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Abstract

Several intracellular pathogens, such as Mycobacterium tuberculosis, damage endomembranes to
access the cytosol and subvert innate immune responses. The host counteracts endomembrane
damage by recruiting repair machineries that retain the pathogen inside the vacuole.

Here, we show that the endoplasmic reticulum (ER)-Golgi protein oxysterol binding protein (OSBP)
and its Dictyostelium discoideum homologue OSBP8 are recruited to the Mycobacterium-containing
vacuole (MCV) after ESX-1-dependent membrane damage. Lack of OSBP8 causes a
hyperaccumulation of phosphatidylinositol-4-phosphate (Pl14P) on the MCV and decreased cell
viability. OSBP8-depleted cells had reduced lysosomal and degradative capabilities of their vacuoles
that favoured mycobacterial growth. In agreement with a function of OSBP8 in membrane repair,
human macrophages infected with M. tuberculosis recruited OSBP in an ESX-1 dependent manner.
These findings identified an ER-dependent repair mechanism for restoring MCVs in which OSBP8
functions to equilibrate P14P levels on damaged membranes.

Importance

Tuberculosis still remains a global burden and is one of the top infectious diseases from a single
pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate
and persist within its host. While mycobacteria induce vacuole damage to evade the toxic
environment and eventually escape into the cytosol, the host recruits repair machineries to restore
the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood.
Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that
this involves the recruitment of the ER-Golgi lipid transfer protein OSBP8 in the D. discoideum/ M.
marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating
mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host

defence mechanism against intracellular pathogens such as M. tuberculosis.

Keywords
Membrane repair, Mycobacterium tuberculosis, Mycobacterium marinum, Dictyostelium discoideum,
macrophages, oxysterol binding protein, membrane contact site, sterol, phosphatidylinositol 4-

phosphate, Sacl, lysosome.

Introduction

Cellular compartmentalization renders cells susceptible to membrane damage caused by
pathogens, chemicals or mechanical stressors. Endolysosomal damage by vacuolar pathogens
disrupts the proton gradient between the endolysosome and the cytosol and reduces the efficacy of
first-line innate immune defences. Several pathogens including Mycobacterium tuberculosis have
evolved sophisticated strategies to avoid phagosome maturation and to overcome the ion gradients

(H*, Zn?* or Cu?"), creating an optimal environment for their proliferation (1). Membrane damage
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inflicted by pathogenic mycobacteria depends on the pathogenicity locus region of difference (RD)
1 encoding the type VII secretion system ESX-1. This leads among others to the leakage of Zn?*
from the Mycobacterium-containing vacuole (MCV) thus preventing the bacteria from zinc poisoning
2).

Endosomal sorting complex required for transport (ESCRT)-dependent membrane repair plays a
role during the infection of Dictyostelium discoideum with M. marinum, a pathogenic mycobacterium
that primarily infects poikilotherms and is genetically closely related to the tuberculosis (TB) group
(3). Importantly, the host response and course of infection by M. tuberculosis and M. marinum share
a high level of similarity (4) including the molecular machinery for host lipid acquisition and turnover
(5). In M. marinum-infected D. discoideum, the ESCRT machinery cooperates with autophagy to
repair EsxA-mediated damage at the MCV (6). The evolutionarily conserved E3-ligase TrafE
mobilises various ESCRT components to damaged lysosomes and the MCV (7). While the ESCRT
components Tsgl101, Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to small membrane
ruptures, the autophagy machinery operates at places of extensive membrane damage (6). When
ESCRT-dependent and autophagy pathways are disrupted, M. marinum escapes to the cytosol at
very early infection stages, indicating that both mechanisms are needed to keep the bacteria inside
the phagosome (6).

Two other repair pathways restore the integrity of broken lysosomal membranes in mammalian cells
(8). Sphingomyelin (SM)-dependent repair operates at damaged lysosomes and ruptured vacuoles
containing Salmonella Typhimurium (9) or M. marinum (10). Moreover, an endoplasmic reticulum
(ER)-dependent membrane repair pathway has been described (11, 12). In this pathway, lysosomal
damage results in the recruitment of Pl4-kinase type 2-alpha (PI4K2A) generating high levels of
phosphatidylinositol-4-phosphate (PI4P) (12). The accumulation of PI4P leads to the induction of
ER-lysosome contacts and the mobilization of OSBP and several OSBP-related proteins (ORPS)
that transfer cholesterol and phosphatidylserine (PS) from the ER to the ruptured lysosomes in
exchange for PI4P (11, 12).

Proteomics and transcriptomics analyses indicate that ER-dependent membrane repair might also
play a role during mycobacterial infection in human macrophages (13) and in D. discoideum (14,
15). Genes encoding the proteins involved in the establishment of membrane contact sites (MCS)
with the ER or in lipid transfer are upregulated at infection stages, when major vacuolar damage
occurs and the bacteria translocate to the cytosol. In this study, we investigated the role of OSBPs
in ER-mediated membrane repair in the context of mycobacterial infection. We show that ESX-1-
dependent membrane damage results in the mobilization of OSBP and its D. discoideum homologue
OSBP8 to M. tuberculosis- and M. marinum-containing vacuoles, respectively. We demonstrate that
OSBP8 is on ER-tubules in close contact with lysosomes and MCVs dependent on PI4P
accumulation. OSBP8 depletion leads to cells that are less viable upon sterile damage. Upon
infection, lack of OSBP8 causes a massive accumulation of PI4P on MCVs, impairs the functionality

of this compartment and promotes mycobacterial replication. Altogether, our work reveals that
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OSBPs play an important role in equilibrating P14P levels during ER-dependent repair to maintain
the integrity of MCVs and contribute to the maintenance of the phagosomal innate immune defences

against intracellular pathogens.

Results

Mycobacterial infection induces an ER-dependent repair gene expression sighature

During lysosomal damage, cells stimulate a phosphatidylinositol (PI)-initiated signalling pathway for
rapid lysosomal repair (12). This results in the recruitment of membrane tethers and lipid transfer
proteins (LTPs) to ER-lysosome contact sites (11, 12). Analysis of RNA-sequencing data of D.
discoideum during M. marinum infection (14, 15) revealed a possible role for ER-dependent repair:
Genes encoding the homologues of the PI4P phosphatase Sacl and several Pl4Ks (pi4k and pikD)
were upregulated at later infection stages when M. marinum inflicts major membrane damage (Fig.
1A). Additionally, the expression of many OSBPs is affected in complex manners during infection
(Fig. 1B).

In D. discoideum, M. marinum resides in a compartment with partially lysosomal and post-lysosomal
characteristics that is exposed to damage starting from early infection stages (6, 16). We investigated
whether mycobacterial infection leads to the formation of ER-MCV contacts. Indeed, when cells
expressing the ER-marker Calnexin-mCherry were infected with M. marinum and stained for the
MCV-marker p80 (16), we observed Calnexin* ER-tubules in the close vicinity of the MCV (Fig. S1A).
This is consistent with previous findings showing M. tuberculosis infection of dendritic cells, in which
approximately 50% of the MCVs were Calnexin* (17). To gain a better understanding of the
morphology of these sites, cells expressing GFP-actin-binding-domain-(ABD) as well as the
endosomal and MCV marker AmtA-mCherry (18) were infected and analysed by correlative light and
electron microscopy (CLEM). The overexpression of GFP-ABD leads to a significant improvement
of cell adhesion and was necessary to re-locate the cells after sample preparation for EM. By
correlating the images of vacuolar bacteria obtained by live cell imaging (AmtA*) (Fig. 1C) with the
corresponding EM micrographs, ER-tubules were seen close to ruptured MCVs (Fig. 1D).

In summary, we discovered a unique transcriptomic signature that, together with the observation of
ER-tubules in the proximity of the MCV, supports the hypothesis that mycobacterial infection triggers

ER-dependent membrane repair.

OSBP8-GFP is mobilized by intracellular mycobacteria

LTPs from the OSBP/ORP family are mobilized during ER-dependent lysosomal repair to provide
lipids such as PS or cholesterol. Members of this protein family counter-transport these lipids in
exchange for PI4P at ER-lysosome contacts. Sequence comparison of the twelve D. discoideum
OSBPs with human and yeast homologues revealed that family members consist primarily of the
lipid-binding OSBP-related domain (ORD) (Fig. S1B) (19). By analysing recent proteomics data from

infected D. discoideum (14), we found four out of the twelve D. discoideum homologues enriched on
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isolated MCVs (i.e. OSBP6, OSBP7, OSBP8 and OSBP12) (Fig. 1B). These proteins are potential
candidates for OSBP-mediated ER-dependent repair during infection. The fact that OSBP8 is the
closest homologue to mammalian family members (19) and is the only D. discoideum OSBP with a
fully conserved EQVSHHPP lipid-binding motif (Fig. S1C) prompted us to investigate its localization
during mycobacterial infection and to use OSBP7, which is more distantly related, as a control.

To study the subcellular localization of OSBP8, we overexpressed it tagged with GFP at either end
(Fig. S2A-F). OSBP8-GFP was partly cytosolic and co-localized with Calnexin-mCherry at the
perinuclear ER as well as with ZntC-mCherry, a zinc transporter that is located at the Golgi and/or
recycling endosomes (20) (Fig. S2A-B). Interestingly, the membrane localization of OSBP8 was
abolished in cells overexpressing GFP-OSBPS8, indicating that the N-terminus is important for
membrane targeting (Fig. S2C-D).

Strikingly, when the localization of OSBP8 was monitored during infection with M. marinum, OSBP8-
GFP re-localized to MCVs starting from early stages (Fig. 1C). In contrast, OSBP8-GFP did not
localize on bead-containing phagosomes (BCPs) (Fig. S2E-F), indicating a specific response to
vacuoles containing mycobacteria. OSBP7 localized in the cytosol and nucleus in non-infected cells
and did not re-localise during infection (Fig. S2G) suggesting that some OSBPs are specifically
mobilized in response to infection.

Overall, OSBP8 is specifically recruited to MCVs starting from early infection stages, which

correlates with the occurrence of MCV-damage in D. discoideum (6).

OSBP8-GFP is located on ER-tubules in the vicinity of damaged MCVs

To test if OSBP8-GFP was recruited to MCVs or cytosolic mycobacteria, we infected cells expressing
OSBP8-GFP and AmtA-mCherry and performed lattice light sheet microscopy (LLSM) (Fig. 2A-C).
OSBP8-GFP did not colocalize with the MCV membrane (AmtA*), but it was recruited to its
immediate vicinity (Fig. 2A-B; see also Movie S1). This finding was further corroborated by a 3D
analysis that demonstrates that some MCVs were fully enclosed by OSBP8-GFP* structures (Fig.
2C; see also Movie S2). To visualize these potential ER-MCV contacts, expansion microscopy (ExM)
of cells expressing OSBP8-GFP and Calnexin-mCherry was carried out. In line with the previous
results, Calnexin-mCherry™ and OSBP8-GFP* ER-tubules were observed in the vicinity of the MCV
(Fig. 3D). Additionally, we performed CLEM (Fig. S3A-B) and 3D-CLEM (Fig. 2E-G, Fig. S3C) to
acquire a deeper insight of the morphology of these micro-compartments. The CLEM analysis
confirmed by live imaging that OSBP8-mCherry is recruited to the MCV. Strikingly, in the
corresponding EM images OSBP8-mCherry coincides with ER-tubules that were in the vicinity of
seemingly damaged MCVs (Fig. S3A-B). For volumetric image analysis, the infected cells were
subjected after live cell imaging to serial block face-scanning electron microscopy (SBF-SEM). In
agreement with our previous observations, electron micrographs and the 3D rendering clearly
showed that the MCV is surrounded by OSBP8*-ER-tubules (Fig. 2E-G, Fig. S3C; see also Movie
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S3). Altogether, this supports the hypothesis that OSBP8 plays a role in ER-dependent repair during
mycobacterial infection.

Next, we tested if the mobilization of OSBP8 to the MCV is damage-dependent and performed
infections with a mutant of M. marinum lacking ESX-1 (ARD1) (6). Remarkably, the localization of
OSBP8-GFP in the vicinity of the MCV was abolished in cells infected with the ARD1 mutant (Fig.
3A-B). A similar observation was made with the ACE mutant that has a functional ESX-1 system but
lacks EsxA together with its chaperone EsxB (Fig. 3C). Since overexpression can lead to artefacts
and to the induction of MCS, we generated a chromosomally-tagged GFP-fusion of OSBPS8
(OSBP8::GFP) in which OSBP8 is under the control of its endogenous promoter and expressed 20
times less than in OSBP8-GFP overexpressing cells (Fig. S4A-B). OSBP8::GFP shows a similar
distribution and is also recruited to the MCV in an ESX-1-dependent manner (Fig. S4C-D). We
concluded that ESX-1/EsxA-mediated membrane damage triggers the formation of ER-MCV MCS
and the recruitment of OSBP8-GFP to these sites.

The recruitment of OSBP8-GFP to damaged lysosomes and the MCV is dependent on PI4P

We analysed the distribution of OSBP8-GFP upon treatment with lysosome disrupting agent Leu-
Leu-O-Me (LLOMe) (21) to test whether OSBP8 is recruited as a general response to lysosomal
damage. As observed previously, LLOMe induced the formation of ESCRT-III-(GFP-Vps32*)
structures at the periphery of lysosomes labelled with fluorescent dextran (Fig. S5A) (6). In
mammalian cells, ER-dependent lysosome repair is initiated by the recruitment of PI4K2A leading
to an accumulation of PI4P at the damage site and the recruitment of ORPs/OSBPs (11, 12). Also
in D. discoideum, PI4P, visualized with the Pl4P-binding domain (P4C) of the Legionella effector
SidC (22-24), was rapidly observed on ruptured lysosomes. The kinetics of PAC-GFP associated
with damaged lysosomes was slightly delayed compared to GFP-Vps32 (Fig. S5A). Also OSBP8-
GFP was mobilized upon sterile damage (Fig. S5A), however, as observed for OSBP in HelLa (11)
and U20S cells (12), the recruitment happened relatively late (20-40 min after LLOMe treatment)
and was observed less frequently. In contrast, OSBP7-GFP remained cytosolic and in the nucleus
upon LLOMe treatment (Fig. S5A). This implies that OSBP8-GFP* ER-lysosome contacts were a
response to lysosomal damage and that this pathway might be activated after SM- and ESCRT-
dependent repair. Intriguingly, the mobilization of OSBP8-GFP was totally abolished in cells highly
expressing P4C-mCherry (Fig. S5B), indicating that P4AC binds to PI4P with such a high affinity that
it displaces OSBP8-GFP. In cells expressing PAC-mCherry at low levels, OSBP8-GFP became
visible at the periphery of dextran-labelled endosomes upon LLOMe treatment (Fig. S5C). A similar
observation was made during infection: Here, PAC-mCherry accumulated at the MCV starting from
early infection stages. In cells highly expressing P4C-mCherry, OSBP8-GFP was not recruited to
the MCV (Fig. 3D), indicating that P4C-mCherry competes with OSBP8-GFP for PI4P. However,

when P4C-mCherry was expressed at a low level, OSBP8-GFP co-localized with M. marinum (Fig.
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S5D). Altogether, these data indicate that OSBP8-GFP is recruited by PI4P on damaged lysosomes

and on ruptured MCVs, respectively.

OSBPS8 prevents accumulation of PI4P on damaged MCVs and restricts mycobacterial growth
OSBP8 localizes to the perinuclear ER and the juxtanuclear region that is characteristic for the Golgi
apparatus in D. discoideum and might be a homologue of mammalian OSBP that is recruited to ER-
Golgi contacts to shuttle PI4P and cholesterol between the two organelles (25). In ER-dependent
membrane repair, OSBP was reported to balance out PI4P levels on ruptured lysosomes (11). To
investigate if OSBPS8 is involved in PI4P transport, we generated knockouts (KOs), in which the
corresponding gene (osbH) is disrupted by a BS" cassette. Similar to OSBP in mammalian cells,
deletion of OSBP8 caused a re-distribution of the PI4P probe away from the PM to internal structures
reminiscent of the Golgi apparatus (Fig. S6A-B). Upon LLOMe treatment, PAC-GFP* lysosomes
were detected for up to 110 min in cells lacking OSBP8, whereas the PAC-GFP signal dissociated
from lysosomes of wild type (wt) cells considerably earlier (Fig. S6C). Additionally, as observed for
OSBP (11), OSBP8 was essential for cell viability following LLOMe treatment, however, the effect
was less pronounced compared to cells lacking Tsg101 (Fig. S6D-E). Taken together, our data
provide strong evidence that OSBP8 is involved in PI4P-removal from ruptured lysosomes.

During infection, we observed a hyperaccumulation of P4C-GFP on the MCVs of the osbH KO (Fig.
4A-B). Previous data by us and others indicate that sterols accumulate in the MCV of M. marinum
(18) and M. bovis BCG (26). To test if OSBP8 depletion interferes with sterol transport, we performed
filipin staining. A statistically significant lower filipin intensity was observed on MCVs in osbH KO at
later infection stages (Fig. 4C-D), suggesting that sterols might indeed shuttled by OSBP8. Since
the difference was small, sterols might be additionally transferred to the MCV by other mechanisms.
P14P accumulation on lysosomes of OSBP-depleted cells was hypothesized to induce increased and
prolonged ER-endosome contact sites and might impact on lysosomal function (11). During infection
approximately half of the bacteria were positive for the peripheral subunit VatB of the H*-ATPase
and the MCVs are labelled by LysoSensor and DQ-BSA at early infection stages (27). Depletion of
OSBPS8 lead to a decrease of LysoSensor* bacteria and to MCVs that are less acidic (Fig. 4E-G).
Although the percentage of DQ-BSA" bacteria was equivalent to wt, MCVs in osbH KOs were less
degradative (Fig. 4H-J), indicating that the increased accumulation of PI14P impaired the lysosomal
and proteolytic capabilities of the MCV. This finding further supported by the fact that intracellular M.
marinum growth was increased in two independent osbH KOs (Fig. 4K). Conversely, overexpression
of OSBP8-GFP lead to reduced intracellular growth (Fig. 4l). Importantly, deletion of OSBP8 did not
impact vacuolar escape (Fig. S6F-G) suggesting that the MCV environment is responsible for the
growth advantage of the bacteria.

Thus, OSBP8-mediated removal of PI4P from the MCV during ER-dependent membrane repair is

necessary to preserve the membrane integrity and the lysosomal functionality of this compartment.


https://doi.org/10.1101/2023.04.17.537276
http://creativecommons.org/licenses/by-nc-nd/4.0/

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.17.537276; this version posted April 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

M. tuberculosis recruits OSBP in an ESX-1-dependent manner in human macrophages

Next, we sought to validate our findings in induced pluripotent stem cell (iPSC)-derived macrophages
(iPSDMs) infected with M. tuberculosis (Fig. 5). According to RNA-sequencing, key genes of this
repair pathway were significantly upregulated in an ESX-1-dependent manner (Fig 5A-B). We
observed a higher expression level of ORP5, ORP9 and PI4K3B, i.e. another Pl-kinase that also
localises to lysosomes (28). This signature was significant at 48 hpi and most of the genes were not
upregulated in cells infected with the M. tuberculosis ARD1 mutant. OSBP transfers cholesterol to
damaged lysosomes to preserve membrane stability and PI4P in the opposite direction to ensure
the establishment of functional contact sites (11). Strikingly, during infection of iPSDMs, endogenous
OSBP re-localized to M. tuberculosis wt (Fig. 5C). Notably, this recruitment is ESX-1 dependent as
OSBP was less efficiently recruited in cells infected with M. tuberculosis ARD1 mutant (Fig. 5D).
Collectively, our data highlight the evolutionary conservation of an ER-dependent membrane repair

mechanism from simple eukaryotes such as D. discoideum to human cells.

Discussion
Using transcriptomics and proteomics data of infected cells as well as advanced imaging
approaches, we provide evidence that ER-dependent repair is involved in mycobacterial infection.
The main features of this membrane repair pathway at MCVs are shown in Fig. 6. Since various
genes encoding for PI4Ks are upregulated at later infection stages (Fig. 1A), we hypothesize that
cumulative damage at the MCV leads to the recruitment of PI4K. This is consistent with the fact that
Pl4P accumulated at this compartment (Fig. 3D). The presence of PI4P is essential for (i) the
formation of MCS via the interaction with P14P-binding, tethering proteins that might interact with the
anchor VAP at the ER and (ii) for the recruitment of LTPs belonging to the OSBP/ORP-family. We
suggest that lipid transport is fuelled by a PI4P gradient that is maintained by the PI4P hydrolase
Sacl on the ER. Conversely, an upregulation of Sacl during infection was observed in D.
discoideum (Fig. 1A). We propose that the ER-dependent pathway plays a role in providing lipids for
other membrane repair mechanisms, including SM- and ESCRT-dependent repair (8) . In line with
that we also observed an upregulation of ORP5 and ORP9 during M. tuberculosis infection. The
corresponding proteins might transfer PS to the MCV (12, 29). These lipids might be essential for
the generation of intraluminal vesicles, which ultimately facilitate the removal of the damage site. To
better understand the potential crosstalk between SM-, ESCRT-, and ER-dependent repair
mechanisms during infection further work is necessary.
Besides transferring sterols to the MCV, OSBP8 and mammalian OSBP have a crucial role in
equilibrating PI4P levels to ensure the formation of functional ER-MCV MCS. Strikingly, both
proteins, were recruited to MCVs. Mycobacteria lacking ESX-1 failed to mobilize these proteins (Fig.
3A-C, Fig. 5C-D), indicating that membrane damage is a prerequisite for their recruitment. Using
advanced imaging approaches such as LLSM, CLEM and 3D-CLEM, we discovered that OSBP8 is
on ER-tubules that form MCS with the MCV (Fig. 2, Fig. S3). OSBP8 depletion resulted in the
8
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hyperaccumulation of PI4P on MCVs (Fig. 4A-B) and intracellular growth of M. marinum was
accelerated (Fig. 4K). The observed growth advantage is probably due to the impaired lysosomal
function and degradative properties of the MCV in the absence of OSBP8 (Fig. 4E-J). Depletion of
OSBP8 did not fully inhibit the accumulation of sterols inside the MCV (Fig. 4C-D), thus, sterol
transport might be mediated either by vesicular transport or other sterol transporters.

How is OSBP8 recruited to ER-MCV MCS? Members of the OSBP/ORP family are typically targeted
to the ER by binding to VAP through their two phenylalanines-in-an-acidic tract (FFAT)-motif.
Sequence analysis revealed that all D. discoideum OSBPs are short and contain neither a FFAT-
motif, nor pleckstrin homology- (PH-) or transmembrane domains but consist primarily of the ORD
(Fig. S1B). OSBP8 has a short amphipathic lipid packing sensor (ALPS)-like motif (30) flanked by
an unstructured N-terminus (Fig. S6H). Intriguingly, the presence of an N-terminal GFP prevented
membrane targeting of OSBP8 (Fig. S2C-D) suggesting that the ALPS-like motif may be involved in
PI4P-binding (Fig. 3D, Fig. S2C-D).

In summary, D. discoideum and macrophages restrict pathogenic mycobacteria such as M.
tuberculosis and M. marinum by restoring the MCV membrane with the help of ER-dependent
membrane repair. We conclude that PI4P levels at the MCV need to be tightly regulated to allow the
correct establishment of ER-MCV MCS to provide adequate levels of lipids to preserve membrane
integrity. This in turn is necessary to maintain ion gradients and fundamental innate immune
functions of these compartments. Our findings pave the way for an in-depth mechanistic analysis of

the role of ER-dependent repair for the formation and stability of pathogen vacuoles.

Materials

D. discoideum plasmids, strains and cell culture

All the D. discoideum material is listed in Table S1. D. discoideum wt (AX2) was grown axenically at
22°C in HI5¢c medium (Formedium) containing 100 U/mL penicillin and 100 pg/mL streptomycin.

To generate osbH KOs, osbH was amplified with the primers #293 (5' CGG AAT TCAAAATGT TTT
CAG GAG CAT TG) and #294 (5 CGG AAT TCT TAATTT GAA GCT GCT GC) from genomic DNA
of AX2 digested with EcoRI and ligated into the same site of pGEM-T-Easy (Promega) to yield
plasmid #625. From this plasmid a central 0.3 kbp fragment was eliminated by Mfel and the ends
were blunted by T4 DNA polymerase. Thereafter the blasticidin S-resistance cassette flanked by
Smal sites from plasmid pLPBLP (31) was inserted, resulting in plasmid #629. Digestion with EcoRI
produced an osbH gene interrupted by the BS'-cassette that was used for electroporation. The D.
discoideum clones were screened and verified by PCR with #353 (5" CAAT ACC AAT AGATTT TAT
ATC ATT AC) that bound genomic DNA just upstream the construct used for targeting and primers
#57 (5 CGC TAC TTC TAC TAA TTC TAG A) complementary to the 5 end of the resistance
cassette. Because this primer combination did not yield a product for the wildtype, further
verifications involved primers #353 in combination with #358 (5 CCT CTG ATG AGT TAC CAT AG)
in the 3’ homologous sequence, as well as #357 (5° GCC TCA AAA CAA GAT AGC G) binding in
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the 5’ region of the targeting construct together with #356 (5 CAG CGG AAA TTG AAT GAA TAA
ATT) complementary to a sequence downstream of the region used for homologous recombination.
The OSBP8::GFP knockin cell line was generated using a previously described strategy (32) with
the aim to insert the GFP-tag and the blasticidin cassette after the endogenous gene by homologues
recombination. To this end, two recombination arms consisting of the last ~ 500 bp of osbH (left arm
(RA)) and of ~ 500 bp downstream of osbH (right arm (RA) were amplified by PCR using the LA
primers (oMIB56: 5’CGA GAT CTG GTT GGT TAG GTG CCG GTC G and oMIB57: 5GGA CTA
GTA TTT GAA GCT GCT GCT TTA ACT CTT TCT TCT C) as well as the RA primers (oMIB101:
5 CGG TCG ACT AAA AAC AAT AAT AAT TAT ATATTT TAATCG TAAACAATT TATTCATTC
AAT TTC C and oMIB102: 5GCG AGC TCG GAA ATC TTG TTG GAG G) and cloned into the
plasmid pP1183 (32) using the restriction sites Bglll, Bcul (LA) and Sall and Sacl (RA). The resulting
plasmid pMIB173 was used for electroporation after linearization with Pvull. The D. discoideum
clones were screened and verified by PCR with the primers oMIB56 (5CGA GAT CTG GTT GGT
TAG GTG CCG GTC G) and oMIB57 (5 GGA CTA GTA TTT GAA GCT GCT GCT TTAACT CTT
TCT TCT C) complementary to the osbH gene and the downstream region and by western blot using
an anti-GFP-antibody.

To create OSBP7 and OSBP8 GFP-overexpressing cells, osbG and osbH were amplified from cDNA
using the primers oMIB20 (osbG forward 5CGA GAT CTA AAA TGG AGG CCG ATC CG), oMIB18
(osbG reverse with stop 5 CCA CTA GTT TAA TTA CTA CCA CTT GCA GC), oMIB19 (osbG
reverse without stop 5 CCA CTA GTA TTA CTA CCA CTT GCA GC), oMIB21 (osbH forward &’
CGA GAT CTA AAATGT TTT CAG GAG CAT TG), oMIB23 (osbH reverse with stop 5° CCA CTA
GTT TAATTT GAA GCT GCT GC) and oMIB22 (osbH reverse without stop 5 CCA CTA GTATTT
GAA GCT GCT GCT TTA AC) and cloned into ppDM317 and pDM323 (33) to generate N- and C-
terminal GFP-fusions, respectively.

All plasmids used in this study are listed in Table S1. Plasmids were electroporated into D.
discoideum and selected with the appropriate antibiotic. Hygromycin was used at a concentration of

50 ug/ml, blasticidin at a concentration of 5 ug/ml, and neomycin at a concentration of 5 pg/mil.

SDS-PAGE and western blot

5x10° cells were harvested and incubated with 2x Laemmli buffer containing B-mercapto-ethanol
and DTT. After the electrophoresis, proteins were transferred to a nitrocellulose membrane
(Amersham™ Protran™, Premium 0,45um NC) as described in (34). Transfer was performed for 50
min and a constant voltage of 120 V on a Mini Trans-Blot Cell (Biorad R) system. The membranes
were stained with Ponceau S solution to check the efficiency of the protein transfer. For
immunodetection, the membranes were blocked using non-fat dry milk and stained with an anti-GFP
primary (Roche; 1:1000) and a goat anti-mouse secondary antibody coupled to horseradish

peroxidase (HRP) (BioRad, 1:5000). The detection of HRP was accomplished using the Pierce™
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ECL Western Blotting Substrate (Thermo Scientific). The quantification of the band intensity was

performed with ImageJ and GraphPad Prism.

Cell viability assay

Cell viability was assessed by measuring the fraction of propidium iodide™ cells by flow cytometry.
To this end, approximately 106 cells were harvested and resuspended in Soerensen buffer (SB).
Membrane damage was induced by addition of 5 mM LLOMe and measured in SB buffer containing
3 UM PI (Thermo Fisher Scientific). After one hour of incubation, 10,000 cells per condition were
analysed using a SonySH800 and the PE-A channel. Flow cytometry plots were generated with
FloJo.

Induced pluripotent stem cell-derived macrophages (iPSDMs) differentiation and cell culture

iPSDM were generated from human induced pluripotent stem cell line KOLF2 sourced from Public
Health England Culture Collections as previously described (13). To collect the cells, iPSDM were
washed in 1x PBS and incubated with Versene (Gibco) for 10 min at 37 °C and 5 % CO.. Versene
was diluted 1:3 in 1x PBS and cells were gently scraped, centrifuged at 300 g, resuspended in X-
Vivo 15 (Lonza) supplemented with 2 mM Glutamax (Gibco), 50 uM B-mercaptoethanol (Gibco) and
plated for experiments on 96-well CellCarrier™ Ultra glass-bottom plates (Perkin Elmer) at

approximately 50,000 cells per well.

Mycobacteria strains, culture and plasmids

All the M. marinum material is listed in Table S1. M. marinum was cultured in 7H9 supplemented
with 10 % OADC, 0.2 % glycerol and 0.05 % Tween-80 at 32 °C at 150 rpm until ODgo of 1 (~1.5x108
bacteria/ml). To prevent bacteria from clumping, flasks containing 5 mm glass beads were used.
Luminescent M. marinum wt as well as ARD1 and ACE bacteria expressing mCherry were generated
in the Thierry Soldati laboratory (27, 35, 36) and grown in medium supplemented with 25 pg/ml
kanamycin and 100 pg/ml hygromycin, respectively. To generate wt and ARD1 mycobacteria
expressing eBFP, the unlabelled strains were transformed with the pTEC18 plasmid (addgene
#30177) and grown in medium with 100 pg/ml hygromycin.

All the M. tuberculosis material is listed in Table S1. M. tuberculosis were thawed and cultured in
Middle 7H9 supplemented with 0.05% Tween-80, 0.2% glycerol and 10% ADC.

Infection assays

The infection of D. discoideum with M. marinum was carried out as previously described (16, 37).
Briefly, for a final MOI of 10, 5 x 10® bacteria were washed twice and resuspended in 500 pl HI5c
filtered. To remove clumps, bacteria were passed 10 times through a 25-gauge needle and added
to a 10 cm petri dish of D. discoideum cells. To increase the phagocytosis efficiency, the plates were
centrifuged for two times 10 min at RT. After 20-30 min incubation, the extracellular bacteria were
removed by several washes with HI5c filtered. Finally, the infected cells were taken up in 30 ml of

HI5c at a density of 1 x 10° ¢/ml supplemented with 5 pug/ml streptomycin and 5 U/ml penicillin to
11
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prevent the growth of extracellular bacteria and incubated at 25 °C at 130 rpm. At the indicated time
points, samples were taken for downstream experiments.

Infection of iPSDM was performed as previously described (13). Briefly, M. tuberculosis was grown
to ODsoo ~ 0.8 and centrifuged at 2000 g for 5 min. The pellet was washed twice with PBS, shaken
with 2.5-3.5 mm glass beads for 1 min to produce a single-bacteria suspension. Bacteria were
resuspended in 8 ml of cell culture media and centrifuged at 300 g for 5 min to remove clumps.
Bacteria were diluted to an MOI of 2 for infection before adding to the cells. After 2 hrs, the inoculum
was removed, cells were washed with PBS, and fresh medium was added.

Intracellular growth assays

M. marinum growth was assessed with the help of bacteria expressing luciferase as well as its
substrates as previously described (35). Briefly, infected D. discoideum cells were plated in dilutions
between 0.5 — 2.0 x 10° on non-treated 96-well plates (X50 LumiNunc, Nunc) and covered with a
gas permeable moisture barrier seal (4Ti). Luminescence was measured at 25 °C every hour for
around 70 hrs using an Infinite 200 pro M-plex plate reader (Tecan).

RNA-sequencing and proteomic data

RNA-Seq (15) and proteomics data (14) from M. marinum infected D. discoideum were re-analysed
for selected genes involved in ER-contact site formation or lipid transport. All the data can be
accessed via the supplementary files on BioRxiv.

RNA sequencing data of M. tuberculosis-infected macrophages was extracted from an original study
(13). All RNA-Seq data is deposited in Gene Expression Omnibus (accession number GSE132283).

Live cell imaging

To monitor non-infected cells or the course of infection by SD live imaging, cells were transferred to
either 4- or 8-well p-ibidi slides and imaged in low fluorescent medium (LoFlo, Formedium, UK) with
a Zeiss Cell observer spinning disc (SD) microscope using the 63x oil objective (NA 1.46). To
improve signal-to-noise, indicated images were deconvolved using Huygens Software from Scientific
Volume Imaging (Netherlands). The images were further processed and analysed with ImageJ.

To analyse whether MCVs have impaired lysosomal or proteolytic function, infected cells were
transferred to an ibidi slide and incubated for 10 min in HI5c filtered medium containing 1pM
LysoSensor Green (Thermo Fisher Scientific) or 1 hr with 50 pg/ml DQ-BSA Green (Thermo Fisher
Scientific). In the case of LysoSensor Green labelling, the extracellular dye was removed before
imaging. Z-stacks of 15 slices with 300 nm intervals were acquired.

To visualize GFP-Vps32, PAC-mCherry, PAC-GFP and OSBP8-GFP on damaged lysosomes, sterile
membrane damage was induced with 5 mM LLOMe (Bachem) as described in (6). To label all
endosomes, above mentioned cells were pre-incubated on ibidi slides overnight with 10 pg/ml
dextran (Alexa Fluor™ 647, 10.000 MW, Thermo Fisher Scientific) in HI5c filtered medium. Time
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lapse movies of single planes were recorded 10 min prior the addition of LLOMe and then further
acquired every 5 mins for at least 2 hrs.

For lattice light sheet microscopy (LLSM) the infection was performed as previously described. At
3 hours post infection (hpi) cells were seeded on 5 mm round glass coverslips (Thermo Scientific)
and mounted on a sample holder specially designed for LLSM, which was an exact home-built clone
of the original designed by the Betzig lab (38). The holder was inserted into the sample bath
containing HI5c filtered medium at RT. A three-channel image stack was acquired in sample scan
mode through a fixed light sheet with a step size of 190 nm which is equivalent to a ~189.597 nm
slicing. A dithered square lattice pattern generated by multiple Bessel beams using an inner and
outer numerical aperture of the excitation objective of 0.48 and 0.55, respectively, was used.

The raw data was further processed by using an open-source LLSM post-processing utility called
LLSpy v0.4.9 (https://github.com/tlambert03/LLSpy) for deskewing, deconvolution, 3D stack rotation
and rescaling. Deconvolution was performed by using experimental point spread functions and is
based on the Richardson-Lucy algorithm using 10 iterations. Finally, image data were analysed and
processed using imageJ and 3D surface rendering was performed with Imaris 9.5 (Bitplane,
Switzerland).

Antibodies, fluorescent probes, immunofluorescence and expansion microscopy

Fluoresbrite 641 nm Carboxylate Microspheres (1.75 um) were obtained from Polysciences Inc.,
LysoSensor Green DND-189 as well as DQ Green BSA, Alexa Fluor 647 10kDa dextran and FM4-
64 from Thermo Fisher Scientific.

The anti-vatA, anti-vacA, anti-p80 antibodies were obtained from the Geneva antibody facility
(Geneva, Switzerland). The anti-PDI antibody was provided from the Markus Maniak lab (University
of Kassel, Germany). Anti-Ub (FK2) was from Enzo Life Sciences, the anti-OSBP antibody from
Sigma-Aldrich. As secondary antibodies, goat anti-rabbit, anti-mouse and anti-rat IgG coupled to
Alexa546 (Thermo Fisher Scientific), CF488R (Biotium), CF568 (Biotium) or CF640R (Biotium) were
used.

For immunostaining of D. discoideum, cells were seeded on acid-cleaned poly-L-Lysine coated
10 mm coverslips and centrifuged at 500 g for 10 min at RT. Cells were fixed with 4 %
paraformaldehyde/ picric acid and labelled with antibodies as described in (39). Images were
acquired using an Olympus LSM FV3000 NLO microscope with a 60x oil objective with a NA of 1.40.
Five slices with 500 nm intervals were taken.

Filipin staining was performed as previously described (18). Briefly, fixed cells were treated with
Filipin at 50 pg/ml for 2 hrs without further permeabilization prior the primary antibody labelling. To
avoid bleaching, images were taken using the SD microscope. Up to 20 slices with 300 nm intervals
were obtained. All images were analysed and processed using ImageJ and graphical

representations were generated using Graphpad Prism.
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For immunostaining of infected iPSDMs, cells were fixed overnight with 4 % paraformaldehyde at 4
°C. Samples were quenched with 50 mM NH4Cl for 10 min and then permeabilized with 0.3 % Triton-
X for 15 min. After blocking with 3% BSA for 30 min, samples were incubated with the anti-OSBP
antibody for 1 hr at RT. After incubation, the coverslips were washed with PBS, before addition of
the secondary antibody (45 min at RT). Nuclei were stained with DAPI. Images were recorded either

with a Leica SP8 or an Opera Phenix (Perkin Elmer) with 63x water objective with a NA of 1.15.

The ExM protocol was adapted from (40) and (41). Briefly, cells were fixed with -20°C cold methanol
and stained with antibodies as described before. The signal of mCherry and GFP was enhanced
using a rat mAb anti-RFP (Chromotek, 5f8-100) and a rabbit pAb anti-GFP antibody (BIOZOL/MBL,
MBL-598), respectively. Samples were then incubated with 1 mM methylacrylic acid-NHS (Sigma
Aldrich) in PBS for 1 hr at RT in a 24-well plate. After washing three times with PBS, coverslips were
incubated in the monomer solution (8.6% sodium acrylate, 2.5% acrylamide,
0.15% N,N’-methylenebisacrylamide, and 11.7% NaCl in PBS) for 45 min. This was followed by an
2 hrs incubation in the gelling solution (monomer solution, 4-hydroxy-TEMPO (0.01%), TEMED
(0.2%) and ammonium persulfate (0.2%)) inside the humidified gelation chamber at 37 °C.
Afterwards, gels were transferred into a 10-cm dish containing the digestion buffer (50 mM Tris, 1
mM EDTA, 0.5% Triton-X-100, 0.8M guanidine HCI, and 16 U/ml of proteinase K; pH 8.0) and
incubated at 37 °C overnight. For final expansion of the polymer, gels were incubated in deionized
water for at least 2.5 hrs. Subsequently, a region of interest was cut out and transferred onto a
coverslip coated with poly-L-lysine to prevent movements during the imaging (Olympus LSM FV3000

NLO). Deionized water was used as imaging buffer and to store the samples at 4°C.

CLEM with high-pressure freezing and freeze substitution

Cells expressing GFP-ABD and AmtA-mCherry or OSBP8-mCherry were seeded on poly-L-lysine
sapphire discs (3 mm x 0.16 mm). Before seeding cells, a coordinate system was applied on the
sapphires by gold sputtering using a coordinate template. Sapphires were dipped into 2%
glutaraldehyde (GA) in HL5c and imaged in 0.5% GA in HL5c. Directly after acquisition of the LM
image using the SD microscope, the sapphire discs were high-pressure frozen with a Compact 03
(M. Wohlwend, Switzerland) high pressure freezer (HPF). For HPF, the sapphire discs were placed
with the cells and gold spacer facing onto flat 3 mm-aluminum planchettes (M. Wohlwend GmbH,
Switzerland), which were beforehand dipped into hexadecene (Merck, Germany). The assemblies
were thereafter placed into the HPF-holder and were immediately high pressure frozen. The vitrified
samples were stored in liquid nitrogen until they were freeze substituted.

For freeze substitution (FS), the aluminum planchettes were opened in liquid nitrogen and separated
from the sapphire discs. The sapphire discs were then immersed in substitution solution containing
1% osmium tetroxide (Electron Microscopy Sciences, Germany), 0.1% uranyl acetate and 5% H,O
in anhydrous acetone (VWR, Germany) pre-cooled to =90 °C .The FS was performed in a Leica

AFS2 (Leica, Germany) following the protocol of 27 hrs at —90 °C, 12 hrs at -60 °C, 12 hrs at -30
14
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°C and 1 hr at 0 °C, washed 5 times with anhydrous acetone on ice, stepwise embedded in EPON
812 (Roth, Germany) mixed with acetone (30% EPON, 60% EPON, 100% EPON) and finally
polymerized for 48 hrs at 60 °C. Ultrathin sections of 70 nm and semithin sections of 250 nm were
sectioned with a Leica UC7 ultramicrotome (Leica, Germany) using a Histo diamond- and 35° Ultra
diamond knife (Diatome, Switzerland). Sections were collected on formvar-coated copper slot grids
and post-stained for 30 min with 2% uranyl acetate and 20 min in 3 % lead citrate and analyzed with
a JEM 2100-Plus (JEOL, Germany) operating at 200 kV equipped with a 20 mega pixel CMOS
XAROSA camera (EMSIS Germany).

For transmission electron microscopy (TEM) tomography 250 nm thick sections were labelled with
10 nm Protein-A gold fiducials on both sides prior to post-staining. Double tilt series were acquired
using the TEMography software (JEOL, Germany) at a JEM 2100-Plus (JEOL, Germany) operating
at 200 kV and equipped with a 20-megapixel CMOS XAROSA camera (EMSIS, Muenster,
Germany). The nominal magnification was 12000x with a pixel size of 0.79 nm. Double tilt
tomograms were reconstructed using the back-projection algorithm in IMOD (42).

Serial block face (SBF) - scanning electron microscopy (SEM)

After SD microscopy in gridded ibidi 8-well chambers, cells were fixed in 2% GA in HL5c.
Subsequently, samples were processed via adapted version of the NCMIR rOTO-post-fixation
protocol (43) and embedded in hard Epon resin, ensuring pronounced contrast and electron dose
resistance for consecutive imaging. All procedures were performed in the ibidi dish. In brief, after
fixation, samples were post-fixed in 2% osmiumtetroxide (Electron Microscopy Sciences) and treated
with 1.5 % (w/v) potassium ferrocyanide (Riedel de Haen) in HISc for 30 min. After washing in
ultrapure water, cells were incubated in 1 % (w/v) thiocarbohydrazide (Riedel de Haen) in water for
20 min, followed by an additional 2 % osmication step for 1 hr at RT. Samples were then incubated
in 1 % tannic acid in water for 30 min, washed and submerged in 1% aqueous uranyl acetate
overnight at 4°C. Cells were then brought up to 50°C, washed and incubated in freshly prepared
Walton's lead aspartate (Pb(NO3)2 (Carl-Roth), L-Aspartate (Serva), KOH (Merck)) for 30 min at
60°C. Subsequently, cells were dehydrated through a graded ethanol (Carl-Roth) series (50 %, 70
% and 90 %) on ice for 7 min each, before rinsing in anhydrous ethanol twice for 7 min and twice in
anhydrous acetone (Carl-Roth) for 10 min at RT. Afterwards, cells were infiltrated in an ascending
Epon:acetone mixture (1:3, 1:1, 3:1) for 2 hrs each, before an additional incubation in hard mixture
of 100% Epon 812 (Sigma). Final curation was carried out in hard Epon with 3% (w/w) Ketjen Black
(TAAB) at 60°C for 48 hr. Once polymerized, the p-Dish bottom was removed via toluene melting
from the resin block leaving behind the embedded cells and finder grid imprint. ROIs were trimmed
based on the coordinates (250*250*250 um3) and the sample blocks were glued to aluminium rivets
using two-component conductive silver epoxy adhesive and additionally coated in a 20 nm thick gold
layer. The rivet containing the mounted resin block was then inserted into the 3View2XP (Gatan,
USA) stage, fitted in a JSM-7200F (JEOL, Japan) FE-SEM, and precisely aligned parallel to the
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diamond knife-edge. The cells proved to be stable under imaging conditions of 1.2 kV accelerating
voltage, high vacuum mode of 10 Pa, utilizing a 30 nm condenser aperture and a positive stage bias
of 400 V. Imaging parameters were set to 2 nm pixel size, 1.1 us dwell time, in between ablation of
30 nm and an image size of 10240x10240 pixels. Overall, an approximate volume of 20x20x7 um (a
210 slices) was acquired. Image acquisition was controlled via Gatan Digital Micrograph software
(Version 3.32.2403.0). Further post processing, including alignment, filtering and segmentations
were performed in Microscopy Image Browser (Version 2.7 (44)). Endoplasmic reticulum was traced
and segmented manually throughout the entire dataset, whereas bacteria, nucleus and vacuole were
annotated semi-automatically via morphological 3D watershed. Correlation of light microscopic and
EM datasets was performed in AMIRA (Version 2021.1, Thermo Fisher) by rendering and overlaying

both volumes, utilizing GFP and eBFP signal as natural landmarks within the electron micrographs.

Figure Legends

FIG 1 Evidence for ER-mediated repair during mycobacterial infection and mobilization of OSBP8.
(A-B) Proteomics (left) and heatmaps (right) representing the transcriptional data derived from (14)
and (15). Cells were infected with GFP-expressing M. marinum wt. Samples were collected at the
indicated time points. Statistically significant differences in expression are marked with asterisks (*,
P < 0.05; **, P < 0.01; ***, P < 0.001). Colours indicate the amplitude of expression (in logarithmic
fold change (Log2FC)) in infected cells compared to mock-infected cells: from red (highest
expression) to blue (lowest expression). (C-D) CLEM reveals ER-tubules close to ruptured MCVs.
Cells expressing GFP-ABD and AmtA-mCherry were infected with eBFP-expressing M. marinum. At
24 hpi, cells on sapphire discs were imaged by SD microscopy in the presence of low concentrations
of GA before high-pressure freezing. Left: deconvolved SD images, scale bars, 5 pum; right:
representative EM micrographs, scale bars, 500 nm. Magenta arrow heads point to the ruptured
MCV membrane. Mitochondria (Mit) were pseudo-coloured in orange, M. marinum (M.m.) in cyan
and ER-tubules in yellow. (E) OSBP8-GFP is recruited to intracellular mycobacteria. Cells
overexpressing OSBP8-GFP were infected with mCherry-expressing M. marinum. At the indicated
time points, cells were imaged live by spinning disc (SD) microscopy. Arrows point to OSBP8-GFP*

mycobacteria. Scale bars, 5 um; Zoom, 2 um. Images in (C and E) were deconvolved.

FIG 2 OSBP8-GFP is located on ER-tubules in the vicinity of the MCV. (A) OSBP8-GFP localizes
adjacent to the MCV membrane. (B) Intensity profile of the line plotted through the MCV shown in
the zoom of A. (C) 3D-model of the cell shown in (A) illustrating OSBP8-GFP* membranes capping
the MCV (AmtA*). Cells dually expressing OSBP8-GFP/AmtA-mCherry were infected with eBFP-
expressing M. marinum and imaged live at 3 hpi by LLSM. Arrow points to OSBP8-GFP* membranes
close to the MCV. Scale bars in A, 5 um; Zoom, 2 yum; in C, 2 um. (D) OSBP8-GFP is located on
ER-tubules in the proximity of the MCV. Cells dually expressing OSBP8-GFP/Calnexin-mCherry
were infected with eBFP-expressing M. marinum, fixed at 24 hpi and stained with antibodies against

p80, GFP and mCherry before 4x expansion. Arrow points to an OSBP8-GFP* ER-tubule close to
16
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the MCV. Scale bar, 20 um; Zoom, 1 pm. Images were deconvolved. (E) OSBP8-mCherry is
localized on ER-tubules close to the MCV (arrow). Cells expressing OSBP8-mCherry/GFP-ABD
were infected with eBFP-expressing M. marinum. At 24 hpi, cells were imaged by SD microscopy
(E) and prepared for SBF-SEM (F-G). (F) EM micrograph showing the cell with the correlated
OSBP8-mCherry and eBFP-M. marinum signal. Please see Fig. S3C for more information. (G)
Closeup of the position indicated in F showing ER-tubules close to the MCV. (i-iv) correlation of the
(i) EM micrograph (i) with OSBP8-mCherry (magenta) and mycobacteria (blue). (iii-iv) segmentation
of the ER (yellow), MCV (violet) and mycobacteria (cyan). Scale bars, 5 um (E); 2 um (F) and 1 um

(G). SD images were deconvolved. N: nucleus.

FIG 3 OSBP8-GFP mobilization during infection is dependent on ESX-1/EsxA and Pl4P. (A) OSBP8-
GFP is not recruited to intracellular M. marinum ARD1 mutant. (B) Quantification of A. Data represent
two independent experiments (OSBP8-GFP 3, 21, 27, 46 hpi N=2, 23<n<274). (C) OSBP8-GFP is
not recruited to ACE mutant. (D) OSBP8-GFP is not mobilized during infection in cells highly
expressing P4C-mCherry. Cells overexpressing OSBP8-GFP or co-expressing P4C-mCherry were
infected with mCherry- or eBFP- expressing M. marinum wt, ARD1 or ACE. At the indicated time
points samples were taken for SD microscopy. Arrows point to OSBP8-GFP- intracellular
mycobacteria. Arrow heads indicate PI4P* MCV. Scale bars, 5 um; Zoom, 2.5 um. Images were

deconvolved. M.m.: M. marinum.

FIG 4 OSBP8 prevents PI4P accumulation on MCVs while maintaining their lysosomal and
degradative properties. (A) P4C-GFP hyperaccumulates on MCVs of the osbH KO. (B)
Quantification of A. Data are representative for one of two independent experiments (P4C-GFP 3,
27 hpi N=2, 14=n<24). (C) Sterol distribution in wt vs. osbH KO cells infected with M. marinum wt.
(D) Quantification of C. Plots show the mean and standard deviation of three independent
experiments (Filipin 8, 21 hpi N=3, 30=n<70). Statistical differences were calculated with an unpaired
t test (*p < 0.05; *** p < 0.0001). (E) Lysosomal properties of MCVs in wt vs. osbH KO cells. (F-G)
Quantifications of E. Plots show the mean and standard deviation of three independent experiments
(LysoSensor green 3, 27 hpi N=3, 290=n<450). Statistical differences were calculated with an
unpaired t test (*p < 0.05; **p < 0.01; *** p < 0.0001). (H) Proteolytic activity of MCVs in wt vs. osbH
KO cells. (I-J) Quantification of H. Plots show the mean and standard deviation of three independent
experiments (DQ-BSA green 3, 27 hpi N=3, 140=n<240). Statistical differences were calculated with
an unpaired t test (**** p < 0.0001). D. discoideum wt and osbH KO (expressing P4C-GFP (a)) were
infected with mCherry- or eBFP-expressing M. marinum wt. At the indicated time points samples
were taken for SD microscopy. For filipin staining, infected cells were fixed and stained for VatA.
Arrows point to PI4P* or LysoSensort or DQ-BSA* MCV and arrow heads indicate sterol
accumulation in the MCV. Scale bars, 5 um. Images in C were deconvolved. M.m.: M. marinum. (K-
L) Mycobacterial growth is altered in cells lacking OSBP8 or cells overexpressing OSBP8-GFP. D.

discoideum wt, two independent osbH KOs or OSBP8-GFP overexpressing cells were infected with
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M. marinum wt expressing bacterial luciferase. Luminescence was recorded every hour with a
microplate reader. Shown is the fold increase in luminescence over time. Symbols and error bars
indicate the mean and SEM of three independent experiments. Statistical differences of pairwise
comparisons were calculated with a Fisher LSD post hoc test after two-way ANOVA (**, P < 0.01;
** P <0.001).

FIG 5 ER-mediated repair plays a role during M. tuberculosis infection. (A-B) Heatmaps of
differentially expressed genes (Log: Fold-change values) encoding proteins involved in MCS
formation from RNA-sequencing analysis of human iPSDMs infected with either M. tuberculosis wt
or ARD1 (13). Samples were collected at the indicated time points. Statistically significant
differences in expression are marked with asterisk (*, P < 0.05; **, P < 0.01; *** P < 0.001, **** P <
0.0001). Colours indicate the amplitude of expression (Log2FC) in infected cells compared to mock-
infected cells: from red (highest expression) to blue (lowest expression). Data was retrieved from
(13). (C) In human iPSDMs OSBP is recruited to M. tuberculosis wt but not to the ARD1 mutant.
iPSDMs were infected with E2-Crimson-expressing bacteria. At 2 and 48 hpi cells were fixed and
stained against OSBP. Shown are two representative images from 48 hpi. Z-stacks: 20, 0.3 pm.
Scale bars, 5 ym; Zoom; 2 ym. (D) Quantification of C. Plots show the mean and standard deviation
of three independent experiments (OSBP 2, 48 hpi N=3, 800 =n<1200). Statistical differences were
calculated with an unpaired t-test (**** P < 0.0001). Mtb: M. tuberculosis.

FIG 6 Schematic outline of ER-dependent repair during mycobacterial infection. 1.) ESX1-
dependent vacuolar damage (yellow flash) leads to a loss of ion gradients (green spots) and the
release of proteases (green packmen). 2.) PI4K are recruited to generate PI4P (pink polygons) at
the MCV. 3.) This leads to the establishment of ER-MCV-MCS and the mobilization of OSBP8 (blue)
in M. marinum-infected D. discoideum. 4.) OSBP8 transports sterols from the ER to the MCV and
P14P in the opposite direction. 5.) The transport is fuelled by the lipid phosphatase Sacl that
hydrolyses PI4P generating PI (light pink).

SUPPLEMENTAL MATERIAL

FIG S1 Mycobacterial infection induces ER-MCV contacts. (A) ER in apposition with the MCV.
Representative images of cells showing calnexin-mCherry® ER-tubules close to the MCV (arrow
heads). Cells were infected with eBFP-expressing M. marinum. At 24 hpi cells were fixed and stained
for p80 to label the membrane of the MCV. Scale bars, 5 um; Zoom, 2 um. (B) Domain organization
of OSBPs in D. discoideum (Dd) compared to long (ORP1L, Osh1) and short ORP family members
from Homo sapiens (Hs) and Saccharomyces cerevisiae (Sc) (ORP1S, Osh4). PH: pleckstrin
homology; FFAT: two phenylalanines (FF) in an acidic tract. (C) Conserved fingerprint sequence of
D. discoideum OSBPs.

FIG S2 Localization of OSBP8-GFP and GFP-OSBP8 in non-infected cells. (A-B) OSBP8-GFP

localizes in the cytosol, at the perinuclear ER and at the Golgi-apparatus. Cells overexpressing
18
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OSBP8-GFP/calnexin-mCherry or OSBP8-GFP/ZntC-mCherry were imaged live by SD microscopy.
Arrow points to the juxtanuclear region or the Golgi-apparatus. Scale bars, 5 um. Images were
deconvolved. (C-D) GFP-OSBPS8 locates in the cytosol and in the nucleus and is not mobilized to
bead-containing phagosomes (BCPs). (E-F) OSBP8-GFP is not recruited to BCPs. Cells
overexpressing OSBP8-GFP were incubated with fluorobeads for 2 hrs, fixed and then stained with
aVatA (vVATPase subunit A, lysosomes) and aVacA (VacuolinA, post-lysosomes) antibodies. Arrows
point to VatA*or VacA*® BCPs. Asterisks indicate fluorobeads, N: nucleus. Scale bars, 5 ym. (G)
OSBP7-GFP is not recruited to intracellular bacteria. Cells overexpressing OSBP7-GFP were
infected with mCherry-expressing M. marinum. At the indicated time points, cells were imaged live
by SD microscopy. Arrow heads indicate OSBP7-GFP- mycobacteria. Scale bars, 5 um; Zoom, 2

pm.

FIG S3. Correlative ultrastructural analysis revealed OSBP8-mCherry* ER-tubules in close proximity
to the MCV. (A) CLEM images showing OSBP8-mCherry at ER-MCV contacts (white arrow heads).
Cells expressing OSBP8-mCherry/GFP-ABD were infected with eBFP-expressing M. marinum. At
24 hpi, cells were imaged after quick fixation by SD microscopy, high pressure frozen and prepared
for EM. (B) EM micrograph. Positions of the closeups are indicated. (i - iii) Closeups showing OSBP8-
mCherry® ER-tubules close to the MCV. Yellow arrowheads point to ER-tubules in the vicinity of M.
marinum. Mitochondria (Mit) were pseudo-coloured in orange, M. marinum (M.m.) in cyan and ER-
tubules in yellow. N: nucleus. Scale bars, 5 um (A); 2 um (B) and 200 nm (i - iii). SD images were
deconvolved. (C) SBF-SEM-derived images illustrate the correlation of the SD images and the
volumetric segmentation of the EM data shown in Fig. 2F-G. The MCV is segmented in violet, M.

marinum (M.m.) in cyan, ER-tubules in yellow and the nucleus in orange. Scale bars, 2 um.

FIG S4 Endogenous OSBP8::GFP is mobilized during infection in an ESX-1 dependent manner. (A)
Expression levels of OSBP8-GFP compared to OSBP8::GFP. (B) Quantification of A. Cells
expressing OSBP8-GFP as well as OSBP8::GFP were harvested and then prepared for western
blotting. The intensity of the bands was measured using ImageJ. AUC: area under the curve. (C-D)
OSBP8::GFP mobilization during infection is dependent on ESX-1. Cells expressing OSBP8::GFP
were infected with eBFP-expressing M. marinum wt or ARD1. At the indicated time points samples
were taken for SD microscopy. Arrows point to OSBP8::GFP* intracellular mycobacteria and arrow
heads indicate OSBP8::GFP- mycobacteria. Scale bars, 5 ym; Zoom, 2,5 pm. Images were

deconvolved. M.m.: M. marinum.

FIG S5 Dynamics of GFP-Vps32, P4C-GFP, OSBP8-GFP and OSBP7-GFP on damaged
lysosomes. (A) Damaged lysosomes are positive for GFP-Vps32, P4AC-GFP and OSBP8-GFP but
not OSBP7-GFP. (B-C) In cells highly expressing P4C-mCherry, OSBP8-GFP is not recruited to
damaged lysosomes and vice versa. Cells expressing GFP-Vps32, P4AC-GFP, OSBP8-GFP,
OSBP7-GFP and P4C-mCherry/OSBP8-GFP were incubated overnight with 10 kDa fluorescent
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dextran to label all endosomal compartments and then subjected to LLOMe. Arrow heads point to
GFP-Vps32*, PAC-GFP* P4C-mCherry*, OSBP8-GFP* or OSBP7-GFP" lysosomes. Scale bars, 5
pm; Zoom, 1 um. (D) OSBP8-GFP is recruited to MCVs of cells expressing PAC-mCherry at low
levels. Cells overexpressing OSBP8-GFP/P4C-mCherry were infected with eBFP-expressing M.
marinum wt. Images were taken at 3 and 46 hpi. Arrow heads point to OSBP8-GFP* M. marinum.

Scale bars, 5 um. M.m.: M. marinum.

FIG S6 OSBPS8 depletion leads to PI4P retention on damaged lysosomes and slightly affects cell
viability but does not affect vacuolar escape of mycobacteria. (A) The PI4P distribution is altered in
non-infected cells lacking OSBP8. (B) Quantification of A. Wt and osbH KO cells were imaged live.
Shown are maximum z-projections of 15 z-stacks 300 nm apart. Scale bar, 5 um. To label the PM
for the quantification in B, cells were pre-stained with FM4-64. For each condition 108 cells per cell
line were quantified using mageJ. The statistical significance of three independent experiments was
calculated with an unpaired t-test (*** p<0.001). (C) P4C-GFP is not retrieved from damaged
lysosomes in cells lacking OSBP8. Wt and osbH KO cells expressing P4C-GFP were incubated
overnight with 10 kDa fluorescent dextran to label all endosomal compartments and then treated
with LLOMe. GFP-signal of the osbH KO cells was enhanced for better visualisation. Scale bars, 5
pm. (D) Cell viability is affected in cells lacking OSBP8 upon LLOMe treatment. Wt, osbH or tsg101
KOs were labelled with propidium iodide (PI) and incubated with LLOMe for 60 min. 10,000 cells
were analysed per condition. Graphs are representative for two independent experiments. (E)
Quantification of D. Plots were gated as indicated in D, to reveal the number of dead cells. Plots in
E show the mean and standard deviation of three independent experiments. Statistical differences
were calculated with a paired t test (*, P < 0.05; **, P < 0.01). (F) Vacuolar escape is unaltered in
cells lacking OSBPS8. (G) Percentage of ubiquitin® bacteria in wt and osbH KOs at 8 and 21 hpi. Wt
and osbH KO were infected with mCherry-expressing M. marinum, fixed and stained against
ubiquitin (FK2) (green) and p80 (magenta). Representative maximum projections of 5 z-stacks of
500 nm at 21 hpi is shown in E. White arrowheads label ubiquitinated bacteria. Scale bars, 10 um;
Plots in G show the mean and standard deviation of three independent experiments (FK2 8, 21 hpi
N=3, 138<n<462). Statistical differences were calculated with a paired t test.ns: not significant. M.m.:
M. marinum. (H) OSBP8 contains an unstructured N-terminus as well as an ALPS-like motif. The
OSBP8 structure was derived from AlphaFold (https://alphafold.ebi.ac.uk/entry/Q54QP6) and

analysed using HeliQuest (https://heliquest.ipmc. cnrs.fr/).

Movie S1 and Movie S2 LLSM revealed that OSBP8-GFP* membranes are capping the MCV

(AmtA™). For more information see Fig. 2A-C.

Movie S3 SBF-SEM. For more information see Fig. 2E-G, Fig. S3C.
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751 Table S1 Material used in this publication.

D. discoideum Strains Relevant characteristics Source/Reference
Ax2 wt, parental strain of osbH KO, osbH Ki

Ax2 osbH KO Bsr' This study
Ax2(Ka) wt, parental strain of the tsg101 KO

Ax2(Ka) tsg101 KO Bsr' (20)

D. discoideum Plasmids Source/Reference
OSBP8-GFP pDM323-0sbH, G418", Amp' This study
GFP-OSBP8 pDM317-osbH, G418", Amp’ This study
Calnexin-mCherry pDM1044-Calnx, Hyg", Amp’ (22)
ZntD-mCherry pDM1044-zntD, Hyg", Amp’ (20)
AmtA-mCherry pDM1044-amtA, Hyg', Amp' (18)
OSBP8-mCherry pDM1210-osbH, Hyg", Amp’ This study
OSBP7-GFP pDM323-0sbG, G418", Amp’ This study
GFP-OSBP7 pDM317-0sbG, G418', Amp' This study
P4C-mCherry pDM1044-p4c, Hyg", Amp' (29),(22)

P4AC-GFP pDM323-p4c, G418", Amp' (45)

GFP-Vps32 pDM317-vps32, G418, Amp' (6)

OSBP8::GFP pPI1183-0sbH, Hyg", Amp’ This study
GFP-ABD pDXA-GFP-ABD120, G418', Amp’ (46)

Mammalian cells Relevant characteristics Source/Reference

Human induced pluripotent iPSDMs were generated from human Public Health England Culture

stem cell-derived induced pluripotent stem cell line KOLF2 Collections (catalogue number

macrophages (iPSDMs) 77650100)

M. marinum material

M. marinum M wt, parental strain L. Ramakrishnan (University of
Cambridge)

M. marinum ARD1 RD1 locus deletion mutant L. Ramakrishnan (University of
Cambridge) (47)
T. Soldati (University of Geneva)

27)

M. marinum ACE esxA and esxB deletion mutant

M. tuberculosis material

M. tuberculosis H37Rv Douglas Young (The Francis Crick
Institute, London, UK), (13)
Suzie Hingley-Wilson (University of

Surrey, Guilford, UK), (13)

M. tuberculosis ARD1 H37Rv ARD1

Mycobacteria Plasmids

pTEC18 eBFP2 under control of the MSP promoter, Addgene #30177(48)
Hyg', Amp'

pCherryl0 mCherry under control of the G13 promoter, Addgene #24664 (49)
Hyg'", Amp’

pTEC19 E2-Crimson under the control of the MSP Addgene #30178 (48)

promotor, Hyg', Amp’
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