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25  Word count text: 4667

26 ABSTRACT

27  Hemipteran insects are well-known for their ancient associations with beneficial bacterial
28  endosymbionts, particularly nutritional symbionts providing the host with essential nutrients
29  such as amino acids or vitamins lacking from the host’s diet. Thereby, these primary
30 endosymbionts enable the exploitation of nutrient-poor food sources such as plant sap or
31  vertebrate blood. In turn, the strictly host-associated lifestyle strongly impacts the genome
32 evolution of the endosymbionts, resulting in small and degraded genomes. Over time, even
33  the essential nutritional functions can be compromised, leading to the complementation or
34  replacement of an ancient endosymbiont by another, more functionally versatile, bacterium.
35  Herein, we provide evidence for a dual primary endosymbiosis in several psyllid species.
36 Using metagenome sequencing, we produced the complete genome sequences of both the
37 primary endosymbiont ‘Candidatus Carsonella ruddii’ and an as yet uncharacterized
38  Enterobacteriaceae bacterium from four species of the genus Cacopsylla. The latter
39 represents a new psyllid-associated endosymbiont clade for which we propose the name
40  ‘Candidatus Psyllophila symbiotica’. Fluorescent in situ hybridisation confirmed the co-
41  localization of both endosymbionts in the bacteriome. The metabolic repertoire of Psyllophila
42 is highly conserved across host species and complements the tryptophan biosynthesis
43  pathway that is incomplete in the co-occurring Carsonella. Unlike co-primary endosymbionts
44  in other insects, the genome of Psyllophila is almost as small as the one of Carsonella,
45  indicating an ancient co-obligate endosymbiosis rather than a recent association to rescue a

46  degrading primary endosymbiont.
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49 IMPORTANCE

50 Heritable beneficial bacterial endosymbionts have been crucial for the evolutionary success
51  of numerous insects, enabling the exploitation of nutritionally limited food sources such as
52  vertebrate blood and plant sap. Herein, we describe a previously unknown dual
53 endosymbiosis in the psyllid genus Cacospylla, consisting in the primary endosymbiont
54  ‘Candidatus Carsonella ruddii’ and a co-occurring Enterobacteriaceae bacterium for which
55 we propose the name ‘Candidatus Psyllophila symbiotica’. Its localization within the
56  bacteriome and its small genome size confirm that Psyllophila is a co-primary endosymbiont
57  widespread within the genus Cacopsylla. Despite its highly eroded genome, Psyllophila
58 complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring
59  Carsonella. Moreover, the genome of Psyllophila is almost as small as the one of Carsonella,
60 indicating an ancient dual endosymbiosis rather than a recent acquisition of a new symbiont.
61  Hence, our results shed light on the dynamic interactions of psyllids and their endosymbionts
62  over evolutionary time.
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71

72 INTRODUCTION

73 Numerous insects maintain long-lasting associations with heritable bacterial endosymbionts
74  that provide the host with essential nutrients lacking from its diet (1). Plant sap-feeding and
75  Dblood-feeding insects in particular are well-known to harbour nutrient-providing
76  endosymbionts in specialized cells called bacteriocytes, which may form a tissular structure
77  called a bacteriome (2, 3). These so-called primary endosymbionts are obligatory for host
78  survival and reproduction, as they provide essential amino acids and/or vitamins that the host
79  cannot produce or obtain from its food source (4-9). Hence, these bacteria have been crucial
80 for the evolutionary success of numerous insects, enabling the exploitation of nutritionally
81 unbalanced food sources such as vertebrate blood and plant sap.

82 In turn, the host-associated lifestyle has a strong impact on the genome evolution of the
83  endosymbionts: Their strictly intracellular environment, small effective population size and
84  frequent bottlenecks due to vertical transmission result in genomic decay through the
85  accumulation of deleterious mutations (Muller’s ratchet) and the loss of genes that are no
86  longer needed (10-12). Over evolutionary time, this has produced some of the smallest
87  bacterial genomes known to date (6), streamlined for the production of nutrients required by
88  the host. However, eventually even these pathways can be degraded, leading either to the
89  complementation or the replacement of the ancient endosymbiont by another, more
90 functionally versatile, bacterium (13-18).

91  This dynamic can be observed in several plant sap-feeding hemipterans which rely on more
92 than one primary endosymbiont to produce all necessary nutrients. Notably, the
93  Auchenorrhyncha (cicadas, planthoppers, spittlebugs) are well-known for their ancient dual
94  endosymbiotic consortia where two co-primary endosymbionts jointly produce the complete

95 set of essential nutrients required by the host, resulting in an intricate metabolic
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96 interdependence between the different partners (19). Nonetheless, multiple endosymbiont
97  replacements occurred over time to compensate for the extreme genome erosion of the
98 ancient symbionts (6, 16, 20-25). A similar pattern occurs in aphids (Sternorrhyncha):
99  Whereas most species harbour a single primary endosymbiont, Buchnera aphidicola, which
100 provides the host with the ten essential amino acids and the vitamins biotin and riboflavin
101 (26), dual-endosymbiotic systems have evolved repeatedly in multiple aphid lineages to
102  compensate for lost pathways in B. aphidicola (13, 14, 18, 27-29).

103  Similar dual primary endosymbioses may be widespread in psyllids (Hemiptera: Psylloidea),
104  a species-rich group of phloem-feeding jumping plant lice. Like other plant sap-feeding
105  insects, psyllids harbour a bacteriocyte-associated primary endosymbiont (‘Candidatus
106  Carsonella ruddii’, hereafter Carsonella), which provides the host with essential amino acids
107 (30-33). Carsonella is present in all investigated psyllid species and exhibits strict host-
108  symbiont co-divergence, suggesting a single infection of a common ancestor of all extant
109  psyllids (30, 34, 35). Its genome is extremely streamlined and figures among the smallest
110  bacterial genomes known to date (157-175 Kbp) (31). Due to this extreme genome reduction,
111  some Carsonella strains are no longer able to produce the full complement of essential amino
112 acids, questioning their ability to fulfil their symbiotic function without compensation from
113 host genes or co-occurring symbiotic bacteria (33, 36).

114  Additional endosymbionts have indeed been observed to co-inhabit the bacteriome with
115  Carsonellain several species (3, 37-39). In these cases, Carsonella is located in bacteriocytes
116  surrounding the bacteriome, while a second bacterium occurs in the syncytium at the center
117  of the bacteriome. Importantly, the taxonomy of the co-primary endosymbiont varies
118  depending on the psyllid species: Whereas the syncytium-symbiont (‘Y-symbiont’) of the
119  mulberry psyllid Anomoneura mori is an uncharacterized Enterobacteriaceae bacterium

120  (Gammaproteobacteria) (37) whose symbiotic role is unknown, the citrus psyllid Diaphorina
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121 citri harbours ‘Candidatus Profftella armatura’ (Betaproteobacteria). The latter is a defensive
122 and nutritional endosymbiont which produces vitamins, carotenoids and a polyketide toxin,
123 i.e. metabolites that are not provided by Carsonella (39, 40). In contrast, the psyllid species
124  Ctenarytaina eucalypti and Heteropsylla cubana harbour symbionts closely related to the
125  insect endosymbionts ‘Ca. Moranella endobia’ and Sodalis, whose genomes precisely
126 complement several amino acid biosynthesis pathways missing from the co-occurring
127  Carsonella strains (33). Despite typical hallmarks of vertically transmitted intracellular
128  bacteria, the genomes of both endosymbionts are less reduced (>1 Mbp), suggesting a more
129  recent acquisition relative to Carsonella, presumably to compensate for lost functions in the
130  latter. In addition, numerous psyllid microbiome studies revealed highly abundant but yet
131  uncharacterized Enterobacteriaceae bacteria in diverse species from several psyllid families
132 (41-46), suggesting that dual primary endosymbioses may be more widespread in psyllids
133 than previously thought.

134  Herein, we aim to elucidate the evolutionary and metabolic relationships between psyllids of
135 the genus Cacopsylla (Psyllidac) and their Enterobacteriaceae endosymbionts. Many
136  Cacopsylla species have indeed been shown to harbour highly abundant Enterobacteriaceae
137  endosymbionts that are closely-related to the Y-symbiont co-inhabiting the syncytium of the
138  bacteriome in A. mori (42, 45, 46). Furthermore, these symbionts were present in all tested
139  individuals of a given species, suggesting that they may represent co-primary endosymbionts
140  widespread in this genus. In this study, we produced the complete genome sequences of both
141 Carsonella and the Enterobacteriaceae endosymbionts of four Cacopsylla species (C.
142  melanoneura, C. picta, C. pyri and C. pyricola) known to harbour closely-related
143 endosymbionts from our previous metabarcoding studies (45, 46). Fluorescent in Situ
144  hybridisation confirmed the co-localization of both endosymbionts in the bacteriome.

145  Comparative genomic analyses revealed that the Enterobacteriaceae endosymbionts
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146  represent a psyllid-associated clade among other insect endosymbionts. Its genome is almost
147  as small as that of Carsonella and complements the tryptophan biosynthesis pathway that is
148  compromised in the co-occurring Carsonella.

149

150 RESULTS

151  All four Cacopsylla species harbour two endosymbionts with tiny genomes

152 To investigate endosymbiont genetic diversity across different Cacopsylla species and
153  genotypes, 12 insect metagenomes were sequenced. These metagenomes encompassed four
154  different host species: C. melanoneura and C. picta, which complete their development on
155  apple (or hawthorn in the case of C. melanoneura) and the pear psyllids C. pyri and C.
156  pyricola. Multiple metagenomes were sequenced for C. melanoneura (N=8) and C. picta
157  (N=2), covering different Cytochrome Oxidase I (COI) haplotypes and, in the case of C.
158  melanoneura, different regions of origin (Aosta Valley vs. South Tyrol, Italy) and different
159  host plants (apple vs. hawthorn) (Table 1). As expected, the majority of the Nanopore reads
160  belonged to the insect genome and only about 5% of the reads (range: 2.94-9.80%)
161  corresponded to non-host reads. Nonetheless, circular genomes of the primary endosymbiont
162  Carsonella could be assembled from all metagenomes (Table 1) with coverages of 85-408x.
163  Genome size ranged from 169,917 to 171,920 bp with 14.98-15.53% GC content, similar to
164  previously sequenced Carsonella genomes from other psyllid genera (31, 33, 39, 40). The
165 genomes encoded 182-190 protein-coding genes, one ribosomal rRNA operon and 26-27
166  tRNAs (Table 1). Synteny and gene content were highly conserved across all genomes, with
167 161 out of 184 orthogroups (87.5%) shared across all twelve genomes (Fig. 1a, b).

168  In addition to Carsonella, a second circular genome could be assembled from 10 out of the
169 12 metagenomes (Table 1) with coverages of 19-431x. These genomes belonged to the

170  uncharacterized Enterobacteriaceae endosymbiont previously identified through 16S rRNA
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171  gene metabarcoding (45, 46). Contigs of this symbiont were also present in the two remaining
172 metagenomes (both from C. melanoneura), but the coverage was insufficient to assemble
173 complete genomes. The ten complete chromosomes of the Enterobacteriaceae endosymbiont
174  ranged from 221,413 bp in C. pyri to 237,114 bp in a strain from C. melanoneura from Aosta
175  Valley (strain PSmelAO1, Table 1). GC content varied from 17.30-18.60%. Despite the
176  variations in genome size, synteny and gene content were highly conserved across all
177  Enterobacteriaceae genomes (Fig. 1c, d). They contained 205-208 protein-coding genes, 1-3
178  pseudogenes, one ribosomal rRNA operon, 27 tRNAs and 2 ncRNAs (Table 1). Moreover,
179 196 out of 209 orthogroups (93.78%) were shared across all ten genomes (Fig. 1d), indicating
180 that the functional repertoire is highly similar across all four host species. Taken together, all
181  four Cacopsylla species harbour two endosymbionts with typical hallmarks of a long
182  intracellular symbiotic lifestyle, such as extremely small genomes and low GC content.

183

184  The Enterobacteriaceae symbionts represent a new clade of insect endosymbionts

185  To determine the phylogenetic position of the newly-sequenced psyllid endosymbionts, we
186  performed a Maximum Likelihood phylogenomic analysis based on 67 single-copy genes
187  present in 46 genomes, namely the 10 Enterobacteriaceae endosymbionts of Cacopsylla spp.,
188 33 insect endosymbionts from the Gammaproteobacteria and three Pseudomonas
189  entomophila strains as outgroup (Fig. 2). The insect endosymbionts included the two
190  previously sequenced endosymbionts of the psyllid species C. eucalypti and H. cubana as
191  well as both obligate and facultative endosymbionts of diverse hemipterans (aphids, adelgids,
192  leafhoppers, mealybugs, stinkbugs), beetles (reef beetles and weevils) and the tsetse fly
193  (Table S1). Interestingly, the Enterobacteriaceae endosymbionts of Cacopsylla spp. were not
194  closely-related to the previously sequenced endosymbionts of the psyllids C. eucalypti and H.

195  cubana (33) (Fig. 2). Instead, they formed a clade with full bootstrap support that was most
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196  closely-related to ‘Ca. Annandia adelgestsuga’ and ‘Ca. Annandia pinicola’, nutritional
197  endosymbionts of adelgids (47) as well as ‘Ca. Nardonella sp.’, ancient endosymbionts of
198  weevils (48) (Fig. 2). Hence, the Enterobacteriaceae endosymbionts of Cacopsylla spp.
199  represent a new psyllid-associated clade of insect endosymbionts for which we propose the
200 name ‘Ca. Psyllophila symbiotica’ (hereafter Psyllophila).

201

202  Both Cacopsylla endosymbionts are localized in the bacteriome

203  Fluorescence in situ hybridization with Carsonella and Psyllophila-specific probes revealed
204  that all Cacopsylla species exhibit the same pattern of endosymbiont co-localization in the
205 same bacteriome (Fig. 3). The bacteriomes are large, paired organs localized in the insect's
206 abdomen. A single bacteriome contains two distinct parts: central and peripheral.
207  Uninucleated bacteriocytes filled with Carsonella are located in the peripheral zone of the
208  bacteriome (Fig. 3), whereas the central part is occupied by a multinucleated syncytium filled
209  with Psyllophila cells as well as some bacteriocytes containing Carsonella (Fig. 3).

210

211  Metabolic complementarity between Carsonella and Psyllophila

212 The COG category “Amino acid transport and metabolism” was enriched in all sequenced
213 Carsonella genomes (Fig. 4a), in line with its role as a nutritional symbiont. Indeed, based on
214 the KEGG pathway annotation, the biosynthesis pathways for eight of the ten essential amino
215  acids are complete or almost complete in all 12 Carsonella strains from the four Cacopsylla
216  species (Fig. 4b). Most of the missing functions (hisN in the histidine pathway, dapC in the
217  lysine pathway, thrB in the threonine pathway and aroE in the Shikimate pathway, Fig. 4b)
218  are also missing in all previously sequenced Carsonella genomes (Table S2, S3). The same
219  applies to the methionine biosynthesis pathway, for which only the last reaction (metE) is

220 present in all sequenced Carsonella genomes from this and previous studies (Fig. 4b, Table
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221 S3). The only difference between the Cacopsylla-associated Carsonella strains was the
222 absence of aroB in the stains from C. picta and C. pyri, whereas this gene is present in all
223 Carsonella strains from C. melanoneura and C. pyricola (Fig. 4b, Table S3). Interestingly,
224  the tryptophan biosynthesis pathway was incomplete in all 12 Carsonella strains from
225  Cacopsylla spp., in that only trpE and trpG were present, whereas the rest of the pathway was
226  missing (Fig. 4b).

227  In contrast to Carsonella, the genomes of Psyllophila have lost almost all genes involved in
228 amino acid synthesis ((Fig. 4a). Only four genes were retained and these precisely
229  complement the incomplete tryptophan biosynthesis pathway in Carsonella, namely trpD,
230  trpCF, trpB and trpA (Fig. 4b). The four genes were arranged consecutively in the genomes.
231  In addition, all Psyllophila genomes encoded partial biosynthesis pathways for the vitamins
232 biotin (bioA, bioB, bioD) and riboflavin (ribA, ribB, ribD, ribH) as well as all necessary
233 genes for the biosynthesis of carotenoids (crtB, crtl, crtY) (Fig. 4b).

234

235  Repeated gene losses throughout Carsonella evolution

236 Apart from the Carsonella genomes presented herein, complete genome sequences are
237  available for 11 Carsonella strains from nine psyllid species representing five genera and
238  three families (Aphalaridae, Psyllidae and Triozidae) (Table S2). The functional repertoire of
239  these genomes is quite conserved, since 135 out of 197 orthogroups (68.5%) were shared
240  across all 33 genomes and specific orthogroups occurring only in strains from particular host
241  species or genera were rare (14/197) (Fig. 5a). In contrast, host lineage-specific losses of
242 orthogroups were more common. For instance, 12 orthogroups were specifically absent from
243 the three Carsonella strains from H. texana, P. celtidis and P. venusta (Fig. 5a). Similarly, six
244 orthogroups were specifically absent from the Carsonella strains from Ctenarytaina spp.,

245  four orthogroups were absent from strains from Cacopsylla spp. and three orthogroups were

10
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246  absent from strains from Pachypsylla spp. (Fig. 5a). These differences are also reflected in
247  repeated losses of genes or entirely pathways involved in essential amino acid biosynthesis
248  across the Carsonella phylogeny (Fig. 5b). Notably, the tryptophan pathway has been lost at
249  least three times independently, as it is incomplete or missing in all Carsonella strains
250 associated with the genera Cacopsylla and Heteropsylla (Psyllidae) as well as Ctenarytaina
251  and Pachypsylla (Aphalaridae) (Fig. 5b, Table S3). In contrast, this pathway is complete in
252  the Carsonella strains from Bactericera spp. (Triozidae) and Diaphorina citri (Liviidae) (Fig.
253  5b, Table S3). Other repeatedly lost functions include the histidine biosynthesis pathway as
254  well as the genes aroB and dapE, implicated in the Shikimate and lysine pathways,
255  respectively (Fig. 5b, Table S3). Concomitantly, co-primary endosymbionts complementing
256  the missing amino acid biosynthesis pathways have been identified in several species, i.e.
257  complementing tryptophan in Cacopsylla spp. (this study) and H. cubana (33) and both
258  tryptophan and arginine in Ct. eucalypti (33) (Fig. 5b).

259

260 DISCUSSION

261  Herein, we present the complete genome sequences of both Carsonella and the
262  uncharacterized Enterobacteriaceae endosymbionts of four Cacopsylla species from different
263  host plants. The Enterobacteriaceae endosymbionts represent a psyllid-associated clade
264 among other insect endosymbionts, for which we propose the name ‘Ca. Psyllophila
265 symbiotica’. Both endosymbionts co-occur within the bacteriome, exhibiting the same co-
266  localization pattern (Carsonella in peripheral bacteriocytes, Psyllophila in the central
267  syncytium) as for other dual endosymbioses in D. citri and A. mori (37-39). In combination
268  with a small and AT-rich genome, the bacteriome localization confirms that Psyllophila is a
269  co-primary endosymbiont widespread within the genus Cacopsylla. Interestingly, unlike co-

270  occurring endosymbionts in other psyllid species (33, 39, 40), the Psyllophila genome is

11
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271 almost as small as the genome of Carsonella, indicating an ancient dual endosymbiosis rather
272 than a recent acquisition of a more versatile symbiont to rescue a degrading primary
273  endosymbiont,

274  Despite having a tiny and functionally limited genome, Psyllophila has retained the necessary
275  genes to complement the tryptophan biosynthesis pathway that is compromised in the co-
276 occurring Carsonella. This appears to be a recurring theme across Carsonella evolution,
277  since the tryptophan pathway is the most frequently lost amino acid biosynthesis pathway
278 based on the genomes available to date. Specifically, this pathway has been lost multiple
279  times independently, namely in the Carsonella strains associated with species from the
280  genera Pachypsylla and Ctenarytaina (Aphalaridae), and the psyllid lineage leading to both
281  Heteropsylla and Cacopsylla (Psyllidae). Apart from tryptophan, the arginine and histidine
282  pathways have also been lost in specific Carsonella strains, albeit less frequently (33).
283  Concomitantly, co-primary endosymbionts complementing the missing amino acid
284  biosynthesis pathways have been identified in several species, namely Psyllophila and a
285  Sodalis-like symbiont complementing tryptophan in Cacopsylla spp. (this study) and H.
286  cubana (33), respectively, and another Sodalis-like symbiont complementing both tryptophan
287  and arginine in Ct. eucalypti (33). Intriguing cases in this context are the psyllid species H.
288  texana, P. cdltidis and P. venusta, whose Carsonella strains have lost both the histidine and
289  tryptophan pathways, but no co-primary endosymbionts have been observed to date (33).
290  Possible alternative scenarios are that the missing genes are encoded by the host, e.g. after
291  horizontal transfers of bacterial genes to the host genome, or that the amino acids in question
292  are present in sufficient quantities in the phloem sap of the psyllid’s host plant. Although
293  numerous genes of bacterial origin have indeed been identified in the genome of P. venusta,

294  they do not restore the missing amino acid pathways (36).

12
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295  Based on its genome sequence, PSyllophila not only rescues tryptophan biosynthesis, it also
296  encodes partial biosynthesis pathways for the vitamins biotin and riboflavin, as well as all
297  necessary genes for the synthesis of carotenoids, pigments that may protect against oxidative
298  damage of DNA (49). This represents a striking convergence with ‘Ca. Profftella armatura’,
299  the co-primary endosymbiont in several Diaphorina species, which has an almost identical
300 gene set for these pathways as Psyllophila (40). As in Psyllophila, the last step in the
301 riboflavin pathway is missing in ‘Ca. Profftella armatura’, but the relevant gene has been
302 detected in the genomes of the psyllids D. citri and P. venusta, likely due to a horizontal
303 transfer from an unknown bacterium (36). Likewise, we identified a similar riboflavin
304  synthase gene encoded in the genomes of all four Cacopsylla species via blast searches of the
305 D. citri gene against preliminary assemblies of the insect genomes from our metagenomic
306  datasets. Hence, it is likely that riboflavin can be jointly synthesized by Psyllophila and its
307  psyllid hosts, just like in the symbiosis of D. citri and Profftella. In any case, the functional
308  similarity between two distantly-related psyllid endosymbionts highlights the importance of
309 these metabolites for the psyllid hosts and/or the endosymbionts.

310 Taken together, our data shed light on the dynamic interactions of psyllids and their
311 endosymbionts over evolutionary time. Notably, the tiny and highly eroded genome of
312  Psyllophila suggests a long-lasting dual endosymbiosis of Carsonella and Psyllophila within
313  the genus Cacopsylla. However, this dual endosymbiosis has likely reached a highly labile
314  state, since no functional redundancy exists between the two endosymbionts and any
315 additional gene loss would destabilise the symbiotic system. Considering the diversity of
316 predominant psyllid-associated bacteria revealed by previous studies (34, 41-46, 50), it is
317  likely that the ancient endosymbiont Psyllophila has already been replaced by younger
318  symbionts in some psyllid lineages. For instance, this may have been the case in H. cubana

319 and C. eucalypti, which harbour more recently acquired co-primary endosymbionts with
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320 larger genomes (33). It is tempting to speculate that species which do not harbour co-primary
321  endosymbionts today (e.g. P. venusta) may have harboured a similar dual endosymbiosis in
322  the past, but the co-symbiont was lost without replacement, maybe because its functions were
323 no longer required after a change in ecological conditions (e.g. change of host plant,
324  evolution of gall-forming behaviour). This could also explain why the Carsonella strains in
325 these species have lost similar genes and pathways as the strains existing in dual
326  endosymbiotic systems today.

327  This raises the question whether these pathways were lost before or after the establishment of
328 the dual primary endosymbiosis. According to the Black Queen Theory on the evolution of
329  dependencies within bacterial communities (51), it is advantageous for bacteria to lose costly
330 metabolic functions (i.e. to streamline their genomes), as long as another species within the
331 community still produces these metabolites as “common goods”. Applying this concept to a
332 community with two partners would imply that any essential pathway can be lost in only one
333  of them but has to be retained in the other, to maintain all essential functions in the system.
334  Hence, in the dual endosymbioses in psyllids, Carsonella may have lost the tryptophan
335 pathway, since it was encoded by its symbiotic partner. In turn, the co-primary
336 endosymbionts lost all other genes involved in amino acid biosynthesis, since these were
337 maintained in Carsonella, thus establishing the existing metabolic complementarities in
338  different psyllids. However, only a few psyllid endosymbionts have been characterized at the
339  genomic level and more studies across the psyllid tree of life will be necessary to obtain a
340 more complete picture of the evolutionary dynamics of psyllids and their primary
341  endosymbionts.

342

343 MATERIALS AND METHODS

344  Psyllid samples
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345  Genomic data was obtained from four psyllid species: the apple psyllids Cacopsylla
346 melanoneura and C. picta as well as the pear psyllids C. pyri and C. pyricola. All four
347  species are vectors of plant pathogens, namely ‘Ca. Phytoplasma mali’ and ‘Ca. Phytoplasma
348  pyri’, respectively causing Apple proliferation and Pear decline (52, 53). Remigrants (i.e.
349  adults that return to their host plants for reproduction after overwintering on shelter plants) of
350 C. melanoneura were captured in various apple orchards in two Italian regions (Aosta Valley
351 and South Tyrol) in March 2020 and March 2021. Additional C. melanoneura specimens
352  were sampled on hawthorn (Crataegus sp.) in a single location (Aosta Valley) in March
353  2021. Remigrants of C. picta were captured from apple orchards in Trentino (Italy) in April
354  2021. Adults of C. pyri and C. pyricola were collected in pear orchards in Litencice (Czech
355  Republic) in December 2019 and in Stary Liskovec (Czech Republic) in July 2020,
356  respectively. Sampling was done using the beating tray method.

357  Since psyllids are too small to obtain sufficient DNA for long-read sequencing from a single
358 individual, several specimens need to be pooled, which introduces genetic variation that can
359  hinder genome assembly. We used two different strategies to reduce the genetic variation
360 among the pooled individuals, depending on the host plant of the different species. For C.
361 melanoneura and C. picta collected on apple trees, we applied the same experimental design
362 as in (52): In the green house, the field-caught adults were sorted into mating couples and
363  each couple was caged on a branch of an apple tree (cultivar Golden Delicious) using nylon
364  nets. Once the offspring of the mating couples had reached adulthood, all newly-emerged
365  siblings were collected and stored at -20°C. Since the primary endosymbionts are vertically
366 transmitted from mother to offspring, all siblings harbour genetically identical endosymbionts
367 and can therefore be pooled without introducing genetic variation for the endosymbionts. In
368  addition, the Cytochrome Oxidase I (COI) haplotype was determined for two individuals per

369 sibling group according to (54), to determine the genetic diversity among the different
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370 populations and mating couples. For all psyllids that do not develop on apple (C.
371 melanoneura from hawthorn and the pear psyllids C. pyri and C. pyricola), adults collected in
372  the field were immediately stored at -20°C. Subsequently, the COI haplotype was determined
373  for numerous individuals of each species, in order to select individuals with identical COI
374  haplotype for pooling.

375

376  DNA extraction

377  For each sibling group of the apple psyllids C. melanoneura and C. picta selected for long-
378 read metagenome sequencing, DNA was extracted from two pools, each containing 4-6
379  whole females. For the field-caught C. melanoneura from hawthorn and C. pyricola from
380 pears, DNA was first extracted from individual females and subjected to COI haplotype
381  determination as outlined above. Subsequently, two pools, each combining the DNA extracts
382  of five females with identical haplotypes, were established for each species. Only females
383  were used since they are larger and hence provide more DNA and because we reasoned that
384  their endosymbiont titers may be higher since the endosymbionts are harboured in two
385  tissues, the bacteriome and the ovaries. DNA extraction was performed using a modified
386  protocol of the PureGene Tissue kit (Qiagen). Whole insects were ground in 100 pl of Cell
387  Lysis Solution and 5 pl Proteinase K solution and incubated at 56°C for three hours, followed
388 by an incubation with 1.5 pul RNase A at 37°C for 30 minutes. Subsequently, proteins were
389  precipitated by adding 35 ul of Protein Precipitation Solution. DNA was then extracted with
390 one volume chloroform/isoamyl alcohol (24:1 v/v) and precipitated in one volume of
391  isopropanol after overnight incubation at -20°C. The DNA pellet was resuspended in 40 pl of
392  sterile water and incubated at 65°C for one hour to increase DNA rehydration. For C. pyri,
393 DNA was extracted from a single female using the QIlAamp DNA Micro Kit (Qiagen)

394  according to the manufacturer’s instructions.
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395

396 Metagenome sequencing and assembly

397  Long-read metagenome sequencing using an Oxford Nanopore-Illumina hybrid approach was
398 performed for C. melanoneura, C. picta and C. pyricola. For each sample, one pool was used
399 for long-read sequencing on the MinlON (Oxford Nanopore Technologies, UK) and the
400 second pool was used for 2 x 150 bp paired-end sequencing on an Illumina NovaSeq
401  (Macrogen). About 1.5 ng of DNA was used for library preparation using the Oxford
402  Nanopore Ligation Sequencing kit SQK-LSK 109 (Oxford Nanopore Technologies, UK).
403  Each library was sequenced on an entire R9.4 flowcell for 43-72 hours, depending on pore
404  activity. Basecalling was done using Guppy v5.0.11 (Oxford Nanopore Technologies, UK) in
405  high-accuracy mode. Low quality (< Q7) and short (< 500 bp) reads were discarded and host
406  reads were removed via mapping against a genome scaffold of C. melanoneura (J. M. Howie
407 & O. Rota-Stabelli, unpublished data) using Minimap2 v2.15 (55). The remaining non-host
408 reads > 500 bp were assembled using Flye v2.9 (56) with the --metagenome option. Contigs
409  belonging to the endosymbionts were identified using blast (57). Reads were mapped back
410  onto the endosymbiont contigs using Minimap2 v2.15 and all mapped reads were assembled
411  again with Flye v2.9 using the same parameters. This produced two circular genomes for
412  most datasets. These genomes were first polished with Nanopore reads using Medaka v1.5.0

413 (https://github.com/nanoporetech/medaka) and subsequently with Illumina reads using

414  several iterations of Polca, a genome polisher integrated in the MaSuRCa toolkit v4.0.7 (58),
415  until no more errors were found. It is important to note that the two endosymbiont genomes
416  need to be polished together to avoid the introduction of errors in highly conserved regions
417  (e.g. ribosomal RNA operon) of the endosymbiont genome with lower coverage. In rare
418  cases, two rounds of Flye assemblies did not produce circular endosymbiont genomes. Two

419  of these genomes (CRmelAO2 and PSmelET) could be finished using alternative assembly
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420  approaches: (i) Assembly with Canu v2.1.1 (59), polishing with Medaka and Polca as
421  outlined above, followed by scaffolding and gap-closing with Redundans v0.14 (60) and (ii)
422  Nanopore and Illumina reads mapping onto the complete endosymbiont genomes were
423  assembled together using SPAdes v3.15.1 (61). Genome coverage was estimated by mapping
424  the Nanopore reads onto the finished genomes during the polishing step with Medaka.

425  The metagenome of C. pyri was assembled from 42 million 2 x 250 paired-end reads from a
426  single female sequenced on an Illumina NovaSeq (University of Illinois, Urbana-Champaign,
427  USA). The metagenome was assembled using SPAdes v3.15.1 (61) with the --meta option
428  and default kmers. Endosymbiont contigs were identified based on coverage, which initially
429  produced two contigs for Carsonella and three contigs for the Enterobacteriaceae symbiont.
430 These contigs were ordered based on the complete genomes obtained using long-read
431  sequencing and closed after scaffolding and gap-closing with Redundans v0.14 (60). The
432  completeness of all genomes was assessed using BUSCO (gammaproteobacteria odb10
433 dataset) (62).

434

435  Functional genome analyses

436 All complete endosymbiont genomes were annotated using the NCBI Prokaryotic Genome
437  Annotation Pipeline (PGAP) version 2021-07-01.build5508 (63). Circular plots of conserved
438  protein-coding genes were produced using MGCplotter

439  (https://github.com/moshi4/MGCplotter). For each endosymbiont (i.e. Carsonella ruddii and

440  Psyllophila symbiotica), all protein-coding genes were assigned to orthogroups using
441  Orthofinder v2.5.2 (64) and shared orthogroups were plotted using the package UpsetR (65).
442  Clusters of Orthologous Genes (COG) categories were determined using eggNOG-mapper
443  v2.1.7 (66) and KEGG pathway annotations were obtained using BlastKOALA v2.2 (67).

444
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445  Phylogenomics

446  Orthofinder v2.5.2 (64) was used to identify single-copy orthologous genes shared (i)
447  between all available Carsonella genomes and (ii) between the Enterobacteriaceae
448  endosymbionts of Cacopsylla spp., 33 other nutritional endosymbionts from the
449  Gammaproteobacteria and three Pseudomonas entomophila strains as outgroup. The amino
450 acid sequences of each conserved gene were aligned using Muscle v3.1.31 (68) and the
451  alignments were concatenated into a partitioned supermatrix using the script geneStitcher.py

452  (https://github.com/ballesterus/Utensils/blob/master/geneStitcher.py). IQ-TREE v1.6.1 (69)

453  was used to predict the optimal amino acid substitution model for each gene partition (70, 71)
454  and to produce a Maximum Likelihood phylogenetic tree with 1000 bootstrap iterations. The

455  tree was visualized in FigTree v1.4.4 (https://github.com/rambaut/figtree).

456

457  Fluorescence in situ hybridisation

458  Fluorescence in situ hybridization was conducted with symbiont-specific probes
459  complementary to their 16S rRNA gene sequences (Carsonella: Probe Carsol07 ‘Cy3-
460 ATACTAAAAGGCAGATTCTTG’, Psyllophila: Probe Psyllo118 ‘Cys-
461 TCCATTGAGTAGTTTCCCAG’). For Carsonella, two helper probes were used to increase
462  the signal (helperFCarsol07: ‘AGCGAACGGGTGAGTAATATG’, helperRCarsol07:
463  ‘ACATTTCTATATACTTTCCA”).

464  Insects preserved in ethanol were rehydrated and then postfixed in 4% paraformaldehyde for
465  two hours at room temperature. Next, the specimens were dehydrated again by incubation in
466  increased concentrations of ethanol and acetone, embedded in Technovit 8100 resin (Kulzer,
467  Wehrheim, Germany), and cut into semithin sections (I pum). The sections were then
468 incubated overnight at room temperature in hybridization buffer containing the specific

469  probes at a final concentration of 100 nM. After hybridization, the slides were washed three
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470  times in PBS, dried, covered with ProLong Gold Antifade Reagent (Life Technologies) and
471  observed using a Zeiss LSM 900 Airyscan 2 confocal laser scanning microscope.

472

473 DATA AVAILABILITY

474  The genomes produced in this work are accessible in the NCBI database under BioProject
475  accessions PRINA803426 (endosymbionts of Cacopsylla melanoneura), PRINA853274
476  (endosymbionts of Cacopsylla picta), PRINA853282 (endosymbionts of Cacopsylla
477  pyricola) and PRINA853726 (endosymbionts of Cacopsylla pyri). New COI haplotypes for
478 C. melanoneura, C. picta and C. pyricola were deposited under accessions OQ106377 —
479  0Q106379.
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488  FIGURES AND TABLES

489

490  Table 1. Properties of the endosymbiont genomes obtained in this study.

491

492  Fig. 1. Endosymbiont genomes are highly conserved across Cacopsylla host species. (a, c)
493  Circular genome plots of the twelve Carsonella genomes (a) and the ten Psyllophila genomes

494  (c¢) produced in this study. The three outer-most circles represent forward CDS, reverse CDS
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495 and the ribosomal RNA operon of a reference genome (CRmelAOl1 and PSmelAOl,
496  respectively). The inner circles represent the conserved genes in all other genomes of the
497  same taxon (the order is identical to b and d), the shading indicating the degree of sequence
498  similarity compared to the reference genome. (b, d) Intersection plots showing the number of
499  shared orthogroups across all Carsonella (b) and Psyllophila (d) genomes. The matrix lines
500 are coloured according to host species.

501

502  Fig. 2. The Enterobacteriaceae symbiont represents a new psyllid-associated genus.
503 Maximum-likelihood tree based on the concatenated amino acid sequence alignment of 67
504  single-copy orthologous genes from 46 genomes, namely the 10 Enterobacteriaceae
505 endosymbionts of Cacopsylla spp., 33 insect endosymbionts from the Gammaproteobacteria
506 and three Pseudomonas entomophila strains as outgroup. The Enterobacteriaceae
507 endosymbionts of Cacopsylla spp. are colour-coded based on host species. Branch support is
508  based on 1000 bootstrap iterations. Blue dots on branches indicate full bootstrap support.

509

510  Fig. 3. Both Cacopsylla endosymbionts are localized in the bacteriome. Fluorescent in situ
511  hybridisation of Carsonella (Cy3, red) and Psyllophila (Cy5, green) symbionts in the
512  bacteriomes of Cacopsylla pyri (A, B) and C. melanoneura (C). Blue represents DAPI. Scale
513  bar=10 um.

514

515 Fig. 4. Metabolic complementarity between Carsonella and Psyllophila. (a) COG
516  functional categories for the Carsonella and Psyllophila genomes show different proportions
517  of genes involved in amino acid transport and metabolism (red). (b) Schematic representation

518  of the metabolic complementarity between the two symbionts for the biosynthesis of essential
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519  amino acids, vitamins and carotenoids. Genes present in Carsonella genomes are shown in
520  blue, genes present in Psyllophila in red.

521

522  Fig. 5. Repeated gene losses throughout Carsonella evolution. (a) Intersection plot
523  showing the distribution of orthogroups across 33 Carsonella genomes depending on host
524  species. (b) Maximum-likelihood tree based on the concatenated amino acid sequence
525  alignment of 119 single-copy orthologous genes present in all 33 Carsonella genomes. The
526  Carsonella strains of Cacopsylla spp. are colour-coded based on host species. Branch support
527 1is based on 1000 bootstrap iterations. Blue dots on branches indicate full bootstrap support.
528 Losses of genes or pathways involved in the biosynthesis of essential amino acids are
529 indicated on the branches. (See Table S3 for a detailed list of genes identified based on
530 KEGG pathway annotation). The presence of known co-primary endosymbionts is indicated
531  using blue dots for amino acid-providing nutritional co-primary endosymbionts and using red
532  dots for the defensive and nutritional endosymbiont ‘Ca. Profftella armatura’.

533

534 SUPPLEMENTARY MATERIAL

535

536  Supplementary Table S1. List of insect endosymbiont genomes included in the
537  phylogenomics analysis of ‘Ca. Psyllophila symbiotica’.

538

539  Supplementary Table S2. Table of previously published Carsonella genomes used for
540 comparative and phylogenomic analyses.

541
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542  Supplementary Table S3. Presence of genes involved in the biosynthesis of essential amino
543 acids in all available Carsonella genomes based on KEGG pathway annotations using
544  BlastKoala.

545
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Table 1. Properties of the complete endosymbiont genomes obtained in this study. IT=Italy, CZ= Czech Republic. ND=Not determined. Empty columns for Psyllophila indicate that thex
genome could not be assembled due to insufficient coverage. s %

[ <

Host species Cacopsylla melanoneura Cacopsylla picta C:;‘:’_': so;;:’la Cac:: rsiy ”%1%_
COl haplotype mel01® mel01° mel01® mel01® mel01® mel01° mel21° mel09° pic18° pic01¢ pyco1’ ND =g
Origin Aosta Aosta Aosta Aosta South South South South Trentino Trentino | Stary Liskovec Litencice & ;
Valley (IT) Valley (IT) Valley (IT) Valley (IT) Tyrol (IT) Tyrol (IT) Tyrol (IT) Tyrol (IT) (IT) (IT) (Cz) (CZ) :"§

Host plant Apple Apple Hawthorn Hawthorn Apple Apple Apple Apple Apple Apple Pear Pear © §
Sequencing Nanopore Nanopore Nanopore Nanopore Nanopore | Nanopore Nanopore Nanopore Nanopore | Nanopore Nanopore Illumina 2§
method + lllumina + lllumina + lllumina + lllumina +lllumina | +Illumina | +Illumina +lllumina | +lllumina | +Illumina + lllumina only 2E
(700N

Carsonella . . a R
Strain CRmelAO1 | CRmelAO2 | CRmelAO3-1 | CRmelAO3-2 | CRmelET | CRmelST4 | CRmelST17 | CRmelST21 CRpicl CRpic2 CRpyc CRpyr g g
Length (bp) 169,165 169,273 169,079 169,081 169,051 169,046 169,064 169,056 171,569 171,920 168,917 169 395; % ;’
%GC 15.52 15.53 15.52 15.52 15.52 15.52 15.52 15.52 15.42 15.40 14.98 15. 19%%_ 3
Genes 216 216 215 215 215 216 215 214 212 211 220 214 éf-'i 'ﬂ
cDs 186 186 185 185 185 183 185 184 183 182 190 184 831
Pseudogenes 0 0 0 0 0 3 0 0 0 0 0 0 33L
rRNA 3 3 3 3 3 3 3 3 3 3 3 3 el
tRNA 27 27 27 27 27 27 27 27 26 26 27 27 S2§
oS8

Psyllophila . . 5% :
strain PSmelAO1 PSmelAO3-1 | PSmelAO3-2 | PSmelET PSmelST17 | PSmelST21 PSpicl PSpic2 PSpyc PSpyr§>E< 5
Length (bp) 237,114 236,266 235,918 231,767 236,072 235,744 225,730 225,865 222,755 221,413 5%
%GC 18.26 18.29 18.33 18.60 18.32 18.34 17.80 17.79 17.36 17. 30§:?u, §
Genes 239 240 239 239 242 243 240 240 241 240 255
CDS 205 206 205 205 207 208 207 207 207 205 _%3
Pseudogenes 2 2 2 2 3 3 1 1 2 EE:
rRNA 3 3 3 3 3 3 3 3 3 3 38
tRNA 27 27 27 27 27 27 27 27 27 27 '(95‘)
ncRNA 2 2 2 2 2 2 2 2 2 2 %“z
®ldentical to Accession no. KM206163 %’g

® Accession no. 00631077 § £
“Identical to Accession no. KM206167 gg

4 Accession no. 00631078 =z
¢ldentical to Accession no. KM206174 %g
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