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Abstract9

In many bacteria, translating ribosomes are excluded from the nucleoid, while amino-acid10

and energy-supplying metabolic enzymes spread evenly throughout the cytoplasm. Here we11

show with time-lapse fluorescence microscopy that this inhomogeneous organisation of the cy-12

toplasm can cause single Escherichia coli cells to experience an imbalance between biosynthesis13

and metabolism when they divide, resulting in cell size-dependent growth rate perturbations.14

After division, specific growth rate and ribosome concentration correlates negatively with birth-15

size, and positively with each other. These deviations are compensated during the cell-cycle,16

but smaller-than-average cells do so with qualitatively different dynamics than larger-than-17

average cells. A mathematical model of cell growth, division and regulation of biosynthetic18

and metabolic resource allocation reproduces our experimental findings, suggesting a simple19

mechanism through which long-term growth rate homeostasis is maintained while heterogeneity20

is continuously generated. This work shows that the life of single bacterial cells is intrinsically21

out-of-steady-state, dynamic and reliant on cytoplasmic organization.22
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Popular summary26

Classical, population-level studies of the metabolism and growth of bacteria indicate that the av-27

erage cell in a growing population operates at steady state and can be viewed as an homogeneous28

‘bag of enzymes’. Here we show that this view does not capture the lives of single cells. At birth,29

they are perturbed from the steady state of their mother cell after which they need their entire cell30

cycle to return to this state by active regulation. Then they divide and their daughters are per-31

turbed again; a never ending cycle that is inescapable and akin to a Sisyphean task. This behaviour32
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emerges from the delicate interplay of the intrinsic randomness of (uneven) cell division, the in-33

homogeneous localisation of metabolic and ribosomal proteins in the cell, unbalanced metabolism,34

and compensatory steering of gene expression.35

Introduction36

When cultivation conditions are held constant, isogenic bacterial populations eventually converge37

to a state of balanced growth, characterised by a time-invariant per-capita growth rate, and con-38

stant properties of the ‘average cell’, which has a metabolism operating at steady state.1–3 Under39

such conditions, population growth is stationary and the fraction of cells at a specific point in40

the cell cycle remains constant. Moreover, the average cell is then generally considered ‘ideally41

stirred’, lacking any spatiotemporal organisation. This growth condition enabled quantitative bac-42

terial physiology4,5 and is the reference state for most contemporary systems-biological studies on43

metabolism and growth.1,3,644

Since single cells display inevitable, random fluctuations (noise) of molecule concentrations, cell-45

size and growth rate1,7–9, population characteristics can only remain time invariant, when noise is46

either compensated for10 or remains negligible. That noise in concentrations of abundant proteins47

is likely negligible is captured by the rule of thumb that it is proportional to 1 over the mean48

copy number.11 This leads to the prediction that fluctuations in abundant proteins associated with49

biosynthesis are generally insignificant. However, fluctuations in cellular growth rate have been50

found8, suggesting the existence of unknown systemic origins of noise.12,13 On top of that, single51

cells fluctuate in birth and division size during balanced growth. The mechanisms underlying size52

homeostasis of single cells have received considerable attention in recent years1,10,14–19, while the53

variability and homeostasis of single-cell growth rate remain poorly understood.54

It is becoming increasingly clear that birth-size dependent deviations from exponential growth55

occur along bacterial cell cycles.17,20,21 Thus, single cells can deviate from the balanced growth56

state of the average cell in a systematic manner, challenging the concept that single cells are57

growing exponentially in size along their cell cycle, like the average cell and cell populations do58

during balanced growth. The origins of systematic cell cycle-dependent growth rate deviations are,59

however, not understood, nor is it known how widespread this phenomenon is. These aspects we60

address in this paper.61

At balanced growth of symmetrically dividing cells, such as E. coli and B. subtilis, the size and62

molecular content of the average cell doubles during each cell cycle and is halved at cell division.7 In63

single cells, the underlying processes are subject to random fluctuations that, amongst other effects,64

influence the precision of cell division into equally sized halves and the partitioning of different65

cellular components (e.g. (macro)molecules) into newborn cells.7 It is well known that low copy-66

number components, like transcription factors and plasmids, are prone to partitioning errors, but67

these tend to be random22,23, incapable of giving rise to systematic deviations. On the other hand,68

when high copy number and homogeneously dispersed components are partitioned, concentrations69

will generally be insensitive to imperfect cell division.23 Size differences between newborn cells will,70

however, impact concentrations of spatially-localised cellular components.2371

The bacterial cytoplasm displays spatial organisation.24–28 For example, protein aggregates or large72

assemblies (e.g. ribosomes) preferentially localise to specific cellular regions and are expelled from73
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the nucleoid.26,29–31 For instance, in rod-shaped bacteria such as E. coli and B. subtilis, fully-74

assembled, translating ribosomes are excluded from the mid-cell positioned nucleoid and confine75

predominantly to cell poles.25–28,32,33 Simulations indicate that this phenomenon likely results from76

volume exclusion forces (an entropic effect).25,26,30,34 Smaller (macro)molecules, such as metabolic77

proteins and their reactants, move freely through the nucleoid mesh, dispersing homogeneously78

throughout the cytoplasm.25,2679

We speculated that the different localisation patterns of ribosomes and metabolic proteins may80

cause an imbalance in the metabolism of newborn cells, due to a perturbation of their relative81

concentrations after an uneven cell-division event. We hypothesised that this can result in a growth-82

rate perturbation at cell birth. This effect likely correlates with birth size since smaller-than-average83

newborn cells have a relative higher polar volume fraction (where the majority of ribosomes reside)84

than average cells, while larger-than-average cells have a lower fraction. This would explain recent85

observations of structured size-dependent growth-rate perturbation of newborn cells17,20,21. Also,86

since ribosomes are excluded from the nucleoids of many bacterial species,25,27 this mechanism may87

be widespread.88

Here we tested these hypotheses. We studied how growth-rate variability and homeostasis in single89

E. coli cells is influenced by cell division and compensatory processes along the cell cycle. Our90

results confirm that imperfect cell division, the localisation of ribosomes, and homogeneously dis-91

persed metabolic proteins results in imbalances in metabolic and ribosomal protein concentrations92

in newborn cells. This imbalance causes smaller-than-average cells to grow faster than average-93

sized cells at birth, while larger-than-average cells grow slower. We present a generic mathematical94

model of cell growth, incorporating spatially-localised ribosomes and regulation of biosynthetic re-95

source allocation, giving rise to growth-rate perturbations at cell birth and restoration of a balanced96

growth-rate at cell division. Simulations qualitatively capture size-dependent growth rate dynamics97

of single E.coli cells growing on defined and rich media, respectively. Our findings suggest that the98

spatial organisation of the bacterial cytoplasm has a significant impact on cellular heterogeneity and99

can disturb cellular homeostasis and growth, necessitating compensatory regulation. Furthermore,100

this work highlights a novel kind of systematic cell-to-cell heterogeneity in bacterial populations101

that grow balanced, and reinforces the question whether population averages ever truly reflect the102

state of individual cells.103

Results104

The growth-rate dynamics of single cells along their cell cycles depends105

on their birth size106

We monitored single Escherichia coli cells during balanced growth, using live-cell imaging with107

fluorescence microscopy. We validated balanced growth by confirming the time invariance of the108

probability distribution of cell ages, sizes, generation times and other key properties (Fig. S1),35109

to ensure that cells with an equal cell-cycle progression can be compared, even though they were110

observed at different times20. This allows us to determine the dynamics of the specific growth rate111

of cell length (dlnL/dt), which we call the specific elongation rate (sER), as function of cell-cycle112

progression (the normalised cell age) (Fig. 1). Throughout, when referring to single-cell behaviours,113

growth rate implies elongation rate. The cell-cycle progression of a single cell is defined as the ratio114
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Figure 1: Systematic deviations and the birth-size dependence of the specific elongation rate as
function of cell cycle progression. Shown is data for E. coli cells growing on glucose. We denote the specific
elongation rate by sER and an average of a variable x is denoted by ⟨x⟩. (A) The average specific elongation rate
⟨sER⟩ of single cells changes as function of their normalized cell age (age 0 corresponds to cell birth and age 1 to
division). Exponential growth corresponds to the horizontal, dashed line. The inset figure shows this same trend,
but as a function of the average length per normalized age, normalized by the total average length. Since the average
length observed in a growing population corresponds to a cell approximately half way through its cell cycle, we note
that the expected range runs from 2/3 to 4/3. (B) The coefficient of variation of the sER of single cells decreases as a
function of normalized age, indicating compensatory dynamics. (Blue markers indicate the average of the biological
replicates shown as grey markers.) (C) The mean sER of different birth-length bins are shown as function of the
normalized cell age. The data indicates that smaller-than-average cells (dark blue) grow faster than average-sized
cells (light green) while larger-than-average cells (red) grow slightly slower. The bar legend indicates the normalised
ranges of the birth-length bins, and the number of individual cells included in each bin. All plots show the average
from 7 independent experiments, all for cells grown on defined minimal medium (M9) with glucose as carbon source
and with a total of 31,748 cells. Error bars are plotted as standard error of the mean; where they are not visible
they are smaller than the plot markers.
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of the elapsed time since birth over its generation time, such that cells are born at normalised age115

0 and divide at normalised age 1.116

Figure 1 indicates that the specific growth rate of the average single cell (averaged across 31,748117

individual cells) displays systematic deviations along the cell cycle; a finding that corresponds to118

earlier observations with Bacillus subtilis 20,21. At cell birth, the sER is higher than the cell-cycle119

average, after which it decreases, becomes approximately constant, and finally rises towards the120

end of the cell cycle (Fig. 1A). Additionally, variability of elongation rates of individual cells121

(quantified by the standard deviation) is highest at birth, after which it declines rapidly as cells122

proceed through their cell cycle (Fig. 1B). These observations indicate that cell division induces123

growth rate differences between individual newborn cells that are subsequently compensated during124

the cell cycle.125

To investigate the origin of this growth rate perturbation at birth, we divided the growth rate data126

into classes (bins) of cells with similar birth sizes (see Table S1 for details). A striking pattern is127

then observed: birth size correlates negatively with the growth rate (sER) at birth (Fig. 1C). This128

correlation was also observed in B. subtilis 20. It indicates that smaller-than-average newborn cells129

grow significantly faster than average newborn cells, while larger-than-average newborn cells grow130

slower, in line with recent findings by Vashistha et al.21. These growth-rate differences rapidly131

decrease as cells progress through their cell cycle (Fig. 1C). By the end of the cell cycle, the growth132

rate (sER) has become independent of birth size and indistinguishable from the rate of the average133

cell (Fig. 1C). These findings show that growth-rate fluctuations correlate with size perturbations134

at cell birth and suggest an active compensation of the growth rate perturbation along the cell135

cycle. In addition, non-average sized newborns have partially corrected their length deviation at136

the end of the cell cycle, in agreement with observations of E. coli by Wallden et al.16 (Fig. S3 and137

S5).138

The ribosome concentration of newborn cells correlates with their size139

and growth rate140

Figure 2A shows the dependency of the growth rate at birth on birth size. It shows that smaller-141

than-average cells grow faster than average cells and larger-than-average cells grow slower.142

Since the growth rate is constant at metabolic steady state3, we speculated that cell birth induces143

a metabolic imbalance that is dependent on cell size. We tested whether this imbalance is caused144

by a size-dependent perturbation in the ribosome concentration of newborn cells, as growth rate is145

proportional to the ribosome concentration.6146

We used a previously validated strain32 with an mCherry-tagged L9 ribosomal subunit to correlate147

the growth rate of a newborn cell and its ribosomal content with its (birth) size (Fig. 2B). Our148

expectation that the ribosome concentration of a newborn cell depends on its birth size, stems from149

the spatial organisation of the cytoplasm of many bacterial cells.27 Rod-shaped bacteria such as150

E. coli have a mid-cell positioned nucleoid27,28 from which ribosomes are excluded, due to their151

large size.30 This exclusion leads to enrichment of ribosomes in the cell poles.27,32,33 Our data152

indeed confirms this (Fig. 2B). We note that RNA polymerase complexes localise in the nucleoid33
153

and that small metabolic proteins are homogeneously spread throughout the cytoplasm.26 These154

proteins are not excluded, because they are smaller than ribosomes, and small enough to diffuse155

freely through the nucleoid mesh.25,26,30156
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Figure 2: The mean growth rate and the ribosome concentration of newborn cells correlates negatively
with their size. (A) The normalized specific growth rate of newborn cells is shown as function of the normalised
birth size. Normalisation was done by division by the corresponding average value. (B) Three pairs of daughter
cells are shown with fluorescently-labelled ribosomes that preferentially localise outside of the nucleoid in cell poles
(Top). We quantified the ribosome concentration along the length axis (at fixed length intervals) of single cells
by determining the total fluorescence orthogonal to this axis (Middle). The resulting data is shown as function
of the normalised cell length (Bottom), which indicates the highest ribosome fluorescence at cell poles. Note that
at the cell ends, the fluorescence drops in the periplasmic region of cells, which is devoid of ribosomes. (C) The
concentration (total fluorescence divided by cell area) of the ribosome at birth and GFP are shown as function of
the birth size of newborn cells, indicating that smaller-than-average cells have indeed higher ribosome concentrations
than average-sized whereas larger-than-average cells have lower concentrations. The concentration of GFP proteins
in newborn cells is size independent, because they spread homogeneously, like metabolic proteins. The full lines are
fits of theoretical expectations for a cell that is either completely filled with a homogeneously spread protein (γ=1)
or with ribosomes that occupy about half of the cytosolic volume (γ=0.52). For the GFP protein data, cells were
grown on lactose as carbon source. (D) The normalised mean growth rate of newborn cells is plotted against their
ribosome content (as function of their birth size; results of Figure A and C combined), showing that the growth rate
of newborn cells correlates positively with their ribosome content, as expected6.
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If we assume (for simplicity) that all ribosomes are localised in cell poles, we propose a mechanism157

of partitioning that works as follows (Fig. 3A; we present the general case in the SI): When a158

mother cell divides, daughter cells receive the same number of ribosomes, regardless of their cell159

volume, because they each obtain two equally-sized poles, and ribosome copy-number fluctuations160

are negligible due to their high average values (up to several tens of thousands per cell26,33). In161

contrast, the number of metabolic proteins they receive is proportional to their cell volume (since162

they are spread homogeneously). Smaller-than-average newborn cells have a higher polar-volume163

fraction and will therefore have an excess of ribosomes (relative to metabolic proteins) compared164

to the average cell and grow faster at birth (because growth rate is proportional to the ribosome165

concentration6), while large newborn cells have a lower polar-volume fraction than average cells,166

and therefore a proportional ribosome shortage such that they grow slower at birth. This is indeed167

what we found when we correlated the cell length of newborn cells with their ribosome concentration168

(Fig. 2D).169

In contrast to the ribosome partitioning pattern, a constitutively expressed and homogeneously dis-170

tributed fluorescent protein (GFP), mimicking a small (metabolic) protein, shows no concentration171

relation with birth size (Fig. 2C). The measured relationship in Figure 2C matches the expected172

theoretical relationship of a rod-shaped cell (see SI) with 48% of its cytoplasm occupied by the173

nucleoid, which is a realistic value (cf. 46-75%33,36,37). We note that daughter cells of unevenly di-174

vided mothers will generally have different ribosome concentrations and as a result grow at different175

rates.176

We conclude that the asymmetric spatial localisation of ribosomes and metabolic enzymes causes a177

catabolic-anabolic imbalance at cell division that leads to a size-dependent variability of the growth178

rate of newborn cells. In the next section, we attempt to explain how single cells achieve compen-179

sation of the growth-rate disturbance at birth, to eventually attain an (almost) size-independent180

growth rate prior to the next division.181

Compensatory regulation can correct the metabolism-biosynthesis imbal-182

ance of newborn cells and restore growth-rate homeostasis at the end of183

the cell cycle184

Figure 2 confirmed that on average smaller-than-average newborn cells will be confronted with a185

relative excess of ribosomes over metabolic enzymes, while larger-than-average cells experience a186

shortage. We expect that this results in a size-dependent, transient imbalance between synthesis187

(metabolic) and consumption (ribosomal) of amino acids. In smaller-than-average cells, the imme-188

diate effect of a ribosome excess is a rise in the growth rate, since growth rate is proportional to189

protein synthesis rate which is proportional to ribosome content. This enhancement of the growth190

rate diminishes over time, because of the depletion of amino acids, as the metabolic protein con-191

centration of these cells is too low to keep up with the high amino acid demand of the excess192

ribosomes. In the larger-than-average cell, the reverse happens: the relative shortage of ribosomes193

reduces growth rate at birth. But, since these cells have excess metabolic proteins over ribosomes194

(so a relative ribosome shortage), the amino-acid supply rate exceeds the demand by ribosomes.195

This imbalance results in the rise of the amino-acid concentration in these cells and an increase196

in the protein-synthesis rate of ribosomes, leading, in turn, to an increase in growth rate. All of197

this happens on a seconds to minute (metabolic) time scale in single cells. Adjustment of protein198

concentrations occurs next on a slower time scale.199
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The transient metabolic imbalances described here also occur during nutrient up- and downshifts.200

In these cases, ppGpp-mediated regulatory machinery adjusts metabolic and ribosomal gene ex-201

pression, such that a balance is restored38–44.We propose that the same mechanism operates to202

restore imbalances that arise from transient internal fluctuations during growth and division cycles.203

In response to a relative excess of ribosomes (and amino acid shortage), ppGpp is known to rise and204

bind to RNA polymerase, lowering its affinity for ribosomal promoters, which leads to its enhanced205

allocation to catabolic promoters38. This increases synthesis of metabolic proteins (at the expense206

of ribosomes) and a restoration of the growth rate homeostasis at the end of the cell cycle. In the207

larger-than-average newborn cell the opposite happens: more ribosomes are made to counter the208

imbalance between amino acid synthesis (metabolism) and consumption (ribosomes), thereby also209

restoring growth rate homeostasis. In both of these scenarios, the specific growth rate of cells with210

deviating newborn sizes becomes size independent at the end of the cell cycle (Fig. 1C).211

Although our data (Fig. 1C) indicates that the growth rate at the end of the cell cycle becomes212

birth-size independent, the ribosome concentration is still dependent on birth size (Fig. S4). This213

indicates that restoration of a steady-state metabolism appears to take on average longer than a214

single cell cycle. Accordingly, the relaxation time for ribosome concentration homeostasis exceeds215

the generation time such that most newborn cells stem from mothers that have not yet fully com-216

pensated for ribosome deviations. This adds an additional dynamics that influences the metabolic217

imbalance of newborn cells, and suggests that two equally sized newborn cells can show distinct218

growth rates and different ribosome concentrations depending on the metabolic state of their di-219

viding mothers.220

Moreover, since both length (Fig. S3) and ribosomes (Fig. S4) deviations are not fully restored221

after a single cell cycle, we expect ancestral influences to have a characteristic effect. When cell222

width stays constant, the polar caps of smaller- and larger cells will be of equal size. Then their223

cell-length difference is only determined by their mid-cell length such that the polar caps take up224

a larger volume fraction in smaller cells than in large cells (Fig. S9). We therefore expect a larger225

effect of uneven cell division for cells born from small mothers, as the percentage of the mother cell226

filled with ribosomes is larger. This birth-size asymmetry we indeed observe in the growth rates of227

newborn cells in our data (Fig. 1C), small cells deviate more from average than large cells.228

A mathematical model reproduces the experimental data229

To test whether the above described effects of uneven division, nucleoid-excluded ribosomes, cell230

growth, the ppGpp-mediated regulation mechanism, and the ‘ancestral, mother effect’ (Fig. 3A-C)231

can indeed account for the dynamics observed in the experimental data, we developed a generic232

mathematical model. The model applies to rod-shaped bacteria that aim to use their ribosomes at233

optimal efficiency across conditions. These bacteria would then display a linear relation between234

their ribosomal protein fraction and growth rate41,46, which is valid for E. coli except at very low235

growth rates. It has been suggested that the control objective of ppGpp-mediated regulation of236

ribosome expression is to maintain the saturation degree of ribosomes constant, which leads to237

robust, close-to-optimal ribosome expression41,46 by optimal distribution of RNA polymerase over238

catabolic and ribosomal operons.38239

Our model simulates sequential cell cycles, during which a rod-shaped cell grows from birth to240

division, after which it divides. Birth sizes are sampled in agreement with our experimental data241

and conditional on the division length of the associated mother cell (Fig. S12). Uneven division of242

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.18.537336doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537336
http://creativecommons.org/licenses/by-nc-nd/4.0/


DNA
Ribosome

Metabolic Protein

Mother(M)

Daughter1 (D1) Daughter 2 (D2)

Asymmetric 
Division

Ribosome concentration

max0

G2
G1

G3

Division
Birth Division

Birth

Data Simulation

0.7 0.9 1.1 1.3
0.7

0.9

1.1

1.3

 LB, experimental

Normalized Age α

Time (min)

μv

L

sER

Normalized Age α

Data Simulation
Glu
LB

Data Simulation
Glu
LB

Lb
<Lb> 

0.75

0.825

0.9

0.975

1.05

1.125

1.2

1.275

<s
ER

|L
b,

α>
<s

ER
>

<s
ER

|L
b,

α>
<s

ER
>

Lbirth/<Lbirth>Lbirth/<Lbirth>Lbirth/<Lbirth>

<s
ER

bi
rt

h|L
bi

rt
h>

<s
ER

bi
rt

h>

<[
m

et
ab

.p
ro

te
in

] bi
rt

h|L
bi

rt
h>

<[
m

et
ab

.p
ro

te
in

] bi
rt

h>

<[
rib

os
om

e]
bi

rt
h|L

bi
rt

h>
<[

rib
os

om
e]

bi
rt

h>

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

 LB,  model

0.7 0.9 1.1 1.3
0.7

0.9

1.1

1.3

0.7 0.9 1.1 1.3
0.7

0.9

1.1

1.3

0.0 0.2 0.4 0.6 0.8

0.8

1.0

1.2

1.4 Glucose,  model

Optimal Distribution

ppGppppGpp 
1

2

3

1

3

RIBOSOMES

METABOLISM

RIBOSOMES

METABOLISM

RIBOSOMES

METABOLISM

4000 4200 4400 4600 4800 5000

Figure 3: Generic mathematical model captures the experimental data. (A) Uneven division of a
mother cell with polar ribosomes and homogeneously spread metabolic enzymes leads to daughter cells with iden-
tical metabolic enzyme concentrations, but deviating ribosome concentrations. Small newborn cells tend to have
higher ribosome concentrations than large newborn cells. (B) In the model, ppGpp regulates the ratio of ribosomes
to metabolic enzymes, by steering the saturation of ribosomes with their substrates to a fixed setpoint. (C) Since
restoring the optimal metabolism versus biosynthesis rates (as explained in B) takes more than one cell cycle, mother
cells will generally not yet be in a steady state at their division. Their daughters therefore inherit the perturbation
consequences of previous generations, affecting their growth rate at birth. (D-F) A comparison of the experimental
data for differently sized cells at birth, to averages of 50000 consecutive cell-cycle simulations. For ribosomes in D,
metabolic enzymes in E and sER in F. (G) Birth-to-division growth rate trajectories for different length bins, from
our mathematical model simulation with 50000 rod-shaped cells, based on cell-size dependent ribosome partitioning
(A), saturation set-point control of ribosome expression (B), and the non-steady state mother effect (C). This figure
qualitatively captures the experimental data shown in Fig. 1C. (H) A panel of three plots showing representative
simulated trajectories of volumetric growth rate (µV ), elongation rate and cell length. For the growth rate plot, the
dashed line indicates the average growth rate for the entire simulation. For the length plot, the dashed line indicates
50% of the length of the associated mother cell. (I) Comparison and validation of experimental data with a model
prediction. The growth-rate effect of polar localisation of ribosomes is less in large cells, because a relatively large
fraction of ribosomal is located mid-cell, along the nucleoid33,45, which reduces the size-dependent asymmetry in
ribosome and metabolic protein concentration in non-average-sized, newborn cells.
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a mother cell will cause a birth-length dependent perturbation of the ribosome concentration in the243

newborn cell (SI eq. 11), while its metabolic protein concentration equals that of its mother. These244

perturbations are compensated for by a ppGpp-regulated mechanism that modulates metabolic and245

ribosome expression to steer the substrate-saturation of ribosomes to a desired set-point level.41,46246

Thousands of sequential cell cycles were simulated (Fig. 3H) to capture the effect that cells are247

typically not born from mothers in a homeostatic state, but inherit instead the effects of pertur-248

bations of previous generations (Fig. 3C). This model is capable of qualitatively reproducing the249

compensatory dynamics of the growth-rate perturbation that we observe in the experimental data250

of E. coli (Fig. 1C and 3G).251

The experimental data (Fig. 1C) and the model simulations (Fig. 3G) both show an increase in252

the specific elongation rate of cells close to the end of the cell cycle. This is most likely due to253

the invagination of the cell wall during septum formation and cell growth at a constant volumetric254

growth rate such that the length growth rate increases when the diameter of the constricting,255

mid-cell region becomes smaller to eventually approaches zero, after which division occurs (Fig.256

S10).257

Experimental confirmation of a model prediction258

Our model makes a testable prediction about the behaviour of long, rod-shaped cells. It predicts259

that the magnitude of the growth rate perturbation at birth depends on the fraction of the ribosomes260

found in cell poles versus those that surround the nucleoid in the non-polar, mid-cell region of the261

cell. In a long, rod-shaped cell, where the polar volume is only a small portion of the total cell262

volume, the ribosomes are still excluded from the nucleoid, but many of them now reside along side263

the nucleoid, in the mid-cell region. The model predicts that under conditions when cells are long,264

uneven division perturbs the ribosome concentration in non-averaged-sized newborn cells less than265

in cells that are grown under conditions when the average cell is smaller (and the polar volume266

fraction is larger) (Fig. 3I vs G). Thus, we would not expect to see similar significant size-dependent267

growth-rate perturbations at cell birth when cells are grown in conditions where they are large on268

average.269

To test this, we grew E. coli on a complex rich medium (Luria broth; LB) where the average cell270

length is 2 times larger and cells are 1.5 times wider than on a minimal medium with glucose as271

a carbon source (Tables S1-S3). Indeed, we find now that both the growth rate (Fig. 3F and 3I)272

and the ribosome concentration at birth (Fig. 3D and S4B) are no longer size dependent, with273

relations resembling those seen for a homogeneously dispersed protein (Fig. 2C, 3E and S4B and274

C). This behaviour we can reproduce in the model by keeping all parameters the same, except275

for the division length of the cell, the relative time of septum cap formation16 and fraction of the276

cylindrical cytoplasm filled with ribosomes.277

Discussion278

A defining characteristic of balanced growth is that the population averages of cell lengths at birth279

and division, generation times and growth rate along the cell cycle are time invariant (homeo-280

static)10, despite random fluctuations in these quantities. As a consequence, the frequencies of281

small newborn cells that grow faster than average do not increase over time, nor does the frequency282

of larger than average cells decrease. In this manner, homeostasis of cell size (birth, average and283
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division size) is preserved. The specific growth rate of a cell population at balanced growth is also284

constant. Here we showed that at a single cell level this quantity shows large perturbations at cell285

birth due to an imbalance in the rate of metabolism and biosynthesis, caused by an asymmetry in286

the localisation of ribosomes and metabolic proteins in single cells.287

The work of Gray et al.27 highlights the omnipresence of mid-cell positioning and compaction of288

bacterial nucleoids, suggesting that the phenomenon we described in this paper may be widespread289

among bacteria. Our work suggests that bacteria that experience exclusion of ribosomes from their290

nucleoid are prone to show growth-rate perturbations at cell birth. A key parameter is the fraction291

of ribosomes in the cell poles. If most of the ribosomes surround the mid-cell nucleoid, then the292

number of ribosomes that a daughter cell receives will no longer be determined by the number293

of ribosomes in its cell poles, but rather, will start to correlate with total cellular volume. This294

happens in cells that are very long with only a small fraction of their volume being polar, as we295

showed for cells growing on complex medium (Fig. 3I). We therefore also estimate that the cell296

with a pole volume fraction above a critical value, such as cocci or long rod-shaped cells, no longer297

display these growth-rate deviations at birth.298

Conclusion299

We have shown that the spatial localisation of ribosomes and asymmetrical cell division causes large300

perturbations of the specific growth rate in newborn rod-shaped bacterial cells. This implies that301

it is unlikely that single bacterial cells exhibit true balanced growth with steady-state metabolism302

and a constant growth rate along their cell cycle, even though a population of them can show a303

constant growth rate. This highlights the importance of considering the implications of steady-304

state assumptions when studying single cell behaviour. Finally, it is intriguing that something as305

fundamental as an inevitable entropic force (leading to nucleoid-exclusion of ribosome), underlies306

a systematic perturbation of cells at division which then necessitates persistent, compensatory307

control. A steering mechanism based on efficient usage of ribosomes and metabolic enzymes, by308

prevention of overexpression, appears a robust strategy for restoration of a balanced growth rate.309

The omnipresence of nucleoid-excluded ribosomes across bacteria suggests that the mechanism we310

report may turn out to be widespread among bacteria.311
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Methods326

Terminology and abbreviations327

Table 1: Notations used in this work.

Notation Description Units
a cell age, time elapsed since birth of a cell h
idt interdivision time h
α Normalised cell age, a

idt
, of a cell 0-1

L Length of a cell µm
Lb Birth length of a cell µm
Ld Division length of a cell µm
µ Population specific growth rate h−1

sER∣α Specific elongation rate, 1
L

dL
dt

, of a cell at normalized age α h−1

⟨sER∣α⟩ Average sER, over all cells of normalized age α h−1

⟨sER⟩ average sER of single cells h−1

⟨x∣α⟩ x conditioned on α averaged over singles cells [x]
⟨x∣Lb, α⟩ x subsetted by Lb, conditioned on α averaged over the Lb subset [x]
Fluo Sum of all pixel fluorescence intensities inside a cell AU

[Fluo] Average pixel fluorescence intensity, f
Npixels

, inside a cell AU

Strain, medium and culturing328

The MG1655 derived MUK21 Escherichia coli strain (see47 for details) was kindly provided by D.329

Kiviet and contains a genome integrated GFP gene under the control of the wild-type lac promoter.330

The MG1655 derived QC101 E. coli strain (see32 for details) was kindly provided by S. Sanyal and331

contains a fusion of the red fluorescent protein mCherry with the ribosomal protein L9.332

All strains were revived from glycerol stock by inoculating directly into M9 minimal medium (42.2333

mM Na2HPO4, 22 mM KH2PO4, 8.5 mM NaCl, 11.3 mM (NH4)2SO4, 2.0 mM MgSO4, 0.1 mM334

CaCl2), supplemented with trace elements (63 µM ZnSO4, 70 µM CuCl2, 71 µM MnSO4, 76 µM335

CoCl2, 0.6 µM FeCl3), 0.2 mM uracil, 1 mM Thiamine (all chemicals from Sigma) and 1 mM336

glucose as carbon source. At intervals of 3 hours, pre-cultures were transferred twice to fresh337

medium containing either M9 + 10 mM Lactose, M9 + 20 mM Glucose or LB. Additionally, 1338

mM IPTG or 25 µg/ml Kanamycin was included as indicated (see Table S1). After 2 transfers,339

an overnight culture was inoculated to a final optical density (OD, 600 nm) of ∼ 2.5 × 10−6 for the340

Glucose and Lactose experiments, and ∼ 1 × 10−9 for the LB experiments. After 16 hours (Glucose341
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and Lactose) and 13 hours (LB), the cultures were again diluted to an OD600 of ∼ 2.5×10−3. Once342

the culture reached an OD600 of 0.01, 2 µL was transferred to a 1.5% low melt agarose pad (∼ 5343

mm2) freshly prepared with either M9 + 0.2 mM Uracil, 1 mM Thiamine and Carbon source (10344

mM Lactose or 20 mM Glucose, i.e. a total of 120 C-mM) or LB, and 1 mM IPTG or 25 µg/ml345

Kanamycin as indicated (see Table S1).346

All cultures were incubated at 37 °C, in an orbital shaker at 200 rpm. Once seeded with cells,347

agarose pads were inverted and placed onto a glass bottom microwell dish (35 mm dish, 14 mm348

microwell, No. 1.5 coverglass) (Matek, USA), which was sealed with parafilm and immediately349

taken to the microscope for time-lapse imaging.350

Microscopy351

Imaging was performed with a Nikon Ti-E inverted microscope (Nikon, Japan) equipped with352

100X oil objective (Nikon, CFI Plan Apo λ NA 1.45 WD 0.13), Zyla 5.5 sCmos camera (Andor,353

UK), brightfield LED light source (CoolLED pE-100),fluorescence LED light source (Lumencor,354

SOLA light engine), GFP (Excitation: 460-500 nm, Dichroic: 505 nm LP, Emission: 510-560 nm)355

and mCherry (Excitation: 560-580 nm, Dichroic: 600 nm LP, Emission: 610 nm LP) filter sets,356

computer controlled shutters, automated stage and incubation chamber for temperature control.357

Temperature was set to 37 °C at least three hours prior to starting an experiment. Nikon NIS-358

Elements AR software was used to control the microscope.359

Brightfield images (80 ms exposure time at 3.2% power) were acquired every minute for Glucose360

and Lactose experiments and every 30 s for LB experiments. GFP fluorescence images (1 second361

exposure at 25% power) were acquired every 10 minutes for strain Muk21. For strain QC101,362

mCherry fluorescence images (200 ms at 50% power) where acquired every 1 and 2 minutes for363

growth on LB and Glucose, respectively.364

Quantification and Statistical analysis365

Analysis of time-lapse microscopy movies366

Time-lapse data were processed with custom MATLAB functions developed within our group20,35.367

Briefly, an automated pipeline segmented every image, identifying individual cells and calculating368

their spatial features. Cells were assigned unique identifiers and were tracked in time, allowing369

for the calculation of time-dependent properties including cell ages, cell sizes (areas and lengths),370

elongation rates and generation times. In addition, the genealogy of every cell was recorded. The371

fluorescence values that we report here are the sum of all pixel intensities in the area of a cell372

contour. As a measure for fluorescence concentration we calculated the average pixel intensity in373

the aread of a the cell countour (i.e. sum of all pixel intensities divided by number of pixels).374

Several data filters were applied to produce a coherent data set. Firstly, data was filtered to retain375

only cells for which complete cell cycles, i.e. birth and division events, were observed. Therefore,376

cells present at the start of an experiment were eliminated, as their births were not observed.377

Similarly, all cells with an incomplete cell cycle at the end of the experiment are removed. Also,378

any cells that display a length decrease within the first 10 % of their cell cycle are flagged as379

segmentation errors. These cells along with their sister cell are excluded from further analysis.380

Lastly, we observed some filamentation in the experiment with strain QC101 growing on LB. For381
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this experiment we applied several additional filters to remove filamenting cells and their progeny,382

these included: cells with a division length > 2.5 × their birth length, cells with an interdivision383

time > 2 × the population average, cells with an interdivision time of < 10 min, cells with a birth384

length > 10 µm (∼ 3 × population average). In total, these criteria resulted in 594 (filamenting cells385

and their progeny) out of 6217 cells being excluded. See Tables S1-S3 for a summary of total cell386

numbers and average characteristics for each experiment.387

Calculation of population specific growth rate388

The specific growth rate of the population is calculated from the slope of a fitted linear function to389

the sum of the logarithm-transformed (Ln) lengths of all single cells.390

Binning by normalized age and calculation of specific elongation rate391

The normalized age of a cell is is calculated by dividing the absolute age (min) by the interdivision392

time (min). Therefore, at birth the normalized age is 0 and at division it is 1. To calculate the393

specific elongation rate of a single cell as a function of its normalized age, we used a piecewise394

approach by binning the normalized time series into 10 age bins of width 0.1 each. Next, the Ln-395

difference of the first and last data point of each age bin was taken and divided by 1
10
× interdivision396

time to calculate the specific elongation rate; this yielded 10 sER values per cell cycle for every397

single cell.398

Binning by birth length399

For the analysis of birth size-dependent cell cycle dynamics, cells were binned into classes depending400

on their length at birth. For each experiment, the birth length of singles cells is rescaled by division401

with the average birth length of all cells. Next, cells are binned into bins with a relative width402

of 0.075. Only bins with at least 100 individual cells are retained for further analysis. See Tables403

S1-S3 for details on the absolute and relative size ranges the bins, and cell numbers per bin, for404

each experiment.405

Growth model406

Simulations for the growth model were done using Mathematica (Wolfram research). Model details407

are provided in the Supplementary information.408
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