assemblies from the
Build module above, or other draft assemblies as supplied by the user, and produces a set of
polished assemblies as output. The polishers selected by default by the Fix module depend
on the input data types supplied; it is recommended for long read assemblies from Oxford
Nanopore or PacBio CLR sequences that a set of short reads from a technology such as
Illumina be supplied as well, to enable Pyro to perform short-read polishing in addition to
polishing with long reads. The Fix module can run eight different polishing packages
natively, depending on input data (Table 1), each supplied in the Pyro Singularity container

with no additional install required.

For most polishing algorithms, it is often advantageous to polish more than once — this is
natively supported in Pyro, and can be specified with the --pol-rounds flag, or the polishing-
rounds setting in the config file, either overall or for each individual polisher. By default, the
Fix module runs long-read polishing algorithms for four iterations, and short-read polishing
algorithms for three iterations, based on recent benchmarking results (Southwood et al.,
2020, unpublished results). For a given assembly, the Fix module will by default choose up
to two polishing algorithms to run in series — one long-read algorithm for four iterations,
followed by one short-read algorithm for three iterations — but any combination of algorithms
can be supplied through the config file and run for any input assembly, providing
intermediate and expert users considerable flexibility to construct their own workflows
within Pyro. By default, the Fix module will call the Check module, as detailed below, to
provide statistics, quality metrics, and, if a reference is supplied, additional reference-based
statistics, for cases where users wish to benchmark methods, or for re-assembly of older

reference genomes using long-read technologies, for example.

3.6 Assessment and Reporting Module: Check

The final module of the Pyro pipeline, Check, takes either reads, draft assemblies, or
polished assemblies as input, and provides common quality metrics and statistics using a
variety of popular state-of-the-art packages (Table 1). When the entire pipeline is run in an
automated default fashion, the Check module is called multiple times through the run,
providing intermediate outputs that can be checked without having to wait for the entire run

to complete. For either input reads, or after the Prep module above has run, the Check

10

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

module will provide quality metrics using the FastQC package,’ including information about
read quality, length, and adapter content. In addition, if requested or if no indication of
coverage or genome size is provided, the Check module will provide estimates of the genome
size and read coverage via k-mer counting using Jellyfish (Margais and Kingsford, 2011)!°
and GenomeScope (Vurture et al., 2017).!! This is often useful information to compare
against the size of generated candidate assemblies, but is also necessary in determining

which assembly package is likely to produce the best result.

For input draft or polished assemblies, the Check module will calculate basic assembly
statistics and contiguity metrics using assembly-stats,'? repeat content using Red (Girgis,
2015),"* and GC content using internal scripts. In addition, if Pyro is supplied with a
OrthoDB gene set to check against, either as a local directory or by name for automated
download, the Check module will analyse the presence of benchmarked universal single-
copy orthologues (BUSCOs) using the BUSCO package (Seppey et al., 2019),'* as well as
BUSCOMP (Edwards, 2019),' to assess the gene completeness of the assembly. By using
the BUSCOMP package, the input candidate assemblies will be compared to each other, to
determine the relative content of BUSCOs present in each assembly; this is particularly
useful for checking assemblies pre-polishing, as the BUSCOMP package has less stringent
requirements when determining the presence of BUSCO genes, giving a more realistic
indication of potential quality post-polishing (Southwood et al., 2020, unpublished results).
If a reference assembly is supplied, as may be the case for benchmarking new tools or when
re-assembling a previously assembled genome de novo, the Check module will also provide
reference-based statistics using the QUAST-LG package (Mikheenko et al., 2018). The
statistics and metrics calculated by the Check module are output in human-readable format

as a table and a collection of graphs, as well as in CSV format for useful further processing.

° https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

19 https://github.com/gmarcais/Jellyfish

1 https://github.com/schatzlab/genomescope

12 https://github.com/sanger-pathogens/assembly-stats

13 https://github.com/BioinformaticsToolsmith/Red

14 https://busco.ezlab.org/

15 https://github.com/slimsuite/buscomp

11

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

3.7 Test Case: Arabidopsis thaliana

In order to demonstrate the effectiveness of the Pyro pipeline, particularly when run with
default parameters out-of-the-box, we processed publicly available read sets for the model
organism Arabidopsis thaliana containing Illumina, PacBio CLR, and Oxford Nanopore
reads (Michael et al., 2018) (Table 2). These data were used both individually, as well as
collectively through hybrid assembly methods. A. thaliana has historically been an important
model organism for genetic studies, and its genome was the first whole plant genome
sequenced (Arabidopsis Genome Initiative, 2000). The current reference genome for A.
thaliana, TAIR10,'® consists of seven structures, namely five diploid chromosome
sequences, a mitochondrion sequence, and a chloroplast sequence, for a total genome size of
approximately 120 Mbp. The reference genome for 4. thaliana is actively curated and of
high quality, allowing for detailed comparisons to be made between outputs. The A. thaliana
data were processed through the whole Pyro pipeline using default parameters and
recommended assemblers and polishers for each technology type, to give an indication of
the quality of assembly to be expected out-of-the-box with no curated parameter-setting. The
pipeline was run on a single computing node with 20 CPUs and 128 GB of RAM for all

steps.

TABLE 2 | Statistics and availability information about the read sets used to construct
the A. thaliana candidate assemblies. Coverage was calculated assuming a genome size

of 120 Mbp.

Sequencing ENA Run Citation No. Raw Raw Quality-

Technology Accession Reads Coverage Filtered
No. Coverage

INlumina ERR2173372 Michael et 33,683,902 70.2 66.9

Paired-End al., 2018

Oxford ERR2173373 Michael et 300,071 28.5 25.7

Nanopore al., 2018

PacBio ERR2173371 Michael et 613,080 58.3 52.5

CLR al., 2018

16 https://www.arabidopsis.org/

12

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

4 Results

4.1 Test Case: Arabidopsis thaliana

The Pyro pipeline uses any combination of Illumina, Nanopore, and PacBio CLR data, and
is particularly tailored for eukaryotic genomes. Due to its base code relying on Snakemake,
it is scalable and parallelisable, and its use of Singularity containerisation makes it easy to
run on HPC systems. For large genomes or high coverage input data, Pyro when run with
default parameters makes decisions about which assemblers are likely to scale well with
resources, while also producing high-quality outputs. To demonstrate this, the results from
the Pyro pipeline run on publicly available data for A. thaliana are presented below, where
Pyro has been run on all default parameters, aside from requesting three assemblies from
each category of input, namely from Illumina short reads, Oxford Nanopore long reads,
PacBio CLR, and hybrid assemblers using a combination of the other three types, in order
to display typical results for each input. The final output in this case consists of 12 high
quality assemblies which have been polished and assessed against common metrics,

primarily assembly contiguity, gene completeness, and reference-based statistics (Table 3).

4.2 Assembly Statistics and Contiguity

Assembly statistics for each of the polished candidate assemblies are presented in Table 3.
The candidate assemblies range in size from 119.2 Mbp to 136.4 Mbp, compared to the
reference assembly size of 119.7 Mbp, indicating that all assemblers assembled almost all
regions of the genome; possible variation in size could be due to the assembly of alternative
haplotypes in some regions, or due to variation in length of repeats, particularly around
centromeres and telomeres. To investigate this, dot plots were produced by aligning each
candidate assembly to the TAIR10 reference assembly using Mashmap (Jain et al., 2018a)
(Supplementary Figures S1-S4), with the dot plots of the highest quality assemblies from
each sequencing type extracted in Figure 2. Assemblies differed on the length of

heterochromatic centromeric regions, as well as the assembly fragmentation as a whole.

The contiguity of the long-read and hybrid candidate assemblies is consistently high,
producing contig N50 lengths as high as 14.8 Mbp. Considering the reference N50 length of
23.5 Mbp, and the lack of any significant scaffolding within the pipeline, this is arguably a
very high-quality result, as is also evident from graphically comparing the contiguity with
that of the reference (Figure 3). The number of contigs for these assemblies was also
impressive, with some assembly strategies producing less than 100 contigs, while still

covering the vast majority of the reference. For the Illumina-only candidate assemblies,

13

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

contiguity was considerably lower, as expected given the significantly shorter read length

used, and can be seen from the dot plot comparison with the reference assembly

(Supplementary Figure S1).

A B
MaSuRCA (I) |. -~ Flye (N)
; 5 i L’\ -{E.fé‘ o
I Vv 0] TV T V mm M v
Reference Reference
C] D
Flye (P) MaSuRCA | -
. + Flye (H) et
2 .;‘51-" 3
vV T [vV
Reference Reference

FIGURE 2 | Dot plots generated by aligning the highest quality final candidate assembly
of each sequencing type against the TAIR10 reference assembly with Mashmap.
Chromosomes in the reference assembly are ordered by total size from largest to smallest.
Grey lines indicate contig or scaffold boundaries in each assembly, with higher density
lines indicating more fragmented regions. Red dots indicate good alignment between
regions of the genome and blue dots indicate weaker alignments, with the substantial red
diagonal indicating good reconstruction of the vast majority of the reference. Off-
diagonal correlations are largely grouped around heterochromatic regions, likely due to
centromeric repeats. (I) = [llumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A)
Alignment of the Illumina-only MaSuRCA assembly against the reference, highlighting
the high completeness but also high relative fragmentation. (B) Alignment of the Oxford
Nanopore Flye assembly against the reference, noting the high contiguity and high
completeness, with some increased fragmentation around the heterochromatic
centromeric regions. (C) Alignment of the PacBio CLR Flye assembly against the
reference, noting the high contiguity and completeness. (D) Alignment of the hybrid
MaSuRCA + Flye assembly against the reference, noting the high completeness and
contiguity, with some increased fragmentation around the heterochromatic centromeric
regions, as in the Oxford Nanopore Flye assembly.

14

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

98.6

w2rap (1) & i

98.4 {46 MaSuRCA (1) aven () F'T" N
= 'S WTDBG2(P) g 4 Fiye (P) — HD®—MaSuRCA + Flye (H)
& SPAdes (1) | "
§ 982 = = = = i I o o e e e e s e e e e e e e] - - -
< FALCON (P) DBG20LC (H) MaSuRCA (H) Reference
@
E
E 980
o
1]
c
b
o 9787
0o
?
>
o

976 -

4 lllumina
Oxford Nanopore
97.4 - A A) P
WTDBG2 (N) | PacBio CLR
@ Hybrid
97.2 . , . .
0 5 10 15 20 25
N50 (Mbp)

FIGURE 3 | Comparison of contiguity, in terms of N50, and the BUSCO gene
completeness of each 4. thaliana candidate assembly. Each data input type is indicated
by shape and colour of markers, as well as in brackets in each label: (I) = Illumina, (N) =
Nanopore, (P) = PacBio, (H) = Hybrid. The MaSuRCA (H), MaSuRCA + Flye (H),
MaSuRCA (I), SPAdes (I), and w2rap (I) assemblies are in scaffolds, as is the reference;
all other assemblies are in contigs. The highest performing assembly from each data input
type has a bold, coloured label. The BUSCO gene completeness of the reference
assembly, marked as a star, is displayed as a horizontal dotted line.

Taking into consideration the various metrics presented in Table 3, we have selected what
we consider to be the highest quality assembly from each sequencing type: the MaSuRCA
assembly for Illumina paired-end; the Flye assembly for Oxford Nanopore; the Flye
assembly for PacBio CLR, and the MaSuRCA + Flye assembly for hybrid sequencing data.
These assemblies are shown in bold and coloured font in Figures 2—6. Additional results for
intermediate steps, such as the raw assemblies and each major stage of polishing, are

presented in Supplementary Table SS.

4.3 Gene Completeness

In order to evaluate the gene completeness of the final assemblies, each candidate assembly
was assessed for the presence of BUSCOs using BUSCO v 3 (Seppey et al., 2019) (Figure
4 and Table 3), using the Embryophyta (OrthoDB v 9) gene set consisting of 1440 genes.
All twelve candidate assemblies had BUSCO gene completeness within one percent of the
reference (98.2%), with over half the candidate assemblies producing a higher BUSCO gene

completeness than the reference itself (Figures 3—4).

15

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A B

Reference
MaSuRCA (1)
SPAdes (1)
wa2rap (1)

Flye (N)
Raven (N)
WTDBG2 (N)
FALCON (P)
Fiye (P)
WTDBG2 (P)
DBG20LC (H)
MaSuRCA (H)

MaSuRCA + Flye (H)

|§______-__ =EHE
3
;j
3
:

0% 26% 40% 60% 80%
BUSCOSs (%)

=Complete (C) and Single Copy (S) = Gomplete (C) and Dupli (D) Frag (F) =Missing (M)

FIGURE 4 | Comparison of gene completeness of all final A. thaliana candidate
assemblies using BUSCO, analysed against the Embryophyta (OrthoDB v 9) dataset of
1440 genes. (I) = [llumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A) Presence
of BUSCO genes in the final candidate assemblies, broken down into complete and single
copy genes, complete and duplicated genes, fragmented genes, and missing genes,
illustrating the consistently high completeness of all output assemblies. (B) Zoom of
BUSCO gene plots highlighting the differences between output assemblies.

A e B |
o 1
_ - mm

— e
P 20.% o ‘n,% anlyn 10&% 95% 96% 97% 98% 99% 100%
BUSCOMPS (%)
= Complete (C) and Single Copy (S) = Complete (C) and Duf (D) - Frag d(F) =Partial (P) mGhost(G) mMissing (M)

FIGURE 5 | Re-analysis of BUSCO gene completeness of all final 4. thaliana candidate
assemblies using BUSCOMP, with statistics calculated on the 1427 genes present across
all candidate assemblies and the reference, out of a possible 1440 BUSCOs analysed. (I)
= [llumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A) Presence of BUSCOMP
genes in the final candidate assemblies, broken down into complete and single copy
genes, complete and duplicated genes, fragmented genes, partial genes, ghost genes, and
missing genes, illustrating again the consistently high completeness of all output
assemblies. (B) Zoom of BUSCOMP gene plots highlighting the differences between
output assemblies, noting the higher fragmentation of the Illumina-only assemblies.

16

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 3 | Assembly statistics and quality metric information for the 12 candidate assemblies generated with Pyro, highlighting their contiguity and
gene completeness, as well as quality metrics calculated against the TAIR10 reference genome. For the Oxford Nanopore, PacBio CLR, and hybrid
strategies, the draft assemblies from each assembler were polished with the methods described, and the results for the final polished assemblies are
provided; for the Illumina strategies, no polishing was undertaken and the raw assembly statistics are provided. Values in bold are the ‘best’ among all
Pyro assemblies for metrics where it is useful to rank based on value — that is, highest for N50, BUSCO Complete, BUSCOMP Complete, and BUSCOMP
Identity, and lowest for Fragments, Misassemblies, Mismatches / 100 kbp and Insertions or Deletions / 100 kbp. Full results including intermediate steps
are provided in Supplementary Table S5.

3
2
(]
Q
Sequencing Assembler Polishing Assembly Statistics and Contiguity Gene Completeness and Identity Reference-Based Metrics >
Technology Strategies 5
Assembly Frag- NS0 Total BUSCO BUSCOMP BUSCOMP Mis- Mis- Insertions Q
Size ments (Mbp) Repeat Complete Complete Identity assemblies matches or 98J
(Mbp) Length (%) (%) (%) /100 Deletions/ o
(Mbp) kbp 100 kbp B
)
IMlumina MaSuRCA - 122.4 8,689 0.400 43.8 98.4 99.8 68.3 1788 657.7 118.5 5
Paired-End P
SPAdes - 126.7 49,791 0.228 43.2 98.3 99.6 68.3 1173 628.3 117.0 %
>
w2rap - 136.4 58,337 0.255 40.4 98.4 99.7 67.6 1474 650.9 118.2 %‘
Q
Oxford Flye NextPolish x 4 122.8 118 14.358 443 98.3 99.9 68.4 1922 688.1 132.6 g
Nanopore (ONT); HyPo x 2
3 (ILL))
Raven NextPolish x 4 119.7 32 10.850 50.3 98.3 99.9 68.5 1929 675.4 131.1
(ONT); HyPo x
3 (ILL)
WTDBG2 NextPolish x 4 123.4 372 3.875 46.8 97.4 98.8 67.5 1865 701.3 131.0
(ONT); HyPo x
3 (ILL)

s11] “Aumadiad urjulidaid ayy Aejdsip 01 asuadl| e Alxyolq pajuelb sey oym ‘Japuny/ioyine ay sl (Mainal Jaad Ag paliniad 10U sem ydiym)
wiudaud siys Joy sapjoy ybuAdoo 8yl "€z0z ‘0z 1Mdy paisod uoisIan Iyl G2/ €5 8T ¥0°€202/TOTT 0T/B10"10p//:sdny :1op undaid Aixyoiq

17

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

2g

Sequencing Assembler Polishing Assembly Statistics and Contiguity Gene Completeness and Identity Reference-Based Metrics %%
Technology Strategies =3
Assembly Frag- N50 Total BUSCO BUSCOMP BUSCOMP Mis- Mis- Insertions b 8

Size ments (Mbp) Repeat Complete Complete Identity (%) assemblies matches/ or 3 s

(Mbp) Length (%) (%) 100 kbp Deletions/ 3L

(Mbp) 100 kbp 55

25

o 0n

PacBio CLR FALCON NextPolish x 4 121.4 122 5.057 43.7 98.2 99.9 67.4 2030 696.9 126.8 =5
(ONT); POLCA & g

x 3 (ILL) 38

282

Flye NextPolish x 4 120.3 76 14.332 439 98.3 99.9 68.4 1918 681.0 119.8 %EE

(ONT); POLCA 255

x 3 (ILL) 5o

=38

WTDBG2 NextPolish x 4 124.0 312 10.001 46.0 98.3 99.9 68.3 1949 723.7 125.7 é%a

(ONT); POLCA 228

x 3 (ILL) (oSS

SR

WO =

Hybrid DBG20OLC NextPolish x 4 119.2 65 6914 49.8 98.2 99.6 68.1 1981 675.6 122.3 ;5’;%
(ONT); HyPo x ;é 3

3 (ILL) SEE-:

»o 2

oaB

MaSuRCA NextPolish x 4 126.9 105 14.488 41.7 98.3 99.9 68.3 2186 745.9 122.8 %f—; z

(ONT); HyPo x S8

3 (ILL) 0%

53N

MaSuRCA NextPolish x 4 122.0 124 14.867 44.0 98.3 99.9 68.4 2030 717.2 119.9 §§ N

+ Flye (ONT); HyPo x 280

3 (ILL) . gi%

23

Reference - - 119.7 7 23.460 439 98.2 99.8 51.9 - - - 32
3%

=i=3

25

— 0

18 ;D 3
53

<o

=2

=1

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

mAssembly = Long-Read Polishing = Short-Read Polishing

18:00:00

15:00:00

12:00:00

9:00:00

6:00:00
3:00:00 J I I
0:00:00 |] . R

Q O A N @ S
V.&" o ,qu 0@.‘3 P) "l»o\’ £

95'*
\’ Q
S 090 @@6 RS (.\‘38

W—’W—“W—’W—“

lllumina Oxford Nanopore PacBio CLR Hybrid

Wall Clock Time (hh:mm:ss)

FIGURE 6 | Computational requirements involved for each final polished assembly as
measured by wall clock time. For each initial assembler, the time taken by the assembly
package is indicated in blue stripes. For the long-read and hybrid assembly strategies, the
time taken by the long-read polishing package (NextPolish for all) is indicated in orange
checks. Finally, the time taken by the short-read polishing packages (HyPo for Oxford
Nanopore and Hybrid, and POLCA for PacBio CLR) is indicated in green dots. The
[llumina-only assemblies did not have any polishing done and therefore only the raw
assembly time is indicated. The highest quality assemblies for each sequencing type are
indicated with colored labels below the plot.

However, due in part to the stringent thresholds within the BUSCO package, estimation of
gene completeness using BUSCO alone often does not show the whole picture (Edwards,
2019; Southwood et al., 2020, unpublished results). For a more comprehensive comparison
between the candidate assemblies and the reference, the BUSCO results for all assemblies
were re-processed using BUSCOMP (Edwards, 2019), presenting more detailed breakdowns
of the presence or absence of BUSCOs. The salient BUSCOMP statistics — namely, the
BUSCOMP gene completeness percent, and the BUSCOMP gene identical percent — for
each final candidate assembly are presented in Table 3 and are displayed in standard BUSCO
plotted form in Figure 5. Using a more relaxed threshold, the completeness is higher when
measured by BUSCOMP than by BUSCO, and is more consistent between assemblies, with
all but the WTDBG2 Oxford Nanopore assembly having a BUSCOMP gene completeness
within 0.2% of the reference. As a useful complement to the more relaxed completeness

measure, BUSCOMP also calculates the percentage of sequences in the candidate assemblies

19

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

which are identical to BUSCO sequences analyzed. The candidate assemblies presented here
contain more identical BUSCO genes than the reference, consistently reproducing
approximately 68% of genes assessed in identical sequences, compared to 51.9% in the
reference. This again speaks in part to the quality of the candidate assemblies across the
board, as well as the quality of the data used. Additional results, including for each raw
assembler and for the final steps of each method of polishing for each assembler, are

displayed in Supplementary Table S5.

4.4 Reference-Based Comparisons

In order to characterise the quality of the potential outputs of the pipeline, we have relied on
a well characterised model organism with a high-quality reference genome. Given this
reference, the Pyro pipeline makes use of QUAST v 5.2.0 (Mikheenko et al., 2018) to
calculate reference-based statistics such as genome fraction, misassemblies, mismatches,
and insertion/deletion errors. The reference-based statistics for each candidate assembly are
presented in Table 3. In general, all candidate assemblies performed relatively well across
all metrics. However, the Illumina-only assemblies provide the lowest number of
misassemblies, mismatches, and insertion/deletions, due in part to the low error rate of the
[llumina input data. However, given the low contiguity of the Illumina-only assemblies, it is
perhaps unsurprising that they achieve the least misassemblies. The Oxford Nanopore-only
assemblies tended to produce slightly higher rates of insertion/deletion errors in the final
assemblies. However, this is a dramatic reduction from the raw assemblies, and even the
assemblies polished additionally with Oxford Nanopore reads alone — the Illumina polishing
steps in the Pyro pipeline reduce the insertion/deletion errors in these assemblies by almost
ten-fold (Supplementary Table S5, Supplementary Figure SS5). This is balanced

somewhat by a small increase in mismatches.

A visual indication of the quality of the assemblies generated is illustrated by aligning the
final assemblies to the reference, as displayed by dot plots (Supplementary Figure S1),
with the dot plots for the best assembly from each sequencing type extracted in Figure 2.
There is a clear increase in contiguity for the long-read and hybrid assembly strategies, but
all assemblies construct the vast majority of the reference. In particular, the long-read
assembly strategies largely reconstruct the chromosomal arms of the reference genome in
single contigs, with more fragmentation evident in the heterochromatic regions of the
genome. Of note is the differences in length within the centromeric region of chromosome
5 — this is perhaps unsurprising, given previously reported evidence that it contains large

repetitive regions which have historically been difficult to sequence with short-read

20

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

sequencing alone in prior assembly efforts (Kazusa DNA Research Institute et al., 2000).
This is also the case with chromosome 2, although to a lesser extent, but similarly fits with
previous sequencing efforts (Lin et al., 1999) Additional accuracy and reference-based
statistics for all intermediates are displayed in Supplementary Table S5. Additional dot
plots for all final assemblies are displayed in Supplementary Figures S1-S4.

4.5 Computational Performance

The Pyro pipeline is capable of efficiently utilising local computational resources, as well as
running on HPC systems with minimal configuration overhead. If the --benchmark flag is
set, Pyro will report run time statistics, such as total run time and maximum memory usage
for each assembler, polisher, and metric checking step, providing a convenient method of
benchmarking state-of-the-art tools. An example of such a benchmarking output is given in
Figure 6, displaying the total run time for each final assembly generated, ranging from as
little as 35 minutes, to as much as almost 17 hours. A detailed breakdown of wall clock time

and maximum memory usage is provided in Supplementary Table S6.

5 Discussion

The Pyro pipeline presents a scalable, self-contained toolkit for genome assembly. Given
input data from most main sequencing platforms, Pyro is capable of recommending a suite
of assembly and polishing options to suit user-specified needs, and run them, managing all
dependencies and parallelisation internally. It is highly customisable to individual needs, and
can be tuned via config file to provide consistent user-defined workflow parameters for easy
reproducibility. By default, it will select assembly packages likely to perform well using
reasonable computational resources, prioritising scalable solutions, particularly for large

genomes and high-coverage datasets.

A key strength of the Pyro pipeline is in its generation of multiple assembly candidates for
a given set of input data with minimal initial configuration. On the 4. thaliana dataset, Pyro
produces a dozen high quality candidate assemblies for a variety of downstream purposes,
depending on user priorities, whether it be contiguity, gene completeness, or per-base
accuracy, along with metrics to help inform decisions about which assembly to pick. These
assemblies all covered the majority of the A. thaliana reference sequence, including
heterochromatic regions (Supplementary Figure S1), with as few as hundreds to tens of
contigs in the case of long-read assemblers. For most assembly purposes, it will not be
necessary to trial 12 assemblers; however, these results indicate that even three assembly
options are likely to produce reasonably strong assembly candidates, regardless of input data

type.
21

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The Pyro pipeline is a large toolkit of assembly and polishing tools, incorporating a wide
range of packages across assembly, polishing and evaluation. However, it is still necessarily
limited in its scope, and is best supplemented with other post-polishing tools and methods.
One key limitation of the pipeline in its current form is the lack of tools specifically tailored
to newly developed sequencing data types, such as PacBio circular consensus sequencing
(CCS), also referred to as PacBio HiFi, which presents a promising alternative to current
long-read technologies (Wenger et al., 2019). However, at present this is still an option with
arelatively high price tag. As the results from the test data set indicate, high contiguity, high
quality assemblies can be generated from existing technologies for a lower price, presenting
more accessible options —a key focus of the pipeline. Further post-processing is also possible
on the candidate assemblies produced by the pipeline. These can be processed with
haplotype reduction tools such as Purge Dups (Guan et al., 2020) or Purge Haplotigs (Roach

et al., 2018) to produce single haplotype-resolution assemblies and reduce redundancy.

Polished assemblies can be scaffolded with other sequencing technologies not considered
here, such as Hi-C and BioNano sequencing to produce true chromosome-level assemblies,
using packages such as ALLHiC (Zhang et al., 2019) and 3D-DNA (Dudchenko et al., 2017).
The candidate assemblies produced by Pyro can also be used as inputs for assembly merging
packages such as Quickmerge (Chakraborty et al., 2016). While these are not natively
supported in the current implementation of Pyro, the candidate assemblies generated from
the pipeline provide robust, high quality input options for these additional methods, reducing

the complexity of the genome assembly process, particularly for new researchers to the field.

The portability and ease of use of the Pyro pipeline on HPC systems is a key strength. The
containerisation of the pipeline presents a highly reproducible option for genome assembly,
one which is flexible enough to run on HPC systems without the need for root user privileges.
However, this is not without potential drawbacks. In a field with a high state of flux, where
new packages are developed and current packages are updated, maintaining a balance
between reproducibility and updating is a challenge for all pipelines relying on third-party
tools. The use of Singularity presents a potential solution however, allowing for a ‘plug-and-
play’ container system when significant updates to key packages arise. The Singularity
container can be updated and re-released to include the new packages and possible new
dependencies, requiring minimal updating or setup by the user, only the exchange of one
container for the next, while still maintaining older containers for reproducibility purposes.
Striking the balance between these competing interests is essential for any scientific software

package development project, with Pyro being no exception.

22

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

6 Availability and Future Directions

The Pyro pipeline is coded primarily in Python (3.7), with some scripting in Bash within the
Singularity container, and is released under a GNU General Public License v3.0. The

pipeline code, installation instructions, and substantial further documentation are publicly

available at https://github.com/genomeassembler/pyro, and the pipeline is able to be run on
any Linux or Unix operating system capable of running Singularity and Python 3. The
pipeline will be kept updated with new assemblers and polishers as they become publicly
available, and major updates of currently included assemblers and polishers will be

incorporated in further releases.

7 Author Contributions

DS wrote the code for the pipeline and ran the test case data. DS, RVR and SFL contributed
to code development, optimization, troubleshooting and pipeline features. JGO and SR
supervised the project. DS led the writing of the manuscript and made figures and tables,

with significant contributions from all authors to the final manuscript.

8 Funding

This research has been supported by a Macquarie University Research Training Pathway
Scholarship and a Macquarie University Postgraduate Research Funding grant to DS.

9 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

10 Acknowledgments

We would like to thank the CSIRO Scientific Computing team for assistance in general

debugging of features during development.

21

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

11 References

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil, Q. Opportunities
and challenges in long read sequencing data analysis. (2020). Genome Biol. 21, 30. doi:
10.1186/s13059-020-1935-5

Amstutz, P., Crusoe, M. R., Tijanic, N., Chapman, B., Chilton, J., Heuer, M., et al. (2016).
Common Workflow Language 1. 0. Figshare [Code]. doi:
10.6084/m9.figshare.3115156.v2

Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering
plant Arabidopsis thaliana. Nature 408, 796—815. doi: 10.1038/35048692

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al.
(2012). SPAdes: A new genome assembly algorithm and its applications to single-cell
sequencing. J. Comput. Biol. 19 (5), 455—477. doi: 10.1089/cmb.2012.0021

Boisvert, S., Laviolette, F., and Corbeil, J. (2010). Ray: Simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17 (11), 1519—
1533. doi: 10.1089/cmb.2009.0238

Bushnell, B. (2014). BBMap: A fast, accurate, splice-aware aligner. Berkeley, CA: Ernest
Orlando Lawrence Berkeley National Laboratory.

Chakraborty, M., Baldwin-Brown, J. G., Long, A. G., and Emerson, J. J. (2016). Contiguous
and accurate de novo assembly of metazoan genomes with modest long read coverage.
Nuc. Acid Res. 44 (19), e147. doi: 10.1093/nar/gkw654

Chapman, J. A., Ho, 1., Sunkara, S., Luo, S., Schroth, G. P., and Rokhsar, D. S. (2011).
Meraculous: De novo genome assembly with short paired-end reads. PLoS One 6 (8),
€23501. doi: 10.1371/journal.pone.0023501

Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., et al.
(2016). Phased diploid genome assembly with single-molecule real-time sequencing.
Nat. Methods 13 (12), 1050—1054. doi: 10.1038/nmeth.4035

Clavijo, B. J., Accinelli, G. G., Wright, J., Heavens, D., Barr, K., Yanes, L., et al. (2017).
W2RAP: A pipeline for high quality, robust assemblies of large complex genomes from
short read data. hioRxiv [Preprint]. doi: 10.1101/110999

Cozzuto, L., Liu, H., Pryszcz, L. P., Pulido, T. H., Delgado-Tejedor, A., Ponomarenko, J.,
et al. (2020). MasterOfPores: A workflow for the analysis of Oxford Nanopore direct
RNA sequencing datasets. Front. Genet. 11, 211. doi: 10.3389/fgene.2020.00211

de Lannoy, C., Risse, J., and de Ridder, D. (2019). poreTally: Run and publish de novo
nanopore assembler benchmarks. Bioinformatics 35 (15), 2663-2664. doi:
10.1093/bioinformatics/bty 1045

22

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

De Maio, N., Shaw, L. P., Hubbard, A., George, S., Sanderson, N. D., Swan, J., et al. (2019).
Comparison of long-read sequencing technologies in the hybrid assembly of complex
bacterial genomes. Microb. Genom. 5 (9), €000294. doi: 10.1099/mgen.0.000294

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., and Notredame, C.
(2017). Nextflow enables reproducible computational workflows. Nat. Biotech. 35,
316-319. doi: 10.1038/nbt.3820

Dohm, J. C., Peters, P., Stralis-Pavese, N., and Himmelbauer, H. (2020). Benchmarking of
long-read correction methods. NAR Gen. Bioinfo. 2 (2), lqaa037. doi:
10.1093/nargab/lqaa037

Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., et al.
(2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-
length scaffolds. Science 356 (6333), 92-95. doi: 10.1126/science.aal3327

Edwards, R. (2019). BUSCOMP: BUSCO compilation and comparison: assessing
completeness in multiple genome assemblies. FI000Research. doi:
10.7490/f1000research.1116972.1

Gargais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 27 (6), 764-770. doi:
10.1093/bioinformatics/btr011

Giani, A. M., Gallo, G. R., Gianfranceschi, L., and Formenti, G. (2020). Long walk to
genomics: History and current approaches to genome sequencing and assembly. Comp.
Struct. Biotech. J. 18, 9-29. doi: 10.1016/j.csbj.2019.11.002

Giesselmann, P., Hetzel, S., Miiller, F. J., Meissner, A., and Kretzmer, H. (2019). Nanopype:
A modular and scalable nanopore data processing pipeline. Bioinformatics 35 (22),
4770—4772. doi: 10.1093/bioinformatics/btz461

Girgis, H. Z. (2015). Red: An intelligent, rapid, accurate tool for detecting repeats de-novo
on the genomic scale. BMC Bioinformatics 16, 227. doi: 10.1186/s12859-015-0654-5

Goodwin, S., McPherson, J. D., and McCombie, R. (2016). Coming of age: Ten years of
next-generation sequencing technologies. Nat. Rev. Genet. 17, 333-351. doi:
10.1038/nrg.2016.49

Guan, D., McCarthy, S. A., Wood, J., Howe, K., Wang, Y., and Durbin, R. (2020).
Identifying and removing haplotypic duplication in primary genome assemblies.
Bioinformatics 36 (9), 2896-2898. doi: 10.1093/bioinformatics/btaa025

Haghshenas, E., Asghari, H., Stoye, J., Chauve, C., and Hach, F. (2020). HASLR: Fast
hybrid assembly of long reads. iScience 23 (8), 101389. doi: 10.1016/j.1s¢1.2020.101389

Holley, G., Beyter, D., Ingimundardottir, G., Kristmundsdottir, S., Eggertsson, H. P., and
Halldorsson, B. V. (2020). Ratatosk: Hybrid error correction of long reads enables

23

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

accurate variant calling and assembly. bioRxiv ~ [Preprint]. doi:
10.1101/2020.07.15.204925

Hu, J., Fan, J., Sun, Z., and Liu, S. (2020). NextPolish: A fast and efficient genome polishing
tool for long-read assembly. Bioinformatics 36 (7), 2253-2255. doi:
10.1093/bioinformatics/btz891

Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, A., et al.
(2017). ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter.
Genome Res. 27, 768-777. doi: 10.1101/gr.214346.116

Jain, C., Koren, S., Dilthey, A., Phillippy, A. M., and Aluru, S. (2018a). A fast adaptive
algorithm for computing whole-genome homology maps. Bioinformatics 34 (17), 1748—
1756. doi: 10.1093/bioinformatics/bty597

Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., et al. (2018b).
Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat.
Biotech. 36, 338-345. doi: 10.1038/nbt.4060

Jayakumar, V., and Sakakibara, Y. (2020). Comprehensive evaluation of non-hybrid genome
assembly tools for third-generation PacBio long-read sequence data. Brief. Bioinform.
20 (3), 866—876. doi: 10.1093/bib/bbx 147

Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., et al. (2014).
Efficient de novo assembly of highly heterozygous genomes from whole-genome
shotgun short reads. Genome Res. 24, 1384—1395. doi: 10.1101/gr.170720.113

Karimzadeh, M., and Hoffman, M. A. (2018). Top considerations for creating bioinformatics
software documentation. Brief. Bioinfo. 19 (4), 693—699. doi: 10.1093/bib/bbw134

Kaushik, G., Ivkovic, S., Simonovic, J., Tijanic, N., Davis-Dusenbery, B., and Kural, D.
(2017). Rabix: An open-source workflow executor supporting recomputability and
interoperability of workflow descriptions. Pac. Symp. Biocomput. 22: 154—-165. doi:
10.1142/9789813207813 0016

Kazusa DNA Research Institute, Cold Spring Harbor and Washington University
Sequencing Consortium, European Union Arabidopsis Genome Sequencing
Consortium, and Institute of Plant Genetics and Crop Plant Research (IPK). (2000).
Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408,
823-826. doi: 10.1038/35048507

Kolmogorov, M., Yuan, J., Lin, Y., and Pevsner, P. A. (2019). Assembly of long, error-
prone reads using repeat graphs. Nat. Biotech. 37, 540-546. doi: 10.1038/s41587-019-
0072-8

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M.
(2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 27, 722—736. doi: 10.1101/gr.215087.116

24

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Korhonen, P. K., Hall, R. S., Young, N. D., and Gasser, R. B. (2019). Common workflow
language (CWL)-based software pipeline for de novo genome assembly from long- and
short-read data. GigaScience 8 (4), 1-16. 10.1093/gigascience/giz014

Koster, J., and Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 28 (19), 2520-2522. doi: 10.1093/bioinformatics/bts480

Kundu, R., Casey, J., and Sung, W. K. (2019). HyPo: Super fast and accurate polisher for
long read genome assemblies. bioRxiv [Preprint]. doi: 10.1101/2019.12.19.882506

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLoS One 12 (5), e0177459. doi: 10.1371/journal.pone.0177459

Laver, T., Harrison, L., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K., et al. (2015).
Assessing the performance of the Oxford Nanopore Technologies MinlON. Biomol.
Detect. Quantif- 3, 1-8. doi: 10.1016/j.bdq.2015.02.001

Leipzig, J. (2017). A review of bioinformatic pipeline frameworks. Briefings in
Bioinformatics 18, 530-536. doi: 10.1093/bib/bbw020

Li, H. (2016). Minimap and miniasm: Fast mapping and de novo assembly of noisy long
sequences. Bioinformatics 32 (14), 2103-2110. doi: 10.1093/bioinformatics/btw152

Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M. 1., Town, C. D., et al. (1999).
Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402,
761-768. doi: 10.1038/45471

Logsdon, G. A., Vollger, M. R., and Eichler, E. E. (2020). Long-read human genome
sequencing and its applications. Nat. Rev. Genet. 21, 597-614. doi: 10.1038/s41576-
020-0236-x

Luo, R, Lui, B, Xie, Y., Li, Z., Huang, W., Yuan, J., et al. (2012). SOAPdenovo2: An
empirically improved memory-efficient short-read de novo assembler. GigaScience 1
(1), 18. doi: 10.1186/2047-217X-1-18

Mangul, S., Martin, L. S., Eskin, E., and Blekhman, R. (2019). Improving the usability and
archival stability of bioinformatics software. Genome Biol. 20, 47. doi: 10.1186/s13059-
019-1649-8

Margais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 27 (6), 764-770. doi:
10.1093/bioinformatics/btr011

Margais, G., Yorke, J. A., and Zimin, A. (2015). QuorUM: An error corrector for Illumina
reads. PLoS One 10 (6), e0130821. doi: 10.1371/journal.pone.0130821

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239), 2.

25

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537425; this version posted April 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Michael, T. P., Jupe, F., Bemm, F., Motley, S. T., Sandoval, J. P., Lanz, C., et al. (2018).
High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow
cell. Nat Comm 9, 541. doi: 10.1038/s41467-018-03016-2

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich, A. (2018). Versatile
genome assembly evaluation with QUAST-LG. Bioinformatics 34 (13), 1142—1150. doi:
10.1093/bioinformatics/bty266

Roach, M. J., Schmidt, S. A., and Borneman, A. R. (2018). Purge Haplotigs: Allelic contig
reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 460.
doi: 10.1186/512859-018-2485-7

Ruan, J., and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat. Methods
17, 155-158. doi: 10.1038/s41592-019-0669-3

Rupp, O., MacDonald, M. L., Li, S., Dhiman, H., Polson, S., Griep, S., et al. (2018). A
reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotech.
Bioeng. 115 (8), 2087-2100. doi: 10.1002/bit.26722

Seppey, M., Manni, M., and Zdobnov, E. M. (2019). “BUSCO: Assessing genome assembly
and annotation completeness,” in Gene Prediction, ed. M. Kollmar (New York, NY:
Humana Press), 227-245. doi: 10.1007/978-1-4939-9173-0 14

Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H. E., Bosworth, C., et al.
(2020). Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly
of eleven human genomes. Nat. Biotech. 38, 1044—1053. doi: 10.1038/s41587-020-
0503-6

Tan, G., Opitz, L., Schlapbach, R., and Rehrauer, H. (2019). Long fragments achieve lower
base quality in [llumina paired-end sequencing. Sci. Rep. 9, 2856. doi: 10.1038/s41598-
019-39076-7

Vaser, R., Sovic, L., Nagarajan, N., and Sikic, M. (2017). Fast and accurate de novo genome
assembly from long wuncorrected reads. Genome Res. 27, 737-746. doi:
10.1101/gr.214270.116

Vaser, R., and Sikic, M. (2020). Raven: A de novo genome assembler for long reads. bioRxiv
[Preprint]. doi: 10.1101/2020.08.07.242461

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., et al. (2017).
Toil enables reproducible, open source, big biomedical data analyses. Nat Biotech 35,
314-316. doi: 10.1038/nbt.3772

Voss, K., Van der Auwera, G., and Gentry, J. (2017). Full-stack genomics pipeline with
GATK4 + WDL + Cromwell. F1000Research 6. doi: 10.7490/£f1000research.1114634.1

26

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/

