

1 **Number of words: 6,269**

2

3 **Number of figures: 4**

4

5 **Number of tables: 3**

6

7

8 ***DMC1* stabilizes synapsis and crossover at high and low temperatures during wheat**

9 **meiosis**

10

11 **Tracie N. Draeger¹*, María-Dolores Rey², Sadiye Hayta¹, Mark Smedley¹, Azahara C.**

12 **Martín³ and Graham Moore¹**

13

14 1 John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

15 2 University of Córdoba, UCO-CeiA3, Córdoba, Spain

16 3 Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, Spain

17

18 **Correspondence:**

19 Tracie Draeger

20 tracie.draeger@jic.ac.uk

21

22 **Abstract**

23 Effective chromosome synapsis and crossover during meiosis are essential for fertility,
24 especially in grain crops such as wheat. These processes function most efficiently in wheat at
25 temperatures between 17-23 °C, although the genetic mechanisms for such temperature
26 dependence are unknown. In a previously identified mutant of the hexaploid wheat reference
27 variety 'Chinese Spring' lacking the long arm of chromosome 5D, exposure to low
28 temperatures during meiosis resulted in asynapsis and crossover failure. In a second mutant
29 (*ttmei1*), containing a 4 Mb deletion in chromosome 5DL, exposure to 13 °C led to similarly
30 high levels of asynapsis and univalence. Moreover, exposure to 30 °C led to a significant, but
31 less extreme effect on crossover. Previously, we proposed that, of 41 genes deleted in this 4
32 Mb region, the major meiotic gene *TaDMC1-D1* was the most likely candidate for
33 preservation of synapsis and crossover at low (and possibly high) temperatures. In the current
34 study, using RNA-guided Cas9, we developed a new Chinese Spring CRISPR mutant,
35 containing a 39 bp deletion in the 5D copy of *DMC1*, representing the first reported CRISPR-
36 Cas9 targeted mutagenesis in Chinese Spring, and the first CRISPR mutant for *DMC1* in
37 wheat. In controlled environment experiments, wild-type Chinese Spring, CRISPR *dmc1-D1*
38 and backcrossed *ttmei1* mutants were exposed to either high or low temperatures during the
39 temperature-sensitive period from premeiotic interphase to early meiosis I. After 6-7 days at
40 13 °C, crossover decreased by over 95% in the *dmc1-D1* mutants, when compared with wild-
41 type plants grown under the same conditions. After 24 hours at 30 °C, *dmc1-D1* mutants
42 exhibited a reduced number of crossovers and increased univalence, although these
43 differences were less marked than at 13 °C. Similar results were obtained for *ttmei1* mutants,
44 although their scores were more variable, possibly reflecting higher levels of background
45 mutation. These experiments confirm our previous hypothesis that *DMC1-D1* is responsible
46 for preservation of normal synapsis and crossover at low and, to a certain extent, high
47 temperatures. Given that reductions in crossover have significant effects on grain yield, these
48 results have important implications for wheat breeding, particularly in the face of climate
49 change.

51

52 **Key message**

53 The meiotic recombination gene *DMC1* on wheat chromosome 5D preserves normal
54 chromosome synapsis and crossover during periods of high and low temperature.

55

56 **Keywords**

57 Hexaploid wheat, *DMC1*, *Ltp1*, meiosis, crossover, high temperature, low temperature,
58 CRISPR

59

60 **Author contribution statement**

61 TD grew and maintained the plants, made the crosses, carried out the KASP genotyping,
62 sampled anthers and collected metaphase I images for scoring the phenotype, produced the
63 corresponding figure and wrote the manuscript. M-DR scored chromosome crossover,
64 performed the statistical analysis and produced the graphs. SH and MS developed the
65 CRISPR *Tadmc1-D1* mutant in 'Chinese Spring' using RNA-guided Cas9 and produced the
66 sequence chromatograms figure; GM provided the concept, and with AM, provided thoughts
67 and guidance, and revised and edited the manuscript.

68

69 **Conflict of interest**

70 The authors declare that they have no conflict of interest.

71

72 **Introduction**

73 Like many plants, wheat (*Triticum aestivum* L) is highly sensitive to temperatures that fall
74 outside the range typically experienced during a growing season. The optimum temperature
75 range for wheat growth over an entire season is generally considered to be around 17-23 °C,
76 with temperatures above or below this range significantly reducing grain yield (Porter and
77 Gawith, 1999). The extent to which temperature stresses affect yield is dependent on
78 developmental stage, with reproductive stages more sensitive to high temperatures than
79 vegetative growth stages (Fisher and Maurer, 1976). Even quite short periods of high
80 temperature (20-24 hours at 30 °C) during meiosis can reduce grain number (Saini and
81 Aspinall, 1982; Draeger and Moore, 2017). Meiosis has also been identified as the stage most
82 sensitive to low temperature stress (Thakur et al., 2010), with reductions in grain yield
83 occurring when low temperatures coincide with the 'booting' stage, which broadly
84 corresponds to meiosis (Ji et al., 2017).

85

86 Meiosis is a highly dynamic process during which parental chromosomes pair and recombine.
87 It is essential for gamete formation in sexually reproducing organisms. During early
88 meiosis, the parental chromosomes align alongside each other as pairs, enabling a
89 proteinaceous structure, the synaptonemal complex (SC), to assemble between them, linking
90 the chromosomes along their entire lengths in a process called synapsis (Page and Hawley,
91 2004). The SC is thought to provide the structural framework for meiotic recombination to
92 take place. Recombination initiates by programmed double-strand breaks (DSBs) in the
93 DNA. A small minority of these are repaired as crossovers, forming physical connections
94 between each chromosome pair, enabling genetic information to be reciprocally exchanged,
95 and potentially creating new advantageous allelic combinations. These physical connections
96 can be seen cytologically as chiasmata. Bread wheat is an allohexaploid ($2n = 6x = 42$),
97 made up of three related (homeologous) sub-genomes (A, B and D). During wheat meiosis,
98 chromosome behaviour is tightly controlled by the *TaZIP4-B2* (*Ph1*) gene, which promotes
99 synapsis and crossover between homologous chromosomes (homologs), rather than between
100 homeologous chromosomes (homeologs) from related genomes (Riley and Chapman, 1958;

101 Sears and Okamoto, 1958; Martín et al., 2014 and 2017; Rey et al., 2017; Draeger et al.,
102 2023). This allows the three genomes to behave as separate diploids during meiosis, thus
103 maintaining genome stability and fertility.

104
105 Assembly of the SC completes at pachytene, and by diplotene crossovers are fully formed.
106 The SC then disassembles, leaving homologs connected only by their chiasmata. At
107 metaphase I, the homolog pairs align on the equatorial plate, and the chiasmata connecting
108 the chromosomes can be seen using light microscopy. At this stage, in hexaploid wheat, the
109 chromosomes of each parent are normally bound together as 21 bivalent pairs, most forming
110 as ring bivalents with two chiasmata linking them, one in each arm, usually towards the distal
111 ends. Occasionally, the homologs are bound together by chiasmata in one arm only, forming
112 a rod bivalent. In wheat, on average, there are around 2.3 crossovers per homolog pair
113 (Miller and Reader, 1985). At least one crossover (the ‘obligate’ crossover) must form
114 between each bivalent pair to ensure accurate chromosome segregation and balanced
115 gametes in daughter cells (Zickler and Kleckner, 1999; Jones and Franklin, 2006), which is
116 vital for maintaining genome stability and fertility.

117
118 Assembly of the SC is a highly temperature-sensitive process (Bilgir et al., 2013). Both high
119 and low temperatures can lead to disruption of synapsis, resulting in unpaired univalent
120 chromosomes that segregate randomly or are lost completely (reviewed in Bomblies et al.,
121 2015 and Morgan et al., 2017). Relatively small changes in temperature can alter the
122 frequency and distribution of crossovers (Elliott, 1955; Dowrick, 1957; Bayliss and
123 Riley, 1972a; Higgins et al., 2012). In wheat, high and low temperatures have been found to
124 generally decrease chiasma frequency. In the wheat cultivar ‘Chinese Spring’, this
125 temperature sensitivity is under the genetic control of a major gene located on chromosome
126 5D (Riley, 1966). In Chinese Spring plants lacking chromosome 5D, numbers of chiasmata
127 progressively decrease as the temperature falls below the optimum range (Riley, 1966;
128 Bayliss and Riley, 1972a). Chiasma frequency is greatly reduced at 15 °C, and pronounced
129 chromosome pairing failure occurs at 12 °C, resulting in complete male sterility (Riley, 1966;
130 Hayter and Riley, 1967). This reduction in chiasma frequency is due to failure of
131 chromosome pairing at zygotene, although the temperature-sensitive phase is earlier, during
132 premeiotic interphase, prior to DNA synthesis (Bayliss and Riley, 1972b).

133
134 These studies led to the proposal that there must be a gene on chromosome 5D that stabilizes
135 chromosome pairing at low temperatures. This putative gene, named *low-temperature*
136 *pairing* (*Ltp*) (Hayter and Riley, 1967), was further defined to the long arm of chromosome
137 5D (Hayter, 1969) and later renamed *Ltp1* (Queiroz et al., 1991). In plants lacking
138 chromosome 5D, chiasma frequency also appears to decrease progressively at temperatures
139 of ~30 °C and above (Bayliss and Riley, 1972a), suggesting that chromosome 5D may also
140 be associated with tolerance to high temperatures. However, this suggestion was based on the
141 scoring of a few cells only, because high temperature treatments for 3 days made the
142 chromosomes too sticky for accurate scoring.

143
144 More recently, we used wheat (Chinese Spring) lines with terminal deletions of 5DL to
145 delimit the *Ltp1* locus to the proximal half of chromosome 5DL (Draeger et al., 2020). KASP
146 markers specific to 5DL, that mapped within this delimited region, were used to screen ~2500
147 gamma-irradiated deletion lines, from which 16 plants were identified with 5DL deletions.
148 Mapping and candidate gene identification were facilitated by resources including the
149 Chinese Spring IWGSC RefSeq v1.0 genome assembly (International Wheat Genome
150 Sequencing Consortium, 2018), the Wheat 820 K Axiom® Breeders’ Array probe set

151 (Winfield et al., 2015) and the Ensembl Plants database (Bolser et al., 2016). The 16 mutant
152 plants were then exposed to low temperature (13 °C) for 7 days, during a period lasting from
153 premeiotic interphase to early meiosis I. From this, we identified a deletion mutant with
154 meiotic chromosomes exhibiting extremely high levels of asynapsis and chromosome
155 univalence after the low temperature treatment. This was very similar to the phenotype
156 previously described for *Ltp1* when the whole of chromosome 5D was absent. Exposure of
157 this same *ltp1-like* deletion mutant to 30 °C for 24 hours during the same developmental
158 period, also led to a reduced number of crossovers and increased univalence, although the
159 effect was less pronounced than that observed following exposure to 13 °C. However, as the
160 deletion had a clear effect on chromosome pairing at 30 °C as well as at 13 °C, we
161 renamed the mutant line *temperature tolerant meiosis 1* (*ttmei1*), to reflect its reduced
162 tolerance to high temperature in addition to its loss of the low temperature pairing gene *Ltp1*.
163

164 Using KASP genotyping, we then mapped the *ttmei1* deletion to a 4 Mb region of
165 chromosome 5DL. Of the 41 genes deleted in this region, 18 were expressed during meiosis,
166 of which 12 were high confidence genes. Of these, the strongest candidate for the observed
167 effects on meiosis was the D-genome homeolog of the meiotic recombination gene *DMC1*
168 (*TaDMC1-D1*), which had a ten-fold higher expression level in meiotic tissues compared
169 with non-meiotic. For the remaining 17 genes expressed during meiosis, expression was
170 proportionally higher in non-meiotic tissues, and none had any previously known meiotic
171 function. Moreover, *TaDMC1-D1* was expressed most highly during early prophase I, which
172 in wheat coincides with the ‘telomere bouquet’ stage, when synapsis is initiated (Martín et
173 al., 2017). Consistent with this, in the *ttmei1* mutant, synapsis was abnormal after exposure to
174 13 °C and did not complete. Therefore, we proposed that *DMC1-D1* was probably
175 responsible for the *Ltp1/ttmei1* phenotype.
176

177 *DMC1* (Disrupted Meiotic cDNA 1) is a recombinase that plays a central role in meiotic
178 recombination, performing homology search, strand invasion and strand exchange during
179 repair of meiotic DSBs. The process of strand invasion is fundamentally dynamic, which
180 makes it vulnerable to disruption by temperature stress. In the current study, we have
181 developed a CRISPR *dmc1-D1* mutant in the hexaploid wheat variety Chinese Spring. Until
182 recently, very few wheat genotypes have been transformable, but the development of a GRF-
183 GIF chimeric protein (Debernadi et al., 2020) has addressed this issue, and this technology,
184 combined with our efficient transformation system (Hayta et al., 2019, 2021), has allowed us
185 to generate the first CRISPR mutants in Chinese Spring. Chinese Spring is used as the
186 hexaploid wheat reference genome by most wheat researchers, as it has a fully annotated
187 sequenced genome (International Wheat Genome Sequencing Consortium, 2018), with all
188 data integrated into the Ensembl Plants database (Bolser et al., 2016).
189

190 We have also backcrossed *ttmei1* mutants with wild-type Chinese Spring plants, to reduce
191 background mutations. We have exposed the *ttmei1* and CRISPR *dmc1-D1* mutants to high
192 (30 °C) and low (13 °C) temperatures during the sensitive period of premeiosis to meiosis I,
193 to determine whether the D-genome copy of *DMC1* has a stabilizing effect on chromosome
194 synapsis and crossover in wheat.
195

196 Materials and Methods

197 Plant materials

198 Mutants for *DMC1-D1* (TraesCS5D02G141200) and *TTMEI1* were derived from the
199 hexaploid wheat cultivar ‘Chinese Spring’ (*Triticum aestivum L.*, 2n = 6x = 42; AABBDD),
200 which was also used as a wild-type control. The CRISPR *Tadmc1-D1* mutant was developed

201 within the Crop Transformation Facility (BRACT) at the John Innes Centre, using RNA-
202 guided Cas9. The *Tattmei1* deletion mutant was generated previously by gamma irradiation
203 (Draeger et al., 2020). *Tattmei1* has a 4 Mb interstitial deletion on chromosome 5DL, with 41
204 genes deleted, including *TaDMC1-D1*. For the current study, *ttmei1* M₂ plants were
205 backcrossed twice with Chinese Spring to produce Bc₂F₂ plants with fewer background
206 mutations.

207

208 **Production of *Tadmc1-D1* CRISPR mutants using RNA-guided Cas9** 209 **Plasmid assembly**

210 The Chinese Spring genomic DNA sequences of *TaDMC1* homeologs were aligned using the
211 software Geneious Prime, version 2020.2.4 (Biomatters). Two guide RNAs were designed
212 targeting the D genome copy of *TaDMC1*, denoted as TaDMC1-D Guide1: 5'-
213 GCTCATGGAGGCCGACCGGG-3' and TaDMC1-D Guide2: 5'-
214 CAAGCAGCTCATCAAGCGTT-3'. The selected guides were ordered as forward and
215 complementary oligonucleotides, with 5' overhangs to enable cloning. Using standard
216 Golden Gate MoClo assembly (Werner et al., 2012), the guide RNAs were cloned between
217 the TaU6 promoter and the guide scaffold for *Streptococcus pyogenes* Cas9, in the Level 1
218 acceptor plasmids pL1P3-TaU6 (Addgene #165599) and pL1P4-TaU6 (Addgene #165600),
219 as described in Smedley et al., (2021). These Level 1 plasmids were sequenced, before
220 proceeding to the Level 2 assembly. Level 2 assembly was performed using the Level 2
221 acceptor pGoldenGreenGate-M (pGGG-M) (Addgene #165422) binary vector (Smedley et
222 al., 2021). The Level 1 plasmids pL1P1OsActinP:hpt-int:35sT selection cassette (Addgene
223 #165423), pL1P2OsUbiP:Cas9:NosT (Addgene #165424), pL1P5ZmUbiP:GRF-GIF:NosT
224 (Addgene #198046) and guide cassettes were assembled into pGGG-M along with end linker
225 pELE-5 (Addgene #48020). The resulting plasmid was named pGGG-TaDMC1-D and
226 sequenced to ensure authenticity before transferring to *Agrobacterium*.

227

228 **Preparation of *Agrobacterium* for transformation**

229 The hypervirulent *Agrobacterium tumefaciens* strain AGL1 (Lazo et al., 1991) was used for
230 the wheat transformation experiments. The pGGG-TaDMC1-D vector was electroporated
231 into *A. tumefaciens* AGL1 competent cells, as previously described (Hayta et al., 2021), and
232 was co-electroporated with the helper plasmid pAL155 (Hayta et al., 2019). Single colonies
233 of *Agrobacterium* AGL1, containing the pGGG-TaDMC1-D vector, were inoculated into
234 10 ml of LB (Bertani, 1951) liquid medium containing kanamycin (50 µg mL⁻¹) and
235 rifampicin (50 µg mL⁻¹), and incubated at 28 °C, shaking at 200 rpm for ~65 hours. A
236 modified method of Tingay et al., (1997) was used to prepare *Agrobacterium* standard
237 inoculums for transformation, as previously described by Hayta et al., (2021). Briefly, equal
238 quantities of 30% sterile glycerol and *Agrobacterium* culture were mixed by inverting,
239 producing 400 µl aliquots of standard inoculums in 0.5 ml Eppendorf tubes which were then
240 frozen and stored at -80 °C until required.

241

242 **Agrobacterium transformation of Chinese Spring**

243 Wheat transformation was performed as previously published by Hayta et al., (2021), with
244 slight modification. The construct incorporated GRF4-GIF1 technology (Debernardi et al.,
245 2020). Briefly, Chinese Spring plants were grown in a controlled environment room under a
246 long-day photoperiod (16 h at 600 µmol m⁻² s⁻¹ light, at 20 °C day and 16 °C night). Wheat
247 spikes were collected ~14 days post anthesis (early milk stage GS73) when immature
248 embryos were 1-1.5 mm in diameter. Under aseptic conditions, immature embryos were
249 isolated from surface sterilized grain.

250

251 Isolated immature embryos were pre-treated by centrifugation in liquid medium, prior to
252 *Agrobacterium* inoculation. Embryos were transferred to co-cultivation medium, scutellum
253 side up, and incubated at 24 °C in the dark for 3 days co-cultivation. Embryogenic axes were
254 excised and discarded, before the embryos were transferred to wheat callus induction (WCI)
255 medium without selection, for 5 days at 24 °C in the dark. Embryos were then transferred to
256 WCI containing 10 mg L⁻¹ hygromycin, and incubated at 24 °C in the dark, subsequently
257 being subcultured onto fresh WCI with hygromycin selection at 10 mg L⁻¹, every 2 weeks
258 over the next 5 weeks. For the final (5th) week on WCI, cultures were maintained in low light
259 conditions at 24 °C. Cultures were then transferred onto wheat regeneration medium (WRM),
260 supplemented with 2.5 mg L⁻¹ zeatin and 10 mg L⁻¹ hygromycin, in deep petri dishes (90 mm
261 diameter × 20 mm), and cultured under full fluorescent lights (100 µM m⁻² s⁻¹) with a 16 h
262 photoperiod. Regenerated plantlets were transferred to De Wit culture tubes (Duchefa-
263 Biochemie, W1607), containing rooting medium supplemented with 20 mg L⁻¹ hygromycin.
264 After approximately 10 days, rooted plants were transferred to soil (cereal mix in 24CT trays)
265 and acclimatized as in Hayta et al., 2019. The transgenic plants were maintained under the
266 same growing conditions as donor material, with a long-day photoperiod (16 h at 600 µmol
267 m⁻² s⁻¹ light, at 20 °C day and 16 °C night). Transgenesis was confirmed and transgene copy
268 number analysis performed using Taqman qPCR and probe as described in Hayta et al.,
269 (2019). Values obtained were used to calculate transgene copy number, according to
270 published methods (Livak and Schmittgen, 2001).

271

272 Screening for gene edits

273 Six T₀ lines were chosen for analysis, and 12 plants per T₁ line were grown and analysed. A
274 further 32 plants (T₂) from one T₁ edited plant were analysed for the presence of gene edits.
275 Two sets of primers were designed to amplify the two target regions within the *TaDMC1-D1*
276 CDS. For amplicon 1 (TaDMC1-D Guide1 target area), primers were TaDMC1-D F1 5'-
277 GAGCGTGGGCTTGGTGTAC-3' and TaDMC1-D R1 5'-GAGGCAGGAAAGCACCCGGG-
278 3'. For Amplicon 2 (TaDMC1-D Guide2 target area), TaDMC1-D F2 5'-
279 TCGGATAGAATCTTCTGAAGTTGTGTGA-3' and TaDMC1-D R2 5'-TCAATCCCT
280 CCTTCAAATTACGC-3' were used. PCR amplification was performed using GoTaq®
281 Master Mix (Promega, M7122), with the following conditions: 3 min 94 °C, 40 cycles of 30 s
282 at 94 °C, 15 s at 58 °C, 1 min at 72 °C and 5 min at 72 °C. Amplicons were Sanger sequenced
283 directly (using their respective forward primers) by the Molecular Genetics Platform at the
284 John Innes Centre.

285

286 KASP genotyping of *ttmei1* mutants

287 Wild-type Chinese Spring and *ttmei1* mutant plants were grown to the 2-3 leaf stage, and
288 DNA extracted from leaf material, as in Draeger et al. 2020 (adapted from Pallotta et
289 al., 2003). Final DNA template concentrations were between 15-30 ng. KASP genotyping
290 was performed using 5D chromosome-specific KASP primers with homeologous SNPs at the
291 3' end, previously selected from the Wheat Breeders' 820 K Axiom® array (Winfield et al.,
292 2015), available at www.cerealsdb.uk.net, and aligned with the Chinese Spring reference
293 sequence assembly, IWGSC RefSeq v1.0, (International Wheat Genome Sequencing
294 Consortium, 2018). Two KASP primers were used to identify the *ttmei1* deletion region:
295 BA00822801, based on a marker mapping proximal to *DMC1-D1*, and BA00750321,
296 mapping distal to *DMC1-D1*. Primer sequences are shown in Table 1. The allele-specific
297 forward primers and common reverse primers were synthesized by Merck
298 <https://www.merckgroup.com/>. Allele-specific primers were synthesized with standard FAM
299 or VIC compatible tails at their 5' ends (see Table 1).

300

301 **KASP reaction and PCR conditions**

302 The KASP reaction and its components were as recommended by LGC Genomics Ltd and
303 described at <https://www.biosearchtech.com/support/education/kasp-genotyping-reagents/how-does-kasp-work>.

304 Assays were set up as 5 μ l reactions in a 384-well format, and included 2.5 μ l genomic DNA
305 template (15-30 ng of DNA), 2.5 μ l of KASP 2x Master Mix (LGC Genomics) and 0.07 μ l
306 primer mix. Primer mix consisted of 12 μ l of each tailed primer (100 μ M), 30 μ l common
307 primer (100 μ M) and 46 μ l dH₂O. PCR amplification was performed using the following
308 programme: Hotstart at 94 °C for 15 min, followed by ten touchdown cycles (94 °C for 20 s;
309 touchdown from 65-57 °C for 1 min, decreasing by 0.8 °C per cycle), followed by 30 cycles
310 of amplification (94 °C for 20 s; 57 °C for 1 min). Fluorescent signals from PCR products
311 were read in a PHERAstar microplate reader (BMG LABTECH Ltd.). If tight genotyping
312 clusters were not obtained, additional rounds of amplification were performed. Genotyping
313 clusters were analysed using KlusterCaller software (LGC Genomics).

314

315 **Analysis of *dmc1-D1* and *ttmei1* mutants at meiotic metaphase I**

316 CRISPR *dmc1-D1* and *ttmei1* (Bc₂F₂) mutants and Chinese Spring control plants were
317 initially grown in pots in a controlled environment room at 20°C day and 15°C night, with a
318 16-hour photoperiod and 70 % humidity, until development of the main shoot or tiller to be
319 sampled had progressed to Zadoks growth stage 39 (Zadoks et al., 1974; Tottman, 1987),
320 when the flag leaf ligule was just visible and meiocytes were deemed to be at premeiotic
321 interphase. At this stage, the immature spikes enclosed within the leaf sheaths were between
322 3.5-6.5 cm in length (average 4.8 cm). Plants were then transferred to growth cabinets under
323 continuous light and exposed to a low temperature (13 °C) for 6-7 days (with 70% humidity)
324 or a high temperature (30 °C) for 24 h (75% humidity). For the high temperature
325 experiments, treatments were initiated at a similar time of day, between 11.00 and 11.30 am,
326 with the plant pots placed in trays of water to prevent dehydration.

327

328 Immediately following treatment, to identify anthers with metaphase I meiocytes, one anther
329 from each floret was stained with acetocarmine and squashed to extrude the meiocytes, which
330 were then examined using a DM2000 light microscope (Leica Microsystems). As the three
331 anthers within a floret are synchronized in meiotic development, when metaphase I
332 chromosomes were identified in one anther, the two remaining anthers from the same floret
333 were prepared for cytological analysis by Feulgen staining with Schiff's reagent, as described
334 by Draeger et al., (2020). Anthers were sampled from three plants of each genotype, and
335 images of metaphase I chromosomes captured using a DM2000 microscope equipped with a
336 DFC450 camera and controlled by LAS v4.4 system software (Leica Microsystems). Images
337 were captured in up to 8 different focal planes to aid scoring. For each plant, a minimum of
338 30 meiocytes were blind scored from digital images. This involved counting the following
339 different meiotic chromosome configurations in each meiocyte: unpaired univalents (0
340 chiasmata), rod bivalents (1-2 chiasma), ring bivalents (2-3 chiasmata), trivalents (2-3
341 chiasmata), tetravalents (3 chiasmata) and pentavalents (4 chiasmata). Chiasma frequency per
342 meiocyte was calculated separately using two different methods, with single chiasmata scores
343 representing the minimum number of chiasmata per cell and double chiasmata scores
344 representing the maximum. Figure 1 shows examples of the scored structures.

345

346 Statistical analyses were performed using STATISTIX 10.0 software (Analytical Software,
347 Tallahassee, FL, USA). All treatments were analysed by the Kruskal–Wallis test
348 (nonparametric one-way analysis of variance). Means were separated using Dunn's test with
349 a probability level of 0.05. Statistical analysis was carried out between genotypes (Table 2),
350

351 and between temperatures (Table 3). Column charts were plotted using Microsoft Excel
352 (2016) (Figure 2 and Figure 3).

353

354 **Results**

355 **CRISPR *Tadmc1-D1* mutants**

356 From each of 6 selected T_0 lines, 12 T_1 lines were analysed for edits in the *TaDMC1-D1*
357 target region. Sanger sequencing revealed that none of these lines had a homozygous edit, but
358 one T_1 plant had a heterozygous edit in the target region. The edited T_1 plant was self-
359 fertilized, and 32 T_2 progeny plants were sequenced. In 9 of the T_2 generation plants,
360 sequencing revealed a 39 bp homozygous deletion within the *DMC1-D1* target region.
361 Examples of the T_2 sequence chromatograms are shown in Supplementary Figure 1. These 9
362 T_2 plants were used in the temperature treatment experiments: 3 plants were treated at 13 °C
363 for 6-7 days; 3 were treated at 30 °C for 24 h; and 3 control plants remained under normal
364 control conditions of 20 °C day, 15 °C night.

365

366 **Reduction in chiasma frequency in *dmc1-D1* and *ttmei1* mutants at normal 367 temperatures**

368 Meiotic metaphase I chromosomes were blind scored in 3 plants of each genotype at each of
369 13 °C, 30 °C and normal temperatures. A minimum of 30 meiocytes were scored for each
370 plant (at least 100 meiocytes per genotype). At normal temperatures, wild-type plants
371 contained ~20 ring bivalents and a single rod bivalent per meiocyte as usual, with univalents
372 occurring only occasionally (Figure 1A; Table 2; Figure 2). The mean number of chiasmata
373 was 41-44. However, under the same temperature conditions, in the *dmc1-D1* and *ttmei1*
374 mutants, univalents (~4) and rod bivalents (6-7) occurred significantly more frequently than
375 in the wild-type plants, whereas ring bivalents (12-13), single chiasmata (31-32) and double
376 chiasmata (33-34) were significantly fewer than in the wild type (Figure 1B and C; Table 2;
377 Figure 2). No multivalent chromosomes were observed at normal temperatures in either wild-
378 type or *dmc1-D1* meiocytes. In one *ttmei1* mutant plant, two trivalents were observed, but
379 this was not significantly different to the wild-type or *dmc1-D1* scores.

380

381 **Further reduction in chiasma frequency at 30 °C in *dmc1-D1* and *ttmei1* mutants**

382 After 24 hours at 30 °C, in wild type plants, mean numbers of univalents per meiocyte
383 remained the same as at normal temperatures (< 1), whereas numbers of rod bivalents
384 increased from around one to around two, ring bivalents decreased from ~20 to ~19, and
385 single and double chiasmata were correspondingly reduced, which were all significant
386 differences, albeit small (Figure 1A and D; Table 3; Figure 3). In the *dmc1-D1* mutants,
387 numbers of univalents and rod bivalents increased from ~4 and ~6 respectively at normal
388 temperatures to ~11 and ~8 respectively after treatment at 30 °C; numbers of ring bivalents
389 decreased from ~13 to ~7, single chiasmata numbers decreased from ~32 to ~23 (a reduction
390 of ~27%) and double chiasmata from ~34 to ~26 (a reduction of ~25%), which were all
391 significant differences (Figure 1B and E; Table 3; Figure 3). In *ttmei1* mutants, numbers of
392 univalents and rod bivalents also increased at 30 °C, from ~4 to ~21 and from ~7 to ~8
393 respectively; ring bivalents decreased from 13 to ~3, single chiasmata dropped from ~31 to
394 ~14 (a reduction of ~57%) and double chiasmata from ~33 to ~15 (a reduction of ~56%)
395 (Figure 1C and F; Table 3; Figure 3). Again, all differences were significant. Although
396 numbers of rod bivalents were similar in both mutants at 30 °C, differences between numbers
397 of univalents, ring bivalents and chiasmata at normal temperatures and at 30 °C were larger
398 in *ttmei1* mutants than in *dmc1-D1* mutants. At 30 °C, a small but significant number of
399 trivalents were observed in *dmc1-D1* and *ttmei1* mutants, but not in wild-type plants. Most of
400 the trivalents were observed in a single *ttmei1* plant. A single tetravalent and two

401 pentavalents were observed in the same *ttmei1* mutant, but this was not a significant
402 difference. No tetravalents or pentavalents were observed in any other plants.

403

404 **Crossover failure at 13 °C in *dmc1-D1* and *ttmei1* mutants**

405 After 6-7 days treatment at 13 °C, in wild-type plants, numbers of univalents, rod and ring
406 bivalents and chiasmata per meiocyte were similar those seen at normal temperatures (Figure
407 1A and C; Table 3; Figure 3). However, in the *dmc1-D1* mutants, after treatment at 13 °C,
408 there was a dramatic increase in the number of univalents from ~4 to ~39; ring bivalent
409 numbers decreased from ~13 to almost none (< 1), rod bivalents decreased from ~6 to ~2
410 and chiasma frequency decreased dramatically from ~32 (single chiasmata) and ~34 (double
411 chiasmata) to only ~2. Almost all observed chromosomes (~39 out of 42) were univalents
412 (Figure 1H; Table 3; Figure 3). Scores for *ttmei1* mutants were similar to those for *dmc1-D1*
413 mutants: 37 out of 42 chromosomes were univalents, there were almost no ring bivalents (<
414 1), around two rod bivalents and an average of only 2-3 chiasmata per meiocyte (Figure 1I;
415 Table 3; Figure 3). This means that, at 13 °C, crossover was reduced by ~96% in *dmc1-D1*
416 mutants and by ~94% in *ttmei1* mutants, compared to levels seen in wild-type plants at the
417 same temperature. Furthermore, in *dmc1-D1* mutants, exposing plants to 13 °C for 6-7 days
418 reduced crossover by ~95% compared to levels observed at normal temperatures. In *ttmei1*
419 mutants, the reduction in crossover was 92%. No multivalent chromosomes were observed in
420 any plants at 13°C.

421

422 **Discussion**

423 **Development of CRISPR *dmc1* mutants in wheat**

424 Using RNA-guided Cas9, we have developed new CRISPR mutants containing a 39 bp
425 deletion in the 5D copy of the *DMC1* gene in the hexaploid wheat reference variety Chinese
426 Spring. Until recently, wheat transformation has remained genotype dependent, therefore
427 limiting the potential use of genomic tools such as CRISPR-Cas technologies. However,
428 recent development and deployment of the morphological gene fusion GRF-GIF (Debernardi
429 et al., 2020), coupled with our efficient and robust transformation system (Hayta et al., 2019,
430 2021), has reduced genotype dependence in wheat and enabled us to report this first CRISPR-
431 Cas9 targeted mutagenesis in Chinese Spring. These CRISPR *dmc1-D1* mutants, along with
432 backcrossed *ttmei1* mutants (containing a 4 Mb deletion of *DMC1-D1*), were used to
433 determine whether meiosis is stabilized by *DMC1-D1* at high and/or low temperatures.

434

435 **Reduction in crossover in *dmc1-D1* mutants at normal temperatures**

436 In wild type plants grown at normal temperatures, chromosomes aligned on the equatorial
437 plate as normal, pairing as bivalents, mostly rings, but with the occasional rod bivalent
438 (Figure 1A). However, in the *ttmei1* and CRISPR *dmc1-D1* mutants there were significantly
439 more univalents and rod bivalents, and significantly fewer ring bivalents and chiasmata
440 (Figure 1B and C; Table 2; Figure 2), with a reduction in chiasma (and therefore crossover)
441 frequency of 22-24%. Two multivalents were observed in one *ttmei1* mutant, but none in the
442 other *ttmei1* mutants or in any of the *dmc1-D1* mutants, so the deletion of *DMC1-D1* does not
443 seem linked to the occurrence of multivalents. Clearly, disruption of *DMC1-D1* has a
444 significant effect on meiosis, but this effect is not severe at normal temperatures, probably
445 due to gene redundancy, since previous studies have shown that homeologs of the *DMC1*
446 gene on chromosomes 5A and 5B are present and expressed (Draeger et al., 2020).

447

448 **Crossover is reduced by 95% in *dmc1-D1* mutants at 13 °C, and synapsis does not 449 complete**

450 In the current study, Chinese Spring wild-type plants and *dmc1-D1* and *ttmei1* mutants were
451 exposed to a low temperature treatment of 13 °C for 6-7 days during a period lasting from
452 premeiotic interphase to early meiosis I. Exposure to the low temperature had no significant
453 effect on metaphase I chromosomes in the wild type plants (Table 3, Figure 3), but in the
454 CRISPR *dmc1-D1* mutants, almost all chromosomes observed were univalents (Figure 1G
455 and H), and crossover decreased by over 95% compared to that seen in the wild-type plants
456 (Table 2, Figure 2). Similar results were obtained for the *ttmei1* mutants (Figure 1I). In the
457 *dmc1-D1* mutants, exposure to the low temperature reduced crossover by ~95% compared to
458 that observed at normal temperatures, and in the *ttmei1* mutants crossover was reduced by
459 92%. The low chiasma frequencies and high numbers of univalent chromosomes observed in
460 the *dmc1-D1* and *ttmei1* mutants at low temperatures were similar to those observed when the
461 whole of chromosome 5D is deleted in Chinese Spring (Draeger et al., 2020).

462
463 This high number of univalent chromosomes suggests a major problem with crossover
464 formation. Consistent with this, previously we showed that *ttmei1* mutants exhibit significant
465 abnormalities of synapsis at low temperatures (Draeger et al., 2020): after exposure to a low
466 temperature of 13 °C, in both wild type and *ttmei1* mutant meiocytes, synapsis initiates
467 normally at one pole of the nucleus at early zygotene, but in the mutant, synapsis does not
468 complete at pachytene. These experiments confirm our previous hypothesis that, in wheat,
469 *DMC1-D1* is responsible for the preservation of normal synapsis and crossover at lower
470 temperatures, and is therefore equivalent to the *Ltp1* locus first described by Hayter and Riley
471 in 1967, providing an answer to a question that has existed for over 55 years.

472
473 Most reported SC failures involve high temperatures, but, as in wheat, low-temperature
474 failures have also been reported in *Hyacinthus orientalis* and two species of *Solanum* (Elliott,
475 1955; Karihaloo, 1991). Moreover, in the ectothermic Japanese red-bellied newt, *Cynops*
476 *pyrrhogaster*, low temperatures during meiosis also give rise to univalent chromosomes,
477 indicating failure of chromosome pairing due to asynapsis, and leading to abnormal
478 spermatozoa production (Yazawa et al., 2003). *DMC1* expression in *C. pyrrhogaster* also
479 decreases under the same low-temperature conditions (8 °C or 12 °C), suggesting its low
480 level of expression may contribute to the temperature-dependent abnormalities seen in
481 spermatogenesis. This study supports our suggestion that *DMC1* is involved in the
482 maintenance of normal chromosome synapsis at low temperatures.

483
484 **Reduction in crossover in *dmc1-D1* mutants at high temperatures**
485 In the current study, exposure of *dmc1-D1* mutants to a high temperature of 30 °C for just 24
486 hours during premeiotic interphase to meiosis I, resulted in a reduced number of crossovers
487 and increased univalence, though to a lesser extent than that seen after a low temperature
488 treatment of 13 °C. Similar results were obtained for *ttmei1* mutants, although there was more
489 variation between scores for individual plants. Previously, high variation between chiasma
490 frequency scores was also observed in the original *ttmei1* mutant plants (prior to
491 backcrossing), following treatment at 30 °C for 24 hours (Draeger et al., 2020). It was
492 suggested that this variation could be linked to a high level of background mutations due to
493 gamma irradiation. In the current study, backcrossing these mutants with Chinese Spring for
494 two generations (Bc₂F₂), should have substantially reduced the large numbers of undesirable
495 background mutations, but variation between scores was still high, suggesting that this
496 variation is less likely to be due to background mutations.

497
498 High variation between scores for different plants may have occurred if the heat applied
499 reached the meiocytes at slightly different developmental stages or for longer or shorter

500 durations. When Chinese Spring plants are grown at 20 °C under continuous light, meiosis is
501 estimated to take around 24 hours to complete (Bennett et al., 1971, 1973), though at higher
502 (25 °C) temperatures, meiosis is accelerated and completes in around 18 hours (Bennett et al.,
503 1972). Although assigning meiosis to specific growth stages by assessing the external
504 morphology of a plant is unreliable (Barber et al., 2015), in the current study, the 24-hour
505 high temperature treatments should have been of sufficient duration to coincide with the
506 temperature-sensitive period from premeiotic interphase to early meiosis I (as described in
507 Bayliss and Riley, 1972b, and Draeger and Moore, 2017). Other studies have suggested that it
508 might be difficult to deliver a heat stress treatment to cells such as meiocytes at a specific
509 time, because within an anther they are surrounded by many different cell layers, such as the
510 tapetum layer and the epidermis, which are able to buffer the high temperatures. However, in
511 *Arabidopsis thaliana*, tracking the deposition of stress granules which form at elevated
512 temperatures has demonstrated that the ambient temperature reaches the meiocytes in less
513 than 15 minutes (De Jaeger-Braet et al., 2022). Even so, since the structures in wheat are
514 much larger, it is still possible that a change in temperature may take longer to reach different
515 meiocytes, due to their varying level of insulation according to the location of their anther
516 within a spike.

517

518 The role of *DMC1* in meiosis

519 *TaDMC1-D1* expression is at its highest during early meiotic prophase I (Draeger et al.,
520 2020), which in wheat, is when synapsis initiates at the ‘telomere bouquet’ stage (Martín et
521 al., 2017). *DMC1* has a central role in synapsis and homologous recombination. It is a
522 meiosis-specific protein, structurally similar to the bacterial strand-exchange recombinase,
523 RECA (Bishop et al., 1992). Homologous recombination is initiated by programmed DNA
524 DSBs at leptotene, which results in single-stranded DNA ‘overhangs’ at the break sites.
525 *DMC1* and *RAD51* (another RECA homolog) form helical nucleoprotein filaments by
526 polymerizing on the single-stranded overhangs. These filaments perform homology searches
527 and carry out strand invasion and strand exchange between homologous chromosomes (Neale
528 and Keeney, 2006). Repair of these interhomolog invasion events results in crossovers or
529 non-crossovers, although only a small minority of DSBs are repaired as crossovers
530 (Reviewed in Lambing et al., 2017). *RAD51* has a role in both somatic and meiotic repair,
531 and is essential for maintaining chromosomal integrity in mitotic cells. *DMC1* is the main
532 catalytically active strand-exchange protein during meiosis, but it is also thought to suppress
533 *RAD51*-mediated recombination in plant meiosis (Da Ines et al., 2022).

534

535 *DMC1* homologs are found in a wide variety of organisms. In yeast (*Saccharomyces*
536 *cerevisiae*) and mice, *dmc1* deficiency results in defective meiotic recombination and
537 chromosome synapsis, with cells arresting in prophase, leading to sterility (Bishop et al.,
538 1992; Pittman et al., 1998; Yoshida et al., 1998; Bannister et al., 2007). Similarly, in wheat
539 *Tadm1-D1* (*ttmei1*) mutants, synapsis does not complete, and meiosis appears to arrest
540 before pachytene in late prophase, although this was after a treatment at 13 °C (Draeger et al.,
541 2020), whereas the phenotypes observed in yeast and mice were at ambient temperatures.
542 Disruption of *DMC1* also leads to sterility in most diploid plant species. *Arabidopsis thaliana*
543 has a single copy of the *DMC1* gene, and synapsis is disrupted in *Atdm1* mutants, which also
544 show high levels of univalence, and drastically reduced fertility (Couteau et al., 1999). Rice
545 (*Oryza sativa*) has two *DMC1* homologs, *OsDMC1A* and *OsDMC1B* (Ding et al., 2001). A
546 mutation in either one of these homologs does not cause problems during meiosis, but
547 synapsis is abnormal in *Osdmc1a* *Osdmc1b* double mutants, and they also exhibit serious
548 crossover defects, high numbers of univalents at metaphase and are sterile (Wang et al.,
549 2016). Barley (*Hordeum vulgare*) has a single *DMC1* homolog, *HvDMC1*, and mutations in

550 this gene lead to abnormal synapsis, multiple univalents and chromosome mis-segregation
551 (Colas et al., 2019; Szurman-Zubrzycka et al., 2019). As in yeast and mice, disruption of the
552 barley orthologue of *DMC1* at ambient temperatures leads to a phenotype similar to that
553 of *Tadmc1* at low temperatures.

554

555 **The contribution of *DMC1* homeologs to temperature tolerance**

556 From our own results, it appears that, in Chinese Spring, *TaDMC1-D1* promotes low
557 temperature tolerance, and possibly high temperature tolerance. There are two other
558 homeologs of the *DMC1* gene in hexaploid wheat: *TaDMC1-A1* (TraesCS5A02G133000) on
559 chromosome 5A and *TaDMC1-B1* (TraesCS5B02G131900) on 5B. All three copies are
560 expressed in wheat (Devisetty et al., 2010). Previously, we found differences in gene
561 expression levels between the three homeologs in meiotic anthers, with *DMC1-D1* having the
562 highest meiotic gene expression levels and *DMC1-A1* the lowest (Draeger et al., 2020). It is
563 not yet known how the 5A and 5B copies contribute to meiosis, but these differences in gene
564 expression could be related to differences in the abilities of these three genes to stabilize the
565 genome at low temperatures.

566

567 Tetraploid wheat (AABB) has only two copies of *DMC1* (Tang et al., 2017), but synapsis at
568 12 °C is normal, despite the absence of chromosome 5D (Riley et al., 1966). This is probably
569 due to the presence of a dominant *Ltp* allele on chromosome 5A, with a similar chromosome
570 stabilizing activity to that of chromosome 5D in hexaploid wheat (Hayter and Riley, 1967).
571 Interestingly, some other varieties and subspecies of wheat differ from Chinese Spring, in
572 that the gene responsible for stabilizing chromosome pairing at low temperatures is located
573 on chromosome 5A rather than 5D (Chapman and Miller, 1981). Future research will require
574 development of *dmc1-A1* and *dmc1-B1* mutants, along with double and triple mutants in
575 different hexaploid and tetraploid wheat varieties, to determine how each of the *DMC1*
576 homeologs contributes to stabilizing synapsis and crossover at high and low temperatures.
577 This could be achieved using CRISPR/Cas9, which, in addition to its high specificity, can be
578 used to simultaneously target multiple copies of a gene, a technology that has already enabled
579 the production of loss-of-function triple wheat mutants (Taagen et al., 2020; Li et al., 2021).
580 Recently, another genome editing system, transcription activator-like effector nucleases
581 (TALENs), has been used to disrupt all six *CmDMC1* loci in the hexaploid flower,
582 *Chrysanthemum morifolium* (Shinoyama et al., 2020).

583

584 **Dosage effects of *TaDMC1* alleles**

585 Different dosages of the *TaDMC1* alleles can affect the stability of synapsis and crossover at
586 low temperatures. In Chinese Spring plants lacking *DMC1-D1*, the chromosome 5A and 5B
587 homologs *DMC1-A1* and *DMC1-B1*, are unable to compensate for the lack of *DMC1-D1*, and
588 cannot stabilize synapsis and crossover at low temperatures. In a previous study, even when
589 chromosome 5B was present as a double dose in Chinese Spring plants, it was still unable to
590 compensate for the lack of 5D, but when chromosome 5A was present as a double dose,
591 chromosome pairing at 12 °C was normal (Riley et al., 1966). Since *TaDMC1-A1* has the
592 lowest meiotic gene expression of the three *DMC1* homeologs in Chinese Spring, this
593 suggests that when *DMC1-A1* is present as a double dose, an increase in its expression
594 compensates for the loss of *DMC1-D1* to preserve low temperature tolerance.

595

596 Climate change is likely to have a negative effect on meiosis, and therefore on fertility and
597 crop production, so screening of germplasm collections to identify heat-tolerant genotypes is
598 a high priority for future crop improvement. It will also be important to determine the relative

599 meiotic temperature tolerance of plants carrying these specific *TaDMC1* alleles growing
600 under natural conditions.

601
602

603 **Acknowledgements**

604 We thank the following John Innes Centre staff members: Martha Clarke of the Crop
605 Transformation facility for her excellent technical support in the development of the CRISPR
606 *dmc1-D1* mutant; Saleha Bakht, Molecular Genetics Platform Manager for sequencing
607 services; the Germplasm Resource Unit for providing seed and the Horticultural Services
608 Department for plant maintenance. We also acknowledge The International Atomic Energy
609 Agency, Vienna for gamma irradiation of Chinese Spring seed to produce the original *ttmei1*
610 mutant.

611

612 **Funding**

613 This work was supported by the UK Biological and Biotechnology Research Council
614 (BBSRC) through a grant as part of the ‘Designing Future Wheat’ (DFW) Institute Strategic
615 Programme (BB/P016855/1) and response mode grant (BB/R0077233/1). MD-R thanks the
616 contract “Ayudas Juan de la Cierva-Formación (FJCI-2016-28296)” of the Spanish Ministry
617 of Science, Innovation and Universities.

618

619 **References**

620

621 Bannister, L. A., Pezza, R. J., Donaldson, J. R., de Rooij, D. G., Schimenti, K. J., Camerini-
622 Otero, R. D., et al. (2007). A dominant, recombination-defective allele of *Dmc1* causing
623 male-specific sterility. *PLoS Biol* 5:e105. doi: [10.1371/journal.pbio.0050105](https://doi.org/10.1371/journal.pbio.0050105)

624

625 Barber, H. M., Carney, J., Alghabari, F. and Gooding, M.J. (2015). Decimal growth stages
626 for precision wheat production in changing environments? *Ann. Appl. Biol.* 166, 355-
627 371. doi: [10.1111/aab.12207](https://doi.org/10.1111/aab.12207)

628

629 Bayliss, M. and Riley, R. (1972a). An analysis of temperature-dependent asynapsis in
630 *Triticum aestivum*. *Genet. Res.* 20 (2), 193-200. doi: [10.1017/S0016672300013707](https://doi.org/10.1017/S0016672300013707)

631

632 Bayliss, M. and Riley, R. (1972b). Evidence of premeiotic control of chromosome pairing in
633 *Triticum aestivum*. *Genet. Res.* 20 (2), 201-212. doi: [10.1017/S0016672300013719](https://doi.org/10.1017/S0016672300013719)

634

635 Bennett, M. D., Chapman, V. and Riley, R. (1971). The duration of meiosis in pollen mother
636 cells of wheat, rye and *Triticale*. *Proc. R. Soc. Lond. B.* 178, 259–275.

637

638 Bennett, M. D., Rao, M. K., Smith, J. B. and Bayliss, M. W. (1973). Cell development in the
639 anther, the ovule, and the young seed of *Triticum aestivum* L. var. Chinese Spring. *Phil. Trans. R. Soc. B.* 266, 39–81.

641

642 Bennett, M. D., Smith, J. B. and Kemble, R. (1972). The effect of temperature on meiosis
643 and pollen development in wheat and rye. *Can. J. Genet. Cytol.* 14 (3), 615-624. doi:
644 [10.1139/g72-076](https://doi.org/10.1139/g72-076)

645

646 Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic
647 *Escherichia coli*. *Journal of Bacteriology*, 62 (3), 293–300. doi: [10.1128/jb.62.3.293-300.1951](https://doi.org/10.1128/jb.62.3.293-300.1951).

649
650 Bilgir, C., Dombecki, C. R., Chen, P. F., Villeneuve, A. M. and Nabeshima, K. (2013).
651 Assembly of the synaptonemal complex is a highly temperature-sensitive process that is
652 supported by PGL-1 during *Caenorhabditis elegans* meiosis. *G3-Genes Genom. Genet.* 3:
653 585–595. doi: [10.1534/g3.112.005165](https://doi.org/10.1534/g3.112.005165)

654
655 Bishop, D. K., Park, D., Xu, L. and Kleckner, N. (1992). *DMC1*: a meiosis-specific yeast
656 homolog of *E. coli recA* required for recombination, synaptonemal complex formation, and
657 cell cycle progression. *Cell* 69, 439–456. doi: [10.1016/0092-8674\(92\)90446-J](https://doi.org/10.1016/0092-8674(92)90446-J)

658
659 Bolser, D., Staines, D. M., Pritchard, E. and Kersey, P. (2016). Ensembl Plants: Integrating
660 Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. In: Edwards D. (eds)
661 Plant Bioinformatics. *Methods Mol. Biol.* vol 1374. Humana Press, New York, NY

662
663 Bomblies, K., Higgins, J. D. and Yant, L. (2015). Meiosis evolves: adaptation to external and
664 internal environments. *New Phytol.* 208, 306–323. doi: [10.1111/nph.13499](https://doi.org/10.1111/nph.13499)

665
666 Chapman, V. and Miller, T. E., (1981). The location of a gene affecting meiotic chromosome
667 pairing at low temperature in *Triticum aestivum*. *Z. Pflanzenzüchtg* 86: 50–55.

668
669 Colas, I., Barakate, A., Macaulay, M., Schreiber, M., Stephens, J., Vivera, S., et al. (2019).
670 *desynaptic5* carries a spontaneous semi-dominant mutation affecting *Disrupted Meiotic*
671 *cDNA 1* in barley. *J. Exp. Bot.* 70, 2683–2698. doi: [10.1093/jxb/erz080](https://doi.org/10.1093/jxb/erz080)

672
673 Couteau, F., Belzile, F., Horlow, C., Grandjean, O., Vezon, D. and Doutriaux, M-P. (1999).
674 Random Chromosome Segregation without Meiotic Arrest in Both Male and Female
675 Meiocytes of a *dmc1* Mutant of *Arabidopsis*. *Plant Cell*. 11 (9), 1623–1634. doi:
676 [10.1105/tpc.11.9.1623](https://doi.org/10.1105/tpc.11.9.1623)

677
678 Da Ines, O., Bazile, J., Gallego, M. E., and White, C. I. (2022). *DMC1* attenuates *RAD51*-
679 mediated recombination in *Arabidopsis*. *PLoS Genetics*, 18 (8), e1010322. doi:
680 [10.1371/journal.pgen.1010322](https://doi.org/10.1371/journal.pgen.1010322)

681
682 Debernardi, J. M., Tricoli, D. M., Ercoli, M. F., Hayta, S., Ronald, P., Palatnik, J. F. et al.
683 (2020). A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic
684 plants. *Nat. Biotechnol.* 38, 1274–1279. doi: [10.1038/s41587-020-0703-0](https://doi.org/10.1038/s41587-020-0703-0)

685
686 De Jaeger-Braet, J., Krause, L., Buchholz, A. and Schnittger, A. (2022). Heat stress reveals a
687 specialized variant of the pachytene checkpoint in meiosis of *Arabidopsis thaliana*. *Plant*
688 *Cell* 34, 433–454. doi: [10.1093/plcell/koab257](https://doi.org/10.1093/plcell/koab257)

689
690 Devisetty, U. K., Mayes, K. and Mayes, S. (2010). The *RAD51* and *DMC1* homoeologous
691 genes of bread wheat: cloning, molecular characterization and expression analysis. *BMC Res.*
692 *Notes* 3, 245. doi: [10.1186/1756-0500-3-245](https://doi.org/10.1186/1756-0500-3-245)

693
694 Ding, Z., Wang, T., Chong, K. and Bai, S. (2001). Isolation and characterization of OsDMC1,
695 the rice homologue of the yeast *DMC1* gene essential for meiosis. *Sex. Plant Reprod.* 13,
696 285. doi: [10.1007/s004970100065](https://doi.org/10.1007/s004970100065)

697

698 Dowrick, G. (1957). The influence of temperature on meiosis. *Heredity* 11, 37–49. doi:
699 10.1038/hdy.1957.4

700

701 Draeger, T., Martín, A. C., Alabdullah, A. K., Pendle, A., Rey, M. D., Shaw, P., et al. (2020).
702 *Dmc1* is a candidate for temperature tolerance during wheat meiosis. *Theor. Appl.
703 Genet.* 133, 809–828. doi: [10.1007/s00122-019-03508-9](https://doi.org/10.1007/s00122-019-03508-9)

704

705 Draeger, T. and Moore, G. (2017). Short periods of high temperature during meiosis prevent
706 normal meiotic progression and reduce grain number in hexaploid wheat (*Triticum aestivum*
707 L.). *Theor. Appl. Genet.* 130, 1785–1800. doi: [10.1007/s00122-017-2925-1](https://doi.org/10.1007/s00122-017-2925-1)

708

709 Draeger, T. N., Rey, M. D., Martín, A. C., Hayta, S., Smedley, M., Alabdullah, A. K., et al.,
710 (2023). *ZIP4* is required for normal progression of synapsis and for over 95% of crossovers in
711 wheat meiosis. *Front. Plant Sci.* (In Press).

712

713 Elliott, C. (1955). The effect of temperature on chiasma frequency. *Heredity* 9, 385–398. doi:
714 10.1038/hdy.1955.39

715

716 Fischer, R. A., Maurer, R. (1976). Crop temperature modification and yield potential in a
717 dwarf spring wheat. *Crop Sci.* 16, 855-859. doi:
718 [10.2135/cropsci1976.0011183X001600060031x](https://doi.org/10.2135/cropsci1976.0011183X001600060031x)

719

720 Hayta, S., Smedley, M. A., Clarke, M., Forner, M. and Harwood, W. A. (2021). An
721 efficient *Agrobacterium*-mediated transformation protocol for hexaploid and tetraploid
722 wheat. *Current Protocols*, 1, e58. doi: 10.1002/cpz1.58

723

724 Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N. et
725 al. (2019). An efficient and reproducible *Agrobacterium*-mediated transformation method for hexaploid
726 wheat (*Triticum aestivum* L.). *Plant Methods* 15, 121. doi: [/10.1186/s13007-019-0503-z](https://doi.org/10.1186/s13007-019-0503-z)

727

728 Hayter, A. M. (1969). Cytogenetics and cytochemistry of wheat species. PhD thesis,
729 Cambridge University, Cambridge

730

731 Hayter, A. and Riley, R. (1967). Duplicate Genetic Activities affecting Meiotic Chromosome
732 Pairing at Low Temperatures in *Triticum*. *Nature* 216, 1028–1029. doi: 10.1038/2161028a0

733

734 Higgins, J. D., Perry, R. M., Barakate, A., Ramsay, L., Waugh, R., Halpin, C. et al. (2012).
735 Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal
736 Distribution of Meiotic Crossovers in Barley. *Plant Cell* 24 (10), 4096–4109. doi:
737 [10.1105/tpc.112.102483](https://doi.org/10.1105/tpc.112.102483)

738

739 International Wheat Genome Sequencing Consortium (IWGSC). (2018). Shifting the limits in
740 wheat research and breeding using a fully annotated reference genome. *Science* 362, 7191.
741 doi: 10.1126/science.aar7191

742

743 Ji, H., Xiao, L., Xia, Y., Song, H., Liu, B., Tang, L. et al. (2017). Effects of jointing and
744 booting low temperature stresses on grain yield and yield components in wheat. *Agric. For.
745 Meteorol.* 243, 33–42. doi: 10.1016/j.agrformet.2017.04.016

746

747

748 Jones, G. H. and Franklin, F. C. H. (2006). Meiotic crossing-over: Obligation and
749 interference. *Cell* 126, 246–248. doi: 10.1016/j.cell.2006.07.010

750

751 Karihaloo, J. L. (1991). Desynapsis due to temperature stress in three species of Solanum L.
752 *Cytologia* 56, 603–611. doi: [10.1508/cytologia.56.603](https://doi.org/10.1508/cytologia.56.603)

753

754 Lambing, C., Franklin, F. C. H. and Wang C-J. R. (2017). Understanding and Manipulating
755 Meiotic Recombination in Plants. *Plant Physiol.* 173, 1530–1542. doi: [10.1104/pp.16.01530](https://doi.org/10.1104/pp.16.01530)

756

757 Lazo, G. R., Stein, P. A. and Ludwig, R. A. (1991). A DNA transformation-
758 competent *Arabidopsis* genomic library in *Agrobacterium*. *Nat. Biotechnol.* 9, 963–7. doi:
759 /10.1038/nbt1091-963

760

761 Li, J., Li, Y. and Ma, L. (2021). Recent advances in CRISPR/Cas9 and applications for wheat
762 functional genomics and breeding. *aBIOTECH.* 2 (4), 375–385. doi: 10.1007/s42994-021-
763 00042-5.

764

765 Livak, K.J. and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using
766 Real-Time Quantitative PCR and the 2- $\Delta\Delta$ CT Method. *Methods*, 25, 402–408. doi:
767 /10.1006/meth.2001.1262

768

769 Martín, A. C., Rey, M-D., Shaw, P. and Moore, G. (2017). Dual effect of the wheat *Ph1* locus
770 on chromosome synapsis and crossover. *Chromosoma* 126, 669–680. doi: 10.1007/s00412-
771 017-0630-0

772

773 Martín, A. C., Shaw, P., Phillips, D., Reader, S. and Moore, G. (2014). Licensing MLH1
774 sites for crossover during meiosis. *Nat. Commun.* 5, 4580. doi:10.1038/ncomms5580

775

776 Miller, T. E., and Reader, S. M. (1985). The effect of increased dosage of wheat
777 chromosomes on chromosome pairing and an analysis of the chiasma frequencies of
778 individual wheat bivalents. *Can. J. Genet. Cytol.* 27, 421–425. doi: 10.1139/g85-062

779

780 Morgan, C. H., Zhang, H. and Bomblies, K. (2017). Are the effects of elevated temperature
781 on meiotic recombination and thermotolerance linked via the axis and synaptonemal
782 complex? *Phil. Trans. R. Soc. B.* 372, 20160470 doi: [10.1098/rstb.2016.0470](https://doi.org/10.1098/rstb.2016.0470)

783

784 Neale M. J., Keeney, S. (2006). Clarifying the mechanics of DNA strand exchange in meiotic
785 recombination. *Nature* 442, 153–158. doi: 10.1038/nature04885

786

787 Page, S.L. and Hawley, R.S. (2004). The genetics and molecular biology of the synaptonemal
788 complex. *Ann. Rev. Cell Dev. Biol.* 20, 525–558. doi:
789 10.1146/annurev.cellbio.19.111301.155141.

790

791 Pallotta, M. A., Warner, P., Fox, R.L., Kuchel, H., Jefferies, S. J. and Langridge, P. (2003)
792 Marker assisted wheat breeding in the southern region of Australia. *Proc. 10th Int. Wheat
793 Genet. Symp.* 2, 789–791.

794

795 Pittman, D. L., Cobb, J., Schimenti, K. J., Wilson, L. A., Cooper, D. M., Brignull, E., Handel,
796 M. A. et al. (1998). Meiotic prophase arrest with failure of chromosome synapsis in mice

797 deficient for *Dmc1*, a germline-specific RecA homolog. *Mol. Cell* 1, 697-705. doi:
798 10.1016/S1097-2765(00)80069-6

799

800 Porter, J. R. and Gawith, M. (1999). Temperatures and the growth and development of wheat:
801 a review. *Eur. J. Agron.* 10, 23–36. doi: [10.1016/S1161-0301\(98\)00047-1](https://doi.org/10.1016/S1161-0301(98)00047-1)

802

803 Queiroz, A., Mello-Sampayo, T. and Viegas, W. S. (1991). Identification of low temperature
804 stabilizing genes, controlling chromosome synapsis or recombination, in short arms of
805 chromosomes from the homoeologous group 5 of *Triticum aestivum*. *Hereditas*. 115, 37-
806 41. doi: [10.1111/j.1601-5223.1991.tb00344.x](https://doi.org/10.1111/j.1601-5223.1991.tb00344.x)

807

808 Rey, M-D., Martín, A. C., Higgins, J., Swarbreck, D., Uauy, C., Shaw, P., et al. (2017).
809 Exploiting the ZIP4 homologue within the wheat *Ph1* locus has identified two lines
810 exhibiting homoeologous crossover in wheat-wild relative hybrids. *Mol. Breed.* 37, 95. doi:
811 10.1007/s11032-017-0700-2

812

813 Riley, R. (1966). “Genotype-environmental interaction affecting chiasma frequency
814 in *Triticum aestivum*”, in: Chromosomes today, vol 1. eds C. D. Darlington and K. R. Lewis
815 (Oliver & Boyd, Edinburgh) 57–64

816

817 Riley, R. and Chapman, V. (1958). Genetic Control of the Cytologically Diploid Behaviour
818 of Hexaploid Wheat. *Nature* 182, 713–715. doi: [10.1038/182713a0](https://doi.org/10.1038/182713a0)

819

820 Riley, R., Chapman, V., Young, R. M. and Bellfield, A. M. (1966). Control of meiotic
821 chromosome pairing by the chromosomes of homoeologous group 5 of *Triticum aestivum*.
822 *Nature* 212, 1475-1477. doi: [10.1038/2121475a0](https://doi.org/10.1038/2121475a0)

823

824 Saini, H. S. and Aspinall, D. (1982). Abnormal Sporogenesis in Wheat (*Triticum aestivum* L.)
825 Induced by Short Periods of High Temperature, *Ann. Bot.* 49 (6), 835–846. doi:
826 [10.1093/oxfordjournals.aob.a086310](https://doi.org/10.1093/oxfordjournals.aob.a086310)

827

828 Sears, E. R. and Okamoto M. (1958). Intergenomic Chromosome Relationships in Hexaploid
829 Wheat. *Proc. 10th Int. Congr. Genet.* 2, 258–259.

830

831 Shinoyama, H., Ichikawa, H., Nishizawa-Yokoi, A., Skaptsov, M., and Toki, S. (2020).
832 Simultaneous TALEN-mediated knockout of chrysanthemum *DMC1* genes confers male and
833 female sterility. *Sci. Rep.* 10, 16165 doi: [10.1038/s41598-020-72356-1](https://doi.org/10.1038/s41598-020-72356-1)

834

835 Smedley, M. A., Hayta, S., Clark, M., and Harwood, W. A. (2021). CRISPR-Cas9 based
836 genome editing in wheat. *Current Protocols*, 1, e65 doi: [/10.1002/cpz1.65](https://doi.org/10.1002/cpz1.65)

837

838 Szurman-Zubrzycka, M., Brygida, B., Stolarek-Janusziewicz, M., Kwaśniewska, J.,
839 Szarejko, I. and Gruszka, D. (2019). The *dmc1* mutant allows an insight into the DNA
840 double-strand break repair during meiosis in barley (*Hordeum vulgare* L.). *Front. Plant Sci.*
841 10, 761. doi:[10.3389/fpls.2019.00761](https://doi.org/10.3389/fpls.2019.00761)

842

843 Taagen, E., Bogdanove, A. J. and Sorrells, M. E. (2020). Counting on Crossovers: Controlled
844 Recombination for Plant Breeding. *Trends Plant Sci.* 25 (5), 455-465. doi:
845 [10.1016/j.tplants.2019.12.017](https://doi.org/10.1016/j.tplants.2019.12.017)

846

847 Tang, Y., Kang, H.Y., Tang, L., Diao, C.D., Li, D.Y., Zhu, W. et al. (2017). Phylogenetic
848 analysis of tetraploid wheat based on nuclear DMC1 gene. *Biochem. Syst. Ecol.* 70, 239-246.
849 doi: 10.1016/j.bse.2016.10.022

850

851 Thakur, P., Kumar, S., Malik, J. A., Berger, J. D. and Nayyar, H. (2010). Cold stress effects
852 on reproductive development in grain crops: an overview. *Environ. Exp. Bot.* 67, 429–
853 443. doi: [10.1016/j.envexpbot.2009.09.004](https://doi.org/10.1016/j.envexpbot.2009.09.004)

854

855 Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., et al. (1997).
856 Agrobacterium tumefaciens-mediated barley transformation. *Plant J.* 11 (6), 1369–76. doi:
857 [10.1046/j.1365-313X.1997.11061369.x](https://doi.org/10.1046/j.1365-313X.1997.11061369.x)

858

859 Tottman, D. R. (1987) The decimal code for the growth stages of cereals, with illustrations.
860 *Ann. Appl. Biol.* 110: 441–454. doi: [10.1111/j.1744-7348.1987.tb03275.x](https://doi.org/10.1111/j.1744-7348.1987.tb03275.x)

861

862 Wang, H., Hu, Q., Tang, D., Liu, X, Du, G., Shen, Y. et al. (2016). OsDMC1 Is Not
863 Required for Homologous Pairing in Rice Meiosis. *Plant Physiol.* 171, 230–241. doi:
864 [10.1104/pp.16.00167](https://doi.org/10.1104/pp.16.00167)

865

866 Werner, S., Engler, C., Weber, E., Gruetzner, R. and Marillonnet, S. (2012). Fast track
867 assembly of multigene constructs using Golden Gate cloning and the MoClo system. *Bioeng.
868 Bugs.* 3(1), 38–43. doi: [10.4161/bbug.3.1.18223](https://doi.org/10.4161/bbug.3.1.18223)

869

870 Winfield, M. O., Allen, A. M., Burridge, A. J., Barker, G. L. A., Benbow, H. R., Wilkinson,
871 P. A. et al. (2015). High-density SNP genotyping array for hexaploid wheat and its secondary
872 and tertiary gene pool. *Plant Biotechnol. J.* 14, 1195–1206. doi: [10.1111/pbi.12485](https://doi.org/10.1111/pbi.12485)

873

874 Yazawa, T., Nakayama, Y., Fujimoto, K., Matsuda, Y., Abe, K., Kitano, T. et al. (2003).
875 Abnormal spermatogenesis at low temperatures in the Japanese red-bellied newt, *Cynops
876 pyrrhogaster*: Possible biological significance of the cessation of spermatocytogenesis. *Mol.
877 Reprod. Dev.* 66, 60-66. doi: [10.1002/mrd.10328](https://doi.org/10.1002/mrd.10328)

878

879 Yoshida, K., Kondoh, G., Matsuda, Y., Habu, T., Nishimune, Y. and Morita, T. (1998). The
880 mouse *RecA*-like gene *Dmc1* is required for homologous chromosome synapsis during
881 meiosis. *Mol. Cell* 1, 707–718. doi: 10.1016/S1097-2765(00)80070-2

882

883 Zadoks, J. C., Chang, T. T. and Konzak, C. F. (1974) A decimal code for the growth stages of
884 cereals. *Weed Research* 14: 415-421

885

886 Zickler, D. and Kleckner, N. (1999). Meiotic Chromosomes: Integrating Structure and
887 Function. *Ann. Rev. Genet.* 33 (1), 603-754. doi: 10.1146/annurev.genet.33.1.603

888

889

890

891

892

893

894

895

896

897 **Table 1.** Primers for KASP genotyping of *ttmei1* (*Tadmc1-D1*) mutants.
898

Primer name	Sequence (5'-3')
BA00822801-allele-1	tacccctGttgggtgttcC
BA00822801-allele-2	tacccctGttgggtgttcT
BA00822801-common	ggctaaggcttatgtgagtcaT
BA00750321-allele-1	actgcaccgttactctgttC
BA00750321-allele-2	actgcaccgttactctgttT
BA00750321-common	catagagggtgcccaattcttT
FAM tail	GAAGGTGACCAAGTTCATGCT
VIC tail	GAAGGTCGGAGTCAACGGATT

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915 **Table 2.** Effects of genotype on meiotic metaphase I chromosomes of wild-type Chinese
 916 Spring, CRISPR *Tadmc1-D1* and *ttmei1* mutant plants after treatment at 20 °C, 13 °C and
 917 30 °C. The mean numbers of univalents, rod and ring bivalents, trivalents, tetravalents and
 918 pentavalents per meiocyte were scored along with single and double chiasma frequency.
 919 Standard error (SE) values are shown. P values < 0.05 indicate significant differences; lower
 920 case letters a-c indicate where the significant differences lie. For scores with the same letter,
 921 the difference between the means is not statistically significant. If the scores have different
 922 letters, they are significantly different. Ranges (in brackets) represent the minimum and
 923 maximum number of chromosomes with a particular configuration.
 924

Genotype	Temp. (°C)	Univalent	Bivalent (Rod)	Bivalent (Ring)	Trivalent	Tetravalent	Pentavalent	Single chiasmata	Double chiasmata
		Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)
20°C day, 15°C night	CS wild type	0.17 ± 0.12b (0-2)	1.18 ± 0.19b (0-4)	19.73 ± 0.21a (16-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	40.66 ± 0.28a (36-42)	43.65 ± 0.32a (38-47)
	CRISPR <i>dmc1-D1</i>	4.25 ± 0.34a (0-20)	6.22 ± 0.24a (1-15)	12.66 ± 0.35b (3-20)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	31.53 ± 0.49b (14-41)	34.16 ± 0.50b (15-44)
	<i>ttmei1</i> <i>Bc2F2</i>	3.89 ± 0.29a (0-12)	6.66 ± 0.19a (1-12)	12.38 ± 0.25b (5-18)	0.02 ± 0.01 (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	31.44 ± 0.36b (22-39)	33.24 ± 0.40b (24-41)
	p-value		< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001
	CS wild type	0.24 ± 0.10b (0-4)	1.16 ± 0.25c (0-7)	19.74 ± 0.26a (13-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	40.65 ± 0.28a (33-42)	43.62 ± 0.38a (37-48)
	CRISPR <i>dmc1-D1</i>	38.82 ± 0.19a (34-42)	1.57 ± 0.09b (0-4)	0.02 ± 0.01b (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	1.61 ± 0.10b (0-4)	1.82 ± 0.11b (0-6)
	<i>ttmei1</i> <i>Bc2F2</i>	37.37 ± 0.32a (24-42)	2.19 ± 0.15a (0-8)	0.12 ± 0.03b (0-2)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	2.44 ± 0.17b (0-10)	2.59 ± 0.19b (0-11)
	p-value		< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001
30°C, 24 hours	CS wild type	0.21 ± 0.11c (0-4)	2.00 ± 0.25b (0-5)	18.90 ± 0.26a (16-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	39.79 ± 0.29a (35-42)	42.44 ± 0.34a (37-46)
	CRISPR <i>dmc1-D1</i>	10.86 ± 0.52b (0-26)	8.12 ± 0.20a (2-13)	7.43 ± 0.27b (1-17)	0.02 ± 0.01b (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	23.01 ± 0.49b (10-37)	25.50 ± 0.52b (11-40)
	<i>ttmei1</i> <i>Bc2F2</i>	20.67 ± 0.47a (4-36)	7.77 ± 0.17a (3-16)	2.75 ± 0.15c (0-12)	0.07 ± 0.02a (0-2)	0.01 ± 0.01 (0-1)	0.01 ± 0.01 (0-1)	13.47 ± 0.35c (3-29)	14.54 ± 0.37c (3-32)
	p-value		< 0.0001	< 0.0001	< 0.0001	0.0057	-	-	< 0.0001

925

926

927

928

929

930

931

932

933

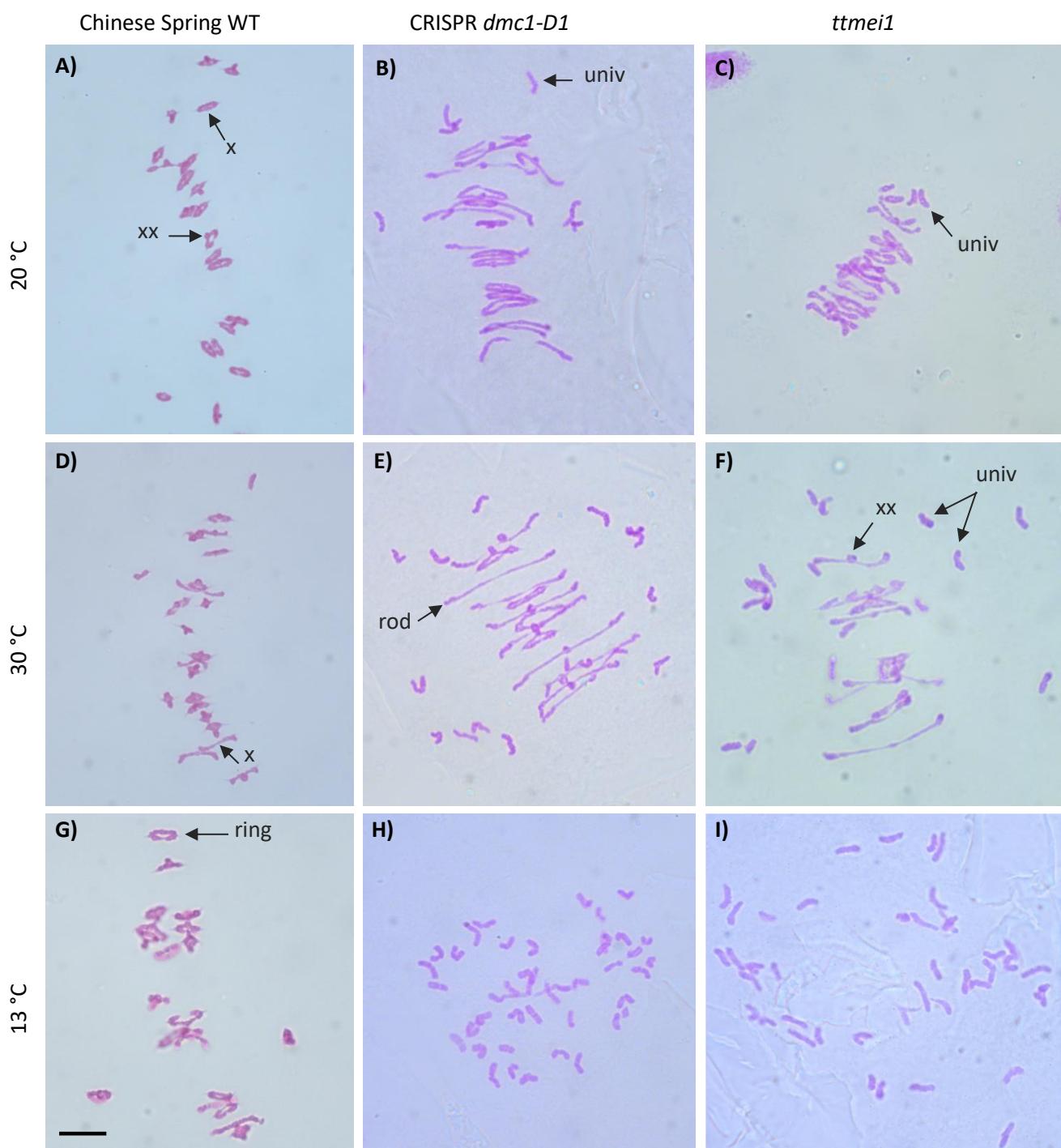
934 **Table 3.** Effects of three different temperature treatments on meiotic metaphase I
 935 chromosomes of wild-type Chinese Spring, CRISPR *Tadmc1-D1* and *ttmei1* mutant plants.
 936 The mean numbers of univalents, rod and ring bivalents, trivalents, tetravalents and
 937 pentavalents per meiocyte were scored along with single and double chiasma frequency.
 938 Standard error (SE) values are shown. P values < 0.05 indicate significant differences; lower
 939 case letters a-c indicate where the significant differences lie. For scores with the same letter,
 940 the difference between the means is not statistically significant. If the scores have different
 941 letters, they are significantly different. Ranges (in brackets) represent the minimum and
 942 maximum number of chromosomes with a particular configuration.
 943

Genotype	Temp. (°C)	Univalent	Bivalent	Bivalent	Trivalent	Tetravalent	Pentavalent	Single	Double
		(Rod)	(Ring)	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	chiasmata
		Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)	Mean ± SE (range)
CS wild type	20°C day, 15°C night	0.17 ± 0.12 (0-2)	1.18 ± 0.19b (0-4)	19.73 ± 0.21a (16-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	40.66 ± 0.24a (36-42)	43.65 ± 0.32a (38-47)
	13°C, 6-7 days	0.24 ± 0.10 (0-4)	1.16 ± 0.25b (0-7)	19.74 ± 0.26a (13-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	40.65 ± 0.28a (33-42)	43.62 ± 0.38a (37-48)
	30°C, 24 hours	0.21 ± 0.11 (0-4)	2.00 ± 0.25a (0-5)	18.90 ± 0.26b (16-21)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	39.79 ± 0.29b (35-42)	42.44 ± 0.34b (37-46)
p-value		0.9964	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001
CRISPR <i>dmc1-D1</i>	20°C day, 15°C night	4.25 ± 0.34c (0-20)	6.22 ± 0.24b (1-15)	12.66 ± 0.35a (3-20)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	31.53 ± 0.49a (14-41)	34.16 ± 0.50a (15-44)
	13°C, 6-7 days	38.82 ± 0.19a (34-42)	1.57 ± 0.09c (0-4)	0.02 ± 0.01c (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	1.61 ± 0.10c (0-4)	1.82 ± 0.11c (0-6)
	30°C, 24 hours	10.86 ± 0.52b (0-26)	8.12 ± 0.20a (2-13)	7.43 ± 0.27b (1-17)	0.02 ± 0.01 (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	23.01 ± 0.49b (10-37)	25.50 ± 0.52b (11-40)
p-value		< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001
<i>ttmei1</i> <i>Bc2F2</i>	20°C day, 15°C night	3.89 ± 0.29c (0-12)	6.66 ± 0.19b (1-12)	12.38 ± 0.25a (5-18)	0.02 ± 0.01 (0-1)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	31.44 ± 0.36a (22-39)	33.24 ± 0.40a (24-41)
	13°C, 6-7 days	37.37 ± 0.32a (24-42)	2.19 ± 0.15c (0-8)	0.12 ± 0.03c (0-2)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	0.00 ± 0.00 (0-0)	2.44 ± 0.17c (0-10)	2.59 ± 0.19c (0-11)
	30°C, 24 hours	20.67 ± 0.47b (4-36)	7.77 ± 0.17a (3-16)	2.75 ± 0.15b (0-12)	0.07 ± 0.02 (0-2)	0.01 ± 0.01 (0-1)	0.01 ± 0.01 (0-1)	13.47 ± 0.35b (3-29)	14.54 ± 0.37b (3-32)
p-value		< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001

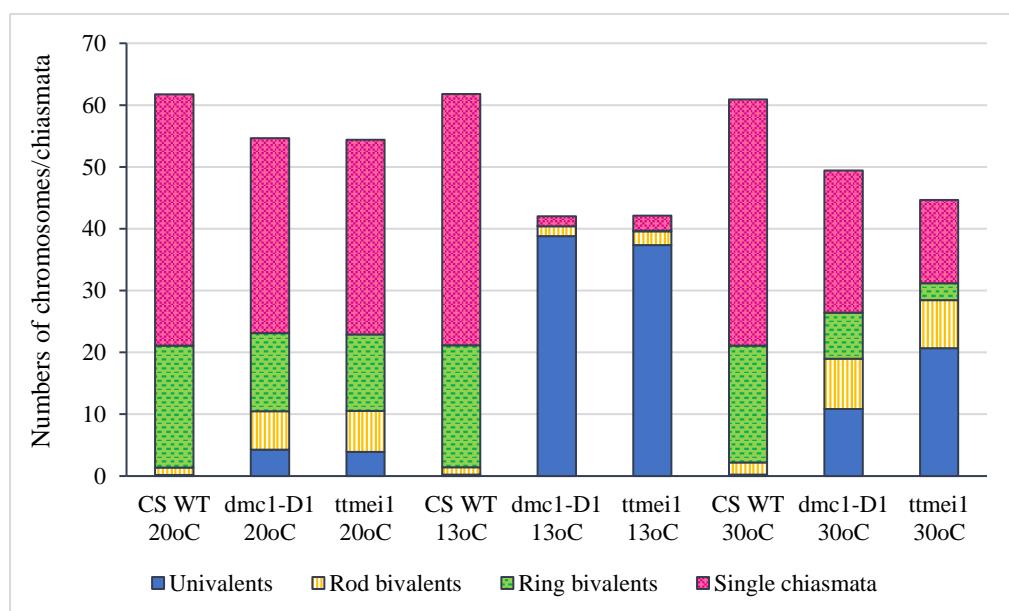
944

945

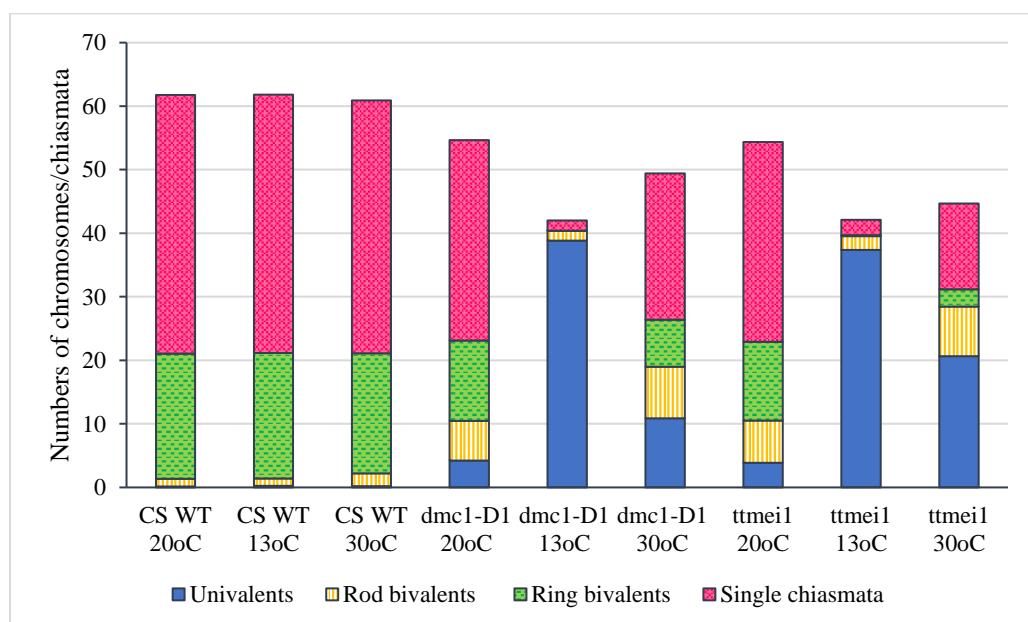
946


947

948


949

950


951 **Figure 1.** Representative images of Feulgen-stained metaphase I chromosomes from
 952 meiocytes of wild-type Chinese Spring, CRISPR *dmc1-D1* and *ttmei1* mutant plants treated at
 953 different temperatures. A) wild type, B) CRISPR *dmc1-D1* and C) *ttmei1* at normal
 954 temperatures; D) wild type, E) CRISPR *dmc1-D1* and F) *ttmei1* after 24 h at 30 °C; G) wild
 955 type, H) CRISPR *dmc1-D1* and I) *ttmei1* after 6-7 days at 13 °C. Examples of univalent
 956 chromosomes (univ), rod bivalents (rod), ring bivalents (ring), single chiasma (X) and double
 957 chiasmata (XX) are indicated with arrows; note complete univalence in CRISPR *dmc1-D1*
 958 and *ttmei1* mutants after treatment at 13 °C. Scale bars, 10 µm.

1000 **Figure 2.** Column chart showing the effects of genotype on meiotic metaphase I
1001 chromosomes of CRISPR *dmc1-D1* and *ttmei1* mutants compared with Chinese Spring wild
1002 type (CS WT). Numbers of univalents, rod and ring bivalents and single chiasmata are
1003 shown. Numbers of multivalents and double chiasmata are not shown. Note reduced
1004 chiasma frequencies in *dmc1-D1* and *ttmei1* mutants, particularly at 13°C.
1005

1006
1007
1008
1009
1010 **Figure 3.** Column chart showing the effects of three different temperature treatments (20 °C,
1011 13 °C and 30 °C) on meiotic metaphase I chromosomes of Chinese Spring wild type (CS
1012 WT) plants and CRISPR *dmc1-D1* and *ttmei1* mutants. Numbers of univalents, rod and ring
1013 bivalents and single chiasmata are shown. Numbers of multivalents and double chiasmata are
1014 not shown. Note reduced chiasma frequencies in *dmc1-D1* and *ttmei1* mutants at 30°C and
1015 almost total univalence at 13°C.
1016

1017