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Abstract

The assembly of reference-quality, chromosome-resolution genomes for both model and 

novel eukaryotic organisms is an increasingly achievable task for single research teams. 

However, the overwhelming abundance of sequencing technologies, assembly algorithms, 

and post-assembly processing tools currently available means that there is no clear consensus 

on a best-practice computational protocol for eukaryotic de novo genome assembly. Here, 

we provide a comprehensive benchmark of 28 state-of-the-art assembly and polishing 

packages, in various combinations, when assembling two eukaryotic genomes using both 

next-generation (Illumina HiSeq) and third-generation (Oxford Nanopore and PacBio CLR) 

sequencing data, at both controlled and open levels of sequencing coverage. 

Recommendations are made for the most effective tools for each sequencing technology and 

the best performing combinations of methods, evaluated against common assessment 

metrics such as contiguity, computational performance, gene completeness, and reference 

reconstruction, across both organisms and across sequencing coverage depth. 
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Introduction

Constructing a high quality, reliable genome assembly of an organism of interest enables a 

wide range of questions to be asked and answered. Annotation of gene regions enables for 

synteny analysis and comparative genomics, including posing evolutionary questions such 

as where and when genes have been gained or lost [1]. Chromosome-resolution assembly in 

particular allows for investigation of recombination, regulatory genomic architecture, and 

chromosome evolution [2]. It also enables effective and efficient use of emerging gene 

editing technologies such as the CRISPR/Cas-9 system, meaning a lack of, or low-quality, 

genome can hinder current and future manipulation, especially for species of economic and 

biological significance [3]. Undertaking a high-quality, whole genome assembly of a 

eukaryotic organism has become relatively affordable in the past 20 years, scaling from 

projects requiring millions of dollars and years of sequencing time such as that of the human 

genome [4 5], to a task which can be done on a budget of the order of a thousand dollars

[6]. This exponential reduction in time and cost has fuelled a furious expansion of new 

sequencing methods and an explosion of algorithmic tools with which to process the 

resulting data.

However, despite the availability of these new sequencing technologies and a plethora of 

computational methods, there is no definitive guide available for researchers wishing to enter

or navigate this space, particularly for those wishing to sequence the genomes of novel 

eukaryotic organisms. What combination of methods will produce the most biologically 

reliable, accurate genome, at minimal cost and with minimal computational resources? Is 

there a reliable workflow or schematic that can be adopted to bootstrap the process? What 

features of the genome of interest will determine what series of tools works best?

This is not necessarily a straightforward set of questions. Due to the increasingly widespread 

use of next-generation sequencing (NGS) technologies such as Illumina paired-end (PE) 

sequencing, as well as third-generation sequencing (TGS) technologies such as Oxford 

Nanopore MinION/PromethION, and PacBio continuous long reads (CLR) and circular 

consensus sequencing (CCS), laboratory teams have considerable options available by 

which to produce sequencing data. Coupled with a multitude of new genome assembly 

algorithms, determining what combination is best is difficult to predict a priori. It is unclear 

how particular algorithmic choices will affect the assembly of data from different 

technologies, and to what extent that assembly will depend on the genomic features of the 

organism being considered. Across these technologies, there are over 30 different 

algorithmic methods possible to produce a draft genome sequence of a eukaryotic organism,
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not including assemblies that could be obtained from merging drafts from other methods. 

Recent benchmarking studies vary, and understandably do not cover the whole field.

Benchmark studies have typically focussed on certain organisms, such as prokaryotic 

genomes with long-read methods [7] or yeast with a variety of methods [8], or on certain 

technologies, such as Illumina methods [9 10], Nanopore methods [11 12], or PacBio 

methods [13 14]. Benchmarks are also available for other steps in the reference assembly 

pipeline, such as error correction of input reads across short reads [15] and long reads [16], 

as well as scaffolding draft genome assemblies using 3D chromosomal information through 

Hi-C sequencing [17]. The rapid development of novel algorithmic methods further 

complicates benchmarking, as new tools are not always benchmarked against the same 

combination of model organisms as other older methods, nor are they assessed against the 

same set of metrics. To the best of our knowledge, no benchmarking study has been 

performed comprehensively across Illumina, Nanopore, and PacBio technologies, as well as 

hybrid methods incorporating multiple of these, for eukaryotic genomes to date. Therefore, 

to fully understand the choices currently available to researchers, and to provide guidance 

on what methods should be chosen and when, the current market of possible methodologies 

needs comprehensive benchmarking.

We present an exhaustive benchmark of methods assembling two model eukaryotic genomes

de novo Caenorhabditis elegans and Drosophila melanogaster using three current 

sequencing technologies: Illumina PE short reads, Nanopore long reads, and PacBio CLR

sequencing. We include 20 different assembly packages, including both state-of-the-art and 

historical methods that have been used recently in the literature.  In order to give a robust

picture of how these methods perform, these assemblies are then polished using eight

different polishing algorithms, in combinations based on sequencing technology input. At

each stage, the assemblies produced by the methods are assessed across four types of metrics: 

contiguity and structural statistics, gene completeness, alignment to reference, and 

computational resource usage and performance, to provide additional guidance to 

researchers seeking to enter this area.

Materials and Methods

Rationale and scope

The construction of a high-quality reference assembly is a multi-step process; however, it is 

beyond the scope of any single benchmarking effort to comprehensively evaluate all tools 

across all steps. Therefore, we have limited the scope of the present benchmarking study to 
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Figure 1: Flowchart of the rationale for the study. Data was collected from public 
repositories for Illumina, Nanopore, and PacBio sequencing technologies (Table 3). 
Illumina data was filtered and adapter-trimmed with trim-galore, while Nanopore and 
PacBio were trimmed and quality filtered with Filtlong. Processed reads were then 
assembled using each of the applicable assembly algorithms given in Table 1, producing a

with Illumina assemblies only polished with short-read polishing (Table 2). Each assembly 
generated, raw or polished, was evaluated against several metrics (Table 4).

look at two key steps in current methods: the initial draft assembly of sequencing reads 

(short, long, or a hybrid of both), and the polishing of these draft assemblies using short

reads, long reads, combinations of both methods in series, or hybrid methods using both 

concurrently. An overview of the approach taken is displayed in Figure 1. The methods

selected for each step have been a combination of well-established methods routinely used 

in prior literature, and fresh methods developed recently which have as yet had limited 

literature presence. To hone the scope further, we have selected three prominent sequencing 

technologies to evaluate: Illumina PE short reads, Nanopore long reads, and PacBio CLR

sequencing. These have been selected based on both their extensive use in recent assembly 

efforts, and the availability of public data for model organisms on which to benchmark. 

Newer technologies, such as PacBio CCS, also known as HiFi, as well as methods such as 

10X Genomics sequencing, have been excluded due to limitations in sourcing sufficient 

public data.

It is essential to benchmarking efforts to select materials in as unbiased a way as possible. 

Therefore, in this mindset, two organisms have been selected for benchmarking, both model 
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eukaryotes used extensively in genetic and genomic studies in the literature: Caenorhabditis 

elegans, and Drosophila melanogaster. Both species have extremely high-quality, 

chromosome-level reference assemblies constructed from multiple sequencing technologies

[18 19], including high-quality Sanger sequencing, data which has not been used in the 

answer is well established. 

Based on these constraints, we have assembled C. elegans and D. melanogaster using 20 

different assembly packages which, when accounting for packages supporting different input 

data independently or concurrently, provides 30 possible assembly methods overall (Table 

1).

Table 1: Assembly packages benchmarked in this study, grouped by accepted input data 
type

Package Version Citation Package Version Citation

Illumina PE Nanopore

ABySS 2.1.0 [28] Canu 1.9 [36]

MaSuRCA 3.4.1 [26] Flye 2.8 [44]

Meraculous 2.2.5.1 [29] Miniasm 0.3-r179 [42]

Platanus 1.2.4 [30] NECAT 0.0.1_update 
20200803

[39]

Ray 2.3.1 [31] Raven 0.0.5 [40]

SOAPdenovo2 r240 [32] Shasta 0.3.0 [43]

SPAdes 3.12.0 [27] WTDBG2 2.5 [41]

SparseAssembler 20160920 [33]

w2rap 20180828 [34]

PacBio CLR Hybrid

Canu 1.9 [36] DBG2OLC 20160920 [46]

FALCON 0.3.0 [37] HASLR 0.8a1 [45]

Flye 2.8 [44] MaSuRCA 3.4.1 [26]

MECAT2 20190314 [38] MaSuRCA
+ Flye

3.4.1 +
2.8

[26]
[44]

Miniasm 0.3-r179 [42] SPAdes [27]

Raven 0.0.5 [40]

WTDBG2 2.5 [41]
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This is further broken down into nine methods for Illumina PE short reads, eight methods 

for Nanopore long reads, seven methods for PacBio CLR, and six hybrid methods which use 

two or more of the prior sequencing technologies concurrently during assembly. In addition, 

the assemblies produced by these algorithms have been polished with combinations of eight

polishing packages which, when accounting for packages supporting different input data 

independently or concurrently, provides 12 possible initial methods overall (Table 2): seven

methods using short reads, four methods using Nanopore long reads, two methods using 

PacBio CLR, and one hybrid method which uses short and long reads concurrently. These 

have been polished using multiple iterations of each polisher, to assess the benefit of repeated 

usage: long-read and hybrid polishing methods have been iterated four times, while short-

read polishing methods have been iterated three times, extending upon common usage levels. 

In addition, to reflect current usage in the literature, all assemblies polished four times with 

long reads have been additionally polished with each short-read polishing method up to three

times, to evaluate the effect of each combination of packages on the final quality of the 

assembly. 

Table 2: Polishing packages benchmarked in this study, grouped by accepted input data 
type.

Two key interrelated components of assembly efforts are initial sequencing data collection 

and budget, which often interact and require compromise. Decisions must often be made a

priori about the amount of sequencing data to collect which will provide a certain (often 

estimated) level of coverage of the genome of interest. We have therefore selected datasets 

which can be randomly subsampled to different levels of coverage, which can then be used 

to evaluate the extent of sequencing required to produce quality results within budget 

constraints (Table 3). The above combinations of assembly and polishing have been 

Technology Package Version Citation Technology Package Version Citation

Illumina PE GATK 4.1.3.0 [50] Nanopore Medaka 0.12.1 [57]

HyPo 1.0.3 [51] NextPolish 1.3.0 [52]

NextPolish 1.3.0 [52] Racon 1.4.13 [56]

ntEdit 1.3.2 [53] PacBio CLR NextPolish 1.3.0 [52]

Pilon 1.23 [54] Racon 1.4.13 [56]

POLCA 3.4.1 [55] Hybrid HyPo 1.0.3 [51]

Racon 1.4.13 [56]
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evaluated for three levels of coverage: two fixed levels of coverage 20X and 40X and 

one open level of coverage using full sets of data reasonably available, each providing more 

than 40X of coverage, with some data types containing up to almost 100X of coverage, 

which provides a realistic assessment of current high budget efforts.

Table 3: Details of publicly available sequencing data used for benchmarking.

Organism Strain Sequencing 
Technology

Source Accession 
No.

Full
Coverage

C. elegans Wild Illumina 
Paired-End

NCBI SRA SRR9324028 48X

N2 Oxford 
Nanopore

EBI ENA ERR2092776,
ERR2092777

80X

N2 PacBio CLR PacBio DevNet - 73X

D. melanogaster ISO-1 Illumina 
Paired-End

NCBI SRA SRR6702604 41X

ISO-1 Oxford 
Nanopore

NCBI SRA SRR6821890,
SRR6702603

57X

ISO-1 PacBio CLR PacBio DevNet - 98X

Taking into account the above combinations, this study presents statistics for over 14,000 

assemblies across C. elegans and D. melanogaster. Each assembly and its constituent 

methods have been assessed for quality across four categories of metrics (Table 4). First, we 

evaluated the contiguity and basic assembly statistics, including total assembly size, N50, 

repeat content, and GC content. Second, we assessed the gene completeness of the assembly, 

evaluated using benchmarked universal single-copy orthologues (BUSCOs). Third, we 

measured the accuracy of the assembly against the gold-standard reference for each 

organism, including the number of misassemblies, single-base mismatch errors, and 

insertion/deletion errors. Finally, we evaluated the computational performance of each 

package, in terms of memory requirements and total wall clock time.

To provide a fair assessment based on resources commonly available to research groups, all 

packages and methods have been run using a single 20-core computing node running Ubuntu

20.04, configured with 128 GB of RAM. To generate the levels of coverage for testing, the 

full data set for each technology for each organism was randomly subsampled using the 

BBMap reformat.sh package [20], estimating the desired total read length using genome 

sizes of 100 Mbp and 140 Mbp for C. elegans and D. melanogaster, respectively. The input 

data have been initially processed for basic quality and adapters using trim-galore [21] for 

Illumina data, and Filtlong [22] for long-read data, with details of parameters provided in 
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the Supplementary Material. Each method has then been run on this processed data as 

close as possible to default or developer-recommended settings, except in rare cases where 

settings were adjusted with limited trial and error in order to produce an assembly. All

assemblies were evaluated against the WBcel235 reference for C. elegans, and the r6

reference for D. melanogaster. The commands used for each package are provided in the 

Supplementary Material, with a brief overview of packages included in the study given 

below.

Table 4: Metric-calculating packages used in this study, including the metrics extracted 
from each.

Assembly algorithms

Two primary classes of algorithms exist for assembly, across short reads, long reads and 

hybrid algorithms, namely those based on de Bruijn graphs (DBG), and those based on an 

overlap-layout-consensus (OLC) approach, with some variation on both types of approaches

unique to each package [23]. DBG-based approaches rely on constructing directed graphs, 

where k-mers generated from input reads form the edges, and k-mer overlaps form the nodes. 

As these approaches construct a graph from k-mers rather than whole reads, they are more 

prone to errors from input data, and struggle to resolve repeat regions when the k-mer size 

is small [24]. However, they are fast, scaling better with input data than OLC approaches

[23], which is an important consideration given high coverage often obtained from 

sequencing. OLC approaches rely on constructing a graph of overlaps between reads, 

requiring a time-consuming overlapping step prior to reducing and resolving the graph [25].

However, these approaches are often more suited to handling errors, and provide more 

support over repetitive regions than DBG-based approaches, particularly for long reads [23].

Due to their high per-base quality and short length, short-read approaches tend to use a DBG-

based approach to assembly. All nine algorithms considered here which rely solely on short-

read input incorporate DBG-based approaches at some point in their algorithm (Table 1). 

Package Version Key Metrics Citation

assembly-stats 1.0.1 N50 
Total Assembly Size

[58]

BUSCO 3.1.0 BUSCO Complete (%) [60]

BUSCOMP 0.9.2 BUSCOMP Complete (%)
BUSCOMP Identical (%)

[61]

QUAST 5.0.2 SNPs / 100 kbp
Indels / 100 kbp

[63]

Red 2.0 Total Repeat Length [59]
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The primary difference between them is in whether reads are error-corrected before

assembly, a step which takes additional time but can produce more contiguous assemblies, 

or whether a coverage cut-off is used instead to determine putatively erroneous reads. Of the 

nine assemblers, MaSuRCA [26] and SPAdes [27] rely on an error-correction step, while 

ABySS 2.0 [28], Meraculous [29], Platanus [30], Ray [31], SOAPdenovo2 [32],

SparseAssembler [33], and w2rap [34] rely on a coverage cut-off.

Long-read assemblers have transitioned back towards OLC approaches, with some 

adjustments, in order to maximise the usage of longer read lengths while also better handling 

higher error profiles of reads [35]. Some long-read assemblers use an overlap-based error-

correction step prior to assembly, in order to improve accuracy and, ideally, generate longer, 

more reliable contigs, which are then corrected again post-assembly using a consensus step. 

Others forgo the initial error-correction, while still maintaining the final consensus call. 

Others still forgo both error correction and consensus, providing draft genome assemblies at 

high speeds, but with the potential for higher errors. Of the nine long-read assemblers 

evaluated here, Canu [36], FALCON [37], MECAT2 [38], and NECAT [39] use error-

correction steps before assembly along with consensus steps post-assembly. Raven [40] and 

WTDBG2 [41] forgo the error correction to speed-up assembly, but maintain a light-weight 

consensus step post-assembly. Miniasm [42] and Shasta [43] forgo both error correction and 

final consensus calls to produce rapid assembly. Flye [44] uses a unique approach relying 

containing a final consensus step.

In this study, we also evaluated hybrid methods which take both short-read and long-read 

input to construct the draft assembly. These methods often use a combination of DBG and 

OLC methods to construct the assembly, indicative of the multiple input types of data. The 

primary difference between the four packages considered here is in the use of short-read data 

within the assembly process [45]. One approach is to use the short-read data to correct the 

long-read input, before assembling the corrected long reads this is employed by MaSuRCA

[26] in its hybrid assembly approach. Alternatively, the short reads can be assembled by a

short-read assembler first, before aligning long reads to this graph to resolve ambiguities and 

generate longer contigs this is the approach taken by both SPAdes [27] and HASLR [45].

Finally, short reads can be assembled using a short-read assembler as in SPAdes and 

HASLR, but the resultant assembly graph is then used to compress the long reads before 

assembling them using an OLC-based approach this is the approach taken by DBG2OLC

[46].
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The assembly packages considered here have different requirements for input data, with 

some long-read assemblers designed for PacBio CLR data only, such as FALCON and 

MECAT2, or for Oxford Nanopore data only, such as NECAT and Shasta. The requirements 

and options used in this study are provided in Table 1, with further details available in the 

Supplementary Material. It is worth noting that assembly packages which require input 

data not used in this study, including packages designed specifically for PacBio HiFi reads,

such as Peregrine [47] and HiCanu [48], or for 10X Genomics reads, such as Supernova 

[49], have been excluded from consideration.

Polishing packages

Three types of polishing packages are considered here, categorised based on the input data 

they use in a particular instance (Table 2). There are seven packages which accept short-

read-only input, namely the GATK pipeline [50], HyPo [51], NextPolish [52], ntEdit [53],

Pilon [54], POLCA [55], and Racon [56]. In addition, two of these packages will accept 

long-read-only input as well: NextPolish and Racon, and have been considered in each 

category separately. A third long-read polishing algorithm, Medaka [57], is also considered 

for assemblies using Nanopore data. One package, HyPo, also explicitly accepts both short-

and long-read input concurrently when polishing, and has been considered here as a hybrid 

polishing approach in addition to a short-read polishing package. 

specifically up to three iterations for short-read inputs, and four iterations for long-read 

inputs. In addition, short-read polishing methods have been trialled in combination on top of 

the (four times) long-read polished assemblies (Figure 1), reflecting common practice in 

recent literature. Details of each package are provided in the Supplementary Material.

Evaluation metrics

Each assembly generated has been evaluated across four categories of metrics, with 

particular metrics of interest within each category calculated using various tools (Table 4).

First, assemblies have been evaluated for contiguity and basic assembly statistics, such as 

N50, GC%, total repeat length, and total assembly size, using the assembly-stats [58] and 

Red [59] packages. These metrics provide an indication of how much material has been 

assembled and whether the material matches broad expectations based on the reference 

assembly. However, these statistics are calculated independent from the reference, and are 

useful for de novo efforts where no reference is available.
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Second, the gene content has been indirectly assessed by analysing BUSCOs present in the 

assemblies, using both the BUSCO package [60], which analyses a single assembly using 

stringent criteria, and the BUSCOMP package [61], which takes BUSCO results for multiple 

assemblies and compares them based on alignments, with a more detailed breakdown of their 

contents. These have been calculated according to the OrthoDB v 9 [62] Nematoda and 

Diptera datasets, for C. elegans and D. melanogaster respectively.

Third, the gold-standard reference assembly has been used to assess the accuracy of the 

assembly and its potential errors. This is split into certain types of errors: number of 

misassemblies, number of mismatches or single-nucleotide polymorphisms (SNPs), and 

number of insertions/deletions (indels), calculated using QUAST [63]. These have their own 

unique impacts upon the quality of the assembly. Misassemblies can impact upon the quality 

of the scaffolded assembly when initial assembly and polishing methods are combined with 

a scaffolding package [64]. SNPs can affect upon per-base accuracy, impacting upon 

analyses such as evolutionary comparative genomics where single base changes are treated 

as putative mutations rather than assembly errors [65]. Indels can impact upon gene 

annotation efforts, where frame shifts can substantially change the translated content of the 

genome, or prevent detection by annotation algorithms [66].

Finally, assembly and polishing algorithms are assessed for their computational 

performance, explicitly broken down into total wall clock time and peak RAM consumption. 

While computing resources are becoming readily available and increasingly affordable, it is 

worthwhile knowing beforehand what scale of resources need to be requested, and for what 

period of time, and may prove a definitive metric for making decisions between two equally 

performing assembly or polishing packages. 

In order to provide an overall ranking for the assemblies, z-scores are calculated for each 

primary metric across the pool of assemblies within each coverage level, for each organism,

as is consistent with previous benchmarking efforts [10, 13]. In this study, the metrics 

included in the cumulative z-score calculation are namely: N50, where higher is ranked 

better; percentage of complete BUSCO genes, where higher is ranked better; percentage of 

identical BUSCOMP genes, where higher is ranked better; number of SNP errors per 100 

kbp, where lower is ranked better; and number of indel errors per 100 kbp, where lower is 

ranked better. These are then summed and ranked within each coverage level for each 

organism, with: .
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Results

The data generated in this benchmarking study is multi-dimensional, allowing for numerous 

interrogatory questions to be asked and investigated. Here we present our key findings from 

analysis of the data, broken down by organism: first, those for C. elegans, and second, those 

for D. melanogaster. For each organism, we present analysis of all three levels of coverage 

(20X, 40X, and full), and we explore three primary axes of the data. First, we present the 

performance and quality of assembly for each assembly package with no polishing, that is, 

raw assembly. Second, we present analysis of the effects of iterations of polishing upon 

assembly quality and accuracy across polishing packages using different input data types. 

Third, we evaluate the quality of so-called final assemblies for each combination of methods, 

to determine the extent to which each assembly algorithm can be improved by polishing, and 

what combination of methods works best for each. 

The C. elegans data set

C. elegans is a nematode which has been extensively used as a model organism, primarily

to investigate neuronal development [67]. Its genome was the first whole-genome 

sequencing study for a multicellular organism [68] and has been extremely well

characterised with extensive genomic resources available [18]. The diploid reference 

genome assembly used in this study, WBcel235 [68], is approximately 100 Mbp in size, 

distributed across five autosomes, one heterochromosome, and a mitochondrial genome, and 

has a GC content of 35.4%, with a repeat content of 42.6% as measured by Red [59].

Contiguity and structural statistics

Contiguity did not change substantially between raw assemblies and polished ones, 

indicating that, by and large, the contiguity of the assembly is dictated by the assembly 

package used (Figure 2). Specifically, long-read assemblers produced the most contiguous 

assemblies, with consistently higher N50 values than short-read and hybrid methods (Figure 

2C D). In addition, for long-read assemblies, contiguity tended to increase with coverage, 

though with diminishing returns in most cases. Hybrid methods performed well 

comparatively on low levels of coverage (20X), but were often overtaken by long-read 

methods for higher coverage. One particular assembler of note here is Flye, which produced 

highly contiguous assemblies at all coverage levels, for both Nanopore and PacBio input 

data, producing the highest contiguity assembly overall (N50 of 6.5 Mbp). The size of the 

assembly generated also did not increase with polishing, with some assemblies among the 

hybrid methods reducing in size with polishing, though not to a substantial extent (Figure 

2A B).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537422doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537422
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Box-and-whisker comparative plots for C. elegans for raw assemblies, i.e. without
polishing, and final assemblies, i.e. polished with four rounds of long reads, followed by 

are present for comparative purposes. The median is indicated by a horizontal line in each 
box, and the mean is indicated by a cross. Boxes represent the interquartile range of input 
assemblies. Row 1: Total assembly size for (A) raw and (B) final assemblies. Row 2: N50 
for (C) raw and (D) final assemblies. Row 3: Average mismatch errors (SNPs) per 100 kbp 
of (E) raw and (F) final assembly sequence. Row 4: Average insertions and deletions per 
100 kbp of (G) raw and (H) final assembly sequence.
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Overall, the amount of reference genome covered by the assembly appears to be dictated by 

assembly algorithm, rather than polishing algorithm. Long-read assemblers tended to over-

assemble at this stage, producing longer assemblies than the reference. Hybrid and Illumina 

methods tended to produce assemblies much closer to the expected genome size. However, 

assembly sizes for all input types tended to increase with additional coverage of data. This 

effect was particularly pronounced for particular assembly packages, such as Shasta and 

FALCON, which were not able to assemble more than 60-70% of the genome at 20X 

coverage, but produced more complete assemblies at 40X and full levels, indicating that 

these assembly algorithms require higher levels of support for individual regions of the 

genome before producing a consensus sequence. 

The GC% of the assemblies did not change substantially with polishing in general, 

polishing produced tighter consensus between assemblers of the same dataset, indicating 

potential differences in the raw sequencing data itself, particularly between Nanopore and 

PacBio (Supplementary Figure S1). In this case, Nanopore produced assemblies with 

substantially higher GC% than other methods, while hybrid methods produced assemblies 

tightly clustered around the reference GC% level. There is some slight increase in GC% with 

coverage, but not to a large degree. Raw long-read assemblies tended to overestimate the 

total repeat length compared to the reference, with hybrid and Illumina methods producing 

results more in line with the reference. However, this was normalised somewhat by 

polishing, which reduced the length of repeat regions for both Nanopore and PacBio data. 

Gene completeness

Hybrid assemblies tended to produce the most initially complete assemblies, but long-read 

assemblies supplemented with short reads at the polishing stage tended to overtake them in 

completeness (Figure 3). The presence of complete BUSCO genes was more readily 

identifiable in Illumina and hybrid assemblies, exhibiting values at the raw assembly stage 

that were similar to the final assembly stage (Figure 3E). However, for PacBio and 

Nanopore assemblies, polishing made a substantial difference in the identification of 

BUSCOs in an assembly, with this effect being more pronounced for low coverage levels. 

Illumina assemblies in this case peaked below 90% completeness measured by BUSCO, 

while assemblies incorporating longer reads managed to produce assemblies with over 99% 

completeness by the same metric once polished, despite initially lower numbers at the raw 

assembly stage. These results suggest that BUSCO complete scores provide a good 

indication of the effectiveness of polishing for these assemblies, and the progress towards 

the final assembly quality. 
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Figure 3: Comparison of complete BUSCO genes for C. elegans for raw assemblies, i.e. 
without polishing, and final assemblies, i.e. polished with four rounds of long reads, 

and . For the box-and-whisker plots, the 
median is indicated by a horizontal line in each box, and the mean is indicated by a cross. 
Boxes represent the interquartile range of input assemblies. Top: Percentage of complete 
BUSCO genes found in (A) raw and (B) final assemblies. Bottom Left: (C) Comparison of 
the percentage of complete BUSCOMP genes found in the raw assemblies against the 
percentage of BUSCO genes; the diagonal indicates equality between the two metrics.
Bottom Right: Box-and-whisker plot comparisons by sequencing type of the difference 
between the percentage of (D) complete BUSCOMP genes or (E) complete BUSCO genes 
in the raw assembly, and the BUSCO genes in the final assembly, with the horizontal grey 
line indicating no change between raw and final. Negative values indicate overestimation by 
the raw assembly metric of the final assembly metric, while positive values indicate 
underestimation.
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Results from BUSCOMP analysis tell a slightly different story. BUSCOMP completeness is 

substantially higher for long-read assemblies, likely due to an increased tolerance of errors 

when detecting the presence of BUSCOs compared to the BUSCO package. Of particular 

note is the difference between final BUSCO scores and initial BUSCOMP scores, and the 

potential to use them as a predictor of final quality; put another way, is the initial BUSCOMP 

completion score useful in predicting quality post-polishing? There tends to be a 

significantly lower difference between initial BUSCOMP score and final BUSCO score for 

long-read assemblies compared to differences between initial BUSCO score and final 

BUSCO score (Figure 3D E), indicating that the difference between these scores at the raw 

assembly stage is a useful measure of the potential to be gained from polishing that assembly.

Coverage made a substantial difference in the identification of complete BUSCOs in both 

raw and final assemblies (Supplementary Figures S2 3). However, this was less 

pronounced for a few assemblers, namely hybrid assembly methods along with SPAdes and 

SOAPdenovo2 for Illumina data, and Flye for PacBio data, which had less gain with 

additional coverage. Additionally, highly complete assemblies could still be produced even 

with low coverage, depending on the methods selected (Supplementary Figures S4 5). 

Notable high performers in this case are Flye, Raven, and WTDBG2 for Nanopore and 

PacBio data, and DBG2OLC and MaSuRCA+Flye for hybrid data, all of which were able to 

produce assemblies with over 98% of complete BUSCOs found with only 20X of coverage.

Accuracy

The most useful indicators of accuracy when comparing between potential assemblies were 

SNP and indel errors per 100 kbp, which seemed to be more robust to low overall assembly 

length and fragmentation, while metrics such as total number of misassemblies were not as 

robust. SNP errors showed a clear difference between Nanopore and PacBio assemblies, 

with Nanopore raw assemblies having significantly higher SNP errors than PacBio (Figure 

2E F). Hybrid and Illumina methods had fewer SNP errors than Nanopore, but still higher 

than PacBio. Compared to the raw assemblies, polishing appears to increase SNP errors in 

some cases, particularly for higher coverage levels, and particularly for PacBio data. The 

exception to this trend is for low coverage Nanopore assemblies, where polishing tended to 

correct SNP errors. The short-read polisher used had a pronounced effect on final SNP rates, 

with ntEdit producing assemblies with the lowest SNP errors, followed by POLCA 

(Supplementary Figure S7). For POLCA in particular, coverage helped correct more SNP 

errors no matter the initial sequencing technology used for the assembly, a trend not seen 
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across the majority of other polishing algorithms, where increased coverage tended to result 

in higher SNP errors, consistent with results reported by Zimin and Salzberg [55].

The rates of indel errors in the assemblies generated showed substantial differences across 

sequencing type, coverage, and polishing (Figure 2G H). Raw assemblies of Nanopore data 

contained the highest amount of indel errors with Illumina assemblies containing the least, 

both by significant margins. Raw hybrid assemblies contained low amounts of indel errors 

compared to the long-read assemblies, with raw PacBio assemblies having rates between 

Nanopore and hybrid. Coverage had a substantial effect on initial indel rates across 

Nanopore, PacBio, and hybrid assemblies, though this was particularly pronounced for 

Nanopore and PacBio data. With sufficient coverage, indel rates in PacBio assemblies were 

comparable to hybrid assemblies; however, the same was not true of Nanopore assemblies, 

which appeared to level out at a higher rate of indels. However, when polished, indel rates 

were substantially decreased across long-read and hybrid assemblies, indicating the benefit 

of incorporating Illumina data into assemblies. Indel rates in final Nanopore assemblies were 

slightly higher than PacBio or hybrid assemblies, but were at much more comparable levels. 

The amount of gain at this stage was affected by the polishing algorithm used, with 

NextPolish being particularly consistent across coverage levels at reducing indel errors 

(Supplementary Figure S9).

Computational performance

Illumina assembly methods, largely reliant on DBG-based approaches, tended to have the 

shorted wall-clock time in general. However, the fastest long-read and hybrid methods did 

out-speed them in some cases (Supplementary Figure S10). Long-read and hybrid methods 

showed a large range of wall-clock times. Of particular note is Canu, which took the longest 

of all methods considered by a substantial margin, especially when run on Nanopore data, 

likely due to its read correction step. This was still the case, even when Canu was run in 

-fast assembly in results graphs and outputs, indicating that

Canu is not suited to a single-node computational architecture. Generally, time taken scaled 

with increasing coverage, an effect which was more pronounced for some assemblers than 

others. MaSuRCA-based methods in particular scaled well with increased coverage for both 

Illumina and hybrid data, though they tended to take longer initially than other assemblers. 

Assemblers such as w2rap, ABySS, Shasta, Raven, Miniasm, WTDBG2, and HASLR also 

tended to scale well with coverage.
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Figure 4: Plots of the cumulative z-scores for the three highest-scoring assemblies for each 

sequencing type, for each level of coverage, for C. elegans. Higher cumulative z-scores 

indicate better performance across multiple metrics, specifically N50, complete BUSCO

percent, identical BUSCOMP percent, SNPs per 100 kbp, and indels per 100 kbp.
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All assemblers and polishing packages successfully completed using less than 128 GB of 

peak RAM, with most packages using less than 64 GB even at the highest coverage level 

(Supplementary Figure S11). Assemblers tended to increase in total memory usage with 

coverage, though this was less pronounced for some assemblers, such as HASLR and 

NECAT. A notable outlier was FALCON, which used the most memory for each coverage 

level; however, it appeared to peak close to the maximum available for 40X of coverage, 

and ran successfully at full coverage, indicating that this may be an optimising measure 

rather than a strict ceiling.

Ranking

Cumulative z-scores were calculated using N50 values, BUSCO completion percentages, 

BUSCOMP identity percentages, SNP error rates, and indel error rates for each assembly, 

comparing within each coverage level. The best polished assembly according to cumulative 

z-score, using any polisher or technology, for each assembler was extracted, and the best

three of these assemblies for each data type are displayed in Figure 4, with the details for 

these assemblies provided in Table 5. For Illumina assemblies, SPAdes and MaSuRCA 

performed consistently well across coverage levels, though the overall quality of these 

assemblies was eclipsed by long-read and hybrid assemblies for higher coverage. Flye was 

a consistent top performer for Nanopore input data, creating the most contiguous assemblies 

with very minimal trade-off on BUSCO complete percentage and accuracy. Raven is also 

notable as a top performer, performing consistently across coverage levels. For PacBio data, 

Flye again results in the highest cumulative scores, in part due to its high contiguity of 

assembly. Canu performs well for higher coverage amounts, but takes considerably longer 

to run. For hybrid data, DBG2OLC performs extremely well for low coverage input, but 

scales poorly with increased coverage, and in some cases produces lower quality assemblies, 

indicating that high coverage levels may benefit from being subsampled before using this 

package. MaSuRCA and MaSuRCA+Flye are consistent in their overall cumulative z-scores 

across coverage levels, while HASLR, specifically run using PacBio data, performs well 

when given sufficiently high coverage data.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537422doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537422
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

Table 5: Details of best assemblies for C. elegans from each initial assembler, including details of polishing. (I) indicates Illumina data input, (N) 
indicates Nanopore data input, (P) indicates PacBio data input, and (H) indicates hybrid (short- and long-read) data.

Coverage Technology Assembler Polishing Strategy Cumulative 
Z-Score

Coverage Technology Assembler Polishing Strategy Cumulative 
Z-Score

20X Illumina PE SPAdes - 0.90 20X PacBio CLR Flye HyPo (H) x 1 5.84
SOAPdenovo2 - 0.11 WTDBG2 NextPolish (P) x 4 + 

POLCA (I) x 1
3.59

MaSuRCA Racon (I) x 1 0.01 Raven Racon (P) x 4 + 
Racon (I) x 2

3.58

Nanopore Flye NextPolish (I) x 1 5.32 Hybrid DBG2OLC - 3.46
WTDBG2 Racon (N) x 4 + 

Medaka (N) x 4 + 
NextPolish (I) x 1

3.56 MaSuRCA HyPo (H) x 1 3.20

Raven Racon (N) x 4 + 
Medaka (N) x 4 + 
NextPolish (I) x 1

2.57 MaSuRCA 
+ Flye

HyPo (H) x 2 2.77

40X Illumina PE SPAdes - -0.47 40X PacBio CLR Flye NextPolish (P) x 2 4.64
MaSuRCA Racon (I) x 1 -0.86 Canu NextPolish (P) x 4 3.30
Ray - -1.00 Miniasm Racon (P) x 4 + 

Racon (I) x 1
2.92

Nanopore Flye HyPo (H) x 1 3.50 Hybrid DBG2OLC NextPolish (P) x 4 2.24
Raven Racon (N) x 4 + 

Medaka (N) x 4 + 
Racon (I) x 2

3.09 HASLR 
(P)

NextPolish (P) x 4 1.80

Miniasm Racon (N) x 4 + 
Medaka (N) x 4 + 
Racon (I) x 3

2.77 MaSuRCA NextPolish (NP) x 4 
+ ntEdit (I) x 1

1.54

Full Illumina PE SPAdes - -0.52 Full PacBio CLR Flye - 4.26
MaSuRCA HyPo (I) x 1 -0.77 Canu NextPolish (P) x 4 3.05
Ray - -1.00 WTDBG2 NextPolish (P) x 2 2.90

Nanopore Flye HyPo (H) x 2 4.70 Hybrid HASLR 
(P)

NextPolish (P) x 4 1.85

Canu HyPo (H) x 1 2.61 DBG2OLC NextPolish (P) x 2 1.75
Raven NextPolish (N) x 4 + 

Racon (I) x 1
2.51 MaSuRCA HyPo (H) x 1 1.23

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

at
io

na
l l

ic
en

se
m

ad
e 

av
ai

la
bl

e 
un

de
r 

a
(w

hi
ch

 w
as

 n
ot

 c
er

tif
ie

d 
by

 p
ee

r 
re

vi
ew

) 
is

 th
e 

au
th

or
/fu

nd
er

, w
ho

 h
as

 g
ra

nt
ed

 b
io

R
xi

v 
a 

lic
en

se
 to

 d
is

pl
ay

 th
e 

pr
ep

rin
t i

n 
pe

rp
et

ui
ty

. I
t i

s 
T

he
 c

op
yr

ig
ht

 h
ol

de
r 

fo
r 

th
is

 p
re

pr
in

t
th

is
 v

er
si

on
 p

os
te

d 
A

pr
il 

20
, 2

02
3.

 
; 

ht
tp

s:
//d

oi
.o

rg
/1

0.
11

01
/2

02
3.

04
.1

8.
53

74
22

do
i: 

bi
oR

xi
v 

pr
ep

rin
t 

https://doi.org/10.1101/2023.04.18.537422
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

The D. melanogaster data set

D. melanogaster is a fruit fly which has been extensively used as a model organism across

multiple disciplines [69 72]. Its genome was the second whole-genome sequenced for a 

multicellular organism [73], and has also been characterised to a substantial degree, with a 

plethora of genomic resources available [19]. The diploid reference genome assembly used 

in this study, DmelR6 [73], is approximately 144 Mbp in size, distributed across three

autosomes, two heterochromosomes, and a mitochondrial genome, and has a GC content of 

42.1%, with a repeat content of 23.2% as measured by Red [59].

Contiguity and structural statistics

Contiguity did not change substantially between raw assemblies and polished ones, 

indicating as was the case for C. elegans that the contiguity of the assembly is dictated 

primarily by the assembly package (Figure 5). Again, long-read assembly methods produced 

the highest contiguity assemblies, with PacBio assemblies generally producing higher N50 

values than Nanopore, with notable exceptions being assemblies generated using Nanopore 

data by Flye (Figure 5C D). Generally, N50 values increased with higher levels of 

coverage, with a particularly notable effect for PacBio assemblies. Illumina assemblies had 

substantially lower N50 values. Hybrid assemblies were generally comparable with long-

read assemblies in N50 for low coverage, but fell behind for higher levels of coverage. 

The size of the assembly generated also did not increase with polishing, indicating that initial 

assembly primarily determines overall coverage of the genome (Figure 5A B). Assembly 

size generally increased with coverage, particularly in the case of PacBio assemblies. Long-

read assemblies at higher coverage tended to overestimate the assembly size, as with C. 

elegans above. Hybrid assemblies were again very close to the reference size.

The GC% was underestimated slightly by long-read assemblers at the raw assembly stage, 

with Illumina assemblers tending to overestimate slightly, and hybrid assemblies producing 

assemblies which were in broad agreement with the reference (Supplementary Figure S12).

After polishing, the final assemblies for Nanopore data moved toward the reference value 

more substantially than the PacBio assemblies. 

At the raw assembly stage, assemblers across all input data types tended to overestimate the 

repeat content of the genome, particularly for Illumina assemblies, though Nanopore and 

PacBio assemblers showed a broad range of estimates (Supplementary Figure S12).
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Figure 5: Box-and-whisker comparative plots for D. melanogaster for raw assemblies, i.e. 

without polishing, and final assemblies, i.e. polished with four rounds of long reads, 

. The median is indicated by a horizontal 

line in each box, and the mean is indicated by a cross. Boxes represent the interquartile range 

of input assemblies. Row 1: Total assembly size for (A) raw and (B) final assemblies. Row 

2: N50 for (C) raw and (D) final assemblies. Row 3: Average mismatch errors (SNPs) per 

100 kbp of (E) raw and (F) final assembly sequence. Row 4: Average insertions and 

deletions per 100 kbp of (G) raw and (H) final assembly sequence.
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Polishing had a more substantial effect on total repeat length than for C. elegans, with 

Nanopore assemblies producing extremely close estimates in line with reference values after 

polishing, with notable improvement in PacBio estimates as well. Hybrid assemblies showed 

little change in repeat length with polishing. There was also minimal improvement in total 

repeat length as coverage increased.

Gene completeness

Illumina and hybrid assemblies for D. melanogaster produced high gene completeness with 

no polishing as measured by BUSCO, in many cases even with coverage levels as low as 

20X (Supplementary Figures S13 14). Nanopore assemblies produced the lowest 

completion percentages at the raw assembly stage, with PacBio assemblies falling in 

between the two extremes. Generally, BUSCO complete percentages increased with 

coverage, with notable exceptions being the hybrid assembly packages. Some packages also 

show minimal improvement above 40X of coverage, indicating that, for the purposes of gene 

completeness, there may be an optimal level of coverage to achieve maximised BUSCO 

scores. Upon polishing, long-read assemblies made significant gains on the Illumina and 

hybrid scores, particularly at high coverage, with almost every assembler producing final 

assemblies with BUSCO completion percentages above 95% with at least one possible 

polishing combination. More variation is seen at low coverage levels, particularly for long-

read assemblers, with the majority of the scores being significantly lower. However, there 

are assembly packages and polishing combinations able to produce assemblies with high 

gene completion, even at 20X of coverage, notably Flye, Raven and WTDBG2 for Nanopore 

data, and Flye for PacBio data. MaSuRCA, MaSuRCA+Flye and DBG2OLC assemblies 

also produced highly complete assemblies at 20X of coverage using hybrid data

(Supplementary Figure S15), presenting multiple options for low-coverage sequencing 

projects where high gene completion is the goal.

Results from BUSCOMP analysis again indicate substantially higher gene completeness for 

the raw assemblies than BUSCO alone. In many cases, the BUSCOMP complete percentages 

are considerably above 90%, even at low coverage, with long-read assemblies being 

estimated substantially higher in completeness by BUSCOMP than BUSCO (Figure 6C). In 

addition, as for C. elegans above, BUSCO appears to give a good indication of the current 

state of the assembly, increasing with polishing up to a peak, while BUSCOMP appears to 

give a good indication of potential polished assembly quality, even at the raw assembly stage 

(Figure 6D E).
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Figure 6: Comparison of complete BUSCO genes for D. melanogaster for raw assemblies, 
i.e. without polishing, and final assemblies, i.e. polished with four rounds of long reads,
followed by three rounds of short reads. Illumina asse

. For the box-and-whisker plots, the
median is indicated by a horizontal line in each box, and the mean is indicated by a cross.
Boxes represent the interquartile range of input assemblies. Top: Percentage of complete
BUSCO genes found in (A) raw and (B) final assemblies. Bottom Left: (C) Comparison of
the percentage of complete BUSCOMP genes found in the raw assemblies against the
percentage of BUSCO genes; the diagonal indicates equality between the two metrics.
Bottom Right: Box-and-whisker plot comparisons by sequencing type of the difference
between the percentage of (D) complete BUSCOMP genes or (E) complete BUSCO genes
in the raw assembly, and the BUSCO genes in the final assembly, with the horizontal grey
line indicating no change between raw and final. Negative values indicate overestimation by
the raw assembly metric of the final assembly metric, while positive values indicate
underestimation.
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Accuracy

In a similar way to C. elegans above, the number of misassemblies did not prove to be a 

useful metric when comparing between assemblers, with the rates of SNP and indel errors 

being more robust to poor overall assembly coverage. At the raw assembly stage, similar

results are seen for SNP errors for D. melanogaster as for C. elegans, with Nanopore 

assemblies having substantially higher SNP error rates, though slightly less pronounced, and 

Illumina assemblies having the lowest (Figure 5E F). SNP errors tend to decrease with 

coverage across long-read and hybrid assemblies at the raw assembly stage. Polishing tends 

to improve Nanopore, PacBio and hybrid assemblies with respect to SNP errors, with the 

effect most pronounced for Nanopore and PacBio data, particularly at low coverage levels. 

As with C. elegans, there is a minor increase in SNP error rates with polishing for high-

coverage PacBio data. Short-read polishing with HyPo, Pilon, and POLCA performed 

consistently well across all data types, with small additional improvements compared to 

NextPolish and Racon in this case (Supplementary Figure S18).

The indel error rates for the raw assemblies showed similar trends in D. melanogaster as in 

C. elegans, with long-read- and hybrid-based assemblies having considerably higher indel

error rates compared to Illumina (Figure 5G H). Again, Nanopore assemblies had the 

highest rates of indel errors, followed by PacBio. Increasing coverage did tend to improve 

indel error rates across long-read and hybrid assemblies, though this was less pronounced 

Polishing however does considerable work for long-read and hybrid assemblies, with indel 

rates reduced considerably, particularly for Nanopore assemblies. Short-read polishing with 

NextPolish tended to have the most consistent impact on reducing indel errors across 

coverage levels, though a range of short-read polishers also performed comparably well, 

particularly at higher coverage levels (Supplementary Figure S20)

Computational performance

The speed of assembly across short- and long-read assemblers was closer for D. 

melanogaster than for C. elegans. While short-read assemblers did tend to produce fast 

assemblies for low coverage, these tended to scale more poorly for high coverage, with the 

majority of Nanopore and PacBio assemblers being comparable in speeds for high coverage 

(Supplementary Figure S21). Of note are the high-speed assemblers for long-read and 

hybrid data, namely Shasta, Raven, Miniasm, WTDBG2, and HASLR, which were all 

comparable to, or faster than, the fastest Illumina assemblers across coverage levels. Across 

the board, time generally scaled with increasing coverage, though as for C. elegans, this was 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537422doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537422
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

more pronounced for some assemblers than others. Assemblers which scaled well with 

coverage were notably w2rap, SOAPdenovo2, and ABySS for Illumina data, Shasta and 

WTDBG2 for Nanopore data, WTDBG2 for PacBio data, and HASLR for hybrid data. Three 

assemblers were notable for extremely long run times, namely Canu, Falcon, and 

DBG2OLC. As before, Canu is not suited to a single-node computing environment, taking 

multiple days to run for both long-read data types, but particularly long for Nanopore,

-fast in results

and plots, did improve this issue to some degree, but was still considerably slower than all 

other Nanopore assemblers. This poor coverage scaling was also evident for DBG2OLC, 

where, for 40X coverage, the assembly did not complete in the 5 day window allocated, 

indicating that smaller coverage, particularly of long reads, is likely more optimal for this 

particular assembler.

Peak memory usage varied across assemblers and sequencing types, but did not exceed the 

128 GB allocation in any case, with the majority of assemblers completing with under 64 

GB usage at peak (Supplementary Figure S22). For some assemblers, this memory usage 

was even below 8 GB specifically ABySS, Meraculous, SparseAssembler, Shasta, and 

HASLR making assembly on a middle-range laptop extremely possibility, albeit with 

increased wall clock time due to fewer than 20 cores. Platanus and FALCON were 

particularly noteworthy for requiring larger amounts of memory at peak, with FALCON 

again using almost the all allocated memory for the highest coverage levels, though as above, 

this may be more an optimisation measure than a ceiling, as this limit did not change 

considerably from 40X coverage to full, despite a jump of almost 60X of added coverage.

Ranking

Cumulative z-scores were calculated as for C. elegans, using N50 values, BUSCO 

completion percentages, BUSCOMP identity percentages, SNP error rates, and indel error 

rates for each assembly, compared within each coverage level. The best polished assembly, 

using any polisher or technology, for each assembler was extracted, and the best three of 

these assemblies for each data type are displayed in Figure 7, with additional details 

provided for each assembly in Table 6. For Illumina assemblies, SPAdes performed 

consistently well across all levels of coverage, with almost all other assemblers performing 

comparably well at higher coverage. 
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Figure 7: Plots of the cumulative z-scores for the three highest-scoring assemblies for each 
sequencing type, for each level of coverage, for D. melanogaster. Higher cumulative z-
scores indicate better performance across multiple metrics, specifically N50, complete 
BUSCO percent, identical BUSCOMP percent, SNPs per 100 kbp, and indels per 100 kbp.
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Table 6: Details of best assemblies for D. melanogaster from each initial assembler, including details of polishing. (I) indicates Illumina data input, 
(N) indicates Nanopore data input, (P) indicates PacBio data input, and (H) indicates hybrid (short- and long-read) data.

Coverage Technology Assembler Polishing Strategy Cumulative 
Z-Score

Coverage Technology Assembler Polishing Strategy Cumulative Z-
Score

20X Illumina PE SPAdes HyPo (I) x 2 2.47 20X PacBio CLR Flye POLCA (I) x 3 6.45
ABySS Racon (I) x 3 1.08 Raven NextPolish (P) x 4 + 

Pilon (I) x 3
3.58

SparseAssembler 
+ DBG2OLC

Racon (I) x 3 1.06 WTDBG2 NextPolish (P) x 4 + 
POLCA (I) x 3

3.09

Nanopore Flye HyPo (H) x 4 6.56 Hybrid DBG2OLC 
(IP)

POLCA (I) x 3 3.43

WTDBG2 NextPolish (N) x 4 +
NextPolish (I) x 1

3.02 SPAdes 
(INP)

NextPolish (NP) x 4 + 
POLCA (I) x 3

2.47

Raven NextPolish (N) x 4 +
NextPolish (I) x 1

2.22 MaSuRCA 
(INP)

ntEdit (I) x 2 2.41

40X Illumina PE Meraculous POLCA (I) x 3 2.10 40X PacBio CLR Canu POLCA (I) x 1 5.03
w2rap POLCA (I) x 1 2.05 Flye HyPo (H) x 1 4.01
SPAdes GATK (I) x 2 2.05 Raven Racon (P) x 4 + HyPo (I) 

x 1
2.43

Nanopore Flye HyPo (H) x 2 4.97 Hybrid HASLR (P) HyPo (H) x 1 2.54
NECAT HyPo (H) x 2 1.94 MaSuRCA + 

Flye (INP)
HyPo (H) x 4 2.48

Raven NextPolish (N) x 4 + 
Pilon (I) x 3

1.91 HASLR (N) HyPo (H) x 1 2.04

Full Illumina PE SPAdes GATK (I) x 2 0.98 Full PacBio CLR Canu Pilon (I) x 1 4.41
ABySS Pilon (I) x 3 0.97 Flye Flye (I) x 1 3.95
Meraculous POLCA (I) x 1 0.96 FALCON HyPo (H) x 1 2.82

Nanopore Flye HyPo (H) x 3 4.38 Hybrid HASLR (P) HyPo (H) x 1 1.85
Canu HyPo (H) x 1 2.22 MaSuRCA + 

Flye (INP)
HyPo (H) x 3 1.84

NECAT HyPo (H) x 3 1.56 MaSuRCA 
(INP)

HyPo (H) x 4 1.24
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As for C. elegans above, Flye produced consistently impressive assemblies using Nanopore 

data, with extremely high contiguity, even at low coverage levels while Raven was also 

notable for consistency across even low coverage. For PacBio data, Flye was again a 

consistently high performer, though the assemblies produced by Canu at high coverage 

levels did overtake these. DBG2OLC performed extremely well for low coverage of data, 

but fell off for higher levels compared to other hybrid assemblers. MaSuRCA+Flye and 

HASLR, specifically run on PacBio data, were reliable performers at high coverage, but did 

not overtake the highest performing long-read-only assembly methods. HASLR is 

particularly noteworthy in this context, as it had the shortest assembly time of any assembler 

tested, yet produced the best overall results among hybrid assemblers given sufficient 

coverage.

Discussion

The options available to researchers for assembling novel genomes de novo are staggering. 

In order to help provide some guidance and data for informed decision making, we have 

presented key evaluation metrics for 14,000 genome assemblies, totalling 30 different raw 

assembly options, four long-read polishing options, seven short-read polishing options, and 

one hybrid polishing option. By comprehensively comparing Illumina, Oxford Nanopore, 

and PacBio CLR sequencing methods, as well as hybrid methods incorporating multiple of 

these, clear trends emerge, with no one assembler, polisher, or technology providing 

maximal values in every category. While results are largely consistent across the two 

genomes considered here, it is first and foremost important that multiple assemblers be 

trialled for novel organisms, in order to provide within-species comparisons as assembly 

progresses, to achieve the best possible outcome. This is further underscored by the close 

and polishers all producing high quality results overall. Using even a small subset of the 

consistently high performers demonstrated here is likely to produce high quality assemblies 

in most cases.

With regard to sequencing technologies more specifically, there are some clear trends for 

both C. elegans and D. melanogaster. As has also been previously indicated by recent long-

read sequencing efforts [74 75], long-read and hybrid assemblies produce consistently more 

contiguous assemblies than using only short reads. While N50 alone is not likely to dictate 

absolute assembly quality or gene content, the resolution of larger-scale structural variants 
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and repeat regions is likely to be made easier for longer fragments of assembly [76]. In 

addition, when scaffolded using additional methods such as Hi-C, these assemblies may end 

up producing less gaps or misassemblies [64].

Both Nanopore and PacBio data assembled into highly contiguous assemblies. While raw 

Nanopore assemblies were generally of lower gene completeness and accuracy than PacBio 

raw assemblies, this difference is almost completely removed by polishing. When final 

assemblies are considered, Nanopore and PacBio both produce assemblies of comparable 

contiguity, gene completeness, and accuracy, with most tools taking similar time and 

memory consumption on either sequencing type. 

Hybrid assemblies produced the most consistent raw assemblies; however, they were also 

consistently overtaken in final metrics by long-read assemblies after polishing. This suggests 

that producing an assembly from longer reads, even with lower accuracy, sets a firm 

foundation for final assembly quality, and that shorter, more high quality reads can be most 

useful to improve this scaffold once created.

There are also clear trends across assembly algorithms, with particular packages being 

consistent high performers, and other packages requiring specific conditions to perform best. 

For Illumina assemblies, SPAdes was a consistent top performer across both C. elegans and 

D. melanogaster across multiple metrics, with notable other strong performers being

MaSuRCA, for gene completeness, and w2rap, for speed. 

For Nanopore assemblies, Flye was a standout performer, producing highly contiguous 

assemblies with extremely high completeness and accuracy. Raven also performed well, but 

benefits considerably from polishing. Shasta performed well in accuracy and gene 

completeness, but only when given high levels of coverage; at low coverage levels such as 

20X, Shasta failed to construct large portions of the reference genome in both cases. Canu 

gave good results for Nanopore data when given high levels of coverage, but was 

computationally the most expensive by a wide margin. However, Canu is notably designed 

to maximise usage of a cluster environment, and would likely be more reasonable in run-

times when given multiple nodes of a high-performance computing system to run on. For 

PacBio assemblies, Flye again produced exceptional results across major metrics, with Canu 

being a more competitive alternative for PacBio than for Nanopore, with almost all 

assemblers producing final assemblies of reasonable quality. FALCON is notable for 

producing high quality assemblies when given sufficient coverage; however, it scales more 

poorly than other assemblers, taking considerably longer to run than any other PacBio
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assembler, with the exception of Canu. Hybrid assemblies were mixed. Lightning-fast 

assembly with hybrid methods is possible using HASLR, particularly with PacBio data, and 

benefits from higher coverage input data. MaSuRCA and MaSuRCA+Flye were consistently 

high-quality performers, particularly on gene completeness and accuracy, but took 

considerably longer to run.

Polishing of assemblies, particularly those generated by long-read sequencing alone, is 

almost always essential to producing assemblies of the highest quality across all metrics. 

The best polishing methods identified for each assembler were a broad range, but in almost 

all cases included short-read polishing in some form, with the best combination of methods 

for each assembler across all coverage levels for D. melanogaster  using short reads, and all 

but the highest coverage PacBio assemblies for C. elegans using short reads. Given the 

significantly lower price point for short-read sequencing, there is substantial benefit to 

supplementing any long-read project with short-read sequencing.

Some differences do emerge between C. elegans and D. melanogaster. First, the Illumina 

assemblies for C. elegans are of considerably lower quality than for D. melanogaster.

Whether this is due to a peculiarity of the C. elegans genome or the particular set of C. 

elegans data used is unknown. In addition, the estimation of GC% and repeat length is 

inconsistent between both genomes, with long-read assemblers overestimating or 

underestimating depending on the organism.

Coverage is an important consideration before commencing any assembly project, and the 

data presented here will likely impact upon these decisions. By looking at 20X, 40X, and a 

to high coverage sequencing. Assembly 

size is higher with higher coverage, implying more thorough assembly across the genome; 

N50 values also increase with coverage. Higher coverage assemblies also typically produced 

higher accuracy in the final assembly, with lower SNP and indel error rates. However, these 

differences were more pronounced for some assemblers than others. For long-read data, Flye 

was a consistent high-performer for low-coverage data, along with SPAdes for Illumina data 

and DBG2OLC for hybrid data, each generating highly complete assemblies with reasonably 

high accuracy. In addition for long-read assemblies, polishing with a hybrid strategy either 

using short- and long-reads together through HyPo, or by polishing first with long reads 

using Medaka for Nanopore, or NextPolish or Racon for PacBio, followed by short reads 

using NextPolish or POLCA is also successful, even at low coverage. While this many not 

hold for genomes with particularly complex regions of repeats, or other distinct features 
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making assembly difficult, it is likely that many assembly projects can get by even with a 

small sequencing budget and still produce an assembly of high quality. 

This work presents an extensive evaluation across almost all commonly used tools for 

genome assembly and polishing in recent literature. Given the scale of this undertaking, there 

are therefore considerable constraints and limitations that should be addressed. We have 

chosen here to benchmark on organisms meeting certain criteria, namely the existence of a 

gold-standard genome reference assembly constructed using input from a technology not 

considered here such as Sanger sequencing, that also has sufficient data publicly available 

to benchmark across coverage levels for all three technologies. In addition, given the sheer 

scale of combinations and computational time required to complete this benchmarking, we 

were also constrained in the total genome size to be considered, with assemblies of both 

mouse and human, both also meeting the above criteria, significantly more computationally 

intensive. As time progresses and more model genomes are inevitably sequenced and re-

sequenced, it will likely be possible to expand this evaluation to additional organisms and 

data types. Limitations were also placed on the polishing of assemblies, with strict numbers 

of rounds selected (four rounds for long reads, three rounds for short reads), including when 

combining long-read and short-read polishing, with the four-times-polished assembly 

always chosen regardless of comparative quality, in order to manage the sheer scale of 

assemblies being generated. Further investigation into optimal polishing strategies is still 

required.

Given the trend toward chromosome-level assembly, it is also noted that we have not looked 

at the effect of scaffolding methods such as Hi-C or BioNano, in part due to sourcing of data, 

and in part due to sheer combinatorial size of methods already under consideration. 

Additional pre- and post-processing methods, such as data cleaning, error correction, 

haplotype reduction, and post-assembly screening, are also likely to have considerable 

impacts upon final assembly quality. We note that recent efforts have begun to benchmark 

these methods for a selection of tools and technology inputs [15 17]. We hope that our 

contribution to interrogating and evaluating methods across the broad spectrum available 

aids in spurring additional benchmarking work to target these further steps.
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Key Points 

Oxford Nanopore and PacBio CLR assemblies, when combined with short-read

Illumina data for polishing, produce the highest quality assemblies across multiple

metrics. Hybrid assemblies produce consistent results but have lower peak

performances. Illumina-only assemblies are more accurate at a per-base level, but are

more fragmented by multiple orders of magnitude.

Peak performers, when weighting key metrics equally, were SPAdes and MaSuRCA

for Illumina assemblies, Flye for Oxford Nanopore and PacBio data, and DBG2OLC

and HASLR for hybrid assemblies.

Polishing is essential for long-read assemblies, but less so for hybrid and Illumina

assemblies. Hybrid polishing strategies with HyPo produce consistently high results

for Oxford Nanopore and PacBio; long-read polishing followed by short-read

polishing also produces high results; short-read-only polishing is sufficient for the best

raw PacBio assemblies, such as those produced by Flye or Canu.

Coverage of sequencing data can improve the likelihood of a high-quality assembly;

however, 20X of coverage of long reads of either type with 20X of coverage of short

reads may be sufficient to still produce comparable quality while saving considerably

on both time and money, though this may change for more difficult to assemble

genomes.
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