
1

Pyro: A Comprehensive Pipeline for Eukaryotic Genome 
Assembly

Dean Southwood1, Rahul V. Rane2,3, Siu Fai Lee2,3, John G. Oakeshott3, Shoba 
Ranganathan3*

1 , Macquarie University, Sydney, NSW, Australia

2CSIRO, Canberra, ACT, Australia 

 Applied Biosciences, Macquarie University, Sydney, NSW, Australia
*Correspondence:
Shoba Ranganathan
shoba.ranganathan@mq.edu.au

Keywords: Snakemake, short reads, long reads, Nanopore, PacBio, 
Singularity. 

1 Abstract

The assembly of reference-quality, chromosome-level genomes for both model and novel 

eukaryotic organisms is an increasingly achievable task for single research teams. However, 

the broad variety of sequencing technologies, assembly algorithms, and post-assembly 

processing tools currently available means that there is no clear consensus on a best-practice 

computational protocol for eukaryotic de novo genome assembly. An ever-increasing field 

of algorithms and packages with unique parameters, setup requirements, and environments

makes it difficult for groups to pick up and test new tools, despite potential benefits. Here, 

we present a comprehensive Snakemake-based pipeline for eukaryotic genome assembly, 

Pyro, to further assist future de novo assembly and benchmarking projects. Pyro combines

20 assembly and eight polishing packages, comprising 30 different assembly approaches and 

up to 48 different polishing approaches in combination. These are available across Illumina 

short-read, Nanopore and PacBio CLR long-read technologies in one container, complete 

with data preparation, quality metric calculation and result reporting. We demonstrate Pyro

effectiveness by running Pyro on publicly available Illumina, Nanopore and PacBio CLR 

read sets for Arabidopsis thaliana, producing 12 candidate assembly options with minimal 

initial input or configuration, each with extremely high contiguity and completeness. Pyro 

is highly customizable to expert needs, while also providing an accessible suggested set of

tools for more casual users based on simple inputs. Pyro is available as a Singularity 

1

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


container suitable for execution on any Unix-compatible OS, and is freely available on 

GitHub (https://github.com/genomeassembler/pyro). This pipeline provides a one-stop

solution for a variety of de novo eukaryotic genome assembly needs, and will also assist in 

the assessment of new tools as a convenient benchmark-generating platform.

2 Introduction

The last two decades have seen an explosion of genomics data, with the development of new 

sequencing technologies and algorithms (Giani et al., 2020), and tools for pre- and post-

processing (Dohm et al., 2020). This has created a competitive field of options for those 

wishing to assemble a high-quality de novo genome, highlighted by the variety of methods 

and approaches used in recent publications (Jayakumar and Sakakibara, 2019; Logsdon et 

al., 2020).

Next-generation and third-generation sequencing data both play significant roles in current 

genome assembly practices, particularly when considering the de novo assembly of large 

eukaryotic genomes with extensive repeats. Illumina short-read sequencing provides high 

per-base-quality reads with low rates of error (Goodwin et al., 2016), but read sizes on the 

order of 100-300 bases are often insufficient to fully resolve long repeats accurately, even 

with paired-end sequencing (Tan et al., 2019). Oxford Nanopore long-read sequencing 

provides ultra-long reads on the order of tens to hundreds of thousands of bases (Jain et al., 

2018b), but individual bases have a significantly higher error rate than Illumina reads (Laver 

et al., 2015). However, Oxford Nanopore reads are relatively cheap - current market prices 

put them at approximately 250% the price of Illumina, per Gbp. PacBio continuous long 

read (CLR) sequencing reads provide a compromise, with significantly longer reads than 

Illumina, but less than Nanopore, and higher per-base quality than Nanopore, but less than 

Illumina (Amarasinghe et al., 2020). However, these come with a higher price

approximately 350% the price of Illumina, per Gbp. The introduction of PacBio circular 

consensus sequencing (CCS), also known as PacBio HiFi, has provided a long read, high 

accuracy alternative (Wenger et al., 2019), but for a significant price tag approximately 

1350% the price of Illumina, per Gbp. Given these differences, tools appropriate for each 

sequencing data type have been tailored to particular features, promoting the development 

of a wide library of algorithms and packages currently available, each with their own 

parameters, terminology, dependencies, and runtime environments. Each sequencing 

technology also requires its own tailored pre- and post-assembly steps such as error 

correction and polishing, further adding to the number of tools available.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is difficult to know what assembly package will work best on a given genome ahead of 

time, and the best assembler for a task will often vary depending on the features of the 

genome at hand, as well as the sequencing data type selected for the study (Wick and Holt, 

2020). However, given the complexity of the field of options and the layers of 

troubleshooting required when picking up a new tool, there can be a tendency for labs with 

one reliable assembly package installation to use it for all tasks, regardless of possible 

applicable options. Unique installation and input requirements for every assembler 

inevitably dampens uptake of new tools by the wider community, and new users to tools 

often require time to discover efficient and scalable ways of using them on their own 

computing environment (Mangul et al., 2019).

Workflow management systems can help linearise inputs and facilitate scale-up of pipelines. 

Current popular options for bioinformatic purposes vary from programming languages such 

as CWL (Amstutz et al., 2016), to behind-the-scenes engines such as Cromwell (Voss et al., 

2017), to more self-contained systems such as Nextflow (Di Tommaso et al., 2017), Toil 

(Vivian et al., 2017), Rabix (Kaushik et al., 2017), and Snakemake (Köster and Rahmann, 

2012). The field of pipeline frameworks has been extensively reviewed in recent work

(Leipzig, 2017). There is active development of pipelines for Nanopore (de Lannoy et al., 

2019; Giesselmann et al., 2019; Cozzuto et al., 2020), and PacBio and Illumina (Korhonen 

et al., 2019) sequencing data, but to our knowledge no pipelines have extensive inclusion 

across all three technologies for genome assembly, despite their unique benefits (Southwood 

et al., 2020, unpublished results), and despite groups increasingly sequencing across 

platforms (Rupp et al., 2018; De Maio et al., 2019).

Here, we provide a comprehensive, scalable, and parallelisable pipeline for de novo 

assembly and polishing of genomes. The pipeline, called Pyro, incorporates 20 different 

assembly packages across three sequencing types, and eight polishing packages across both

short and long reads. The pipeline is completely customisable for expert users, with input 

parameters across tools condensed into common settings. Pyro also recommends algorithms 

for casual users based on input parameters such as estimated genome size, sequencing data 

types, and computational resources available. We demonstrate the simplicity and 

effectiveness of Pyro by processing publicly available read sets of Illumina, Nanopore, and 

PacBio data for the model organism the thale cress, Arabidopsis thaliana (120 Mbp, approx. 

36.7% repeats, five diploid chromosomes), producing 12 final candidate assemblies with 

high contiguity and high completeness. We expect our pipeline will encourage greater 

experimentation with, and uptake of, a wider variety of genome assembly tools in the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


community, as well as greatly facilitate the benchmarking of new assembly and polishing 

tools against currently available methods on standard datasets.

3 Method

3.1 Underlying Computational Structures

Given the increasing availability of extensive, high-quality genomic sequencing data, it is 

more important than ever that computational solutions which handle that data be efficient, 

parallelisable, and scalable. However, this must not come at the cost of reliability or validity. 

The Pyro pipeline manages this balance by relying primarily on two underlying 

computational workhorses: the workflow management system Snakemake, and the 

containerization system Singularity (Kurtzer et al., 2017). 

In terms of workflow management systems, Snakemake and Nextflow stand out as flexible 

options with significant communities, documentation, and integrated support for useful 

additional features such as high-performance computing (HPC) scheduling systems, and 

containers. Both options present efficient solutions which scale well given sufficient 

computational resources. Here, we have chosen to build Pyro with Snakemake due to its 

pythonic nature, ease of use, and ability to be customised with simple additional Python 

code. 

However, given the extensive library of genome assembly options currently available to the 

community, setting up so many unique systems and environments continues to present a 

challenge, both in terms of troubleshooting as well as in version consistency. To reduce setup 

overhead for users, and to increase reliability and reproducibility, we have chosen to 

containerize all dependencies and components required for Pyro using Singularity. Current 

popular tools for containerization are Singularity and Docker (Merkel, 2014). Docker has an 

arguably larger library of base packages and Docker containers at present, while Singularity 

is a newer solution to the market. However, the main differences between the two options 

are the privileges and permissions required to run each. Docker requires root privileges, 

presenting potential security issues for flawed or malicious code, and creating potential 

issues on HPC systems, while Singularity only requires user-level privileges when being run 

user-side, with root privileges only required during development, a process which can be 

done pre-distribution (Kurtzer et al., 2017). Due to the extensive reliance at present on HPC 

systems for genomics researchers, we have elected to containerise the dependencies and 

components of Pyro with Singularity. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Taken together, Snakemake and Singularity allow Pyro to be highly efficient, parallelisable, 

and scalable, as well as flexible, reliable, and reproducible in distribution, even on very 

different computing environments. Pyro is easy to pick up for new users, while maintaining 

power and flexibility for experienced players in the field, and comes with thorough 

documentation following best practice guidelines (Karimzadeh and Hoffman, 2018).

3.2 Overview of the Pyro Pipeline

The Pyro pipeline allows users to take raw sequencing data from Illumina short reads or

PacBio CLR or Oxford Nanopore long reads, and produce polished candidate assemblies, in 

a completely automated manner if desired, using either user-selected or pipeline-

recommended assemblers and polishers. It also calculates common desired assembly metrics 

for all assemblies, to allow users to compare the candidates in a meaningful, straightforward 

manner. In addition, each module can be used independently to process other data supplied 

by the user, presenting a modular solution that is easily integrable into other preferred 

method workflows (Figure 1). However, if other intermediate programs are not required or 

desired, it is recommended to run the entire Pyro pipeline from start to end as this will make 

sure common formatting issues for particular packages are resolved, for example whether 

the input data should be interleaved, have particular header formats, or be compressed or 

uncompressed. The pipeline consists of four modules:

(i) Prep: using raw Illumina, PacBio CLR or Oxford Nanopore data as input, this

module performs low-level quality control to remove adapters, ambiguous bases,

and low-quality reads before assembly. Upon user request, this module will also

error-correct the supplied reads if desired.

(ii) Build: using pre-processed reads from the Prep module, or as supplied by user,

this module assembles the reads using the selected or recommended

assembler(s), outputting draft FASTA assembly files.

(iii) Fix: using the draft assembly file(s) from the Build module, or as supplied by

user, this module polishes each draft assembly using the selected or

recommended polisher(s) for a selected or recommended number of iterations,

depending on input, outputting polished FASTA assembly files.

(iv) Check: using input from either the Prep, Build, or Fix modules, or as supplied by

user, this module performs metric calculations on the reads and/or assembly files

for common desired metrics, including read quality, assembly contiguity, gene

completeness, and repeat content. If a reference genome is supplied, this module

will also run reference-based comparison calculations to determine genome

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


fraction, as well as rates of common errors such as misassemblies, mismatches,

and insertions/deletions (indels), while also providing basic dot plots aligning 

each candidate assembly to the reference. 

FIGURE 1 | Overview of the Pyro pipeline for the construction of high-quality 
eukaryotic genomes. The pipeline takes raw reads from any combination of Illumina 

paired-end short reads, Oxford Nanopore long reads, and PacBio CLR technologies. 
By default, the input reads are filtered and trimmed for quality and adapter sequences 
using the Prep module, and a report of read quality before and after is prepared using 
the Check module. Next, the reads are assembled using the Build module, using the 
three most likely high-performing assemblers by default, based on estimated genome 
size, read coverage, and computational resources available, with statistics calculated 
based on the raw assembly using the Check module. Finally, the raw assemblies are 
polished with available reads using the Fix module, with final assemblies compared 
across standard contiguity and gene completeness metrics. All steps are highly 
customisable to use as few or as many packages as desired.

3.3 Data Preparation Module: Prep

The first module of the Pyro pipeline, Prep, focusses on preparing data for input into genome 

assembly algorithms. The steps in this preparation depend on the data supplied to the 

pipeline, as well as what quality control measures are desired by the user. By default, the 

Prep module performs adapter trimming and quality filtering of Illumina reads using the 

trim_galore package,1 and trimming and quality filtering of Oxford Nanopore and PacBio 

1 https://github.com/FelixKrueger/TrimGalore

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


CLR sequences using the Filtlong package.2 In addition to this, the Prep module will also

format the input read files as necessary for use in assemblers by modifying headers, 

uncompressing files, or interleaving reads as required. 

Two additional features of the Prep module are not run by default, but are likely to be 

common desired processes. First, Prep is able to perform read correction on short or long 

reads, using a variety of packages, as can be selected by the user (Table 1). While our 

experience with the assemblers and polishing algorithms available in Pyro is that they do 

not necessitate prior error correction beyond quality filtering to achieve good results, we 

acknowledge this may not hold true for all genomes or input data. If error-corrected data is 

to be used downstream for assembly and/or polishing, the --use-corrected flag can be set in 

subsequent modules. In addition to error correction, the Prep module can subsample the 

supplied input reads to a desired level of coverage using the reformat.sh component of the 

BBMap/BBTools package (Bushnell, 2014),3 based on random seeds, to create smaller 

coverage for downstream purposes, for example when benchmarking additional tools, or 

when memory is at a premium.

By default, the Prep module additionally calls the Check module, as discussed below, to 

provide reports on input read quality, both before and after any quality control, filtering, or 

correction steps, using the FastQC package.4 The FastQC component provides a HTML-

formatted report containing information such as per-base quality, GC content, the presence 

of adapters, and length profiles. 

3.4 Genome Assembly Module: Build

The second module of the Pyro pipeline, Build, takes input either from the Prep module 

above, or as otherwise supplied by user, to construct a draft genome assembly. The Build 

module can be run with no input aside from reads and information about computational 

resources, and will produce three assemblies for each data type by default, running 

assemblers based on resources and internally-estimated read coverage.

2 https://github.com/rrwick/Filtlong

3 https://sourceforge.net/projects/bbmap/

4 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE 1 | The third-party bioinformatic packages included in the Prep, Build, Fix, and 
Check modules of the Pyro pipeline. The details and default parameters for each package 
are available in Supplementary Tables S1 S4.

Module Package Citation Package Citation

Prep Trim_Galore - QuorUM Marçais et al., 2015

FiltLong - Canu Koren et al., 2017

BBMap Bushnell, 2014 Ratatosk Holley et al., 2020

Build ABySS Jackman et al., 2017 FALCON Chin et al., 2016

MaSuRCA Zimin et al., 2013 Flye Kolmogorov et al., 
2019

Meraculous Chapman et al., 2011 MECAT2 Xiao et al., 2017

Platanus Kajitani et al., 2014 Miniasm Li, 2016

Ray Boisvert et al., 2010 NECAT -

SOAPdenovo2 Luo et al., 2012 Raven Vaser and Sikic, 2020

SPAdes Bankevich et al., 2012 Shasta Shafin et al., 2020

SparseAssembler Ye et al., 2012 WTDBG2 Ruan and Li, 2020

w2rap Clavijo et al., 2017 DBG2OLC Ye et al., 2016

Canu Koren et al., 2017 HASLR Haghshenas et al., 
2020

Fix HyPo Kundu et al., 2019 POLCA Zimin and Salzberg, 
2020

NextPolish Hu et al., 2020 Racon Vaser et al., 2017

ntEdit Warren et al., 2019 Arrow Chin et al., 2016

Pilon Walker et al., 2014 Medaka -

Check assembly-stats - GenomeScope Vurture et al., 2017

BUSCO Seppey et al., 2019 Mashmap Jain et al., 2018a

BUSCOMP Edwards, 2019 QUAST Mikheenko et al., 
2018

FastQC - Red Girgis, 2015

Jellyfish Garçais and 
Kingsford, 2011

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


However, the Build module is completely customisable the specific assembly packages 

run, as well as the number of packages run, can be modified using either the --use-assembler 

command-line flag to use one particular assembler, or using the assemblers setting in the 

config file to select multiple assemblers. The Build module can run 20 different assembly 

packages natively, depending on input data (Table 1), each supplied in the Pyro Singularity 

container with no additional install required. In terms of setting parameters to be supplied to 

each assembler, by default the Build module will use a core set of parameters which should 

provide a reasonable assembly in most cases (Supplementary Table S2). However, the 

performance of a given assembler on a particular set of input reads is difficult to predict. 

Therefore, for intermediate users, Pyro provides the option of setting common parameters 

for all assemblers simultaneously in the config file, which is then internally translated into 

particular flags and parameter settings for each assembler as required. Common adjustments,

such as k-mer size for de Bruijn graph-based assemblers, can then be performed across 

multiple assemblers with a single change. For expert users and those familiar with a 

particular assembler and its parameters, the config file will also accept commands and 

parameters as a string which will be directly supplied to the assembly package. It is worth 

noting that such parameters will be supplied to the assembler as-is, and will overwrite any 

other default options, so should be used with caution.

By default, the Build module additionally calls the Check module upon completion, as 

discussed below, to present basic statistics about the assemblies generated, in order for users 

to decide which assemblies are worth pursuing with further polishing, whether particular 

parameters have worked as desired, or whether further polishing is required at all. The 

default components of the Check module, which calculate assembly statistics and contiguity 

metrics using assembly-stats,5 GC content, and repeat percentages using Red (Girgis, 2015),6

provide a quick overview of useful information; however, if the --check-busco flag is 

provided, or intermediate-busco parameter is set to True in the config file, the Check module 

additionally runs the BUSCO (Seppey et al., 2019)7 and BUSCOMP (Edwards, 2019)8

packages to assess gene completeness of assemblies. For this to be run, it requires the 

5 https://github.com/sanger-pathogens/assembly-stats

6 https://github.com/BioinformaticsToolsmith/Red

7 https://busco.ezlab.org/

8 https://github.com/slimsuite/buscomp

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

additional input of an OrthoDB (Waterhouse et al., 2013) dataset to be specified, either as a 

local directory location, or by name, in which case it will be downloaded when required.

3.5 Polishing Module: Fix

The third module of the Pyro pipeline, Fix, takes as input either a set of assemblies from the 

Build module above, or other draft assemblies as supplied by the user, and produces a set of 

polished assemblies as output. The polishers selected by default by the Fix module depend 

on the input data types supplied; it is recommended for long read assemblies from Oxford 

Nanopore or PacBio CLR sequences that a set of short reads from a technology such as 

Illumina be supplied as well, to enable Pyro to perform short-read polishing in addition to 

polishing with long reads. The Fix module can run eight different polishing packages 

natively, depending on input data (Table 1), each supplied in the Pyro Singularity container 

with no additional install required.

For most polishing algorithms, it is often advantageous to polish more than once this is 

natively supported in Pyro, and can be specified with the --pol-rounds flag, or the polishing-

rounds setting in the config file, either overall or for each individual polisher. By default, the 

Fix module runs long-read polishing algorithms for four iterations, and short-read polishing 

algorithms for three iterations, based on recent benchmarking results (Southwood et al., 

2020, unpublished results). For a given assembly, the Fix module will by default choose up 

to two polishing algorithms to run in series one long-read algorithm for four iterations, 

followed by one short-read algorithm for three iterations but any combination of algorithms 

can be supplied through the config file and run for any input assembly, providing 

intermediate and expert users considerable flexibility to construct their own workflows 

within Pyro. By default, the Fix module will call the Check module, as detailed below, to 

provide statistics, quality metrics, and, if a reference is supplied, additional reference-based 

statistics, for cases where users wish to benchmark methods, or for re-assembly of older 

reference genomes using long-read technologies, for example.

3.6 Assessment and Reporting Module: Check

The final module of the Pyro pipeline, Check, takes either reads, draft assemblies, or 

polished assemblies as input, and provides common quality metrics and statistics using a 

variety of popular state-of-the-art packages (Table 1). When the entire pipeline is run in an 

automated default fashion, the Check module is called multiple times through the run, 

providing intermediate outputs that can be checked without having to wait for the entire run 

to complete. For either input reads, or after the Prep module above has run, the Check 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

module will provide quality metrics using the FastQC package,9 including information about 

read quality, length, and adapter content. In addition, if requested or if no indication of 

coverage or genome size is provided, the Check module will provide estimates of the genome 

size and read coverage via k-mer counting using Jellyfish (Marçais and Kingsford, 2011)10

and GenomeScope (Vurture et al., 2017).11 This is often useful information to compare 

against the size of generated candidate assemblies, but is also necessary in determining 

which assembly package is likely to produce the best result.

For input draft or polished assemblies, the Check module will calculate basic assembly 

statistics and contiguity metrics using assembly-stats,12 repeat content using Red (Girgis, 

2015),13 and GC content using internal scripts. In addition, if Pyro is supplied with a 

OrthoDB gene set to check against, either as a local directory or by name for automated 

download, the Check module will analyse the presence of benchmarked universal single-

copy orthologues (BUSCOs) using the BUSCO package (Seppey et al., 2019),14 as well as 

BUSCOMP (Edwards, 2019),15 to assess the gene completeness of the assembly. By using 

the BUSCOMP package, the input candidate assemblies will be compared to each other, to 

determine the relative content of BUSCOs present in each assembly; this is particularly 

useful for checking assemblies pre-polishing, as the BUSCOMP package has less stringent 

requirements when determining the presence of BUSCO genes, giving a more realistic 

indication of potential quality post-polishing (Southwood et al., 2020, unpublished results).

If a reference assembly is supplied, as may be the case for benchmarking new tools or when 

re-assembling a previously assembled genome de novo, the Check module will also provide 

reference-based statistics using the QUAST-LG package (Mikheenko et al., 2018). The 

statistics and metrics calculated by the Check module are output in human-readable format 

as a table and a collection of graphs, as well as in CSV format for useful further processing. 

9 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

10 https://github.com/gmarcais/Jellyfish

11 https://github.com/schatzlab/genomescope

12 https://github.com/sanger-pathogens/assembly-stats

13 https://github.com/BioinformaticsToolsmith/Red

14 https://busco.ezlab.org/

15 https://github.com/slimsuite/buscomp

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

3.7 Test Case: Arabidopsis thaliana

In order to demonstrate the effectiveness of the Pyro pipeline, particularly when run with 

default parameters out-of-the-box, we processed publicly available read sets for the model 

organism Arabidopsis thaliana containing Illumina, PacBio CLR, and Oxford Nanopore 

reads (Michael et al., 2018) (Table 2). These data were used both individually, as well as 

collectively through hybrid assembly methods. A. thaliana has historically been an important 

model organism for genetic studies, and its genome was the first whole plant genome 

sequenced (Arabidopsis Genome Initiative, 2000). The current reference genome for A.

thaliana, TAIR10,16 consists of seven structures, namely five diploid chromosome 

sequences, a mitochondrion sequence, and a chloroplast sequence, for a total genome size of 

approximately 120 Mbp. The reference genome for A. thaliana is actively curated and of 

high quality, allowing for detailed comparisons to be made between outputs. The A. thaliana 

data were processed through the whole Pyro pipeline using default parameters and 

recommended assemblers and polishers for each technology type, to give an indication of 

the quality of assembly to be expected out-of-the-box with no curated parameter-setting. The 

pipeline was run on a single computing node with 20 CPUs and 128 GB of RAM for all 

steps.

TABLE 2 | Statistics and availability information about the read sets used to construct 
the A. thaliana candidate assemblies. Coverage was calculated assuming a genome size 
of 120 Mbp. 

Sequencing 
Technology

ENA Run 
Accession 

No.

Citation No. Raw 
Reads

Raw 
Coverage

Quality-
Filtered 

Coverage

Illumina 
Paired-End

ERR2173372 Michael et 
al., 2018

33,683,902 70.2 66.9

Oxford 
Nanopore

ERR2173373 Michael et 
al., 2018

300,071 28.5 25.7

PacBio 
CLR

ERR2173371 Michael et 
al., 2018

613,080 58.3 52.5

16 https://www.arabidopsis.org/

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Results

4.1 Test Case: Arabidopsis thaliana

The Pyro pipeline uses any combination of Illumina, Nanopore, and PacBio CLR data, and 

is particularly tailored for eukaryotic genomes. Due to its base code relying on Snakemake, 

it is scalable and parallelisable, and its use of Singularity containerisation makes it easy to 

run on HPC systems. For large genomes or high coverage input data, Pyro when run with 

default parameters makes decisions about which assemblers are likely to scale well with 

resources, while also producing high-quality outputs. To demonstrate this, the results from 

the Pyro pipeline run on publicly available data for A. thaliana are presented below, where 

Pyro has been run on all default parameters, aside from requesting three assemblies from 

each category of input, namely from Illumina short reads, Oxford Nanopore long reads, 

PacBio CLR, and hybrid assemblers using a combination of the other three types, in order 

to display typical results for each input. The final output in this case consists of 12 high 

quality assemblies which have been polished and assessed against common metrics, 

primarily assembly contiguity, gene completeness, and reference-based statistics (Table 3).

4.2 Assembly Statistics and Contiguity

Assembly statistics for each of the polished candidate assemblies are presented in Table 3.

The candidate assemblies range in size from 119.2 Mbp to 136.4 Mbp, compared to the 

reference assembly size of 119.7 Mbp, indicating that all assemblers assembled almost all 

regions of the genome; possible variation in size could be due to the assembly of alternative

haplotypes in some regions, or due to variation in length of repeats, particularly around 

centromeres and telomeres. To investigate this, dot plots were produced by aligning each 

candidate assembly to the TAIR10 reference assembly using Mashmap (Jain et al., 2018a)

(Supplementary Figures S1 S4), with the dot plots of the highest quality assemblies from 

each sequencing type extracted in Figure 2. Assemblies differed on the length of 

heterochromatic centromeric regions, as well as the assembly fragmentation as a whole.

The contiguity of the long-read and hybrid candidate assemblies is consistently high, 

producing contig N50 lengths as high as 14.8 Mbp. Considering the reference N50 length of 

23.5 Mbp, and the lack of any significant scaffolding within the pipeline, this is arguably a 

very high-quality result, as is also evident from graphically comparing the contiguity with 

that of the reference (Figure 3). The number of contigs for these assemblies was also 

impressive, with some assembly strategies producing less than 100 contigs, while still 

covering the vast majority of the reference. For the Illumina-only candidate assemblies, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

contiguity was considerably lower, as expected given the significantly shorter read length 

used, and can be seen from the dot plot comparison with the reference assembly 

(Supplementary Figure S1).

FIGURE 2 | Dot plots generated by aligning the highest quality final candidate assembly
of each sequencing type against the TAIR10 reference assembly with Mashmap. 
Chromosomes in the reference assembly are ordered by total size from largest to smallest. 
Grey lines indicate contig or scaffold boundaries in each assembly, with higher density
lines indicating more fragmented regions. Red dots indicate good alignment between 
regions of the genome and blue dots indicate weaker alignments, with the substantial red 
diagonal indicating good reconstruction of the vast majority of the reference. Off-
diagonal correlations are largely grouped around heterochromatic regions, likely due to 
centromeric repeats. (I) = Illumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A) 
Alignment of the Illumina-only MaSuRCA assembly against the reference, highlighting
the high completeness but also high relative fragmentation. (B) Alignment of the Oxford 
Nanopore Flye assembly against the reference, noting the high contiguity and high 
completeness, with some increased fragmentation around the heterochromatic 
centromeric regions. (C) Alignment of the PacBio CLR Flye assembly against the 
reference, noting the high contiguity and completeness. (D) Alignment of the hybrid 
MaSuRCA + Flye assembly against the reference, noting the high completeness and 
contiguity, with some increased fragmentation around the heterochromatic centromeric 
regions, as in the Oxford Nanopore Flye assembly.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

FIGURE 3 | Comparison of contiguity, in terms of N50, and the BUSCO gene 
completeness of each A. thaliana candidate assembly. Each data input type is indicated 
by shape and colour of markers, as well as in brackets in each label: (I) = Illumina, (N) = 
Nanopore, (P) = PacBio, (H) = Hybrid. The MaSuRCA (H), MaSuRCA + Flye (H), 
MaSuRCA (I), SPAdes (I), and w2rap (I) assemblies are in scaffolds, as is the reference; 
all other assemblies are in contigs. The highest performing assembly from each data input 
type has a bold, coloured label. The BUSCO gene completeness of the reference 

assembly, marked as a star, is displayed as a horizontal dotted line.

Taking into consideration the various metrics presented in Table 3, we have selected what 

we consider to be the highest quality assembly from each sequencing type: the MaSuRCA 

assembly for Illumina paired-end; the Flye assembly for Oxford Nanopore; the Flye 

assembly for PacBio CLR, and the MaSuRCA + Flye assembly for hybrid sequencing data. 

These assemblies are shown in bold and coloured font in Figures 2 6. Additional results for 

intermediate steps, such as the raw assemblies and each major stage of polishing, are

presented in Supplementary Table S5.

4.3 Gene Completeness

In order to evaluate the gene completeness of the final assemblies, each candidate assembly 

was assessed for the presence of BUSCOs using BUSCO v 3 (Seppey et al., 2019) (Figure 

4 and Table 3), using the Embryophyta (OrthoDB v 9) gene set consisting of 1440 genes. 

All twelve candidate assemblies had BUSCO gene completeness within one percent of the 

reference (98.2%), with over half the candidate assemblies producing a higher BUSCO gene 

completeness than the reference itself (Figures 3 4).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

FIGURE 4 | Comparison of gene completeness of all final A. thaliana candidate 
assemblies using BUSCO, analysed against the Embryophyta (OrthoDB v 9) dataset of 
1440 genes. (I) = Illumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A) Presence 
of BUSCO genes in the final candidate assemblies, broken down into complete and single 
copy genes, complete and duplicated genes, fragmented genes, and missing genes, 
illustrating the consistently high completeness of all output assemblies. (B) Zoom of 
BUSCO gene plots highlighting the differences between output assemblies.

FIGURE 5 | Re-analysis of BUSCO gene completeness of all final A. thaliana candidate 
assemblies using BUSCOMP, with statistics calculated on the 1427 genes present across 
all candidate assemblies and the reference, out of a possible 1440 BUSCOs analysed. (I) 
= Illumina, (N) = Nanopore, (P) = PacBio, (H) = Hybrid. (A) Presence of BUSCOMP 
genes in the final candidate assemblies, broken down into complete and single copy 
genes, complete and duplicated genes, fragmented genes, partial genes, ghost genes, and 
missing genes, illustrating again the consistently high completeness of all output 
assemblies. (B) Zoom of BUSCOMP gene plots highlighting the differences between 
output assemblies, noting the higher fragmentation of the Illumina-only assemblies.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

TABLE 3 | Assembly statistics and quality metric information for the 12 candidate assemblies generated with Pyro, highlighting their contiguity and 
gene completeness, as well as quality metrics calculated against the TAIR10 reference genome. For the Oxford Nanopore, PacBio CLR, and hybrid 
strategies, the draft assemblies from each assembler were polished with the methods described, and the results for the final polished assemblies are 
provided; for the Illumina strategies, no polishing was undertaken and the raw assembly statistics are provided. Values in bo
Pyro assemblies for metrics where it is useful to rank based on value that is, highest for N50, BUSCO Complete, BUSCOMP Complete, and BUSCOMP 
Identity, and lowest for Fragments, Misassemblies, Mismatches / 100 kbp and Insertions or Deletions / 100 kbp. Full results including intermediate steps 
are provided in Supplementary Table S5.

Sequencing 
Technology

Assembler Polishing 
Strategies

Assembly Statistics and Contiguity Gene Completeness and Identity Reference-Based Metrics

Assembly 
Size

(Mbp)

Frag-
ments

N50 
(Mbp)

Total 
Repeat 
Length 
(Mbp)

BUSCO 
Complete 

(%)

BUSCOMP 
Complete 

(%)

BUSCOMP 
Identity 

(%)

Mis-
assemblies

Mis-
matches 

/ 100 
kbp

Insertions 
or 

Deletions/ 
100 kbp

Illumina 
Paired-End

MaSuRCA - 122.4 8,689 0.400 43.8 98.4 99.8 68.3 1788 657.7 118.5

SPAdes - 126.7 49,791 0.228 43.2 98.3 99.6 68.3 1173 628.3 117.0

w2rap - 136.4 58,337 0.255 40.4 98.4 99.7 67.6 1474 650.9 118.2

Oxford 
Nanopore

Flye NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

122.8 118 14.358 44.3 98.3 99.9 68.4 1922 688.1 132.6

Raven NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

119.7 32 10.850 50.3 98.3 99.9 68.5 1929 675.4 131.1

WTDBG2 NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

123.4 372 3.875 46.8 97.4 98.8 67.5 1865 701.3 131.0

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

m
ade available under a

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is 

T
he copyright holder for this preprint

this version posted A
pril 20, 2023. 

; 
https://doi.org/10.1101/2023.04.18.537425

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

Sequencing 
Technology

Assembler Polishing 
Strategies

Assembly Statistics and Contiguity Gene Completeness and Identity Reference-Based Metrics

Assembly 
Size

(Mbp)

Frag-
ments

N50 
(Mbp)

Total 
Repeat 
Length 
(Mbp)

BUSCO 
Complete 

(%)

BUSCOMP 
Complete 

(%)

BUSCOMP 
Identity (%)

Mis-
assemblies

Mis-
matches / 
100 kbp

Insertions 
or 

Deletions/ 
100 kbp

PacBio CLR FALCON NextPolish x 4 
(ONT); POLCA 
x 3 (ILL)

121.4 122 5.057 43.7 98.2 99.9 67.4 2030 696.9 126.8

Flye NextPolish x 4 
(ONT); POLCA 
x 3 (ILL)

120.3 76 14.332 43.9 98.3 99.9 68.4 1918 681.0 119.8

WTDBG2 NextPolish x 4 
(ONT); POLCA 
x 3 (ILL)

124.0 312 10.001 46.0 98.3 99.9 68.3 1949 723.7 125.7

Hybrid DBG2OLC NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

119.2 65 6.914 49.8 98.2 99.6 68.1 1981 675.6 122.3

MaSuRCA NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

126.9 105 14.488 41.7 98.3 99.9 68.3 2186 745.9 122.8

MaSuRCA 
+ Flye

NextPolish x 4 
(ONT); HyPo x 
3 (ILL)

122.0 124 14.867 44.0 98.3 99.9 68.4 2030 717.2 119.9

Reference - - 119.7 7 23.460 43.9 98.2 99.8 51.9 - - -

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

m
ade available under a

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is 

T
he copyright holder for this preprint

this version posted A
pril 20, 2023. 

; 
https://doi.org/10.1101/2023.04.18.537425

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE 6 | Computational requirements involved for each final polished assembly as 
measured by wall clock time. For each initial assembler, the time taken by the assembly 
package is indicated in blue stripes. For the long-read and hybrid assembly strategies, the 
time taken by the long-read polishing package (NextPolish for all) is indicated in orange 
checks. Finally, the time taken by the short-read polishing packages (HyPo for Oxford 
Nanopore and Hybrid, and POLCA for PacBio CLR) is indicated in green dots. The 

Illumina-only assemblies did not have any polishing done and therefore only the raw 
assembly time is indicated. The highest quality assemblies for each sequencing type are 
indicated with colored labels below the plot.

However, due in part to the stringent thresholds within the BUSCO package, estimation of 

gene completeness using BUSCO alone often does not show the whole picture (Edwards, 

2019; Southwood et al., 2020, unpublished results). For a more comprehensive comparison 

between the candidate assemblies and the reference, the BUSCO results for all assemblies 

were re-processed using BUSCOMP (Edwards, 2019), presenting more detailed breakdowns 

of the presence or absence of BUSCOs. The salient BUSCOMP statistics namely, the 

BUSCOMP gene completeness percent, and the BUSCOMP gene identical percent for 

each final candidate assembly are presented in Table 3 and are displayed in standard BUSCO 

plotted form in Figure 5. Using a more relaxed threshold, the completeness is higher when 

measured by BUSCOMP than by BUSCO, and is more consistent between assemblies, with 

all but the WTDBG2 Oxford Nanopore assembly having a BUSCOMP gene completeness 

within 0.2% of the reference. As a useful complement to the more relaxed completeness 

measure, BUSCOMP also calculates the percentage of sequences in the candidate assemblies 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

which are identical to BUSCO sequences analyzed. The candidate assemblies presented here 

contain more identical BUSCO genes than the reference, consistently reproducing 

approximately 68% of genes assessed in identical sequences, compared to 51.9% in the 

reference. This again speaks in part to the quality of the candidate assemblies across the 

board, as well as the quality of the data used. Additional results, including for each raw 

assembler and for the final steps of each method of polishing for each assembler, are

displayed in Supplementary Table S5.

4.4 Reference-Based Comparisons

In order to characterise the quality of the potential outputs of the pipeline, we have relied on 

a well characterised model organism with a high-quality reference genome. Given this 

reference, the Pyro pipeline makes use of QUAST v 5.2.0 (Mikheenko et al., 2018) to 

calculate reference-based statistics such as genome fraction, misassemblies, mismatches,

and insertion/deletion errors. The reference-based statistics for each candidate assembly are

presented in Table 3. In general, all candidate assemblies performed relatively well across 

all metrics. However, the Illumina-only assemblies provide the lowest number of 

misassemblies, mismatches, and insertion/deletions, due in part to the low error rate of the 

Illumina input data. However, given the low contiguity of the Illumina-only assemblies, it is 

perhaps unsurprising that they achieve the least misassemblies. The Oxford Nanopore-only 

assemblies tended to produce slightly higher rates of insertion/deletion errors in the final 

assemblies. However, this is a dramatic reduction from the raw assemblies, and even the 

assemblies polished additionally with Oxford Nanopore reads alone the Illumina polishing 

steps in the Pyro pipeline reduce the insertion/deletion errors in these assemblies by almost 

ten-fold (Supplementary Table S5, Supplementary Figure S5). This is balanced 

somewhat by a small increase in mismatches.

A visual indication of the quality of the assemblies generated is illustrated by aligning the 

final assemblies to the reference, as displayed by dot plots (Supplementary Figure S1),

with the dot plots for the best assembly from each sequencing type extracted in Figure 2.

There is a clear increase in contiguity for the long-read and hybrid assembly strategies, but 

all assemblies construct the vast majority of the reference. In particular, the long-read 

assembly strategies largely reconstruct the chromosomal arms of the reference genome in 

single contigs, with more fragmentation evident in the heterochromatic regions of the 

genome. Of note is the differences in length within the centromeric region of chromosome 

5 this is perhaps unsurprising, given previously reported evidence that it contains large 

repetitive regions which have historically been difficult to sequence with short-read 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

sequencing alone in prior assembly efforts (Kazusa DNA Research Institute et al., 2000).

This is also the case with chromosome 2, although to a lesser extent, but similarly fits with 

previous sequencing efforts (Lin et al., 1999) Additional accuracy and reference-based 

statistics for all intermediates are displayed in Supplementary Table S5. Additional dot 

plots for all final assemblies are displayed in Supplementary Figures S1 S4.

4.5 Computational Performance

The Pyro pipeline is capable of efficiently utilising local computational resources, as well as 

running on HPC systems with minimal configuration overhead. If the --benchmark flag is 

set, Pyro will report run time statistics, such as total run time and maximum memory usage 

for each assembler, polisher, and metric checking step, providing a convenient method of 

benchmarking state-of-the-art tools. An example of such a benchmarking output is given in 

Figure 6, displaying the total run time for each final assembly generated, ranging from as 

little as 35 minutes, to as much as almost 17 hours. A detailed breakdown of wall clock time 

and maximum memory usage is provided in Supplementary Table S6.

5 Discussion

The Pyro pipeline presents a scalable, self-contained toolkit for genome assembly. Given 

input data from most main sequencing platforms, Pyro is capable of recommending a suite 

of assembly and polishing options to suit user-specified needs, and run them, managing all 

dependencies and parallelisation internally. It is highly customisable to individual needs, and 

can be tuned via config file to provide consistent user-defined workflow parameters for easy 

reproducibility. By default, it will select assembly packages likely to perform well using 

reasonable computational resources, prioritising scalable solutions, particularly for large 

genomes and high-coverage datasets.

A key strength of the Pyro pipeline is in its generation of multiple assembly candidates for 

a given set of input data with minimal initial configuration. On the A. thaliana dataset, Pyro 

produces a dozen high quality candidate assemblies for a variety of downstream purposes, 

depending on user priorities, whether it be contiguity, gene completeness, or per-base 

accuracy, along with metrics to help inform decisions about which assembly to pick. These 

assemblies all covered the majority of the A. thaliana reference sequence, including 

heterochromatic regions (Supplementary Figure S1), with as few as hundreds to tens of 

contigs in the case of long-read assemblers. For most assembly purposes, it will not be 

necessary to trial 12 assemblers; however, these results indicate that even three assembly 

options are likely to produce reasonably strong assembly candidates, regardless of input data 

type.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Pyro pipeline is a large toolkit of assembly and polishing tools, incorporating a wide 

range of packages across assembly, polishing and evaluation. However, it is still necessarily 

limited in its scope, and is best supplemented with other post-polishing tools and methods.

One key limitation of the pipeline in its current form is the lack of tools specifically tailored 

to newly developed sequencing data types, such as PacBio circular consensus sequencing 

(CCS), also referred to as PacBio HiFi, which presents a promising alternative to current 

long-read technologies (Wenger et al., 2019). However, at present this is still an option with 

a relatively high price tag. As the results from the test data set indicate, high contiguity, high 

quality assemblies can be generated from existing technologies for a lower price, presenting 

more accessible options a key focus of the pipeline. Further post-processing is also possible 

on the candidate assemblies produced by the pipeline. These can be processed with 

haplotype reduction tools such as Purge Dups (Guan et al., 2020) or Purge Haplotigs (Roach

et al., 2018) to produce single haplotype-resolution assemblies and reduce redundancy. 

Polished assemblies can be scaffolded with other sequencing technologies not considered 

here, such as Hi-C and BioNano sequencing to produce true chromosome-level assemblies, 

using packages such as ALLHiC (Zhang et al., 2019) and 3D-DNA (Dudchenko et al., 2017).

The candidate assemblies produced by Pyro can also be used as inputs for assembly merging 

packages such as Quickmerge (Chakraborty et al., 2016). While these are not natively 

supported in the current implementation of Pyro, the candidate assemblies generated from 

the pipeline provide robust, high quality input options for these additional methods, reducing 

the complexity of the genome assembly process, particularly for new researchers to the field.

The portability and ease of use of the Pyro pipeline on HPC systems is a key strength. The 

containerisation of the pipeline presents a highly reproducible option for genome assembly, 

one which is flexible enough to run on HPC systems without the need for root user privileges. 

However, this is not without potential drawbacks. In a field with a high state of flux, where 

new packages are developed and current packages are updated, maintaining a balance 

between reproducibility and updating is a challenge for all pipelines relying on third-party 

tools. The use of Singularity present -and-

container can be updated and re-released to include the new packages and possible new 

dependencies, requiring minimal updating or setup by the user, only the exchange of one 

container for the next, while still maintaining older containers for reproducibility purposes. 

Striking the balance between these competing interests is essential for any scientific software 

package development project, with Pyro being no exception.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Availability and Future Directions

The Pyro pipeline is coded primarily in Python (3.7), with some scripting in Bash within the 

Singularity container, and is released under a GNU General Public License v3.0. The 

pipeline code, installation instructions, and substantial further documentation are publicly 

available at https://github.com/genomeassembler/pyro, and the pipeline is able to be run on 

any Linux or Unix operating system capable of running Singularity and Python 3. The 

pipeline will be kept updated with new assemblers and polishers as they become publicly 

available, and major updates of currently included assemblers and polishers will be 

incorporated in further releases.

7 Author Contributions

DS wrote the code for the pipeline and ran the test case data. DS, RVR and SFL contributed 

to code development, optimization, troubleshooting and pipeline features. JGO and SR 

supervised the project. DS led the writing of the manuscript and made figures and tables,

with significant contributions from all authors to the final manuscript.

8 Funding

This research has been supported by a Macquarie University Research Training Pathway 

Scholarship and a Macquarie University Postgraduate Research Funding grant to DS.

9 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest. 

10 Acknowledgments

We would like to thank the CSIRO Scientific Computing team for assistance in general

debugging of features during development.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 References

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil, Q. Opportunities 
and challenges in long read sequencing data analysis. (2020). Genome Biol. 21, 30. doi: 
10.1186/s13059-020-1935-5

Amstutz, P., Crusoe, M. R., Tijanic, N., Chapman, B., Chilton, J., Heuer, M., et al. (2016). 
Common Workflow Language 1. 0. Figshare [Code]. doi: 
10.6084/m9.figshare.3115156.v2

Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering 
plant Arabidopsis thaliana. Nature 408, 796 815. doi: 10.1038/35048692

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. 
(2012). SPAdes: A new genome assembly algorithm and its applications to single-cell 
sequencing. J. Comput. Biol. 19 (5), 455 477. doi: 10.1089/cmb.2012.0021

Boisvert, S., Laviolette, F., and Corbeil, J. (2010). Ray: Simultaneous assembly of reads 
from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17 (11), 1519
1533. doi: 10.1089/cmb.2009.0238

Bushnell, B. (2014). BBMap: A fast, accurate, splice-aware aligner. Berkeley, CA: Ernest 
Orlando Lawrence Berkeley National Laboratory. 

Chakraborty, M., Baldwin-Brown, J. G., Long, A. G., and Emerson, J. J. (2016). Contiguous 

and accurate de novo assembly of metazoan genomes with modest long read coverage. 
Nuc. Acid Res. 44 (19), e147. doi: 10.1093/nar/gkw654

Chapman, J. A., Ho, I., Sunkara, S., Luo, S., Schroth, G. P., and Rokhsar, D. S. (2011). 
Meraculous: De novo genome assembly with short paired-end reads. PLoS One 6 (8), 
e23501. doi: 10.1371/journal.pone.0023501

Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., et al. 
(2016). Phased diploid genome assembly with single-molecule real-time sequencing. 
Nat. Methods 13 (12), 1050 1054. doi: 10.1038/nmeth.4035

Clavijo, B. J., Accinelli, G. G., Wright, J., Heavens, D., Barr, K., Yanes, L., et al. (2017). 
W2RAP: A pipeline for high quality, robust assemblies of large complex genomes from 
short read data. bioRxiv [Preprint]. doi: 10.1101/110999

Cozzuto, L., Liu, H., Pryszcz, L. P., Pulido, T. H., Delgado-Tejedor, A., Ponomarenko, J., 
et al. (2020). MasterOfPores: A workflow for the analysis of Oxford Nanopore direct 
RNA sequencing datasets. Front. Genet. 11, 211. doi: 10.3389/fgene.2020.00211

de Lannoy, C., Risse, J., and de Ridder, D. (2019). poreTally: Run and publish de novo 
nanopore assembler benchmarks. Bioinformatics 35 (15), 2663 2664. doi: 
10.1093/bioinformatics/bty1045

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


De Maio, N., Shaw, L. P., Hubbard, A., George, S., Sanderson, N. D., Swan, J., et al. (2019). 
Comparison of long-read sequencing technologies in the hybrid assembly of complex 
bacterial genomes. Microb. Genom. 5 (9), e000294. doi: 10.1099/mgen.0.000294

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., and Notredame, C. 
(2017). Nextflow enables reproducible computational workflows. Nat. Biotech. 35, 
316 319. doi: 10.1038/nbt.3820

Dohm, J. C., Peters, P., Stralis-Pavese, N., and Himmelbauer, H. (2020). Benchmarking of 
long-read correction methods. NAR Gen. Bioinfo. 2 (2), lqaa037. doi: 
10.1093/nargab/lqaa037

Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., et al. 
(2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-
length scaffolds. Science 356 (6333), 92 95. doi: 10.1126/science.aal3327

Edwards, R. (2019). BUSCOMP: BUSCO compilation and comparison: assessing 
completeness in multiple genome assemblies. F1000Research. doi: 
10.7490/f1000research.1116972.1 

Garçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel 
counting of occurrences of k-mers. Bioinformatics 27 (6), 764 770. doi: 
10.1093/bioinformatics/btr011

Giani, A. M., Gallo, G. R., Gianfranceschi, L., and Formenti, G. (2020). Long walk to 

genomics: History and current approaches to genome sequencing and assembly. Comp.
Struct. Biotech. J. 18, 9 29. doi: 10.1016/j.csbj.2019.11.002

Giesselmann, P., Hetzel, S., Müller, F. J., Meissner, A., and Kretzmer, H. (2019). Nanopype: 
A modular and scalable nanopore data processing pipeline. Bioinformatics 35 (22),
4770 4772. doi: 10.1093/bioinformatics/btz461

Girgis, H. Z. (2015). Red: An intelligent, rapid, accurate tool for detecting repeats de-novo 
on the genomic scale. BMC Bioinformatics 16, 227. doi: 10.1186/s12859-015-0654-5

Goodwin, S., McPherson, J. D., and McCombie, R. (2016). Coming of age: Ten years of 
next-generation sequencing technologies. Nat. Rev. Genet. 17, 333 351. doi: 
10.1038/nrg.2016.49

Guan, D., McCarthy, S. A., Wood, J., Howe, K., Wang, Y., and Durbin, R. (2020). 
Identifying and removing haplotypic duplication in primary genome assemblies.
Bioinformatics 36 (9), 2896 2898. doi: 10.1093/bioinformatics/btaa025

Haghshenas, E., Asghari, H., Stoye, J., Chauve, C., and Hach, F. (2020). HASLR: Fast 
hybrid assembly of long reads. iScience 23 (8), 101389. doi: 10.1016/j.isci.2020.101389

Holley, G., Beyter, D., Ingimundardottir, G., Kristmundsdottir, S., Eggertsson, H. P., and 
Halldorsson, B. V. (2020). Ratatosk: Hybrid error correction of long reads enables 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


accurate variant calling and assembly. bioRxiv [Preprint]. doi: 
10.1101/2020.07.15.204925

Hu, J., Fan, J., Sun, Z., and Liu, S. (2020). NextPolish: A fast and efficient genome polishing 
tool for long-read assembly. Bioinformatics 36 (7), 2253 2255. doi: 
10.1093/bioinformatics/btz891

Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, A., et al. 
(2017). ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. 
Genome Res. 27, 768 777. doi: 10.1101/gr.214346.116

Jain, C., Koren, S., Dilthey, A., Phillippy, A. M., and Aluru, S. (2018a). A fast adaptive 
algorithm for computing whole-genome homology maps. Bioinformatics 34 (17), i748
i756. doi: 10.1093/bioinformatics/bty597

Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., et al. (2018b). 
Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. 
Biotech. 36, 338 345. doi: 10.1038/nbt.4060

Jayakumar, V., and Sakakibara, Y. (2020). Comprehensive evaluation of non-hybrid genome 
assembly tools for third-generation PacBio long-read sequence data. Brief. Bioinform. 
20 (3), 866 876. doi: 10.1093/bib/bbx147

Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., et al. (2014). 
Efficient de novo assembly of highly heterozygous genomes from whole-genome 

shotgun short reads. Genome Res. 24, 1384 1395. doi: 10.1101/gr.170720.113

Karimzadeh, M., and Hoffman, M. A. (2018). Top considerations for creating bioinformatics 
software documentation. Brief. Bioinfo. 19 (4), 693 699. doi: 10.1093/bib/bbw134

Kaushik, G., Ivkovic, S., Simonovic, J., Tijanic, N., Davis-Dusenbery, B., and Kural, D.
(2017). Rabix: An open-source workflow executor supporting recomputability and 
interoperability of workflow descriptions. Pac. Symp. Biocomput. 22: 154 165. doi: 
10.1142/9789813207813_0016

Kazusa DNA Research Institute, Cold Spring Harbor and Washington University 
Sequencing Consortium, European Union Arabidopsis Genome Sequencing 
Consortium, and Institute of Plant Genetics and Crop Plant Research (IPK). (2000). 
Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408, 
823 826. doi: 10.1038/35048507

Kolmogorov, M., Yuan, J., Lin, Y., and Pevsner, P. A. (2019). Assembly of long, error-
prone reads using repeat graphs. Nat. Biotech. 37, 540 546. doi: 10.1038/s41587-019-
0072-8

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. 
(2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting 
and repeat separation. Genome Res. 27, 722 736. doi: 10.1101/gr.215087.116

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Korhonen, P. K., Hall, R. S., Young, N. D., and Gasser, R. B. (2019). Common workflow 
language (CWL)-based software pipeline for de novo genome assembly from long- and 
short-read data. GigaScience 8 (4), 1 16. 10.1093/gigascience/giz014

Köster, J., and Rahmann, S. (2012). Snakemake a scalable bioinformatics workflow engine. 
Bioinformatics 28 (19), 2520 2522. doi: 10.1093/bioinformatics/bts480

Kundu, R., Casey, J., and Sung, W. K. (2019). HyPo: Super fast and accurate polisher for 
long read genome assemblies. bioRxiv [Preprint]. doi: 10.1101/2019.12.19.882506

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific containers for 
mobility of compute. PLoS One 12 (5), e0177459. doi: 10.1371/journal.pone.0177459

Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. 
Detect. Quantif. 3, 1 8. doi: 10.1016/j.bdq.2015.02.001

Leipzig, J. (2017). A review of bioinformatic pipeline frameworks. Briefings in 
Bioinformatics 18, 530 536. doi: 10.1093/bib/bbw020

Li, H. (2016). Minimap and miniasm: Fast mapping and de novo assembly of noisy long 
sequences. Bioinformatics 32 (14), 2103 2110. doi: 10.1093/bioinformatics/btw152

Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M. I., Town, C. D., et al. (1999). 
Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 

761 768. doi: 10.1038/45471

Logsdon, G. A., Vollger, M. R., and Eichler, E. E. (2020). Long-read human genome 
sequencing and its applications. Nat. Rev. Genet. 21, 597 614. doi: 10.1038/s41576-
020-0236-x

Luo, R., Lui, B., Xie, Y., Li, Z., Huang, W., Yuan, J., et al. (2012). SOAPdenovo2: An 
empirically improved memory-efficient short-read de novo assembler. GigaScience 1
(1), 18. doi: 10.1186/2047-217X-1-18

Mangul, S., Martin, L. S., Eskin, E., and Blekhman, R. (2019). Improving the usability and 
archival stability of bioinformatics software. Genome Biol. 20, 47. doi: 10.1186/s13059-
019-1649-8

Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel 
counting of occurrences of k-mers. Bioinformatics 27 (6), 764 770. doi: 
10.1093/bioinformatics/btr011

Marçais, G., Yorke, J. A., and Zimin, A. (2015). QuorUM: An error corrector for Illumina 
reads. PLoS One 10 (6), e0130821. doi: 10.1371/journal.pone.0130821

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and 
deployment. Linux J. 2014(239), 2.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Michael, T. P., Jupe, F., Bemm, F., Motley, S. T., Sandoval, J. P., Lanz, C., et al. (2018). 
High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow 
cell. Nat Comm 9, 541. doi: 10.1038/s41467-018-03016-2

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich, A. (2018). Versatile 
genome assembly evaluation with QUAST-LG. Bioinformatics 34 (13), i142 i150. doi: 
10.1093/bioinformatics/bty266

Roach, M. J., Schmidt, S. A., and Borneman, A. R. (2018). Purge Haplotigs: Allelic contig 
reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 460. 
doi: 10.1186/s12859-018-2485-7

Ruan, J., and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat. Methods 
17, 155 158. doi: 10.1038/s41592-019-0669-3

Rupp, O., MacDonald, M. L., Li, S., Dhiman, H., Polson, S., Griep, S., et al. (2018). A 
reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotech. 
Bioeng. 115 (8), 2087 2100. doi: 10.1002/bit.26722

NY: 
Humana Press), 227 245. doi: 10.1007/978-1-4939-9173-0_14

Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H. E., Bosworth, C., et al. 
(2020). Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly 

of eleven human genomes. Nat. Biotech. 38, 1044 1053. doi: 10.1038/s41587-020-
0503-6

Tan, G., Opitz, L., Schlapbach, R., and Rehrauer, H. (2019). Long fragments achieve lower 
base quality in Illumina paired-end sequencing. Sci. Rep. 9, 2856. doi: 10.1038/s41598-
019-39076-7

Vaser, R., Sovic, I., Nagarajan, N., and Sikic, M. (2017). Fast and accurate de novo genome 
assembly from long uncorrected reads. Genome Res. 27, 737 746. doi: 
10.1101/gr.214270.116

Vaser, R., and Sikic, M. (2020). Raven: A de novo genome assembler for long reads. bioRxiv 
[Preprint]. doi: 10.1101/2020.08.07.242461

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., et al. (2017). 
Toil enables reproducible, open source, big biomedical data analyses. Nat Biotech 35,
314 316. doi: 10.1038/nbt.3772

Voss, K., Van der Auwera, G., and Gentry, J. (2017). Full-stack genomics pipeline with 
GATK4 + WDL + Cromwell. F1000Research 6. doi: 10.7490/f1000research.1114634.1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537425doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537425
http://creativecommons.org/licenses/by-nc-nd/4.0/



