

1 **Variability in donor lung culture and relative humidity impact the stability of 2009
2 pandemic H1N1 influenza virus on nonporous surfaces**

3

4 Running title: Stability of influenza virus on nonporous surfaces

5

6 Zhihong Qian^{a,b*}, Dylan H. Morris^{c,d*}, Annika Avery^b, Karen A. Kormuth^b, Valerie Le
7 Sage^{b,e}, Michael M. Myerburg^f, James O. Lloyd-Smith^d, Linsey C. Marr^g, Seema S.
8 Lakdawala^{b,h} #

9

10 ^aTsinghua University School of Medicine, Beijing, China

11 ^bDepartment of Microbiology and Molecular Genetics, University of Pittsburgh School of
12 Medicine, Pittsburgh, Pennsylvania, USA

13 ^cDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, New
14 Jersey, USA

15 ^dDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles,
16 California, USA

17 ^eCenter for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh,
18 Pennsylvania, USA

19 ^fDepartment of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine,
20 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

21 ^gDepartment of Civil and Environmental Engineering, Virginia Tech, Blacksburg,
22 Virginia, USA

23 ^hDepartment of Microbiology and Immunology, Emory University, Atlanta, GA USA

24 * These authors contributed equally to the work.

25

26 #Address correspondence to Seema S. Lakdawala, seema.s.lakdawala@emory.edu

27

28 **ABSTRACT**

29 Respiratory viruses can transmit by multiple modes, including contaminated surfaces,
30 commonly referred to as fomites. Efficient fomite transmission requires that a virus
31 remain infectious on a given surface material over a wide range of environmental
32 conditions, including different relative humidities. Prior work examining the stability of
33 influenza viruses on surfaces has relied upon virus grown in media or eggs, which does
34 not mimic the composition of virus-containing droplets expelled from the human
35 respiratory tract. In this study, we examined the stability of the 2009 pandemic H1N1
36 (H1N1pdm09) virus on a variety of nonporous surface materials at four different
37 humidity conditions. Importantly, we used virus grown in primary human bronchial
38 epithelial (HBE) cultures from different donors to recapitulate the physiological
39 microenvironment of expelled viruses. We observed rapid inactivation of H1N1pdm09
40 on copper under all experimental conditions. In contrast to copper, viruses were stable
41 on polystyrene plastic, stainless steel, aluminum, and glass, at multiple relative humidity
42 conditions, but greater decay on ABS plastic was observed at short time points.
43 However, the half-lives of viruses at 23% relative humidity were similar among non-
44 copper surfaces and ranged from 4.5 to 5.9 hours. Assessment of H1N1pdm09
45 longevity on nonporous surfaces revealed that virus persistence was governed more by
46 differences among HBE culture donors than by surface material. Our findings highlight
47 the potential role of an individual's respiratory fluid on viral persistence and could help
48 explain heterogeneity in transmission dynamics.

49 **IMPORTANCE**

50 Seasonal epidemics and sporadic pandemics of influenza cause a large public health
51 burden. Although influenza viruses disseminate through the environment in respiratory
52 secretions expelled from infected individuals, they can also be transmitted by
53 contaminated surfaces where virus-laden expulsions can deposit. Understanding virus
54 stability on surfaces within the indoor environment is critical to assessing influenza
55 transmission risk. We found that influenza virus stability is affected by the host
56 respiratory secretion in which the virus is expelled, the surface material on which the
57 droplet lands, and the ambient relative humidity of the environment. Influenza viruses
58 can remain infectious on many common surfaces for prolonged periods, with half-lives
59 of 4.5-5.9 hours. These data imply that influenza viruses are highly persistent in indoor
60 environments in biologically-relevant matrices. Decontamination and engineering
61 controls should be used to mitigate influenza virus transmission.

62

63 **Keywords:** influenza virus, stability, fomite, surface material, relative humidity

64 INTRODUCTION

65 In 2009, an H1N1 influenza virus emerged from swine and caused a pandemic,
66 with 60.8 million cases in the United States in the first year (1). After its emergence, this
67 2009 H1N1 pandemic virus (H1N1pdm09) became a seasonal influenza virus and it
68 continues to circulate globally (2). Seasonal influenza epidemics impose a large public
69 health burden; the Centers for Disease Control and Prevention (CDC) estimated that
70 there were 35 million flu-related illnesses and 20,000 deaths in the United States during
71 the 2019-2020 season (<https://www.cdc.gov/flu/about/burden/2019-2020.html>). This
72 seasonal burden and the threat of future influenza virus pandemics make it critical to
73 develop strategies to impede influenza virus transmission.

74 Influenza viruses can spread when infected human hosts expel virus-laden
75 respiratory secretions by breathing, talking, sneezing, or coughing (3, 4). Expelled
76 viruses can contaminate surfaces or objects, and these fomites can infect susceptible
77 individuals—a form of indirect contact transmission (5-7). Fomites are ubiquitous in
78 household and healthcare settings. Additionally, the demonstrated environmental
79 stability of infectious influenza viruses in laboratory studies make fomite transmission of
80 influenza a contributor to the public health burden of influenza viruses (8-13).

81 Many factors can influence the stability of influenza virus (and therefore, its
82 infectivity) on surfaces, including fomite material. Influenza viruses deposited on porous
83 surfaces, such as fabrics and wood, exhibit reduced persistence of infectivity compared
84 to those on nonporous surfaces, including steel and plastic (8, 12, 14, 15). However,
85 influenza virus stability on nonporous surfaces can also depend upon material type;
86 notably, stability on copper is reduced compared to stainless steel (16). This
87 observation is consistent with the known antiviral properties of copper (17, 18). More
88 studies are required to determine how influenza persists on different materials and
89 could inform engineering controls to mitigate influenza outbreaks.

90 Environmental conditions such as humidity and temperature also affect the
91 stability of expelled influenza viruses (10, 11, 19). Seasonal fluctuations in relative
92 humidity (RH) have been suggested to be a key factor contributing to seasonal patterns
93 of influenza transmission, in part through the impact of RH on influenza virus
94 environmental stability (20-23). In addition to changes in virus stability, RH can also

95 influence mucociliary clearance and physico-chemical properties of expelled secretions
96 (24, 25). Increased humidity conditions can increase the rate at which virus-laden
97 secretions will fall out of the air and deposit on surfaces. Importantly, respiratory mucus
98 can protect viruses from humidity-mediated decay (26, 27), however, it is still unknown
99 whether virus stability in respiratory mucus on different surface materials is influenced
100 by RH.

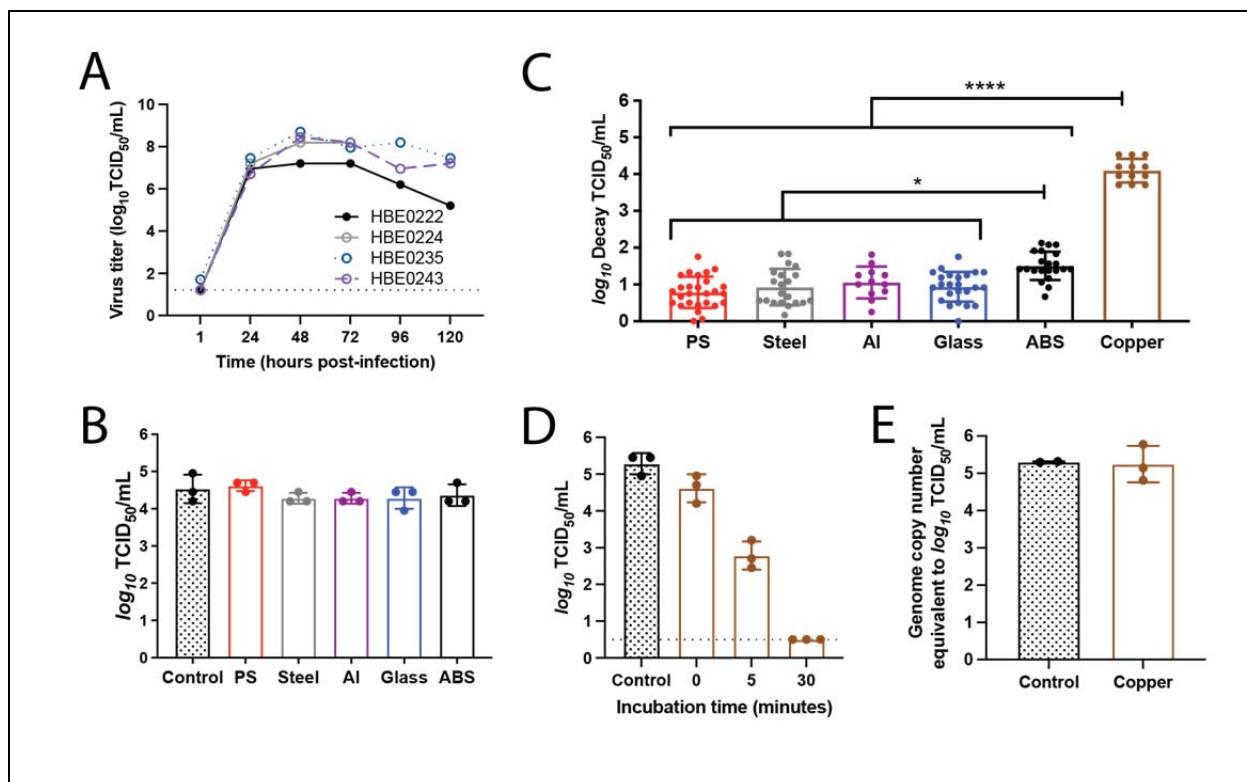
101 The matrix composition of droplets is known to influence viral stability on
102 surfaces. Many prior studies examining influenza stability on surfaces have used viral
103 stocks propagated in egg allantoic fluid or tissue culture monolayer cell lines, such as
104 Madin-Darby canine kidney cells. The resultant viral suspensions do not mimic the
105 biochemical composition of virus-laden respiratory secretions expelled from an infected
106 individual. Adding exogenous mucin to cell-grown viral stocks has been reported to
107 have no effect on influenza virus stability (10, 11). However, influenza viruses in
108 nasopharyngeal secretions from children with respiratory symptoms were found to be
109 substantially more stable on banknotes than viruses in cell culture medium (28).
110 Similarly, our own recent studies have demonstrated that the presence of respiratory
111 mucus from primary human bronchial epithelial (HBE) culture increases the stability of
112 H1N1pdm09 compared to virus suspended in growth media (26, 27). These studies
113 indicate that influenza stability needs to be examined further using conditions that more
114 closely mimic respiratory secretions.

115 While many studies have looked at the individual effects of humidity, surface
116 material, and respiratory droplet composition on influenza infectivity, the interplay
117 between these factors remains understudied. A better understanding of this relationship
118 could improve transmission risk assessment and evidence-based mitigation. In this
119 study, we used H1N1pdm09 viruses grown in HBE cultures from four different patients
120 to better mimic the composition, complexity, and heterogeneity of secretions expelled by
121 infected individuals. HBE cultures are derived from the large airway of explanted human
122 lungs collected during transplant procedures. We then examined the stability of HBE-
123 propagated viruses on nonporous materials under RH conditions ranging from 23% to
124 98%. We tested six common, nonporous materials: polystyrene (PS) plastic, stainless
125 steel, aluminum, glass, acrylonitrile butadiene styrene (ABS) plastic, and copper. At

126 23% RH, we found that H1N1pdm09 exhibits similar stability on all the nonporous
127 surfaces tested, except copper. However, at mid-range RH, virus stability is dependent
128 on the surface composition. Additionally, we determined that HBE-propagated
129 H1N1pdm09 is stable over long periods of time on PS plastic, stainless steel, and glass.
130 Importantly, we also found that the HBE patient culture influenced viral stability,
131 suggesting that heterogeneity in human respiratory secretions may contribute to
132 persistence of infectious influenza viruses in the environment.

133

134 **RESULTS**


135 **H1N1pdm09 stability in droplets is dependent upon surface material**

136 Environmental factors such as temperature, humidity, and the material of the
137 contaminated surface can impact the survival of influenza viruses (29, 30). We
138 propagated H1N1pdm09 in four different HBE patient cultures and collected released
139 virus between 24 and 120 hours post infection (Fig 1A). HBE patient cultures are
140 derived from primary cells collected from explanted human lung tissue, which are
141 differentiated and maintained at an air-liquid interface (31). Virus collected from 24-96
142 hours from each HBE patient culture was pooled and used for subsequent stability
143 analysis. Patient to patient variations in the HBE airway surface liquid could influence
144 the stability of viruses, therefore we performed all studies in all four cultures to look for
145 parameters that influenced virus stability across all cultures.

146 To assess virus stability, ten 1 μ L droplets of HBE-propagated H1N1pdm09 with
147 a starting titer ranging from $10^{6.8}$ - 10^7 TCID₅₀/mL were deposited onto the surface
148 materials of PS plastic, stainless steel, aluminum, glass, ABS plastic, and copper.
149 Droplets were then incubated for two hours inside a desiccator chamber with a RH of
150 23% to model a dry indoor environment, such as that produced by heating and
151 insulating during a temperate region winter (“flu season”, when influenza spreads
152 efficiently) (23). An equivalent volume of virus stock was incubated in a sealed tube for
153 the same amount of time, to serve as a control. Viable virus was quantified by tissue
154 culture infective dose (TCID₅₀) assay and compared to the control to determine the
155 amount of decay for each sample. Figure 1B demonstrates the similarity between the
156 control samples and droplets deposited onto each surface and immediately recovered.

157 The overall mean of H1N1pdm09 virus decay on each surface was determined using
158 virus propagated in at least three HBE patient cultures (Fig. 1C).

159 At 23% RH there was little decay of H1N1pdm09 on PS plastic over the two-hour
160 measurement period ($0.79 \pm 0.42 \log_{10} \text{TCID}_{50}/\text{mL}$) relative to the sealed control, as
161 previously observed (26). Similar to PS plastic, the mean values of decay on stainless
162 steel, aluminum, and glass were less than or at 1 $\log_{10} \text{TCID}_{50}/\text{mL}$. Decay was
163 significantly higher on ABS plastic ($1.5 \pm 0.39 \log_{10} \text{TCID}_{50}/\text{mL}$) and copper, where the
164 deposited virus decayed to undetectable levels (Fig. 1C). The differences in decay did
165 not arise from variable recovery of H1N1pdm09 from the different materials since
166 immediate recovery of droplets from each surface resulted in similar titers to the control
167 (Fig. 1B).

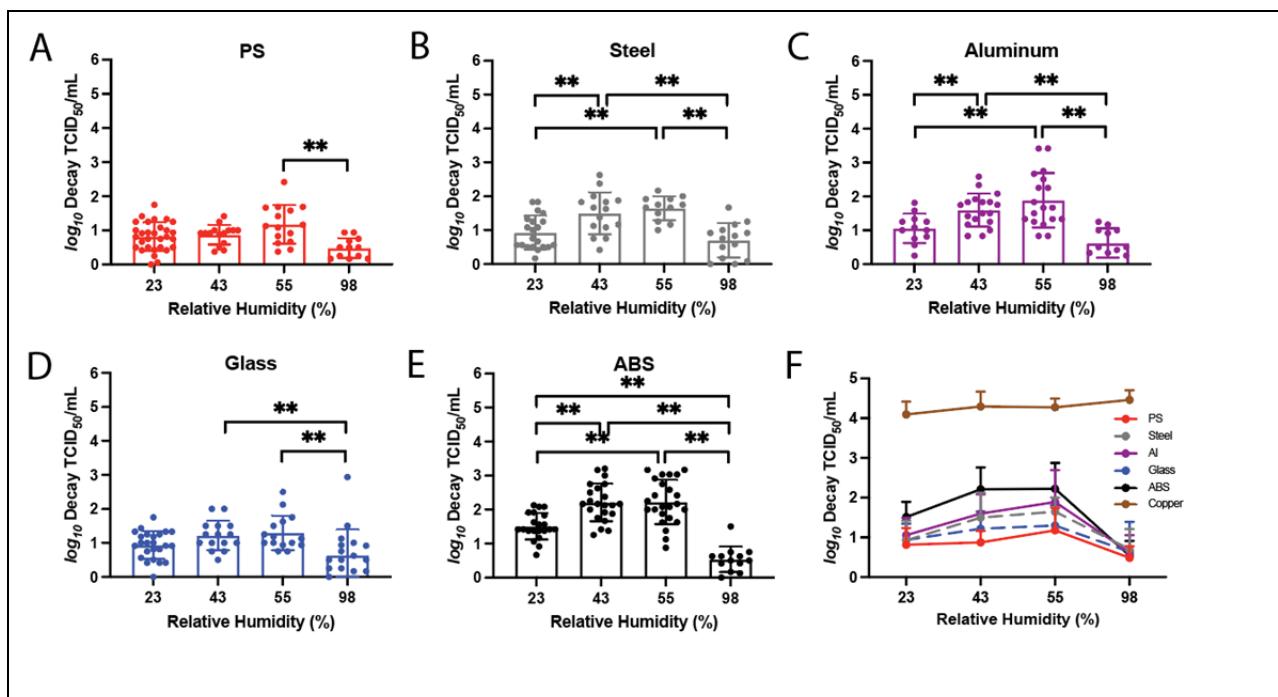
Figure 1. The stability of H1N1pdm09 is dependent on surface material at low relative humidity.

A) Propagation of H1N1pdm09 in four different HBE patient cultures. Each culture can be related to different pathological states: culture 235 (non-pathological), culture 222 (chronic obstructive pulmonary disease), culture 243 (non-pathological), and culture 224 (idiopathic pulmonary fibrosis). HBE cell cultures were infected with 10^3 TCID₅₀ of virus per well. Virus was collected at the indicated times and titered on MDCK cells. Virus samples from 24 to 96 hours post-infection for each HBE patient culture were then pooled for use in the stability experiments. **B)** Ten 1 μ L droplets of H1N1pdm09 were deposited on the indicated surfaces and immediately recovered. Virus titered as in A, each dot represents individual replicates for each HBE culture. **C)** Ten 1 μ L droplets of H1N1pdm09 (A/CA/07/2009) were incubated at 23% RH on the surface of indicated materials (PS - polystyrene; Al - aluminum; ABS - acrylonitrile butadiene styrene) for two hours. Recovered virus was titered by TCID₅₀ assay and viral decay was expressed as the loss of infectivity compared to a control (10 μ L of virus in a sealed Eppendorf tube outside of the chamber) that was incubated for the same amount of time. Each data point is a replicate of H1N1pdm09 propagated from three to four different HBE cell cultures. Data represent mean values \pm standard deviations. Asterisks indicate significantly different mean levels of decay between indicated surface materials, as determined by one-way ANOVA with Tukey's multiple comparisons test (* p<0.05; **** p<0.0001). No infectious virus was detected after incubation on copper and the \log_{10} decay TCID₅₀/mL values were maximal in all replicates. **D)** Ten 1 μ L droplets of H1N1pdm09 were deposited onto copper. The virus was recovered from the copper surface either immediately after droplet deposition (zero minutes) or after incubation for five or 30 minutes at room RH, which ranged between 41 and 43%. Virus was titered by TCID₅₀ assay and data represent mean values \pm standard deviations. The dashed line indicates the limit of detection. Data shown is representative of three independent experiments in different HBE cell cultures. **E)** Ten 1 μ L droplets were recovered following a two-hour incubation on copper at 23% RH. Quantitative PCR for influenza A M gene was used to determine the amount of viral RNA in each sample as compared to a known quantity of viral RNA. Each data point in C-E represents an individual replicate within a study.

168
169
170

171 In stark contrast to the moderate decay on ABS plastic after two hours, no viable
172 H1N1pdm09 was detected after deposition on copper at 23% RH in any replicate,
173 where each replicate reached the maximal decay titer (Fig. 1C). To address whether
174 reduced recovery of H1N1pdm09 from copper impacted the magnitude of decay,
175 droplets were spotted onto the surface and then immediately recovered. Immediate
176 recovery of virus from copper revealed similar viral titers to the control sample (Fig. 1D).

177 Additionally, following a two-hour incubation on copper, viral RNA was extracted from
178 recovered virus solution and quantified by qPCR. No difference in total RNA was
179 detected (Fig. 1E), indicating that the rapid inactivation on copper was not due to poor
180 recovery from the material. To determine the longevity of H1N1pdm09 on copper, we
181 shortened the incubation time to five or 30 minutes. Given the short time scale and
182 initial chamber equilibration, H1N1pdm09 droplets were incubated at room RH, which
183 was stable between 41% and 43%. After five minutes on copper, the viability of
184 H1N1pdm09 decreased to $2.78 \pm 0.38 \log_{10} \text{TCID}_{50}/\text{mL}$, whereas a 30-minute
185 incubation resulted in a titer that was below the limit of detection (Fig. 1D). Taken
186 together, these data indicate that at 23% RH, H1N1pdm09 is most stable on PS plastic,
187 stainless steel, aluminum, and glass, while it is slightly less stable on ABS plastic, and is
188 rapidly inactivated on copper.


189

190 **H1N1pdm09 stability is impacted by relative humidity in a surface dependent 191 manner**

192 Prior studies have revealed a relationship between RH and virus stability of
193 enveloped viruses. In many cases, inactivation has been shown to be fastest at mid-
194 range RH (about 40-70%) compared to low (23%) or high (>80%) RH (19). However,
195 our previously published data demonstrated that H1N1pdm09 is protected from RH-
196 mediated decay in droplets supplemented with airway surface liquid from HBE patient
197 cultures on PS plastic (26). To determine how the stability of HBE-propagated
198 H1N1pdm09 on different surface materials is affected by RH, we spotted 1 μL droplets of
199 H1N1pdm09 on each of the six nonporous surfaces over a range of RH conditions and
200 incubated the droplets for two hours. In addition to 23% RH shown in Figure 1, we
201 tested two mid-range RHs (43% and 55%), which are typical of indoor environments
202 during summer in temperate regions, and one high RH (98%), which mimics conditions
203 during rainy periods and in airways. Viable H1N1pdm09 was recovered from PS plastic,
204 stainless steel, aluminum, glass, and ABS plastic at all RHs tested, but the magnitude of
205 decay varied by both RH and surface material (Fig. 2A-E). Overall, little decay was
206 observed on PS plastic and glass at 23%, 43%, and 55% RH, with 98% RH being more
207 stable than 43% and 55% RH (Fig. 2A and 2D). H1N1pdm09 displayed maximal decay

208 on stainless steel and aluminum at the mid-range RHs, but was more stable at both
209 23% and 98% RH (Fig. 2B-C). Decay of H1N1pdm09 on ABS plastic was the highest at
210 mid-range humidities, followed by 23% RH, which showed significantly more decay than
211 98% RH (Fig. 2E, Table 1). Similar to what was seen at 23% RH, no infectious virus
212 was detected on copper surfaces after two hours under all other RH conditions (Fig 2F).

213 Direct comparison of virus decay by surface reveals a hierarchy of viral
214 persistence by surface type (Fig. 2F). Viruses appear most stable on PS plastic and
215 glass surfaces, with increased decay on stainless steel and aluminum, followed by ABS
216 plastic. No surface-based differences in virus decay were observed at 98% RH where
217 the mean decay values were all below 1 log₁₀TCID₅₀/mL, even on ABS plastic (Fig.
218 2F, Table 1). Taken together, our results demonstrate that RH can affect the stability of
219 H1N1pdm09, but this feature was only apparent on certain surface
220 materials. Additionally, certain nonporous materials exhibit more viral destabilization
221 than others.

Figure 2. Impact of RH on H1N1pdm09 stability is surface dependent. The stability of H1N1pdm09 in 10 1 μ L droplets on each material was tested under a range of RH conditions: 23%, 43%, 55%, and 98%. The infectivity decay of the virus after two hours on **A) PS** plastic, **B) stainless steel**, **C) aluminum**, **D) glass**, and **E) ABS** plastic was calculated as previously described in figure 1. Virus propagated from at least three different HBE cultures was tested under each condition. Each data point represents a single replicate, and the results are shown with means and standard deviations. Two-way ANOVA, using surface material and RH as the variables, with Tukey's multiple comparisons test was performed on the results in **A-E** to analyze the effect of RH on the virus decay: **, p<0.01. **F)** The mean \pm standard deviation of virus decay on each of the surfaces in A to E and copper were plotted against the relative humidity (RH).

222
223
224

225 **Predicted half-life of virus depends more strongly on HBE culture than on surface**
226 **material**

227 Our experiments used virus propagated from different HBE cultures derived from
228 individual patients (Fig 1A). Patient-to-patient variability in the HBE airway surface liquid
229 surrounding the released virions might also contribute to differences in viral stability on
230 various materials. Therefore, we wanted to examine the relationship between surface
231 material and HBE composition on virus stability. To do this, we spotted HBE-propagated
232 H1N1pdm09 droplets (from the four distinct patient cultures) for two, eight, or 24 hours
233 on PS plastic, stainless steel, glass, and ABS plastic. To mimic a dry indoor
234 environment in winter, H1N1pdm09 droplets were incubated in a chamber at 23% RH.
235 The recorded RH inside the chamber was stable for up to 24 hours after a brief
236 equilibration period during the first few minutes. Viral titers were assessed after
237 recovery of the droplets at each time interval, and then used to calculate the half-life of
238 each HBE-grown virus.

239 To estimate the half-life of viable influenza virus and its dependence on surface
240 and HBE culture, we used a hierarchical regression model adapted from our own
241 previously published Bayesian statistical methods for analyzing viral environmental
242 stability (32, 33). Briefly, we inferred virus half-lives and surface- and culture-level
243 effects upon those half-lives directly from raw titration data (inoculated wells positive or
244 negative for virus infection). Initially, we analyzed all the data together, using a model
245 that assumes that surface and culture act independently (and multiplicatively) to modify

246 the half-life. The models quantify virus from positive or negative readouts of inoculated
247 wells by treating well inoculation as a “single-hit” process, with an assumed Poisson
248 distribution for the number of virions. This is similar to traditional endpoint titration
249 statistical approaches such as the Spearman-Karber and Reed-Muensch methods.
250 However, implementing this in a Bayesian framework connects our model directly to a
251 regression for estimating half-lives, and we can obtain principled estimates of
252 uncertainty (such as 95% credible intervals) for each individual titration, rather than just
253 a single number. The resulting model fits for each culture and surface are displayed in
254 figure 3, and the resultant estimates of culture and surface effects in figure 4.

255

256

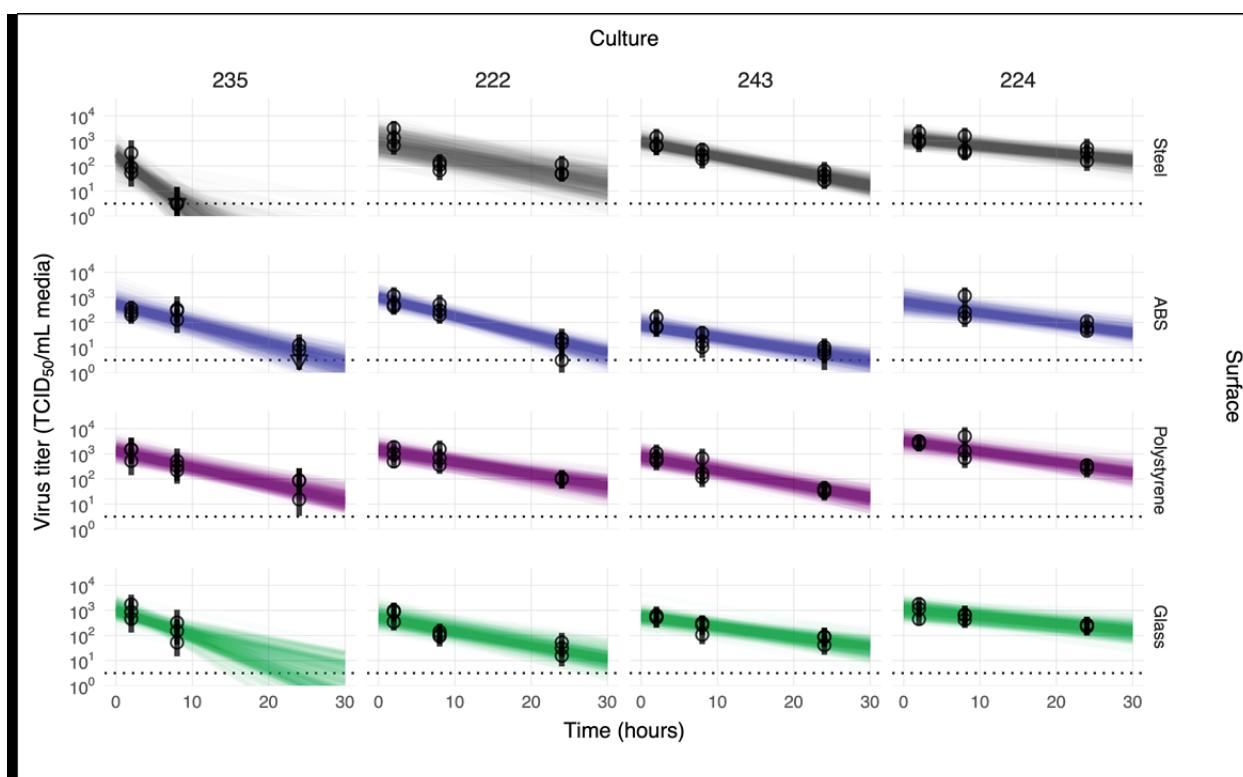


Figure 3. Linear regression of viral stability on surfaces at 23% RH over time by HBE culture to estimate surface and culture effects. Regression lines representing predicted exponential decay of \log_{10} virus titer over time are plotted alongside measured (directly-inferred) virus titers. Predicted decay reflects the estimated effects of surface (row) and culture (column). For each experiment (surface / HBE culture pair), semitransparent regression lines visualize the inferred joint posterior distribution of the virus exponential decay rate and the individual sample intercepts (i.e. virus titers at $t = 0$, which can vary about the mean initial titer for the experiment). 50 random posterior draws are shown. To visualize the estimated variation in initial titers (intercepts), 6 lines are plotted per experiment per draw, one for each of 6 randomly-chosen titers from that experiment (since each titer has its own estimated $t = 0$ value). This yields 300 plotted lines per experiment. A new set of 6 random titers per experiment is chosen for each draw. Points with black bars show individually estimated titer values (point: posterior median titer estimate; bar: 95% credible interval). Samples with no positive titration wells are plotted as triangles at the approximate LOD (dotted horizontal line).

257

258

259 To estimate virus half-lives, we coupled our titer estimation model to a simple
260 regression model in which virus is assumed to decay exponentially over time. The slope
261 of individual regression lines predicting titer as a function of time will provide an
262 estimate of the exponential decay rate, which can be converted directly into a half-life.
263 To estimate the effects of individual surfaces and cultures on virus persistence, we used
264 a regression model in which we treated log half-life of the virus in a given culture on a
265 given surface as depending on three quantities: a “culture effect” (assumed to apply
266 across surfaces), a “surface effect” (assumed to apply across cultures), and a single
267 intercept (representing the average log half-life across all cultures and surfaces tested).
268 This simple model assumes that the culture effect and surface effect act independently
269 to modify the half-life of the virus.

270 Using this approach on our experimental data, we report the predicted half-life for
271 the virus in each given culture on a hypothetical “neutral” (average) surface—that is,
272 with zero surface effect. Similarly, we report estimated surface effects as predicted half-
273 lives on each surface given a hypothetical “neutral” (average) culture—that is, with zero
274 culture effect (Fig 4 and Table 2).

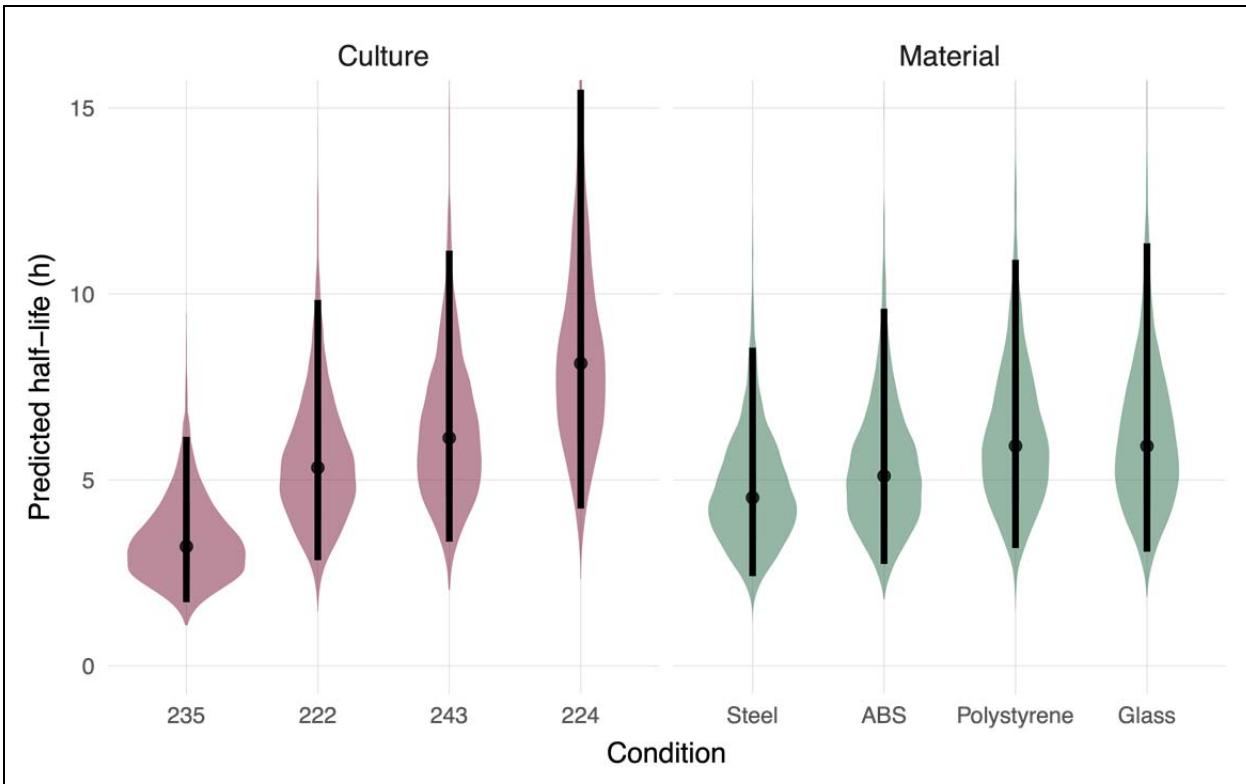
275

Table 2: Virus half-life by surface material and HBE culture

Virus Half-Life by Surface Material				Virus Half-Life by HBE Culture			
median [95% credible interval]				median [95% credible interval]			
Stainless Steel	ABS Plastic	PS Plastic	Glass	HBE 235	HBE 222	HBE 243	HBE 224
4.52	5.10	5.91	5.91	3.21	5.33	6.13	8.13
[2.41, 8.56]	[2.74, 9.60]	[3.17, 10.9]	[3.07, 11.4]	[1.71, 6.16]	[2.84, 9.84]	[3.34, 11.2]	[4.23, 15.5]

276

277


278

279

280 The median viral half-life of a neutral culture on different surface materials (excluding
281 copper) ranged between 4.5 and 5.9 hours (Table 2). In contrast, the median viral half-
282 life range on a neutral surface broken down by HBE culture was 3.2 and 8.1 hours
283 (Table 2). The greater estimated variation in half-lives by HBE culture than by surface
284 material, suggests that host-specific variation may be an important determinant of
285 environmental transmission risk. Calculations of virus half-life for each HBE culture
286 include data from all surface materials (excluding copper). However, given the similarity
287 of virus half-life values across surface material type, it is likely that the large variations
288 observed between virus half-life by HBE culture are not due to surface material but
289 rather differences in the airway secretion composition.

290

291

Figure 4. Predicted half-life based on surface material or patient-derived culture. Violin plots indicate the posterior distributions of the half-life of viable virus based on the estimated exponential decay rates of the virus in different HBE cultures on a “neutral” surface (left side) and on surfaces with a “neutral” HBE culture (right side), thus separating out culture and surface effects. Dots indicate the posterior median estimates and the black lines indicate a 95% credible interval (CI). Values for the median half-lives and 95% CI are presented in Table 2.

292
293
294
295

296 DISCUSSION

297 In this study, we investigated influenza virus stability on different types of
298 surfaces using H1N1pdm09 propagated from three-dimensional patient-derived lung
299 cultures. Stability of H1N1pdm09 in the presence of airway surface liquid, appears to be
300 surface-dependent under various common indoor RH conditions tested (23%, 43% and
301 55%). The notable exception was deposition on copper, which completely inactivated
302 virus at all RH conditions and as quickly as 30 minutes at room RH. Of the other
303 nonporous surfaces tested (excluding copper), the half-life of HBE-propagated

304 H1N1pdm09 at 23% was similar on PS plastic, stainless steel, aluminum, and glass.
305 Interestingly, a subsequent analysis revealed that the half-life of infectious H1N1pdm09
306 at 23% RH varied substantially among the different HBE patient cultures that were used
307 to propagate the virus. This final observation suggests that the respiratory secretion
308 composition may have a profound impact on the persistence of viruses in the
309 environment, and that individual variation may matter a great deal.

310 The rapid inactivation of HBE-propagated H1N1pdm09 observed on copper at all
311 RH conditions tested indicates that this effect is mediated by the surface itself and is
312 robust against other environmental conditions. Noyce *et al.* have also described
313 inactivation of 20 μ L droplets of A/PR/8/34 (H1N1) after six hours on a copper surface
314 (16), whereas in our study, 1 μ L droplets of H1N1pdm09 had no detectable infectious
315 virus after just 30 minutes. The size and composition of the influenza virus-containing
316 droplets deposited on a given surface may impact virus viability and decay kinetics.
317 Virucidal activity of copper and copper alloys has been reported for seasonal
318 coronaviruses, SARS-CoV-2, and norovirus (17, 34-37). The potent antiviral properties
319 of copper have been shown by Warnes *et al* to damage membrane and surface
320 proteins, and to produce nonspecific fragmentation of the coronavirus 229E genome
321 (18). Previous studies have also shown that bacteria are rapidly killed on dry copper
322 surfaces (38), which has been proposed to be mediated by DNA damage (39, 40).
323 Addition of copper oxide or copper nanocompounds to frequently touched surfaces
324 could reduce the spread of influenza (41-43).

325 Environmental conditions such as RH could affect the transmissibility of influenza
326 virus fomites by influencing virus stability. Relevant RH conditions include those similar
327 to indoor RH during temperate zone winters (approximately 20%), and those similar to
328 indoor RH during temperate zone summers (40-60%). Previous work has suggested a
329 U-shaped relationship between RH and virus stability for enveloped viruses including
330 SARS-CoV-2 and influenza, where virus stability is lowest at mid-range RH conditions
331 (19, 33). However, our studies with influenza viruses suspended in HBE airway surface
332 liquid have revealed that viruses are protected from RH-mediated decay on PS plastic
333 (26). In this study, we reproduced our previous observations that HBE-propagated
334 H1N1pdm09 was stable on PS plastic (Fig 2). However, we also observed variable

335 stability of H1N1pdm09 propagated in HBE patient cultures at 23%, 43%, and 55% RH
336 on stainless steel, aluminum, and ABS plastic nonporous surfaces (Fig 2). These data
337 suggest that RH-mediated decay of influenza may be more pronounced on different
338 surfaces and may also depend on the composition of respiratory droplet.

339 Most surprisingly, HBE-propagated influenza virus half-life at 23% RH appeared
340 similar across surfaces, but droplet composition from HBE cultures impacted
341 H1N1pdm09 stability more (Fig 4). This suggests a key role for droplet composition on
342 the persistence of viruses in the environment. Our cultures included those from normal
343 (non-pathological) lung transplants (culture 235 and 243) and those with disease states
344 (222 and 224). More experiments utilizing virus grown from greater numbers of HBE
345 cultures will be required to determine if and how pathological states contribute to virus
346 stability. Additionally, further studies examining the differences in expelled droplet
347 composition and volume across individuals could yield insight into the observed
348 heterogeneity of influenza transmission (44). The SARS-CoV-2 pandemic was driven by
349 cluster-based transmission: 20% of infected individuals seeded 80% of secondary
350 infections (45). This suggests that individual characteristics of 'superspreaders' may
351 impact the emergence of novel respiratory viruses (46, 47). Understanding which
352 respiratory secretion components are beneficial or harmful to virus stability, and how
353 these map onto identifiable traits of human individuals, could aid in understanding what
354 makes a 'superspreaders'.

355 The emergence of multiple respiratory pandemic viruses in the last few decades
356 has highlighted the importance of understanding virus transmission pathways
357 (inhalation of aerosols, spray of large droplets, touching of fomites), and determining the
358 impact of virus traits, environmental conditions, and host factors on each mode (48).
359 Persistence of infectious influenza virus on various non-porous surfaces over extended
360 time periods indicates that regular decontamination of frequently-touched surfaces, in
361 combination with engineering controls such as indoor RH control, could be effective
362 nonpharmaceutical interventions to limit fomite transmission of influenza viruses.
363 Patterns of heterogeneous virus stability by individual patient culture suggest a potential
364 contributing mechanism to observed host heterogeneity in virus transmission.

365

366 **MATERIALS AND METHODS**

367 **Cells and virus**

368 Madin-Darby canine kidney (MDCK) cells (ATCC) were maintained in Eagle's Minimum
369 Essential Medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and
370 1% penicillin/streptomycin. Four primary human bronchial epithelial cell (HBE) cultures
371 were differentiated from lung tissues of four different patients and were maintained at an
372 air-liquid interface in transwells (31). Each HBE culture was derived from patient lungs
373 with various pathological states: culture 235 (non-pathological), culture 222 (chronic
374 obstructive pulmonary disease), culture 243 (non-pathological), and culture 224
375 (idiopathic pulmonary fibrosis).

376 The 2009 pandemic H1N1 influenza A virus, A/California/07/2009 (H1N1pdm09),
377 was acquired as previously described (26). To prepare HBE-propagated virus stock, 3
378 \log_{10} TCID₅₀ of virus was added to each transwell from the apical side after the cells
379 were washed once with phosphate buffered saline (PBS). The inoculum was removed
380 after 1 hour and the HBE-propagated virus was collected with 150mL of PBS every 24
381 hours up to five times. Viral washes collected at the same time from different transwells
382 of the same HBE cell culture were pooled together and titered on MDCK cells. Up to
383 four viral washes with the highest titers from the same HBE culture were combined. To
384 make an abundant HBE-propagated virus stock without diluting physiological
385 components in the suspension, the combined virus wash was 1:1 diluted with the cell
386 wash from the same HBE culture, which had been collected prior to infection. To
387 account for patient specific variations, four stocks of HBE-propagated virus from
388 different cultures were made. The stocks were aliquoted and stored at -80 °C before
389 use.

390

391 **Surface preparation**

392 Six surface materials were selected because of common use: polystyrene (PS) plastic,
393 stainless steel, aluminum, glass, acrylonitrile butadiene styrene (ABS) plastic, and
394 copper. Disposable PS plastic was readily available as the flat bottom of a 6-well tissue
395 culture plate (TPP[®], Sigma). Disposable glass cover slides (22CIR-1, Thermo Fisher)
396 were used as glass surfaces without additional preparation. Circular and smooth

397 surface coupons of 304 stainless steel (20 GA), 6061 aluminum (1.6 mm thick), ABS
398 plastic (black, 0.6 mm thick), and 110 copper (0.6 mm thick) were purchased through
399 Alumagraphics with a uniform diameter of 20 mm. The coupons were cleaned with an
400 interfering-residual-free detergent (Alconox[®]) prior to sterilization (stainless steel,
401 aluminum, glass) or disinfection with isopropanol (ABS plastic). The coupons were
402 reused after cleaning and sterilization (or disinfection) following the assay.

403

404 **Virus stability assay**

405 Saturated saline solutions were placed in a sealed chamber to condition the interior
406 relative humidity (RH) to desired levels – KCH₃COO for 23%, K₂CO₃ for 43%, Mg(NO₃)₂
407 for 55%, and K₂SO₄ for 98% (19). The temperature and RH inside the chamber were
408 monitored by a HOBO[®] logger. Ten 1 μ L droplets of the HBE-propagated virus were
409 pipetted either directly onto each well (PS plastic) or onto a coupon inside a lidless 6-
410 well plate in triplicates. The plate was immediately transferred into the RH chamber
411 upon droplet deposition. After incubation for 0.5, two, eight, or 24 hour(s), the virus was
412 collected by rinsing each well, or each coupon, with 1 mL Leibovitz's L-15 Medium,
413 resulting in a 1:100 dilution compared with the volume of the deposited droplets. The
414 control sample was a bulk 10 μ L suspension of the same HBE-propagated virus in a 1.5-
415 mL Eppendorf tube, which was incubated for the same amount of time without RH
416 chamber conditioning or contact with the coupons. The RH chamber was not used for
417 shorter virus incubation on copper coupons since the chamber required at least five
418 minutes to equilibrate the interior RH. Instead, the virus was incubated on copper
419 coupons inside a lidless 6-well plate at room RH. Either immediately (zero minutes) or
420 after five or 30 minutes of incubation, the virus was recovered as previously described.
421 The control sample was immediately diluted without any incubation. All procedures were
422 conducted inside a biosafety cabinet at room temperature (22-24°C). Under each
423 condition, HBE-propagated influenza H1N1pdm09 from at least three different cultures
424 was tested.

425

426 The decay of H1N1pdm09 estimated in Figs. 1 and 2 is defined as loss of
427 infectivity as determined by TCID₅₀ assay (49). Specifically, the virus samples were

428 titered by 10-fold serial dilutions on a 96-well plate of confluent MDCK cells in
429 quadruplicates. A 24-well plate was also used where undiluted virus samples were
430 incubated on MDCK cells in duplicates to provide the limit of detection at 0.5 \log_{10}
431 TCID₅₀/mL. The loss of virus infectivity was then calculated by comparing titers of the
432 virus on the surface coupons with titers of the control samples incubated for the same
433 amount of time:

$$\log_{10} \text{decayTCID}_{50} = \log_{10} \frac{\text{TCID}_{50} \text{ of the control}}{\text{TCID}_{50} \text{ of virus on surfaces}}$$

434
435 The results of the virus decay were analyzed on GraphPad Prism 8. Statistical analysis
436 excluded results from copper because the virus decay was mostly beyond the detection
437 limit. At 23% RH, one-way analysis of variance (ANOVA) using surface material as the
438 variable was performed with Tukey's multiple comparisons test to define surface-based
439 variations in virus decay within two hours. Two-way ANOVA using RH (or incubation
440 time) as the second variable was performed with Tukey's multiple comparisons test to
441 define the effect of RH (or incubation time) on virus decay. Due to the interactive effects
442 of RH and surface material on virus decay, the analysis of surface-based variations at
443 different RH was adjusted with Tukey's multiple comparison tests following two-way
444 ANOVA and summarized in Table 1.

445

446 **Quantitative reverse transcription polymerase chain reaction (qRT-PCR)**

447 The RNA of H1N1pdm09 was extracted from virus samples using a PureLinkTM viral
448 RNA/DNA mini kit (Invitrogen). For qRT-PCR, 5 μ L of the viral RNA was analyzed using
449 a TaqManTM RNA-to-C_TTM 1-step kit (Thermo Fisher). Primers specific to the matrix
450 gene (M) were used at a concentration of 0.1 μ M—M25 F (5'-AGA TGA GTC TTC TAA
451 CCG AGG TCG-3') and M123 R (5'-GC AAA GAC ATC TTC AAG TCT CTG-3')—and
452 an M64 probe (FAM-TCA GGC CCC CTC AAA GCC GA-NFQ) at 0.25 μ M. All reactions
453 were performed in duplicate. The thermal cycling step was conducted on a
454 StepOnePlusTM Real-Time PCR System (Applied Biosystems) with StepOneTM Software
455 (Version 2.3) following manufacturer's recommendations. A standard curve was

456 generated with five 10-fold serial dilutions of viral RNA extracted from a stock virus with
457 a known TCID₅₀ titer.

458 **Bayesian** **inference** **methods:**
459

460 To estimate the effects of surface and culture on virus half-lives (Figs. 3, 4), we jointly
461 inferred these effects and the corresponding half-lives directly from raw titration data
462 (inoculated wells positive or negative for virus infection), using Bayesian inference with
463 suite of custom statistical models. Below, we provide a conceptual overview of those
464 models, followed by a full technical description. We have also published code
465 implementing the model for reproducibility.

466 The models quantify virus from positive or negative readouts of inoculated wells by
467 treating well inoculation as a “single-hit” process: if at least one virion successfully
468 infects a cell within the well, the well will show evidence of infection. We then estimate
469 the virus concentration in TCID₅₀ from the distribution of positive and negative wells
470 observed at various dilutions of the sample. We assume that the number of virions
471 inoculated into any given well is Poisson-distributed, with a mean given by the virus
472 concentration in the diluted sample used for that well. This is the same “Poisson single-
473 hit” assumption that underlies traditional endpoint titration statistical approaches such as
474 the Spearman-Karber and Reed-Muensch methods. The difference is that by
475 implementing this in a Bayesian framework, we are able to connect our model directly to
476 a regression for estimating half-lives, and we are able to obtain principled estimates of
477 uncertainty (such as 95% credible intervals) for each estimated quantity, rather than just
478 a single number.

479 To estimate virus half-lives, we couple our titer estimation model to a simple regression
480 model in which virus is assumed to decay exponentially over time. The slope of a
481 regression line predicting log titer as a function of time therefore gives an estimate of
482 the exponential decay rate, which can be converted directly into a half-life. Our
483 Bayesian approach allows us to account in a principled way for various sources of
484 noise, such as variation in the initial quantities of virus deposited onto individual surface
485 coupons.

486 Finally, to estimate the effects of individual surfaces and cultures on virus persistence,
487 we used a regression model in which we treated log half-life of the virus in a given
488 culture on a given surface as depending on three quantities: a “culture effect” (assumed
489 to apply across surfaces), a “surface effect” (assumed to apply across cultures), and a
490 single intercept (representing the average log half-life across all cultures and surfaces
491 tested). The model assumes that the culture effect and surface effect act independently
492 to modify the half-life of the virus. We estimated these culture and surface effects, and
493 the intercept, from our data.

494 To aid interpretability, we report estimated culture effects in units of half-life.
495 Specifically, we report the predicted half-life for the virus in the given culture on a
496 “neutral” (average) surface—that is, with zero surface effect. Similarly, we report
497 estimated surface effects as predicted half-lives on the given surface given a “neutral”
498 (average) culture—that is, with zero culture effect.

499

500 Notation

501

502 In the model notation that follows, the symbol \sim denotes that a random variable is
503 distributed according to the given distribution. Normal distributions are parametrized as:

$$\sim \text{Normal}(\text{mean}, \text{standarddeviation})$$

504 Positive-constrained Normal distributions (“Pos-Normal”) are parametrized as:

$$\sim \text{Pos-Normal}(\text{mode}, \text{standarddeviation})$$

505 Beta distributions are parameterized as

$$\sim \text{Beta}(\alpha, \beta)$$

506 with canonical shape parameters $\alpha, \beta > 0$ (which can be thought of as 1 plus the
507 number of prior successes and failures, respectively, in a set of $\alpha + \beta$ binomial trials)

508 Titer inference and Model description

509 We inferred individual titers directly from titration well data according to a Poisson
510 single-hit model (32), as described in (33).

511 Briefly, we assume that individual wells for a sample i are positive if at least one virion
512 successfully infects a cell. We assume the number of virions that successfully infect
513 cells within a given well is Poisson distributed with a mean given by the concentration of
514 viable virions in the plated sample.

515 This gives us our likelihood function, assuming independence of outcomes across wells.
516 Titrated doses introduced to each cell-culture well were of volume 0.1 mL, so we
517 incremented inferred titers by 1 to convert to units of $\log_{10} TCID_{50}/[\text{mL}]$.

518 The one variation from the model described in (33) is that here we also had negative
519 control wells. We used these to estimate the probability of a false positive well. Whereas
520 in (33) the mean of our Poisson was given by

$$\ln(2)10^{\nu_i}$$

521 where ν_i is the concentration of viable virus in $TCID_{50}/[0.1 \text{ mL}]$, here we have a mean
522 of

$$\ln(2)10^{\nu_i} + f$$

523 where f is a constant governing the false positive rate and is related to the probability of
524 a false positive by:

$$p_{fp} = 1 - \exp(-f)$$

525 so:

$$f = -\log(1 - p_{fp})$$

526 Prior distributions

527 We assigned a weakly informative Normal prior to the \log_{10} titers ν_i (ν_i is the titer for
528 sample i measured in $\log_{10} TCID_{50}/[0.1 \text{ mL}]$, since wells were inoculated with 0.1mL).

$$\nu_i \sim Normal(2.5,3)$$

529 We placed a Beta prior on the false positive probability p_{fp} , assuming it to be small but
530 allowing it to be non-trivial:

$$p_{fp} \sim Beta(1,50)$$

531 **Predictive checks**

532 We assessed the appropriateness of prior distribution choices using prior predictive
533 checks. The prior checks suggested that prior distributions were agnostic over the titer
534 values of interest.

535 **Half-life inference model**

536 **Model description**

537 To infer half-lives of viable virus in the various experiments, we used a regression
538 model.

539 For each experimental condition i , we have two sets of measurements: treatment
540 samples deposited on surfaces and incubated at a given temperature and humidity, and
541 control samples kept in bulk solution at room temperature. We assume that each
542 sample j for experimental condition i , whether treatment or control, had some unknown
543 initial \log_{10} titer value v_{ij0} at $t = 0$.

544 We assume that all of these initial values are Normally distributed about a mean initial
545 \log_{10} titer v_{i0} for the experiment, with an unknown experiment-specific standard
546 deviation σ_{vi} :

$$v_{ij0} \sim \text{Normal}(v_{i0}, \sigma_{vi})$$

547 We modeled loss of viable virus as exponential decay at a rate δ_i for treatment samples
548 in condition i and λ_i for the corresponding control samples. For the treatment samples,
549 we assumed there was an experiment-specific mean amount of virus lost during
550 deposition ℓ_i .

551 It follows that the quantity v_{ij} of virus sampled at time t_{ij} is given by

$$v_{ij} = \begin{cases} v_{ij0} - \ell_i - \delta_i t_{ij} & ij \text{ is a treatment sample} \\ v_{ij0} - \lambda_i t_{ij} & ij \text{ is a control sample} \end{cases}$$

552

553 We then used the direct-from-well data likelihood function described above, except that
554 instead of estimating individual titers independently, we estimated the values of δ_i , λ_i ,
555 and ℓ_i under the assumption that our observed well data reflected the corresponding
556 predicted titers v_{ij} .

557 Prior distributions

558 We placed a weakly informative Normal prior on the mean initial \log_{10} titers v_{i0} to
559 reflect the known inocula:

$$v_{i0} \sim \text{Normal}(3.5, 1)$$

560 We placed a Pos-Normal prior on the initial titer standard deviations σ_{vi} :

$$\sigma_{vi} \sim \text{Pos-Normal}(0, 0.2)$$

561 This allows either for large variation (more than $\pm 0.5 \log_{10}$) about the experiment
562 mean or for substantially less variation, depending on the data.

563 We placed Normal priors on the log treatment and control half-lives Δ_i and Λ_i , where
564 $\Delta_i = \ln(\frac{\log_{10}(2)}{\delta_i})$ and $\Lambda_i = \ln(\frac{\log_{10}(2)}{\lambda_i})$. We made the priors weakly informative (diffuse
565 over the biologically plausible half-lives); we verified this with prior predictive checks.

$$\begin{aligned} \Delta_i &\sim \text{Normal}(\ln(5), 2) \\ \Lambda_i &\sim \text{Normal}(\ln(24), 3) \end{aligned}$$

566 We placed a Pos-Normal prior on the experiment mean deposition losses ℓ_i :

$$\ell_i \sim \text{Pos-Normal}(0.5, 0.5)$$

567 The prior for the false positive probability p_{fp} was as in the titer estimation model (see
568 'Titer inference and Model description').

569 **Predictive checks**

570 We assessed the appropriateness of prior distribution choices using prior predictive
571 checks and assessed goodness of fit for the estimated model using posterior predictive
572 checks.

573 **Model to estimate culture and surface effects**

574 **Model description**

575 To estimate and compare the effects of surface and culture on virus persistence, we
576 used a simple regression model. We estimated treatment and control log half-lives Δ_i
577 and Λ_i as in the half-life inference model (detailed above), but instead of placing priors
578 directly on them, we assumed that the log half-lives Δ_i could be predicted according to a
579 linear equation with intercept Δ , culture-specific effects χ_n , and surface-specific effects
580 μ_m :

$$\Delta_i = \Delta + \chi_{C(i)} + \mu_{S(i)} + \epsilon_i$$

581 where Δ is an intercept representing the log half-life for virus in a neutral (0-effect)
582 culture on a neutral (0-effect) surface, $C(i)$ is the culture for experiment i , $S(i)$ is the
583 surface for experiment i , and ϵ_i is a Normally distributed error term with an estimated
584 standard deviation σ_Δ :

$$\epsilon_i \sim Normal(0, \sigma_\Delta)$$

585 We assumed that the control log half-lives Λ_i were Normally distributed about an
586 unknown mean Λ with an unknown standard deviation σ_Λ :

$$\Lambda_i \sim Normal(\Lambda, \sigma_\Lambda)$$

587 Prior distributions

588 We placed Normal priors on the treatment intercept log half-life Δ and the mean control
589 half-life Λ equivalent to the normal priors for Δ_i and Λ_i in the half-life estimation model
590 (eqn. [\[eqn:log-half-life-priors\]](#), sec. 3).

$$\Delta \sim Normal(\ln(5), 2)$$

$$\Lambda \sim Normal(\ln(24), 3)$$

591 We used Normal priors centered on zero for the culture effects χ_n and the surface
592 effects μ_n with standard deviations designed to rule out implausibly large effects.

$$\begin{aligned} \chi_n &\sim Normal(0, 0.5) \\ \mu_n &\sim Normal(0, 0.5) \end{aligned}$$

593 We placed Pos-Normal priors on the standard deviations σ_Δ and σ_Λ :

$$\begin{aligned} \sigma_\Delta &\sim Pos-Normal(0, 0.33) \\ \sigma_\Lambda &\sim Pos-Normal(0, 0.33) \end{aligned}$$

594 These allow for either substantial (1 log) variation compared to the regression prediction
595 or for minimal variation.

596 All other priors were as in the half-life estimation model (section 3).

597 Predictive checks

598 We assessed the appropriateness of prior distribution choices using prior predictive
599 checks and assessed goodness of fit for the estimated model using posterior predictive
600 checks.

601

602 **ACKNOWLEDGMENTS**

603 This work was funded by the National Institutes of Health (NIH) CEIRS
604 (HHSN272201400007C) and New Innovator Award to LCM (1-DP2-A1112243), the

605 American Lung Association Biomedical Research Grant (RG-575688), the Tsinghua
606 Education Foundation of North America, and the China Scholarship Council (CSC).
607 Work by DHM and JOL-S was supported by the UCLA AIDS Institute and Charity Treks,
608 and National Science Foundation (NSF) Grants DEB-1557022 and DEB-2245631. We
609 thank members of the Lakdawala Lab, Dr. Bill Goins (University of Pittsburgh), and the
610 Marr lab at Virginia Tech for critical feedback during the studies, data analysis, and in
611 manuscript preparation. We thank Dr. Rachel Duron for editorial assistance.

612

613 **Table 1. Statistical analysis of the surface-based variations in the stability of H1N1pdm09**
614 **in droplets at different RH.**

RH (%)	Statistical significance of differences in virus decay on different surfaces ^a				
	Surface material	PS	Glass	Steel	Aluminum
23	ABS	p<0.0001	p=0.0023	p=0.0027	n.s.
	Aluminum	n.s.	n.s.	n.s.	
	Steel	n.s.	n.s.		
	Glass	n.s.			
43	ABS	p<0.0001	p<0.0001	p=0.0005	p=0.0021
	Aluminum	p=0.0007	n.s.	n.s.	
	Steel	p=0.0089	n.s.		
	Glass	n.s.			
55	ABS	p<0.0001	p<0.0001	p=0.0146	n.s.
	Aluminum	p=0.0010	p=0.0098	n.s.	
	Steel	n.s.	n.s.		
	Glass	n.s.			
98	ABS	n.s.	n.s.	n.s.	n.s.
	Aluminum	n.s.	n.s.	n.s.	
	Steel	n.s.	n.s.		
	Glass	n.s.			

615
616
617
618

619 ^aAdjusted p values after Tukey's multiple comparisons test are listed. Refer to Fig. 2 for
620 corresponding data sets. n.s., not significant (p>0.05).

621 **REFERENCES**

- 622 1. S. S. Shrestha *et al.*, Estimating the burden of 2009 pandemic influenza A (H1N1) in the
623 United States (April 2009-April 2010). *Clin Infect Dis* **52 Suppl 1**, S75-82 (2011).
- 624 2. X. Xu *et al.*, Update: Influenza Activity in the United States During the 2018-19 Season
625 and Composition of the 2019-20 Influenza Vaccine. *MMWR Morb Mortal Wkly Rep* **68**,
626 544-551 (2019).
- 627 3. G. Brankston, L. Gitterman, Z. Hirji, C. Lemieux, M. Gardam, Transmission of influenza
628 A in human beings. *Lancet Infect Dis* **7**, 257-265 (2007).
- 629 4. B. Killingley, J. Nguyen-Van-Tam, Routes of influenza transmission. *Influenza Other
630 Respir Viruses* **7 Suppl 2**, 42-51 (2013).
- 631 5. S. A. Boone, C. P. Gerba, Significance of fomites in the spread of respiratory and enteric
632 viral disease. *Appl Environ Microbiol* **73**, 1687-1696 (2007).
- 633 6. M. Nicas, R. M. Jones, Relative contributions of four exposure pathways to influenza
634 infection risk. *Risk Anal* **29**, 1292-1303 (2009).
- 635 7. N. Zhang, Y. Li, Transmission of Influenza A in a Student Office Based on Realistic
636 Person-to-Person Contact and Surface Touch Behaviour. *Int J Environ Res Public Health*
637 **15**, (2018).
- 638 8. B. Bean *et al.*, Survival of influenza viruses on environmental surfaces. *J Infect Dis* **146**,
639 47-51 (1982).
- 640 9. S. A. Boone, C. P. Gerba, The occurrence of influenza A virus on household and day care
641 center fomites. *J Infect* **51**, 103-109 (2005).
- 642 10. A. D. Coulliette, K. A. Perry, J. R. Edwards, J. A. Noble-Wang, Persistence of the 2009
643 pandemic influenza A (H1N1) virus on N95 respirators. *Appl Environ Microbiol* **79**,
644 2148-2155 (2013).
- 645 11. K. A. Perry *et al.*, Persistence of Influenza A (H1N1) Virus on Stainless Steel Surfaces.
646 *Appl Environ Microbiol* **82**, 3239-3245 (2016).
- 647 12. K. A. Thompson, A. M. Bennett, Persistence of influenza on surfaces. *J Hosp Infect* **95**,
648 194-199 (2017).
- 649 13. J. Zhao, J. E. Eisenberg, I. H. Spicknall, S. Li, J. S. Koopman, Model analysis of fomite
650 mediated influenza transmission. *PLoS One* **7**, e51984 (2012).
- 651 14. J. Guan, M. Chan, A. VanderZaag, Inactivation of Avian Influenza Viruses on Porous
652 and Non-porous Surfaces is Enhanced by Elevating Absolute Humidity. *Transbound
653 Emerg Dis* **64**, 1254-1261 (2017).
- 654 15. J. Oxford *et al.*, The survival of influenza A(H1N1)pdm09 virus on 4 household surfaces.
655 *Am J Infect Control* **42**, 423-425 (2014).
- 656 16. J. O. Noyce, H. Michels, C. W. Keevil, Inactivation of influenza A virus on copper
657 versus stainless steel surfaces. *Appl Environ Microbiol* **73**, 2748-2750 (2007).
- 658 17. S. L. Warnes, C. W. Keevil, Inactivation of norovirus on dry copper alloy surfaces. *PLoS
659 One* **8**, e75017 (2013).
- 660 18. S. L. Warnes, Z. R. Little, C. W. Keevil, Human Coronavirus 229E Remains Infectious
661 on Common Touch Surface Materials. *mBio* **6**, e01697-01615 (2015).

662 19. W. Yang, S. Elankumaran, L. C. Marr, Relationship between humidity and influenza A
663 viability in droplets and implications for influenza's seasonality. *PLoS One* **7**, e46789
664 (2012).

665 20. J. H. Hemmes, K. C. Winkler, S. M. Kool, Virus survival as a seasonal factor in influenza
666 and poliomyelitis. *Nature* **188**, 430-431 (1960).

667 21. L. C. Marr, J. W. Tang, J. Van Mullekom, S. S. Lakdawala, Mechanistic insights into the
668 effect of humidity on airborne influenza virus survival, transmission and incidence. *J R
669 Soc Interface* **16**, 20180298 (2019).

670 22. J. W. Tang *et al.*, Comparison of the incidence of influenza in relation to climate factors
671 during 2000-2007 in five countries. *Journal of medical virology* **82**, 1958-1965 (2010).

672 23. W. Yang, S. Elankumaran, L. C. Marr, Concentrations and size distributions of airborne
673 influenza A viruses measured indoors at a health centre, a day-care centre and on
674 aeroplanes. *J R Soc Interface* **8**, 1176-1184 (2011).

675 24. L. Bourouiba, Fluid Dynamics of Respiratory Infectious Diseases. *Annu Rev Biomed Eng*
676 **23**, 547-577 (2021).

677 25. M. Moriyama, W. J. Hugentobler, A. Iwasaki, Seasonality of Respiratory Viral
678 Infections. *Annu Rev Virol* **7**, 83-101 (2020).

679 26. K. A. Kormuth *et al.*, Influenza Virus Infectivity Is Retained in Aerosols and Droplets
680 Independent of Relative Humidity. *J Infect Dis* **218**, 739-747 (2018).

681 27. K. A. Kormuth *et al.*, Environmental Persistence of Influenza Viruses Is Dependent upon
682 Virus Type and Host Origin. *mSphere* **4**, (2019).

683 28. Y. Thomas *et al.*, Survival of influenza virus on banknotes. *Appl Environ Microbiol* **74**,
684 3002-3007 (2008).

685 29. N. Pica, N. M. Bouvier, Environmental factors affecting the transmission of respiratory
686 viruses. *Curr Opin Virol* **2**, 90-95 (2012).

687 30. T. P. Weber, N. I. Stilianakis, Inactivation of influenza A viruses in the environment and
688 modes of transmission: a critical review. *J Infect* **57**, 361-373 (2008).

689 31. M. M. Myerburg, P. R. Harvey, E. M. Heidrich, J. M. Pilewski, M. B. Butterworth, Acute
690 regulation of the epithelial sodium channel in airway epithelia by proteases and
691 trafficking. *Am J Respir Cell Mol Biol* **43**, 712-719 (2010).

692 32. C. Brownie *et al.*, Estimating viral titres in solutions with low viral loads. *Biologicals* **39**,
693 224-230 (2011).

694 33. D. H. Morris *et al.*, Mechanistic theory predicts the effects of temperature and humidity
695 on inactivation of SARS-CoV-2 and other enveloped viruses. *Elife* **10**, (2021).

696 34. J. Han *et al.*, Efficient and quick inactivation of SARS coronavirus and other microbes
697 exposed to the surfaces of some metal catalysts. *Biomed Environ Sci* **18**, 176-180 (2005).

698 35. A. L. Rasmussen, Probing the Viromic Frontiers. *mBio* **6**, e01767-01715 (2015).

699 36. J. D. Recker, X. Li, Evaluation of Copper Alloy Surfaces for Inactivation of Tulane Virus
700 and Human Noroviruses. *J Food Prot* **83**, 1782-1788 (2020).

701 37. N. van Doremalen *et al.*, Aerosol and Surface Stability of SARS-CoV-2 as Compared
702 with SARS-CoV-1. *N Engl J Med* **382**, 1564-1567 (2020).

703 38. H. T. Michels, J. O. Noyce, C. W. Keevil, Effects of temperature and humidity on the
704 efficacy of methicillin-resistant *Staphylococcus aureus* challenged antimicrobial
705 materials containing silver and copper. *Lett Appl Microbiol* **49**, 191-195 (2009).

706 39. S. L. Warnes, C. W. Keevil, Lack of Involvement of Fenton Chemistry in Death of
707 Methicillin-Resistant and Methicillin-Sensitive Strains of *Staphylococcus aureus* and

