

1 **Human thalamic recordings reveal that epileptic spikes block sleep spindle production**
2 **during non-rapid eye movement sleep**

3

4 Anirudh Wodeyar [1], Dhinakaran Chinappan [2,4], Dimitris Mylonas [6,7], Bryan Baxter [6,7],
5 Dara S. Manoach [6,7], Uri T. Eden [1,3], Mark A. Kramer* [1,3], and Catherine J. Chu* [4,5]

6

7 [1] Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA.

8 [2] Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, USA.

9 [3] Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.

10 [4] Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.

11 [5] Harvard Medical School, Boston, Massachusetts, USA.

12 [6] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.

13 [7] Division of Sleep Medicine, Harvard Medical School

14

15

16

17

18

19

20

21

22 **Abstract**

23 In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive
24 dysfunction. Several epileptic encephalopathies share the trait of spike-wave activation during
25 non-rapid eye movement sleep (EE-SWAS), a state dominated by sleep oscillations known to
26 coordinate offline memory consolidation. How epileptic activity impacts these thalamocortical
27 sleep oscillations has not been directly observed in humans. Using a unique dataset of
28 simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS,
29 we reconcile prior conflicting observations about how epileptic spikes coordinate with sleep
30 oscillations and provide direct evidence for epileptic spike interference of sleep spindle
31 production. We find that slow oscillations facilitate both epileptic spikes and sleep spindles
32 during stage 2 sleep (N2) at different phases of the slow oscillation. We show that sleep activated
33 cortical epileptic spikes propagate to the thalamus (thalamic spike rate is increased after a
34 cortical spike, $p \sim 0$). Thalamic spikes increase the spindle refractory period ($p < 1.5e-21$). In
35 patients with EE-SWAS, the abundance of thalamic spikes result in downregulation of spindles
36 for 30 seconds after each thalamic spike ($p = 3.4e-11$) and decreased overall spindle rate across
37 N2 ($p = 2e-7$). These direct human thalamocortical observations identify a novel mechanism
38 through which epileptiform spikes could impact cognitive function, wherein sleep-activated
39 epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy.

40

41 **Keywords:** EE-SWAS, Brain rhythms, cross-frequency relationships, interictal discharges,
42 NREM sleep, electrophysiology, memory consolidation

43

44 **Introduction**

45 Cognitive dysfunction is a common comorbidity in epilepsy (Taylor et al., 2010; Taylor &
46 Baker, 2010; Wickens et al., 2017), but the mechanism remains unknown (Beenhakker &
47 Huguenard, 2009). In the most severe form, cognitive dysfunction is described as an epileptic
48 encephalopathy, where patients have a reduced rate-of-development, plateau, or frank regression
49 in cognitive functions concurrent with the development of epileptiform activity (Specchio et al.,
50 2022). Several epileptic encephalopathies share the trait of interictal epileptic spikes that are
51 potentiated during non-REM sleep, termed epileptic encephalopathy associated with spike-wave
52 activation during sleep (EE-SWAS). In these cases, epileptic spikes during sleep are thought to
53 be mechanistically related to cognitive decline, however existing studies have found that
54 epileptic spike rates in sleep fail to predict cognitive symptoms in EE-SWAS (Binnie, 2003;
55 Bjørnæs et al., 2013; Henin et al., 2021; Larsson et al., 2012).

56

57 Non-REM (non-rapid eye movement) stage N2 sleep is characterized by sleep spindles, a 9-15
58 Hz oscillation implicated in sleep-dependent memory consolidation (Denis et al., 2021; Gais et
59 al., 2002; Latchoumane et al., 2017) and correlated with cognitive measures (M. Hahn et al.,
60 2019; Reynolds et al., 2018). Sleep spindles originate in the thalamus and propagate to the
61 cortex and occur with an approximate period of 2-5 s, dictated by an after-depolarization spindle
62 refractory period (Bal & McCormick, 1996; Fernandez & Lüthi, 2020). Spindles are frequently
63 nested in the up-state of slow oscillations - 0.5-2 Hz oscillations - (Mak-McCully et al., 2017;
64 Schreiner et al., 2022; Steriade et al., 1993) and, critically, may coordinate hippocampal ripples
65 to support memory consolidation (Latchoumane et al., 2017; Staresina et al., 2015).

66

67 Epileptic spikes, in contrast to sleep spindles, are cortically-driven pathological events, reflecting
68 summated, excessively synchronous neural activity (Steriade, 2006; Traub & Wong, 1982).
69 Observations in animals (Steriade & Contreras, 1998) and in humans (Velasco et al., 1991, 2002)
70 demonstrate that cortical epileptic spike activity may propagate to the thalamus (Gadot et al.,
71 2022). Epileptic spikes have been proposed to hijack the circuitry that produces spindles and
72 thereby disrupt sleep-dependent memory consolidation (Beenhakker & Huguenard, 2009;
73 Kramer et al., 2021). However, competing observations suggest that epileptic spikes precede –
74 and therefore may induce – sleep spindles, with potentially pathologic consequences for
75 cognitive function (Dahal et al., 2019; Gelinas et al., 2016; Sákovics et al., 2022). How and
76 whether cortical spikes interact and interfere with thalamic sleep spindles in humans is unknown.
77 Direct observations of these dynamics are challenging due to the scarcity of recordings available
78 from the human thalamus.

79

80 Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with
81 and without EE-SWAS, we reconcile prior conflicting observations and provide direct evidence
82 for epileptic spike interference of sleep spindle production. We find that cortical slow
83 oscillations facilitate both epileptic spikes and spindles during N2 sleep at different phases of the
84 slow oscillation. Separately, sleep activated cortical epileptic spikes that propagate to the
85 thalamus inhibit spindle production, most prominently in subjects with EE-SWAS. Given this
86 evidence, we propose the disruption of thalamic spindles by cortical spikes during non-REM
87 sleep as a mechanism of cognitive dysfunction in epilepsy.

88

89 **Methods**

90 ***Subject data collection***

91 Subjects with simultaneous thalamic and cortical local field potentials and scalp EEG recording
92 collected as part of their clinical evaluation for drug resistant epilepsy between 07/2020 and
93 11/2021 at Massachusetts General Hospital were evaluated. To ensure appropriate thalamic lead
94 placement relative to the cortical irritative zone, only those subjects found to have instantaneous
95 ictal propagation to the thalamic target were included, resulting in datasets from 9 subjects –
96 thalamic leads targeted the centromedian nucleus in 7 subjects and the anterior nucleus in 2
97 subjects (see Table 1). Clinical diagnosis, the location of the seizure onset zone, antiseizure
98 medications, and demographic information were collected from chart review (see Table 1). Pre-
99 and post-operative high-resolution MRIs were collected for electrode co-registration. This study
100 was approved by the Massachusetts General Hospital Institutional Review Board.

101

102 ***EEG data collection, pre-processing, and channel selection***

103 Intracranial and scalp EEG data were collected using the clinical Natus Quantum system (Natus
104 Neurology Inc., Middleton, WI, USA). Depth electrodes (PMT Depthalon depth platinum
105 electrodes with 3.5 mm spacing, 2 mm contacts, and 0.8 mm diameter; or Ad-tech depth
106 platinum electrodes with 5-8 mm spacing, 2.41 mm contact size, and 1.12 mm diameter) were
107 placed in the regions of clinical interest and sampled at 1024 Hz (8 subjects) or 2048 Hz (1
108 subject, subsequently downsampled to 1024 Hz). Twenty-four hours of scalp EEG data (21 scalp
109 electrodes plus electrocardiogram and electrooculogram electrodes) were sleep-staged by a board-
110 certified clinical neurophysiologist (CJC) following standard visual criteria (Grigg et al., 2007;
111 Iber et al., 2007). To control for variability across sleep stages and focus on sleep-activated
112 epileptic spike activity and sleep spindles, we selected only non-rapid eye movement stage 2

113 sleep segments (N2) for analysis. All N2 sleep segments over the course of the 24-hour interval
114 were concatenated for analysis.

115
116 For epileptic spike and spindle detections we evaluated three voltage time series from each
117 subject: 1) Adjacent thalamic depth electrode contacts with the highest amplitude signal in a
118 bipolar reference; 2) Adjacent cortical depth electrode contacts in the clinically determined
119 seizure onset zone in a bipolar reference; 3) Scalp EEG in a bipolar reference CZ-PZ. To detect
120 slow oscillations, we analyzed the scalp CZ contact using a far-field non-cephalic reference
121 placed over the second cortical spinous process (Schreiner et al., 2022; Staresina et al., 2015).
122 The channel and reference used to test each hypothesis are stated in the statistical analysis
123 section below.

124
125 **Automatic event detection**

126 *Epileptic spike detection*
127 To detect epileptic spikes, we extended the method in (Dahal et al., 2019; Gelinas et al., 2016).
128 First, we bandpass filtered the data both forwards and backwards using a finite impulse response
129 (FIR) filter between 25 to 80 Hz (MATLAB function firfilt). We then applied a Hilbert
130 transform, calculated the analytic signal, and the amplitude envelope of this signal. For each
131 voltage signal, the moments when the amplitude envelope exceeded three times the mean
132 amplitude were identified as candidate spikes. To ensure the candidate spikes were not due to
133 gamma-band oscillatory bursts, we also calculated the regularity of oscillations in an interval
134 (± 0.25 s) around each candidate spike. To assess the regularity of the signal in this interval, we
135 computed the Fano factor (Eden & Kramer, 2010) estimated by: (i) detrending the interval of

136 unfiltered data at each candidate spike, (ii) identifying peaks and troughs, (iii) calculating the
137 inter-peak and inter-trough intervals, and (iv) estimating the ratio of the variance of the inter-
138 peak and inter-trough intervals to the mean of the inter-peak and inter-trough intervals. We then
139 removed candidate spikes if the maximum amplitude (calculated by rectifying the data and
140 identifying the maximum voltage) of the unfiltered data at the candidate spike was below three
141 times the mean amplitude or if the Fano factor was less than 2.5; we note that Fano factors below
142 1 indicate a more regular rhythm, with 0 indicating no variability in the inter-peak or inter-trough
143 intervals. Of the resulting spikes, those detected within 20 ms of one another were merged into a
144 single spike detection. We visually confirmed by examining individual detections and the
145 averaged spike waveform that the method accurately detected epileptic spikes in both cortical
146 and thalamic recordings.

147

148 *Spindle detection*

149 We applied an existing spindle detector with robustness to epileptic spikes and sharp transients
150 (Kramer et al., 2021). Briefly, the spindle detector estimates a latent state - the probability of a
151 spindle - using three features: the Fano factor (estimated for data FIR filtered between 3 – 25
152 Hz), normalized power in the spindle band (9 – 15 Hz), and normalized power in the theta band
153 (4 – 8 Hz). Distributions of expected values for these parameters were determined using
154 manually detected spindles in the scalp EEG of subjects with sleep-activated spikes. To avoid
155 misidentifying spikes as spindles, we applied a cubic spline to the ± 50 ms interval around each
156 detected spike before applying the spindle detector (as recommended in Klinzing et al., 2021).
157 Doing so further improves the ability of the spindle detector to reject spikes and accurately
158 identify the beginning and end of spindles. The spindle detector estimates the probability of a

159 spindle in 0.5 s intervals (0.4 s overlap). We detected a spindle when the probability crossed
160 0.95, chosen by optimizing the sensitivity and specificity of the detector (Kramer et al., 2021).
161 We retained spindles with a minimum duration of 0.5 s, a maximum duration of 5 s, and
162 separated by at least 0.5 s; spindles within 0.5 s of one another were merged into a single spindle
163 detection. We visually confirmed that the method accurately detected sleep spindles in both scalp
164 EEG and thalamic recordings.

165

166 *Slow oscillation detection*

167 We applied the algorithm described in (Mölle & Born, 2011) to detect slow oscillations. Briefly,
168 slow oscillations were detected by: (i) filtering the data into the 0.4 Hz to 4 Hz band using an
169 FIR filter (4092 order); (ii) identifying all negative to positive zero-crossings and the time
170 interval t to the subsequent positive to negative zero-crossings; (iii) retaining all intervals of
171 duration $0.5 \text{ s} \leq t \leq 2 \text{ s}$ (corresponding to oscillations 0.5 to 2 Hz) and identifying the negative
172 peak and peak-to-peak amplitude; (iv) omitting intervals in the bottom 75th percentile of peak-to-
173 peak amplitude and the bottom 25th percentile of the negative peak amplitude; (v) retaining any
174 remaining intervals as slow oscillations.

175

176 **Statistical analysis**

177 *Point process models for slow oscillations, spikes, and spindles*

178 To test hypotheses about relationships between slow oscillations, epileptic spikes, and thalamic
179 or scalp spindles, we first represented the event detections as a sequence of discrete events or
180 point process time series. These stochastic point process time series are completely characterized

181 by the conditional intensity function, representing the history-dependent generalization of the
182 rate function of a Poisson process,

$$\lambda(t | H_t) = \lim_{\Delta \rightarrow 0} \frac{P[N_{t+\Delta} - N_t = 1 | H_t]}{\Delta}$$

183 where P is a conditional probability, N_t denotes the number of events counted in the time
184 interval $(0, t]$, and H_t includes the event history up to time t and other covariates (Truccolo et
185 al., 2005). The logarithm of the conditional intensity, when considering a time discretized point
186 process, can be expressed as a linear function of covariates,

$$\log \lambda(k | H_k) = \beta_0 + \sum_{i=1}^Q \gamma_i \Delta N_{k-i} + \sum_{i=-n}^n \beta_i \Delta N_{k-i}^c$$

187 where k is the k^{th} interval of discretized time (with $k > Q$ and $k > n$), the first term (β_0)
188 represents a baseline event rate, the second term represents a self-history autoregressive process,
189 and the third term represents past and future contributions from other covariates. The expressions
190 $\Delta N_k = N_{t_{k+1}} - N_{t_k}$ and $\Delta N_k^c = N_{t_{k+1}}^c - N_{t_k}^c$ indicate binary time series of increments in event
191 counts, and (β_i, γ_i) are parameters to estimate. This discrete-time point process likelihood
192 function is equivalent to the likelihood of a generalized linear model (GLM) under a Poisson
193 distribution and log link function (Truccolo et al., 2005). We estimated model parameters using
194 the `fitglm` function in MATLAB.

195

196 *Modeling slow oscillations, cortical spikes, and thalamic or scalp spindles*

197 To characterize the relationship between scalp slow oscillations and cortical epileptic spikes we
198 divided time into 0.125 s intervals and created two binary time series. In the first time series, a
199 value of 1 was assigned to intervals containing the downstate of a slow oscillation, and 0
200 otherwise. In the second time series, a value of 1 was assigned to intervals containing the

201 maximum amplitude of an epileptic spike, and 0 otherwise. When more than one epileptic spike
202 occurred in the same 0.125 s interval, the value of that interval was set to the number of spikes
203 that occurred. Using these point process time series, we estimated the model:

$$\log \lambda_{SSO}(k|H_k) = \beta_0 + \sum_{i=1}^Q \gamma_i \Delta N_{k-i}^{SSO} + \sum_{i=-n}^n \beta_i \Delta N_{k-i}^{CES}$$

204 where $\lambda_{SSO}(k|H_k)$ represents the conditional intensity or conditional event rate of scalp slow
205 oscillations (SSO) given the history of SSO events and the occurrence of cortical epileptic spikes
206 (CES) at past and future times.

207

208 In the same way, to characterize the relationship between scalp slow oscillations and thalamic
209 spindle oscillations, we created point process times series and estimated the conditional event
210 rate of scalp slow oscillations. For spindle detections, we assigned each 0.125 s interval a value
211 of 1 if the maximum amplitude of a spindle occurred, or 0 otherwise. Slow oscillations and
212 spindle oscillations were modeled using:

$$\log \lambda_{SSO}(k|H_k) = \beta_0 + \sum_{i=1}^Q \gamma_i \Delta N_{k-i}^{SSO} + \sum_{i=-n}^n \beta_i \Delta N_{k-i}^{TS}$$

213 where $\lambda_{SSO}(k|H_k)$ represents the conditional intensity or conditional event rate of scalp slow
214 oscillations (SSO) given the history of SSO events and the occurrence of thalamic spindles (TS)
215 at past and future times. We applied the same model to assess the relationship between slow
216 oscillations and scalp spindles by replacing $\Delta N_{\{k-i\}}^{TS}$ with $\Delta N_{\{k-i\}}^{SS}$, the history and future of scalp
217 spindle occurrences.

218

219 Using these models, we estimated the phase relationships between slow oscillations, spikes, and
220 spindles. We note that the prediction of the scalp slow oscillation downstate using cortical spikes
221 and thalamic spindles is not causal. We chose this model structure to assess the temporal
222 relationship of spikes and spindles to the slow oscillation downstate in a manner concordant with
223 past work (Frauscher et al., 2015).

224

225 For all models, we tested the model improvement relative to a nested model with only the history
226 of the scalp slow oscillations. To estimate parameter significance within a model, we applied the
227 Wald test. Confidence intervals for the parameters were estimated from the model fits using the
228 function `fitglm` in MATLAB. Finally, we tested hypotheses across groups of parameters (see
229 Chapter 5 of Greene, 2017) using an F-test implemented in the `coefTest` function in MATLAB.

230

231 *Procedures to estimate cortical spike propagation to thalamus*

232 To test the hypothesis that cortical epileptic spikes propagate to the thalamus, we estimated: (1)
233 the average thalamic evoked response, (2) an unnormalized cross-correlation histogram, and (3)
234 the conditional event rate of thalamic spikes given cortical spikes. We define each measure here.
235

236 The average evoked response assumes a temporally locked relationship between cortical
237 epileptic spikes and thalamic epileptic spikes. To assess this relationship, for each subject, we
238 extracted from the thalamic voltage signal ± 1 s intervals centered on the times of each cortical
239 spike. We then estimated the mean thalamic response and standard error across all subjects and
240 cortical spikes and tested the results against overlap with zero. Confidence limits were
241 Bonferroni corrected for multiple comparisons.

242

243 To estimate the unnormalized cross-correlation histogram (Harrison et al., 2013), we first created
244 binary time series using 1 to demarcate time-points with the maximum amplitude of an epileptic
245 spike and 0 otherwise. Then we: (i) identified the time t_i of each event i from the cortical binary
246 time series; (ii) identified the delays of all events in the thalamic binary time series in the interval
247 ± 1 s around each t_i ; (iii) constructed a histogram from the temporal delays of thalamic spikes
248 relative to the cortical spikes using ≈ 35 ms bins. To assess the significance of the cross-
249 correlation histograms, we created a null distribution of values by shuffling the inter-event
250 intervals (i.e., time between events) of the cortical binary time series and then re-estimating the
251 cross-correlation histograms. This process accounts for baseline rates of cortical spike
252 occurrence and the distribution of inter-event intervals. We repeated this procedure 5000 times
253 for each subject. Using the shuffled cross-correlation histograms, we created 95% confidence
254 intervals for the null distribution and corrected for multiple comparisons (due to the 60 bins, each
255 of ≈ 35 ms width) using Bonferroni correction. From the cross-correlation histogram, we
256 computed the number of thalamic spikes in each time bin between [0,1] s after a cortical spike
257 for each patient. To compare the mean number of thalamic spikes in the [0,1] s interval between
258 groups (EE-SWAS, SWAS, and non-SWAS), we modeled the mean number of thalamic spikes
259 with an indicator for group (generalized linear model with log-link and a Gamma distributed
260 response). We compared the mean number of spikes between the EE-SWAS and non-SWAS
261 groups, and between SWAS and non-SWAS groups using the `coefTest` function in MATLAB.

262

263 Finally, to characterize the relationship between cortical epileptic spikes (CES) and thalamic
264 epileptic spikes (TES), we divided the time series into 16 ms intervals (the lowest temporal
265 resolution for epileptic spikes) and estimated the model

$$\begin{aligned} \log \lambda_{TES}(t|H_t) = & \beta_0 + I_{EE-SWAS} \left(\sum_{i=1}^k \gamma_i^{EE-SWAS} \Delta N_{t-i}^{TES} + \sum_{i=-n}^n \beta_i^{EE-SWAS} \Delta N_{t-i}^{CES} \right) \\ & + I_{SWAS} \left(\sum_{i=1}^k \gamma_i^{SWAS} \Delta N_{t-i}^{TES} + \sum_{i=-n}^n \beta_i^{SWAS} \Delta N_{t-i}^{CES} \right) \\ & + I_{non-SWAS} \left(\sum_{i=1}^k \gamma_i^{non-SWAS} \Delta N_{t-i}^{TES} + \sum_{i=-n}^n \beta_i^{non-SWAS} \Delta N_{t-i}^{CES} \right) \end{aligned}$$

266 where variable I indicates subject group (EE-SWAS, SWAS, and non-SWAS), and we include
267 the self-history of thalamic epileptic spikes (TES), and the history and future of cortical epileptic
268 spikes (CES).

269

270 *Procedures to estimate relationships between thalamic and scalp spindles*

271 To test the hypothesis that thalamic spindles predict scalp spindles, we estimated: (1) the average
272 evoked response at the scalp, (2) the average induced response at the thalamus, and (3) the
273 conditional event rate of scalp spindles. We define each measure here.

274

275 To assess the average evoked response at the scalp, for each subject, we extracted from the scalp
276 EEG signal ± 2 s intervals centered on the times of the maximum amplitude of each thalamic
277 spindle. We then estimated the mean EEG response and standard error across all subjects and
278 thalamic spindles and tested the results against overlap with zero. The confidence limits were
279 Bonferroni corrected for multiple comparisons.

280

281 To estimate the average induced response at the thalamus, we applied a multitaper spectral
282 analysis to estimate the spectrogram. For each subject, we first extracted from the thalamic signal
283 ± 2 s intervals centered on the times of the maximum amplitude of each scalp spindle. We then
284 estimated the spectrogram of each extracted thalamic signal using 0.5 s intervals (0.45 s overlap)
285 and a single taper (2 Hz frequency resolution, function *mtspecgramc* from the Chronux toolbox
286 (Bokil et al., 2010)). To enable testing and comparisons, we log-transformed and standardized
287 (removed mean and divided by standard deviation) over time for each frequency of each
288 spectrogram. We then averaged the spectrograms across all extracted signals (i.e., across all
289 instances of scalp spindles for all subjects within each group) and tested the resulting power
290 relative to zero using the estimated standard error.

291

292 To characterize the relationship between scalp spindles (SS) and thalamic spindles (TS), we
293 estimated the model

$$\log \lambda_{SS}(t|H_t) = \beta_0 + \sum_{i=1}^k \gamma_i \Delta N_{t-i}^{SS} + \sum_{i=-n}^n \beta_i \Delta N_{t-i}^{TS}$$

294 where we include the self-history of scalp spindles to account for a spindle refractory period and
295 identify the independent contribution of thalamic spindles. We identify binary spindle
296 occurrences using time intervals of 0.125 s, where 1 indicates the maximum amplitude of a
297 spindle occurred (0 otherwise).

298

299 *Procedures to estimate relationships between epileptic spikes and spindles*

300 To test the hypothesis that epileptic spikes disrupt spindles, we examined the relationship across
301 two timescales. At the ultradian timescale, we compared the spindle and epileptic spike rates
302 recorded at the scalp, cortex, and thalamus. To do so, we computed for each subject the spindle
303 and epileptic spike rates as the total number of events divided by the total duration of data
304 analyzed (i.e., total duration of N2). We then fit a linear mixed-effects model of the spindle rates
305 versus the log-transformed spike rates with patient as random effect. We tested the model against
306 a nested model with constant predictor and random effect of patient using a likelihood ratio test
307 implemented by the MATLAB function **compare**.

308

309 At the minutes time scale, we modeled the relationship between thalamic epileptic spikes (TES)
310 and scalp spindles (SS) as,

$$\log \lambda_{SS}(t|H_t) = \beta_0 + \sum_{i=1}^k \gamma_i \Delta N_{t-i}^{SS} + \sum_{i=-n}^n \beta_i \Delta N_{t-i}^{TES}$$

311 where we include the self-history of scalp spindles to account for a possible refractory period and
312 identify the independent contribution of thalamic epileptic spikes. Here we identify binary time
313 series for spindle events using time intervals of 1 s, where 1 indicates that the maximum
314 amplitude of a spindle occurred in an interval. Similarly, we identify spike event time series by
315 indicating the number of spikes (i.e., times of maximum amplitude of an epileptic spike)
316 occurring in each 1 s time interval. We estimated the model considering self-history terms up to
317 20 s, and thalamic epileptic spike terms up to ± 60 s (chosen based on spectrogram analysis – see
318 Figure 4B) around each scalp spindle. Given the long timescale response observed in the data,
319 the coefficients were tested in a group hypothesis test for the parameters between -30 s to 0 s

320 (with 0 s representing a scalp spindle) against the parameters from 0 s to 30 s (i.e., we test
321 whether $\sum \beta_{[-30,0]} = \sum \beta_{(0,30]}$).

322

323 At the seconds timescale, we compared the refractory period of scalp spindles with intervening
324 thalamic epileptic spikes and without intervening thalamic epileptic spikes. Refractory periods
325 were defined as the duration between the end of one spindle and the beginning of another. We fit
326 the distributions of the refractory periods using a generalized linear model with a log-link and an
327 inverse-Gaussian distributed response and compared the means of the two refractory period
328 distributions using the function `coefTest` in MATLAB.

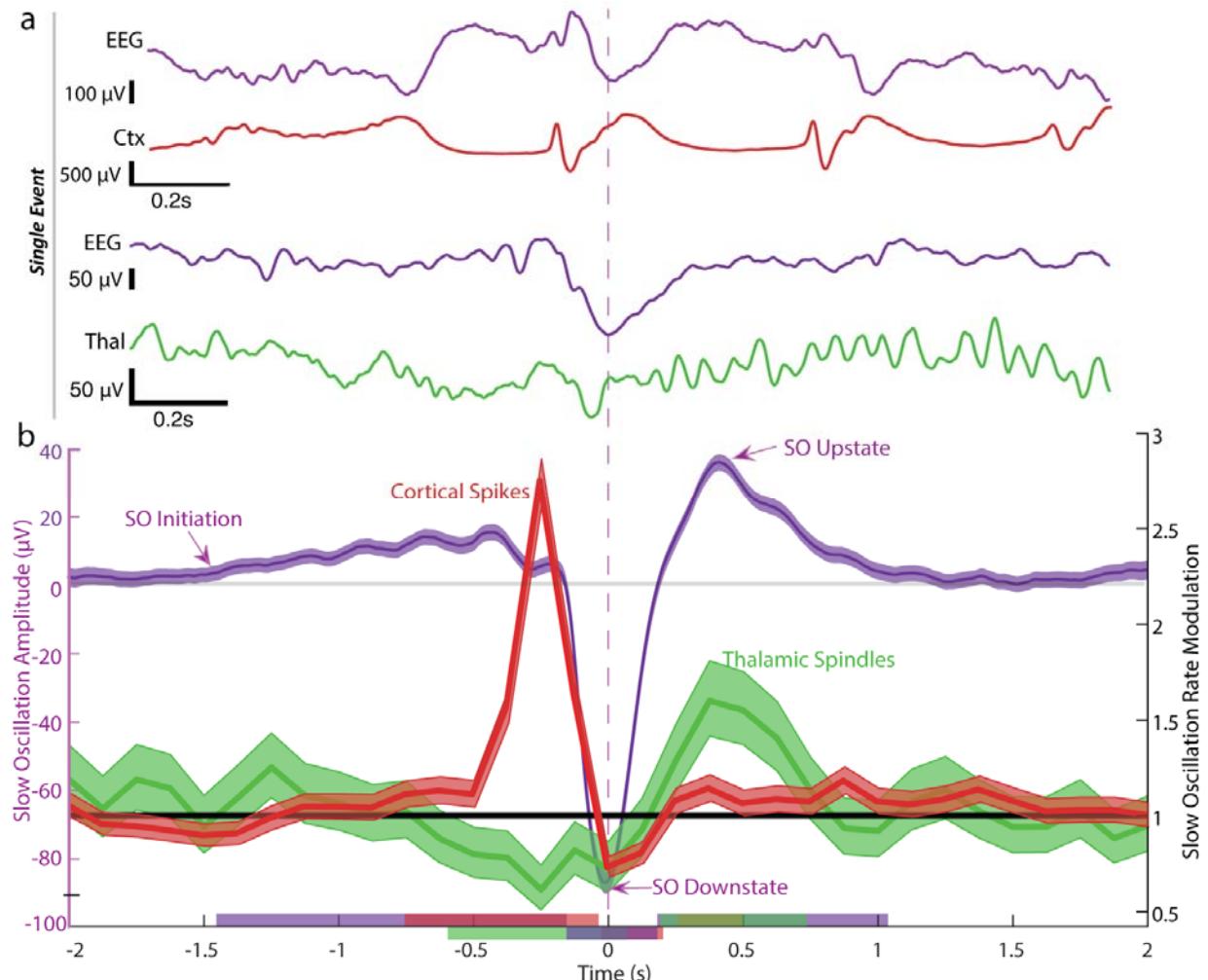
329

330 **Results**

331 *Subject and data characteristics*

332 We analyzed data from nine subjects (ages 9-55, 2 F, see clinical and data characteristics in
333 Table 1). From each subject, voltage data were recorded from the thalamus, cortex, and scalp.
334 Based on clinical diagnosis, and the presence spike-wave activation during N2 sleep, we
335 separated the subjects into three categories (Supplementary Figure 1): EE-SWAS (n=3), SWAS
336 without EE (n=3), no SWAS or EE (n=3).

ID	Age	Sex	Etiology	N2 Duration (hr)	ASM	Thalamic target	Cortical target	SWAS	EE
1	11	M	Left stroke MCA	4.98	CBD, LTG, CLB	CM	Parietal	N	N
2	55	M	Non-lesional	7.95	CLB, LTG	ANT	Temporal	N	N
3	30	M	Non-lesional s/p right ATLY and right frontal topectomy	3.67	OXC, TOP, LTG	ANT	Frontal	N	N
4	12	M	Multifocal right > left polymicrogyria	5.54	TOP, LTG, LEV	CM	Parietal	Y	N
5	22	F	GLUD1 mutation	7.32	LAC, PER, ZON, CZP	CM	Frontal	Y	N
6	12	M	Non-lesional	3.56	CLB, LEV	CM	Frontal	Y	N
7	9	M	Non-lesional	8.34	LEV, Depakote, LTG	CM	Frontal	Y	CSWS
8	33	M	Bilateral	6.69	LTG, RFM, ESL,	CM	Frontal	Y	LGS


9	26	F	perisylvian polymicrogyria HSV encephalitis s/p left frontotemporal resection and anterior CC	5.85	CZP, LOR LEV, LTG, CLB	CM	Frontal	Y	LGS
---	----	---	--	------	---------------------------	----	---------	---	-----

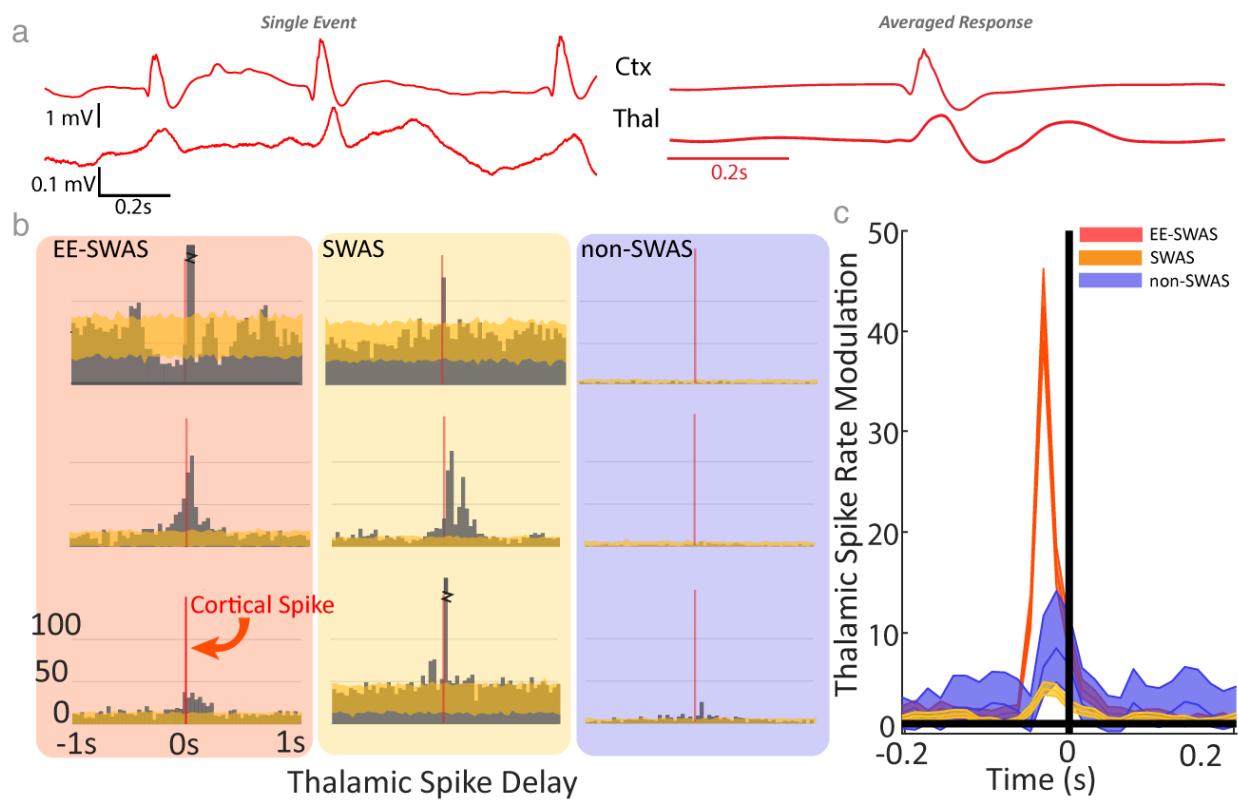
337
338

Table 1: Patient Characteristics

339 Abbreviations: ASM-antiseizure medications; SWAS – spike and wave activation in sleep; CM – centromedian nucleus of the thalamus ; ANT -
340 anterior nucleus of the thalamus; SR-spoke rate; EE-clinically diagnosed epileptic encephalopathy; CZP-clonazepam, ZON-zonisamide , PER-
341 perampanel, LAC-lacosamide, LTG-lamotrigine, ONFI-clobazam, LEV-levetiracetam, CBD-cannibidiol, OXC-oxcarbazepine, LOR-lorazepam,
342 RFM-rufinamide, ESL-eslicarbazepine, ATL-anterior temporal lobectomy; LGS-lennox gastaut syndrome; CSWS- continuous spike-wave in
343 sleep with encephalopathy, L-MCA-left middle cerebral artery , HSV-herpes simplex virus, RNS-responsive neurostimulation.

344

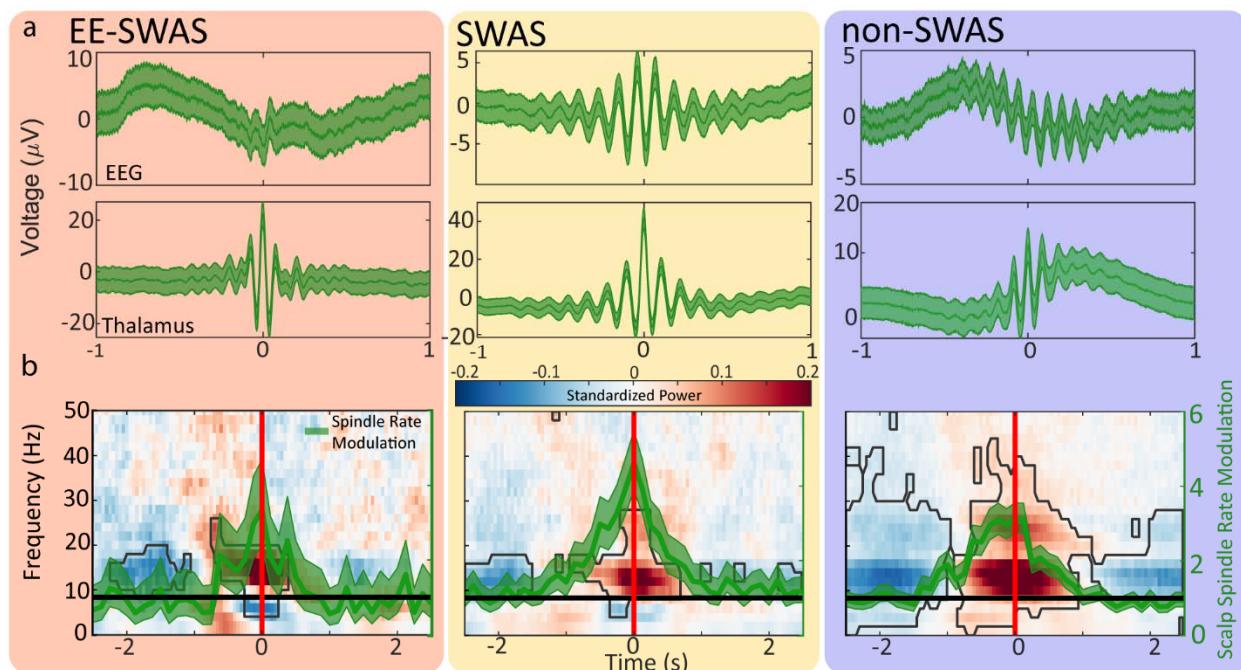
345


346 **Figure 1: Slow waves facilitate both spikes and spindles at different phases. (a)** Example
347 simultaneous recordings of scalp EEG (purple trace) and intracranial data centered on the
348 downstate of the slow oscillation (vertical dashed line). A cortical epileptiform spike (red trace)
349 precedes the downstate and a thalamic sleep spindle (green trace) follows the downstate. **(b)**
350 Averaged cortical slow oscillations low-pass filtered below 30 Hz (purple) across all subjects,
351 and the modulation (95% CI) of cortical spike rate (red) and thalamic spindle rate (green) by
352 slow waves. Slow waves initiate with a low amplitude upstate when the 95% CI exceeds 0 (left
353 axis), approximately 1.4 s before the downstate peak. Spikes are facilitated maximally -0.5 to 0 s
354 before the slow oscillation down state. Sleep spindles are facilitated maximally 0 to 0.75 s after
355 the slow oscillation down state (i.e., during the up-state). Significant deviations in spike rate
356 ($p < 0.05$) occur when the confidence limits for the modulation (right axis) do not include 1.
357 Horizontal bars on the bottom axis indicate times of significant changes in slow oscillation
358 amplitude (purple), spindle rate (green), and spike rate (red).
359

360

361 *Cortical slow oscillations facilitate spikes and spindles at different phases*

362 To understand the influence of N2 sleep, we analyzed the relationship of slow oscillations to
363 epileptic spikes and sleep spindles. On visual analysis, the tri-phasic slow oscillation initiates
364 before both spikes and spindles (example in Figure 1a). Applying a statistical modeling approach
365 to scalp slow oscillations ($n=14,022$), cortical epileptic spikes ($n=65,107$), and thalamic sleep
366 spindles ($n=14,845$) (see *Methods*), we found that the first upstate of the slow oscillation began
367 1.4 s (defined as deviating from a baseline of 0 μ V) before the down-state (i.e., at time -1.4 s in
368 Figure 1b). Cortical epileptic spikes were maximally coupled to the slow oscillation during the
369 up-to-down-state transition at 0.250 s before the down-state, and sleep spindles were maximally
370 couple to the down-to-up-state transition at 0.375 s after the down-state. Cortical spike rate was
371 increased during the up-to-down-state transition of the slow oscillation (a positive modulation of
372 the rate -0.75 to -0.125 s prior to the trough of a slow oscillation down-state, $p < 0.05$ uncorrected,
373 red curve in Figure 1b). Thalamic spindle rate was increased during the up-state (a positive
374 modulation of the rate 0.25 s to 0.875 s after the trough of the slow oscillation down-state,
375 $p < 0.05$ uncorrected, green curve in Figure 1b). We conclude that cortical slow oscillations


376 facilitate both epileptic spikes and sleep spindles, where epileptic spikes maximally occur earlier
377 in the slow oscillation than spindles. We note that when slow oscillations are ignored, cortical
378 spikes appear to induce spindles (Supplementary Figure 2). These results explain why epileptic
379 spikes and spindles are both prominent in non-REM sleep, and result in the temporal correlation
380 previously reported between epileptic spikes and spindles (Dahal et al., 2019; Gelinis et al.,
381 2016).

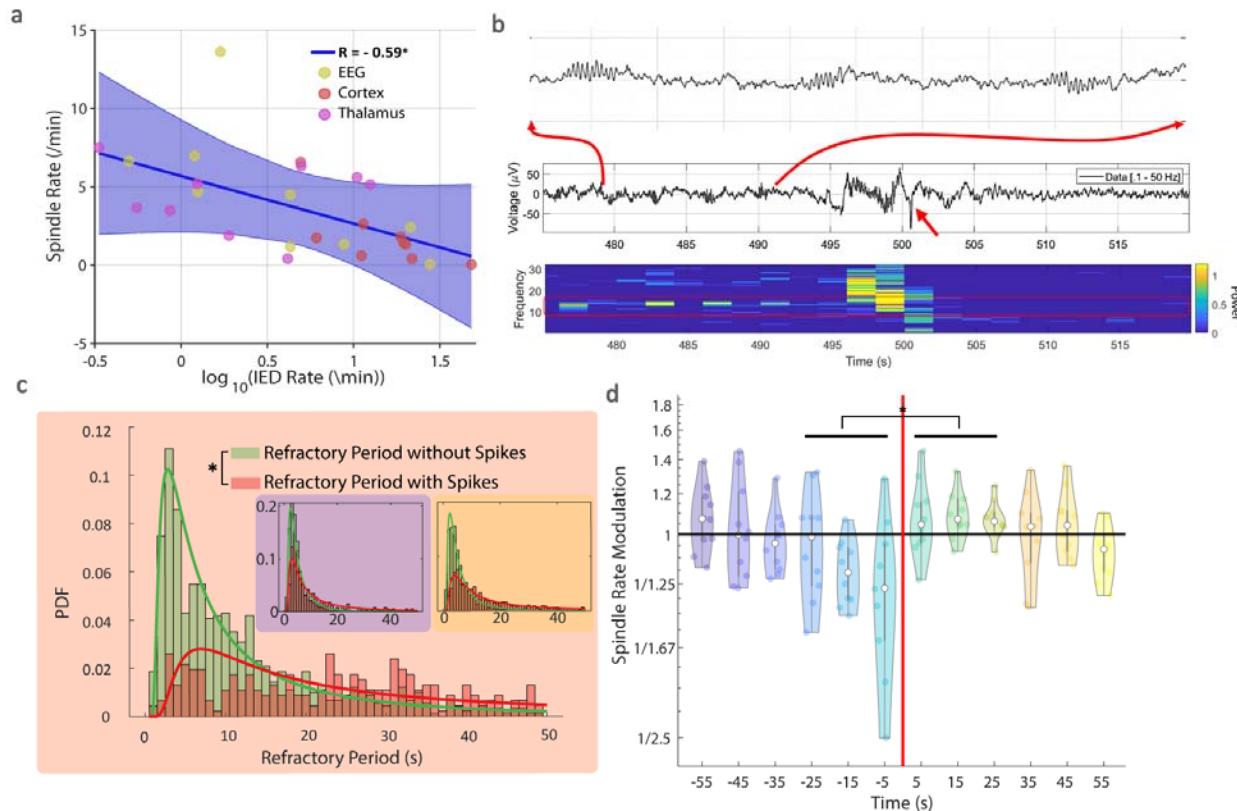
382
383 **Figure 2: Cortical spikes drive thalamic spikes in subjects with spike and wave activation in**
384 **sleep. (a) Example epileptic spikes (left) from one subject in the cortex (Ctx) and thalamus (Thal)**
385 **and (right) the averaged response time-locked to cortical spikes. (b) Cross-correlation**
386 **histograms of thalamic spikes relative to the time of cortical spikes for each subject. Zero**
387 **indicates the moment of a cortical spike. (c) Model estimates of thalamic spike rate modulation**
388 **due to the occurrence of a cortical spike (mean solid, confidence intervals shaded) for each**
389 **patient group (see legend). Significant increases ($p < 0.05$ when confidence intervals exclude 1) in**
390 **thalamic spike rate occur due to a preceding (8 to 24 ms earlier) cortical spike.**
391

392 *Cortical spikes drive thalamic spikes in SWAS*

393 Animal models suggest epileptiform spikes initiate in the cortex (Steriade & Contreras, 1998),
394 but whether cortical epileptic spikes lead to thalamic spikes has not been evaluated (Timofeev,
395 2021). On visual inspection, we noted that thalamic epileptic spikes typically followed cortical
396 epileptic spikes (example in Figure 2a). Cross-correlation histograms applied to all detected
397 cortical epileptic spikes (n=65,107) and thalamic epileptic spikes (n=15,250) during N2 sleep
398 revealed a similar result; thalamic spikes tended to occur after cortical spikes (Figure 2b). This
399 relationship is most clear in subjects with EE-SWAS and SWAS, in which a higher mean
400 number of thalamic spikes occurred within 1 s of a cortical spike compared to subjects without
401 SWAS (F-test to compare parameters in a gamma-distributed generalized linear model, p = 4e-
402 20, p = 6e-20, respectively; see *Methods*). To assess the relationship between cortical and
403 thalamic spike occurrence across all subjects, we developed a generalized linear model for the
404 time series of (binary) detected events (see *Methods*). We found that the thalamic spike rate is
405 increased from 24 to 40 ms after a cortical spike (nested model test $\chi^2(27) = 5548.1$, p ≈ 0 ,
406 Figure 2c). These results show that thalamic spike rates increase following a cortical spike and
407 support the conclusion that cortical spikes drive thalamic spikes in subjects with spike-and-wave
408 activation in sleep.
409

410
411 **Figure 3: Spindles consistently co-occur in the thalamus and the scalp EEG across all subject**
412 **groups. (a)** Averaged spindle response, time-locked to maximum spindle amplitude in the
413 thalamus, indicates consistent phase-locked spindle activity across the cortex and thalamus. **(b)**
414 Modulation of scalp spindle rate at time 0 s (green curves, mean solid, 95% confidence intervals
415 shaded) by thalamic spindles. Background spectrograms of thalamic data time-locked to scalp
416 spindles. Warm (cool) colors include high (low) standardized power; see scale bar. Regions
417 outlined in black indicate Bonferroni-corrected islands of significant changes in power.
418

419
420 Spindles co-occur in thalamus and scalp EEG across all subjects
421 Sleep spindles are prominent rhythms generated in thalamic circuitry and transmitted to cortex,
422 at least partially in response to cortical input (Beenhakker & Huguenard, 2009; Steriade, 2005).
423 To confirm this relationship between thalamic and scalp spindles using direct thalamic
424 recordings in humans, we examined the averaged scalp activity time-locked to the occurrence of
425 thalamic spindles (see *Methods*). Thalamic spindles and scalp spindles co-occurred and were
426 phase-locked (Figure 3a). We found higher spindle-band power in the thalamic data at the time
427 of scalp spindles (Figure 3b) for all patient groups (standardized spectrogram power $p < 0.05$).
428 When modeling the scalp spindle event times using the thalamic spindle event times, we found


429 that thalamic spindles modulated scalp spindle rate (EE-SWAS: $\chi^2(20) = 138.28$, $p \approx 0$; SWAS:
430 $\chi^2(20) = 844.52$, $p \approx 0$; non-SWAS: $\chi^2(20) = 1230.8$, $p \approx 0$) across all patient groups. A
431 thalamic spindle increased the probability of a scalp spindle by a factor of 3.3 ([2.4, 4.7] 95% CI,
432 $p=3.e-12$) in EE-SWAS subjects, by a factor of 4.6 ([3.9, 5.5] 95% CI, $p \approx 0$) in SWAS subjects,
433 and by a factor of 3.1 ([2.7, 3.6] 95% CI, $p \approx 0$) in non-SWAS subjects. When temporally
434 indexed to slow oscillations (Supplementary Figure 3), the maximum modulation in the thalamic
435 spindle rate (~375 ms after SO downstate) preceded the maximum modulation in the scalp
436 spindle rate (~625 ms after SO downstate). We conclude that, across all patient groups, thalamic
437 sleep spindles consistently drive cortical sleep spindles.

438

439 *Spikes that propagate to the thalamus inhibit sleep spindles*

440 While existing models suggest that epileptic spikes disrupt spindles (Beenhakker & Huguenard,
441 2009; Paz & Huguenard, 2015; Steriade, 2005), no direct observations of this disruption exist in

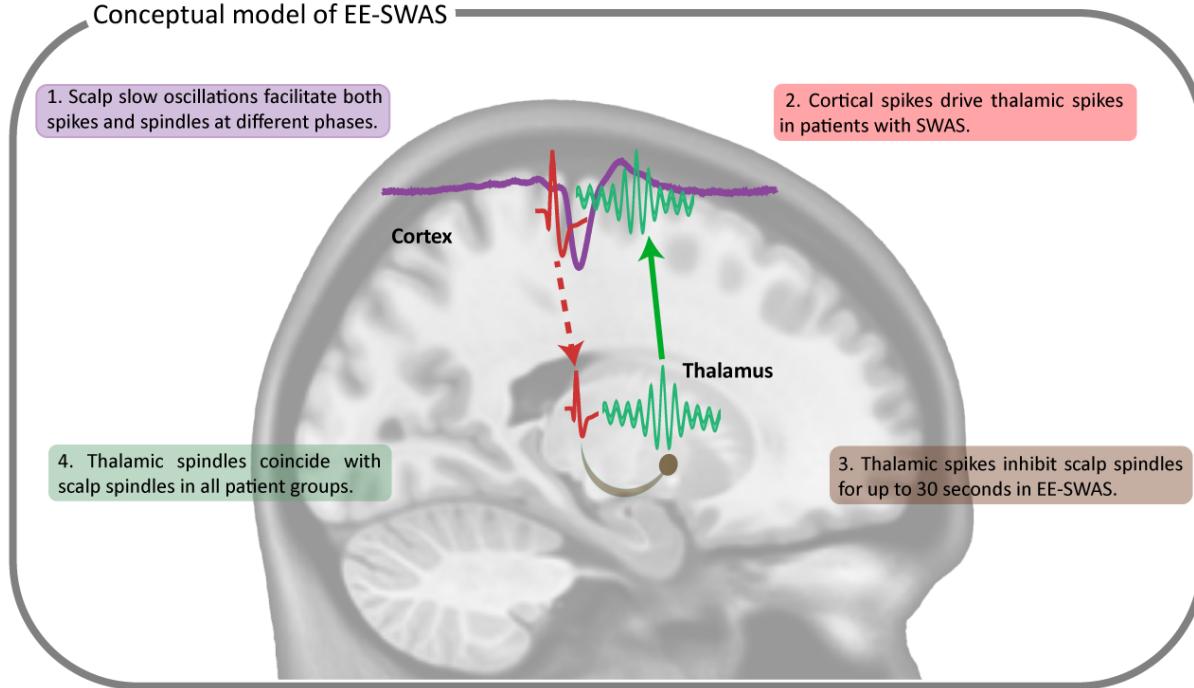
442 humans. To address this, we evaluated the relationship between epileptic spikes and sleep

443

444 **Figure 4: Spikes inhibit spindles.** (a) Spike rate and spindle rate across subjects and brain
445 regions (see legend) during N2 sleep are anti-correlated across subjects. (b) Example spike
446 disruption of spindles. Before a spike (red arrow), spindles regularly occur; see upper trace for
447 example spindles and lower image for spindle band peaks in the spectrogram. After a spike,
448 spindles are not apparent in the trace (middle row) or spectrogram (bottom row). (c) Histograms
449 of EEG spindle refractory periods with (red) and without (green) intervening thalamic spikes for
450 subjects with epileptic encephalopathy. Insets show distributions for subjects without SWAS
451 (blue) and with SWAS (orange). (d) The rate of spindles in the EEG is reduced by thalamic
452 spikes in subjects with EE-SWAS. Estimates of spindle rate modulation parameters at each
453 millisecond (colored dots) and grouped over 10 s intervals (violin plots with median and
454 quartiles indicated). EEG spindle rates are down-regulated when a preceding spike occurs
455 between -30 s to 0. * $p < 0.05$

456

457 spindles across scalp, cortical, and thalamic recordings. Consistent with previous observations
458 (Kramer et al., 2021; Spencer et al., 2022), we found that the epileptic spike rate and sleep
459 spindle rate across N2 sleep were anticorrelated ($r = -0.59$; nested model test $\chi^2(1) = 10.1$, $p =$
460 0.0015; Figure 4a). We also found that, in each group, the scalp spindle refractory periods were


461 longer if a thalamic spike occurred between spindles (EE-SWAS: 4.82 ± 0.34 s; SWAS: $3.23 \pm$
462 0.08 s; non-SWAS: 2.84 ± 0.22) compared to spindles with no intervening spike (EE-SWAS:
463 2.71 ± 0.08 s; SWAS: 1.84 ± 0.04 s; non-SWAS: 1.74 ± 0.02 s; $p \approx 0$; $p \approx 0$; $p=1.5e-21$,
464 respectively, using an F-test for mean comparison in a generalized linear model, see *Methods*).
465 To characterize the extent of this inhibition across patient groups, we modeled the scalp spindle
466 event rate using the history of scalp spindles and thalamic spikes as predictors (see *Methods*). We
467 found additional evidence that thalamic spikes decreased spindle rate in subjects with EE-SWAS
468 ($\chi^2(121) = 216.07$, $p = 2e-7$), but not in the other groups (SWAS: $\chi^2(121) = 135.46$, $p = 0.17$;
469 non-SWAS: $\chi^2(121) = 107.91$, $p=0.8$). For the subjects with EE-SWAS, sleep spindles were
470 down-regulated for 30 s after a thalamic spike ($F_{EE-SWAS}(1,75010) = 43.98$, $p = 3.4e-11$; Figure
471 4d). Spindle rates were maximally down-regulated by a preceding (within ~ 5 s) spike by a factor
472 of 2.5 ([1.5, 4.3] 95% CI, $p = 0.0011$). We conclude that, across subjects, thalamic spikes
473 increase sleep spindle refractory periods, and this mechanism decreases sleep spindle rate in
474 subjects with EE-SWAS.

475

476 *Conceptual model of epileptic encephalopathy*

477 Our analyses above reveal a unifying model of epileptic encephalopathy (Figure 5). Slow
478 oscillations, generated in the cortex, create conditions in the brain that facilitate corticothalamic
479 spikes and thalamocortical spindles. The up-state to down-state transition of the slow oscillation
480 promotes pathological epileptic cortical spikes. Epileptic spikes facilitated in cortex through this
481 process can propagate to the thalamus, a process more likely in subjects with spike and wave
482 activation during sleep. Simultaneously, the down-state of a slow oscillation facilitates sleep
483 spindles, which peak at the subsequent up-state of the slow oscillation. These thalamic spindles

484 propagate to the cortex and are observable in the scalp EEG. Epileptic spikes present in the
485 thalamus induce a longer refractory period for spindles and can result in a decrease in sleep
486 spindle production in subjects with EE-SWAS. This spike-disrupted electrophysiological circuit
487 demonstrates a mechanistic circuit for cognitive dysfunction in epilepsy.

488
489 **Figure 5: Conceptual model connecting slow oscillations, spikes, and spindles in non-REM**
490 **sleep.** Slow waves generated in the cortex and visible at the scalp facilitate, at different phases,
491 both spike and spindle activity. Spikes generated in the cortex propagate to the thalamus and
492 contribute to blocking spindles by increasing their refractory period and decreasing spindle
493 production in subjects with EE-SWAS. Spindles generated in the thalamus propagate to the
494 cortex in all patient groups.
495

496 Discussion

497 Cognitive symptoms are a common comorbidity in epilepsy, but there are currently no
498 mechanisms to explain cognitive dysfunction or treatments to improve them. Although an
499 underlying etiology can often result in both epilepsy and cognitive dysfunction, and antiseizure
500 medications themselves can contribute to cognitive dysfunction, epileptic encephalopathies are
501 disorders in which the abnormal epileptic activity is thought to contribute directly to cognitive

502 dysfunction beyond these influences. Here, using direct thalamic and cortical human brain
503 recordings in subjects with epileptic activity, we reveal the thalamocortical circuitry and
504 mechanism through which epileptic activity can contribute to cognitive dysfunction.

505

506 Slow oscillations are a ubiquitous phenomenon in non-REM sleep and have been implicated in
507 the initiation of sleep spindles (Mak-McCully et al., 2017) and the facilitation of epileptic spikes
508 (Frauscher et al., 2015). Inhibitory neurons may be coordinated by the slow oscillation up-state
509 to help generate the down-state, and this increase in synchrony may pathologically facilitate an
510 epileptic spike (see Frauscher et al., 2015 for a discussion). Alternatively, Gelinias and colleagues
511 (Gelinias et al., 2016) suggest spikes could act as a stimulus, similar to intracortical electrical
512 stimulation (Vyazovskiy et al., 2009), that generates a slow oscillation. In our analysis, the
513 temporal precedence of the slow oscillation up-state contradicts the idea that the epileptic spike
514 occurs first. We note that Gelinias and colleagues (Gelinias et al., 2016) observed alignment of
515 delta phase in the prefrontal cortex to hippocampal epileptic spikes. In contrast, we analyzed
516 slow oscillations at the scalp relative to cortical epileptic spikes in the epileptogenic zone, as did
517 (Frauscher et al., 2015). This suggests the phenomenon observed by Gelinias et al. may be
518 specific to the pre-frontal cortex given its monosynaptic connectivity to the hippocampus, while
519 within the cortex, slow oscillations facilitate epileptic spikes in patients with epilepsy.

520

521 Across timescales and recording locations, we observed that spikes and spindles were anti-
522 correlated. While subjects with spike activation during N2 sleep had higher overall epileptic
523 spike rates, subjects with epileptic encephalopathies had higher likelihood of the sleep-activated
524 cortical spikes propagating to the thalamus. Further, only subjects with epileptic encephalopathy

525 had inhibition of sleep spindles by thalamic spikes. We conclude from these results that three
526 separate mechanisms are required for epileptic encephalopathy – slow oscillation facilitation of
527 epileptic spikes, corticothalamic spike propagation, and inhibition of thalamic sleep spindles.
528 The uncovering of the thalamic neurophysiology here helps to reconcile why some subjects can
529 have near-continuous spike and wave activity during sleep with a range of cognitive symptoms,
530 spanning from subtle deceleration to profound cognitive regression (Wickens et al., 2017).

531

532 The role of sleep spindles in cognitive function, especially memory consolidation, in healthy
533 individuals is well-established (Fernandez & Lüthi, 2020; Fogel & Smith, 2011; M. A. Hahn et
534 al., 2020). Inhibition of spindles may reduce opportunities for high-fidelity memory
535 consolidation (Dickey et al., 2021) through reactivation of neuronal patterns during hippocampal
536 ripples (Diba & Buzsáki, 2007; Latchoumane et al., 2017). In support of this claim, spindle
537 deficits have been linked to cognitive dysfunction in epilepsy (Kramer et al, 2021; Spencer et al
538 2022, Holmes & Lenck-Santini, 2006) and in response to treatment (McLaren et al., 2022). Thus,
539 in subjects with epileptic encephalopathy, cognitive deficits may be partly explained by the
540 reduction of sleep spindles. As sleep spindles are easily accessible in the scalp EEG,
541 measurements of these rhythms provide a direct mechanistic biomarker of the cognitive impact
542 of epileptic spikes. Such a biomarker could support detection of at-risk subjects, measurements
543 of treatment response, and screening of cognitive therapeutics.

544

545 Past work suggests epileptic spikes are pathological excitatory pulses (Traub & Wong, 1982) and
546 sleep spindle probability is regulated by activation of the thalamic reticular nucleus and the
547 hyperpolarization of the thalamocortical neurons (Fernandez & Lüthi, 2020). Both the thalamic

548 reticular nucleus neurons and thalamocortical neurons have a refractory period after a spindle
549 because of after-hyperpolarization (Bal & McCormick, 1996) or after-depolarization (Kim &
550 McCormick, 1998), respectively. It is possible that the excess excitation induced from epileptic
551 spikes reduces the sleep spindle probability by inducing increased depolarization of
552 thalamocortical cells, findings consistent with a thalamocortical computational model (Li et al.,
553 2021). Alternatively, spikes may act as de-facto spindles by occurring through the same circuits
554 (Beenhakker & Huguenard, 2009; Steriade, 1990) and thus, enable a phase-reset to the spindle
555 refractory period (by simultaneously inducing after-depolarization of thalamocortical cells and
556 after-hyperpolarization of the thalamic reticular neurons).

557

558 Like most analyses of intracranial human thalamic data, our analyses were limited to a small
559 group of subjects. Because we analyzed subjects with a wide range of ages and epilepsies, we
560 cannot provide a comprehensive assessment of how these results vary with patient features.
561 However, despite this diversity of patient features, we found consistent patterns across the large
562 numbers of slow oscillations, spindles, and epileptic spikes analyzed. Future work may extend
563 the analyses conducted here to a larger population of subjects.

564

565 Thalamic recordings are sparse and chosen based on clinical demands. As such, we combined
566 recordings from anterior and centromedian nuclei. Recent work (Schreiner et al., 2022) has
567 suggested that there may be differences in which area receives slow oscillations from the cortex
568 (centromedian) and which area generates slow oscillations (anterior nucleus). In Schreiner et al.
569 (2022) only 30% of neocortical slow oscillations were connected to anterior thalamic slow
570 oscillations, suggesting most neocortical slow oscillations may still be cortically generated.

571

572 **Conclusion**

573 We analyzed simultaneous invasive thalamic and cortical human recordings and non-invasive
574 scalp EEG to understand the relationships between sleep slow oscillations, sleep spindles, and
575 epileptic spikes. These results support a novel mechanism of cognitive dysfunction in epileptic
576 encephalopathy, wherein epileptic spikes travel from the cortex to the thalamus, inhibit sleep
577 spindles, and thereby disrupt the neurophysiological rhythms underlying memory consolidation.

578

579 **References**

580 Bal, T., & McCormick, D. A. (1996). What stops synchronized thalamocortical oscillations?
581 *Neuron*, 17(2), 297–308. [https://doi.org/10.1016/s0896-6273\(00\)80161-0](https://doi.org/10.1016/s0896-6273(00)80161-0)

582 Beenhakker, M. P., & Huguenard, J. R. (2009). Neurons that Fire Together Also Conspire
583 Together: Is Normal Sleep Circuitry Hijacked to Generate Epilepsy? *Neuron*, 62(5), 612–
584 632. <https://doi.org/10.1016/j.neuron.2009.05.015>

585 Binnie, C. D. (2003). Cognitive impairment during epileptiform discharges: Is it ever justifiable
586 to treat the EEG? *The Lancet Neurology*, 2(12), 725–730. [https://doi.org/10.1016/S1474-4422\(03\)00584-2](https://doi.org/10.1016/S1474-4422(03)00584-2)

588 Bjørnæs, H., Bakke, K. A., Larsson, P. G., Heminghyt, E., Rytter, E., Brager-Larsen, L. M., &
589 Eriksson, A.-S. (2013). Subclinical epileptiform activity in children with electrical status
590 epilepticus during sleep: Effects on cognition and behavior before and after treatment
591 with levetiracetam. *Epilepsy & Behavior*, 27(1), 40–48.
592 <https://doi.org/10.1016/j.yebeh.2012.12.007>

593 Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., & Mitra, P. P. (2010). Chronux: A platform
594 for analyzing neural signals. *Journal of Neuroscience Methods*, 192(1), 146–151.
595 <https://doi.org/10.1016/j.jneumeth.2010.06.020>

596 Dahal, P., Ghani, N., Flinker, A., Dugan, P., Friedman, D., Doyle, W., Devinsky, O.,
597 Khodagholy, D., & Gelinas, J. N. (2019). Interictal epileptiform discharges shape large-
598 scale intercortical communication. *Brain*, 142(11), 3502–3513.
599 <https://doi.org/10.1093/brain/awz269>

600 Denis, D., Mylonas, D., Poskanzer, C., Bursal, V., Payne, J. D., & Stickgold, R. (2021). Sleep
601 Spindles Preferentially Consolidate Weakly Encoded Memories. *Journal of*
602 *Neuroscience*, 41(18), 4088–4099. <https://doi.org/10.1523/JNEUROSCI.0818-20.2021>

603 Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during
604 ripples. *Nature Neuroscience*, 10(10), 1241–1242. <https://doi.org/10.1038/nn1961>

605 Dickey, C. W., Sargsyan, A., Madsen, J. R., Eskandar, E. N., Cash, S. S., & Halgren, E. (2021).
606 Travelling spindles create necessary conditions for spike-timing-dependent plasticity in
607 humans. *Nature Communications*, 12(1), Article 1. <https://doi.org/10.1038/s41467-021-21298-x>

609 Eden, U. T., & Kramer, M. A. (2010). Drawing inferences from Fano factor calculations.
610 *Journal of Neuroscience Methods*, 190(1), 149–152.
611 <https://doi.org/10.1016/j.jneumeth.2010.04.012>

612 Fernandez, L. M. J., & Lüthi, A. (2020). Sleep Spindles: Mechanisms and Functions.
613 *Physiological Reviews*, 100(2), 805–868. <https://doi.org/10.1152/physrev.00042.2018>

614 Fogel, S. M., & Smith, C. T. (2011). The function of the sleep spindle: A physiological index of
615 intelligence and a mechanism for sleep-dependent memory consolidation. *Neuroscience*
616 and *Biobehavioral Reviews*, 35(5), 1154–1165.
617 <https://doi.org/10.1016/j.neubiorev.2010.12.003>

618 Frauscher, B., von Ellenrieder, N., Ferrari-Marinho, T., Avoli, M., Dubeau, F., & Gotman, J.
619 (2015). Facilitation of epileptic activity during sleep is mediated by high amplitude slow
620 waves. *Brain: A Journal of Neurology*, 138(Pt 6), 1629–1641.
621 <https://doi.org/10.1093/brain/awv073>

622 Gadot, R., Korst, G., Shofty, B., Gavvala, J. R., & Sheth, S. A. (2022). Thalamic
623 stereoelectroencephalography in epilepsy surgery: A scoping literature review. *Journal of*
624 *Neurosurgery*, 1–16. <https://doi.org/10.3171/2022.1.JNS212613>

625 Gais, S., Mölle, M., Helms, K., & Born, J. (2002). Learning-Dependent Increases in Sleep
626 Spindle Density. *Journal of Neuroscience*, 22(15), 6830–6834.
627 <https://doi.org/10.1523/JNEUROSCI.22-15-06830.2002>

628 Gelinas, J. N., Khodagholy, D., Thesen, T., Devinsky, O., & Buzsáki, G. (2016). Interictal
629 epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy.
630 *Nature Medicine*, 22(6), 641–648. <https://doi.org/10.1038/nm.4084>

631 Greene, W. H. (2017). *Econometric Analysis*. Pearson Education.

632 Grigg, -Damberger Madeleine, Gozal, D., Marcus, C. L., Quan, S. F., Rosen, C. L., Chervin, R.
633 D., Wise, M., Picchietti, D. L., Sheldon, S. H., & Iber, C. (2007). The Visual Scoring of
634 Sleep and Arousal in Infants and Children. *Journal of Clinical Sleep Medicine*, 03(02),
635 201–240. <https://doi.org/10.5664/jcsm.26819>

636 Hahn, M. A., Heib, D., Schabus, M., Hoedlmoser, K., & Helfrich, R. F. (2020). Slow oscillation-
637 spindle coupling predicts enhanced memory formation from childhood to adolescence.
638 *eLife*, 9, e53730. <https://doi.org/10.7554/eLife.53730>

639 Hahn, M., Joechner, A.-K., Roell, J., Schabus, M., Heib, D. P., Gruber, G., Peigneux, P., &
640 Hoedlmoser, K. (2019). Developmental changes of sleep spindles and their impact on
641 sleep-dependent memory consolidation and general cognitive abilities: A longitudinal
642 approach. *Developmental Science*, 22(1), e12706. <https://doi.org/10.1111/desc.12706>

643 Harrison, M. T., Amarasingham, A., & Kass, E. (2013). Statistical Identification of Synchronous
644 Spiking. *CRC Press, Spike Timing: Mechanisms and Function*, 42.

645 Henin, S., Shankar, A., Borges, H., Flinker, A., Doyle, W., Friedman, D., Devinsky, O., Buzsáki,
646 G., & Liu, A. (2021). Spatiotemporal dynamics between interictal epileptiform
647 discharges and ripples during associative memory processing. *Brain*, 144(5), 1590–1602.
648 <https://doi.org/10.1093/brain/awab044>

649 Holmes, G. L., & Lenck-Santini, P.-P. (2006). Role of interictal epileptiform abnormalities in
650 cognitive impairment. *Epilepsy & Behavior*, 8(3), 504–515.
651 <https://doi.org/10.1016/j.yebeh.2005.11.014>

652 Iber, C., Ancoli-Israel, S., Chesson, A. L., & Quan, S. (2007). The AASM Manual for the
653 Scoring of Sleep and Associated Events: Rules, Terminology and Technical
654 Specifications. *Westchester, IL: American Academy of Sleep Medicine*.

655 Kim, U., & McCormick, D. A. (1998). Functional and Ionic Properties of a Slow
656 Afterhyperpolarization in Ferret Perigeniculate Neurons In Vitro. *Journal of
657 Neurophysiology*, 80(3), 1222–1235. <https://doi.org/10.1152/jn.1998.80.3.1222>

658 Klinzing, J. G., Tashiro, L., Ruf, S., Wolff, M., Born, J., & Ngo, H.-V. V. (2021). Auditory
659 stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal
660 spikes. *Cell Reports Medicine*, 2(11), 100432.
661 <https://doi.org/10.1016/j.xcrm.2021.100432>

662 Kramer, M. A., Stoyell, S. M., Chinappan, D., Ostrowski, L. M., Spencer, E. R., Morgan, A. K.,
663 Emerton, B. C., Jing, J., Westover, M. B., Eden, U. T., Stickgold, R., Manoach, D. S., &
664 Chu, C. J. (2021). Focal Sleep Spindle Deficits Reveal Focal Thalamocortical
665 Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy.
666 *Journal of Neuroscience*, 41(8), 1816–1829. <https://doi.org/10.1523/JNEUROSCI.2009-20.2020>

668 Larsson, P. G., Bakke, K. A., Bjørnæs, H., Heminghyt, E., Rytter, E., Brager-Larsen, L., &
669 Eriksson, A.-S. (2012). The effect of levetiracetam on focal nocturnal epileptiform
670 activity during sleep—A placebo-controlled double-blind cross-over study. *Epilepsy &*
671 *Behavior: E&B*, 24(1), 44–48. <https://doi.org/10.1016/j.yebeh.2012.02.024>

672 Latchoumane, C.-F. V., Ngo, H.-V. V., Born, J., & Shin, H.-S. (2017). Thalamic Spindles
673 Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical,
674 Thalamic, and Hippocampal Rhythms. *Neuron*, 95(2), 424-435.e6.
675 <https://doi.org/10.1016/j.neuron.2017.06.025>

676 Li, Q., Westover, M. B., Zhang, R., & Chu, C. J. (2021). Computational Evidence for a
677 Competitive Thalamocortical Model of Spikes and Spindle Activity in Rolandic
678 Epilepsy. *Frontiers in Computational Neuroscience*, 15, 680549.
679 <https://doi.org/10.3389/fncom.2021.680549>

680 Mak-McCully, R. A., Rolland, M., Sargsyan, A., Gonzalez, C., Magnin, M., Chauvel, P., Rey,
681 M., Bastuji, H., & Halgren, E. (2017). Coordination of cortical and thalamic activity
682 during non-REM sleep in humans. *Nature Communications*, 8(1), Article 1.
683 <https://doi.org/10.1038/ncomms15499>

684 Mölle, M., & Born, J. (2011). Chapter 7—Slow oscillations orchestrating fast oscillations and
685 memory consolidation. In E. J. W. Van Someren, Y. D. Van Der Werf, P. R. Roelfsema,
686 H. D. Mansvelder, & F. H. Lopes Da Silva (Eds.), *Progress in Brain Research* (Vol. 193,
687 pp. 93–110). Elsevier. <https://doi.org/10.1016/B978-0-444-53839-0.00007-7>

688 Paz, J. T., & Huguenard, J. R. (2015). Microcircuits and their interactions in epilepsy: Is the
689 focus out of focus? *Nature Neuroscience*, 18(3), 351–359.
690 <https://doi.org/10.1038/nn.3950>

691 Reynolds, C. M., Short, M. A., & Gradisar, M. (2018). Sleep spindles and cognitive performance
692 across adolescence: A meta-analytic review. *Journal of Adolescence*, 66, 55–70.
693 <https://doi.org/10.1016/j.adolescence.2018.04.003>

694 Sákovics, A., Csukly, G., Borbély, C., Virág, M., Kelemen, A., Bódizs, R., Erőss, L., & Fabó, D.
695 (2022). Prolongation of cortical sleep spindles during hippocampal interictal epileptiform
696 discharges in epilepsy patients. *Epilepsia*, n/a(n/a). <https://doi.org/10.1111/epi.17337>

697 Schreiner, T., Kaufmann, E., Noachtar, S., Mehrkens, J.-H., & Staudigl, T. (2022). The human
698 thalamus orchestrates neocortical oscillations during NREM sleep. *Nature
699 Communications*, 13(1), Article 1. <https://doi.org/10.1038/s41467-022-32840-w>

700 Specchio, N., Wirrell, E. C., Scheffer, I. E., Nabbout, R., Riney, K., Samia, P., Guerreiro, M.,
701 Gwer, S., Zuberi, S. M., Wilmshurst, J. M., Yozawitz, E., Pressler, R., Hirsch, E., Wiebe,
702 S., Cross, H. J., Perucca, E., Moshé, S. L., Tinuper, P., & Auvin, S. (2022). International
703 League Against Epilepsy classification and definition of epilepsy syndromes with onset
704 in childhood: Position paper by the ILAE Task Force on Nosology and Definitions.
705 *Epilepsia*, 63(6), 1398–1442. <https://doi.org/10.1111/epi.17241>

706 Spencer, E. R., Chinappan, D., Emerton, B. C., Morgan, A. K., Hämäläinen, M. S., Manoach, D.
707 S., Eden, U. T., Kramer, M. A., & Chu, C. J. (2022). Source EEG reveals that Rolandic
708 epilepsy is a regional epileptic encephalopathy. *NeuroImage: Clinical*, 33, 102956.
709 <https://doi.org/10.1016/j.nicl.2022.102956>

710 Staresina, B. P., Bergmann, T. O., Bonnefond, M., van der Meij, R., Jensen, O., Deuker, L.,
711 Elger, C. E., Axmacher, N., & Fell, J. (2015). Hierarchical nesting of slow oscillations,
712 spindles and ripples in the human hippocampus during sleep. *Nature Neuroscience*,
713 18(11), 1679–1686. <https://doi.org/10.1038/nn.4119>

714 Steriade, M. (1990). Spindling, Incremental Thalamocortical Responses, and Spike-Wave
715 Epilepsy. In M. Avoli, P. Gloor, G. Kostopoulos, & R. Naquet (Eds.), *Generalized*
716 *Epilepsy: Neurobiological Approaches* (pp. 161–180). Birkhäuser.
717 https://doi.org/10.1007/978-1-4684-6767-3_12

718 Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. *Trends in*
719 *Neurosciences*, 28(6), 317–324. <https://doi.org/10.1016/j.tins.2005.03.007>

720 Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. *Neuroscience*,
721 137(4), 1087–1106. <https://doi.org/10.1016/j.neuroscience.2005.10.029>

722 Steriade, M., & Contreras, D. (1998). Spike-Wave Complexes and Fast Components of
723 Cortically Generated Seizures. I. Role of Neocortex and Thalamus. *Journal of*
724 *Neurophysiology*. <https://doi.org/10.1152/jn.1998.80.3.1439>

725 Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical Oscillations in the
726 Sleeping and Aroused Brain. *Science*, 262(5134), 679–685.
727 <https://doi.org/10.1126/science.8235588>

728 Stoyell, S. M., Baxter, B. S., McLaren, J., Kwon, H., Chinappan, D. M., Ostrowski, L., Zhu, L.,
729 Grieco, J. A., Kramer, M. A., Morgan, A. K., Emerton, B. C., Manoach, D. S., & Chu, C.
730 J. (2021). Diazepam induced sleep spindle increase correlates with cognitive recovery in
731 a child with epileptic encephalopathy. *BMC Neurology*, 21(1), Article 1.
732 <https://doi.org/10.1186/s12883-021-02376-5>

733 Taylor, J., & Baker, G. A. (2010). Newly diagnosed epilepsy: Cognitive outcome at 5years.
734 *Epilepsy & Behavior*, 18(4), 397–403. <https://doi.org/10.1016/j.yebeh.2010.05.007>

735 Taylor, J., Kolamunnage-Dona, R., Marson, A. G., Smith, P. E. M., Aldenkamp, A. P., Baker, G.
736 A., & SANAD study group. (2010). Patients with epilepsy: Cognitively compromised

737 before the start of antiepileptic drug treatment? *Epilepsia*, 51(1), 48–56.

738 <https://doi.org/10.1111/j.1528-1167.2009.02195.x>

739 Timofeev, I. (2021). Just a sound: A non-pharmacological treatment approach in epilepsy. *Cell Reports Medicine*, 2(11), 100451. <https://doi.org/10.1016/j.xcrm.2021.100451>

740

741 Traub, R. D., & Wong, R. K. (1982). Cellular mechanism of neuronal synchronization in

742 epilepsy. *Science (New York, N.Y.)*, 216(4547), 745–747.

743 <https://doi.org/10.1126/science.7079735>

744 Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A Point

745 Process Framework for Relating Neural Spiking Activity to Spiking History, Neural

746 Ensemble, and Extrinsic Covariate Effects. *Journal of Neurophysiology*, 93(2), 1074–

747 1089. <https://doi.org/10.1152/jn.00697.2004>

748 Velasco, M., Leon, A. E.-D., Márquez, I., Brito, F., Carrillo-Ruiz, J. D., Velasco, A. L., &

749 Velasco, F. (2002). Temporo-spatial correlations between scalp and centromedian

750 thalamic EEG activities of stage II slow wave sleep in patients with generalized seizures

751 of the cryptogenic Lennox–Gastaut syndrome. *Clinical Neurophysiology*, 113(1), 25–32.

752 [https://doi.org/10.1016/S1388-2457\(01\)00707-6](https://doi.org/10.1016/S1388-2457(01)00707-6)

753 Velasco, M., Velasco, F., Alcalá, H., Dávila, G., & Díaz-de-León, A. E. (1991). Epileptiform

754 EEG Activity of the Centromedian Thalamic Nuclei in Children with Intractable

755 Generalized Seizures of the Lennox-Gastaut Syndrome. *Epilepsia*, 32(3), 310–321.

756 <https://doi.org/10.1111/j.1528-1157.1991.tb04657.x>

757 Vyazovskiy, V. V., Faraguna, U., Cirelli, C., & Tononi, G. (2009). Triggering Slow Waves

758 During NREM Sleep in the Rat by Intracortical Electrical Stimulation: Effects of

759 Sleep/Wake History and Background Activity. *Journal of Neurophysiology*, 101(4),
760 1921–1931. <https://doi.org/10.1152/jn.91157.2008>

761 Wickens, S., Bowden, S. C., & D’Souza, W. (2017). Cognitive functioning in children with self-
762 limited epilepsy with centrotemporal spikes: A systematic review and meta-analysis.

763 *Epilepsia*, 58(10), 1673–1685. <https://doi.org/10.1111/epi.13865>

764