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Abstract

Five-prime single-cell RNA-seq (scRNA-seq) has been widely employed to profile cellular transcriptomes, however, its
power of analysing transcription start sites (T'SS) has not been fully utilised. Here, we present a computational method
suite, CamoTSS, to precisely identify TSS and quantify its expression by leveraging the cDNA on read 1, which enables
effective detection of alternative TSS usage. With various experimental data sets, we have demonstrated that CamoTSS
can accurately identify T'SS and the detected alternative TSS usages showed strong specificity in different biological
processes, including cell types across human organs, the development of human thymus, and cancer conditions. As
evidenced in nasopharyngeal cancer, alternative TSS usage can also reveal regulatory patterns including systematic TSS
dysregulations.

Introduction

Alternative usage of different gene architectures enables to differential expression of various mRNA isoforms, including
alternative transcription start/end sites and alternative splicing (AS) events, such as exon skipping, intron retention,
alternative 5’ and 3’ splice sites |IH3]. The advances of single-cell transcriptomic technologies have provided a powerful
tool to detect cellular heterogeneity in gene-level expression by using the sum of all transcripts originating from the same
gene [4]. Several studies have developed computational and statistical approaches to detect and quantify alternative
splicing at single-cell resolution [5]. Most of these studies focus on the exon-skipping event, commonly by full-length
based platforms like Smart-seq2 [6H8] and also possibly by UMI-based methods like 10X Genomics Chromium [9}/10].
Thanks to the higher throughput, 3’ tag-based scRNA-seq in 10x Chromium platform has been broadly adopted to explore
gene-level expression. Several groups leveraged the technique characteristic of polyA-biased scRNA-seq and developed
computational pipelines to detect alternative 3’ end usage, even with potential applicability to detect alternative 5’ start
site usages [11,/12]. In addition, another recent method, scraps, took the advantage of using read 1 (>100bp) to precisely
identify polyadenylation sites at a near-nucleotide resolution in scRNA-seq data by 10X Genomics and other TVN-primed
libraries [13].

Alternative transcript start site (TSS) usage is another major mechanism to increase transcriptome diversity and
its regulation. Cap analysis gene expression (CAGE) has been widely used to capture the 5’-end of transcripts and
identify TSS at a single-nucleotide resolution from bulk samples [14], which has been used as the major tool to annotate
TSS across mammal genomes in the FANTOM project [15] and to reveal narrow shifts of T'SS within a single promoter
during zebrafish early embryonic development [16]. The analysis of TSS and its alternative usage has been further fueled
by the extensive use of RNA-Seq in multiple international consortium projects, including tissue-specific TSS by the
Genotype-Tissue Expression (GTEx) data [1], the cell type specific novel TSS by the RAMPAGE project [17] and cancer
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type specific promoter regulations from a pan-cancer study |18]. More individual studies also evidenced the importance
of TSS regulation for different biological functions, e.g., tumor immune interaction in gastric cancer [19], prognosis in
multiple myeloma [20], and synchronized cell-fate transitions in the yeast gametogenesis program [21].

Recently, attention has also been paid to T'SS analysis at a single-cell level, for example, a single-cell version of CAGE,
C1 CAGE, was introduced to identify T'SS and enhancer activity with the original sample multiplexing strategy in the
CI1TM microfluidic system [22]. This was further extended to capture both 5 and 3’ by the single-cell RNA Cap And
Tail sequencing (scRCAT-seq) method, where UMI became applicable to further reduce the cost [23]. Besides these
specialized methods, conventional platforms, e.g., 10x Genomics have commercial kits for constructing a 5’ gene expression
library (often with V(D)J dual readouts), where the fragmentation does not happen at sequences close to template switch
oligo (TSO), suggesting that this part of sequences is an ideal material to detect transcription start site at a (near-)
nucleotide resolution (Fig. 1A). Many sequencing centres keep its default setting of equal length paired-end (e.g., 150bp),
hence capturing the cDNA in read 1. Indeed, some public 5’ 10x Genomics datasets on the GEO repository have such
information, bringing an open rich resource to re-explore the TSS usage in various biological contexts at the single-cell
level. A software suite called SCAFE has already used this type of sc-end5-seq data to de novo detect T'SS at a single-cell
resolution, but it mainly paid attention to the cis-regulatory elements (CRE, the proxy of the TSS) rather than the
alternative transcription start sites [24]. Therefore, there is an urgent demand for tailored methods to analyse such 5’
scRNA-seq both efficiently and accurately, especially on alternative TSS usage.

Here, to identify and quantify potential TSSs and evaluate their differential usages from 5’ tag-based scRNA-seq, we
fully utilize those “rubbish” sequences in read 1 mentioned above (otherwise trimmed before analysis) and developed
CamoTSS (Cap and Motif-based TSS modelling from 5 scRNA-seq data), a computational method suite that calls TSSs
by combining clustering of reads distribution and classification with predictive features, followed by window sliding
technique to denoise the detection of single-nucleotide-resolution TSS. CamoTSS further focused on the analysis of
alternative TSS among different cell populations, tissues, development stages and disease contexts by leveraging our
upgraded BRIE2 as a backend engine. The effective application of our method was demonstrated by using public 5’
scRNA-seq data containing pair-ends (i.e. read 1 covering information of cDNA) including adult human cell atlas of
15 major organs, primary nasopharyngeal carcinoma and hyperplastic lymphoid tissue, and human thymic cell across
development and postnatal life, where alternative usages of TSSs were found with strong specificity on cellular states and
showed potential to assess their systematic dysregulation.

Of note, CamoTSS is capable of analysing TSS both at a region (around 100 bp) and a single-nucleotide resolution.
For the former, we interchangeably use TSS region, TSS cluster or simply TSS, otherwise, we will specifically call the
latter CTSS (CAGE tag-defined transcription start site, a concept borrowed from CAGE [16]). We primarily focus on
TSS region/cluster analysis and only introduce the CTSS in the analysis of the thymus development data, considering its
biological relevance.

Results

Overview of CamoTSS pipeline

We developed a stepwise computational method CamoTSS to detect alternative transcription start site clusters and
quantify their differential usage utilizing 5’ tag-based scRNA-seq data alone (Fig.1B). In brief, CamoTSS has three main
steps after fetching TSS reads for a certain gene from an aligned bam file: 1) clustering of TSS reads with hierarchical
clustering (minimum linkage distance: 100 bp by default), 2) filtering TSS clusters by technical thresholds (minimum
UMIs: 50; minimum inter-cluster distance: 300bp) and an embedded classifier to prevent TSS clusters from artefacts by
using predictive features (see next paragraph) and 3) annotating these de-novo TSSs (by its summit position) to known
annotations (e.g., GENCODE) optimised by a Hungarian algorithm while if a detected TSS cluster does not cover the
optimal known TSS position, it remains called as new-TC or novel-TSS (Fig. 1B; Methods).

Due to strand invasion [25] and sequence biases [26], the classification is a critical step to rule out false positives
caused by technical artefacts (Fig. 1C). By using ATAC-seq data from a matched sample as ground truth, we labelled
the intersecting TSSs captured from 5’ scRNA-seq data as true TSS if it overlaps with a high-confidence ATAC peak or
false TSS if it overlaps with a low-confidence ATAC peak. First, we found that the four reads-based features (unencoded
G percentage, standard deviation, summit count and cluster count) introduced in SCAFE [24] are highly predictive
through a logistic regression on both pluripotent stem cells (iPSC) and human dermal fibroblasts (DMFB) lines (10-fold
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cross-validation; area under the receiver operating characteristic curve, AUC=0.975; Fig. 1D). Further, we introduced a
convolutional neural network model (architecture detail in Methods) to examine how well the pure genomic sequence (+/-
100bp) predicts the TSS. Impressively, we found they are also highly predictive (AUC=0.96; same cross-validation split)
and can further improve if combined with the four read-based features, no matter with separately-trained or jointly-trained
CNN models (AUC=0.983 or 0.986, respectively; Fig. 1D and Supplementary Fig. S1A; Methods). Of note, the utility of
the sequence-based component is not only to enhance prediction performance but can also imply regulatory strength
(see the NPC section). The high prediction accuracy and improved performance were also observed in each cell line
separately (Supplementary Fig. S1B-C) or trained from one sample to predict another (from iPSC to DMFB; AUC=0.985
with the combined features model; Fig. 1D), which proves the reliability of using a pre-trained model across samples.
For deployment and user usage, we keep the four reads-based features as the default setting with a pre-trained logistic
regression in iPSC and DMFB data, considering its reasonable accuracy, high generalizability and remarkable simplicity.

Furthermore, the quality of detected TSS clusters can be assessed by the consistency with epigenetic signals, including
promoter-specific histone modifications (H3K4me3 and H3K27ac), gene-body-specific markers (H3K36me3) [27] and
transcription initiation signal (RNA POL2 that collects general transcription factors to form the pre-initiation complex) [28].
In the PBMC dataset, the RNA POL2, H3K4me3 and H3K37ac signals were all highly enriched in the intervals around
CamoTSS-identified TSS clusters, while the signal of H3K36me3 was mainly enriched downstream of TSS clusters detected
by CamoTSS (Fig. 1E). We also randomly generated the same number of fake-TSS regions with the same sequence length
as a negative control, and found no signal surrounding these negative TSS clusters. As an example, Fig. 1F shows one
canonical and one novel TSSs of PTPN4 and two canonical TSSs of SCP2 detected by CamoTSS (highlighted by red
lines), all with signal support from histone modifications, RNA POL2 and scATAC-seq, which suggests high reliability of
CamoTSS. Then we calculated the percentages of annotated and novel TSS clusters detected by CamoTSS in PBMC (Fig.
1G) and it shows the majority of identified TSS clusters (68.7%) are annotated. As we expected, most TSSs (3,205 out of
6148) detected by CamoTSS were mapped to 5’UTR, while a substantial part of TSSs was also mapped to intron (1,804)
and exon (1,134) regions, presumably due to the alternative usage of transcription start sites.

CamoTSS facilitates cell identity analysis

Given that CamoTSS has the capability of detecting T'SSs at a single-cell level, we wonder how much it can enhance
cell identity analysis and to which extent it presents a cell-type specificity. Here, we downloaded 84,363 single-cell
transcriptomes (profiled by 10x Genomics, 5’ tagged scRNA-seq with reads 1) across 15 organs from one adult donor to
detect the variability of TSS usage across cell types and organs [29]. By leveraging CamoTSS, we can obtain matched gene
expression and T'SS expression for each individual cell, allowing for direct comparison of RNA and TSS clusters without
the need for integration methods. We took muscle (5,732 cells) as an example and used the same parameters to preprocess
the gene and TSS expression matrices and clustered the cells (Supplementary Fig.S2). Overall, the majority of cells showed
consistent clustering between using gene- or TSS-level expressions (Adjusted Rand index: 0.572; Supplementary Fig.S3).
Interestingly, we noticed that NK/T cells have different clustering results when using TSS- or gene-level expressions as
input (Fig. 2A). The separation at TSS profiling is more consistent with annotation from the original paper in muscle
(ARI=0.793 vs 0.218; Fig. 2B). From another perspective, the R7 cluster (identified at the gene level) exhibits two distinct
TSS profiles (TSS clusters S4 and part of S9) that are highly concordant with the two subpopulations named GZMK T
cell (CD8+ T cell) and ILTR T cell (CD4+ T cell) annotated by the original paper (ARI=0.425; Fig. 2C) [29]. This
indicates that TSS data provides complementary information to identify cell clusters at a higher resolution. We speculate
the extra information comes from the distinct promoter usage, which links to the regulatory variability between cells that
may be evident at the epigenetic level. To validate our hypothesis, we leveraged single-cell regulatory network inference
and clustering (SCENIC) analyzing gene expression data to obtain the activities of transcription factors. Surprisingly, R7
displays different regulatory patterns between S4 and S9, for example, IKZF'1, a regulator of lymphocyte differentiation
(Supplementary Fig. S4A). Otherwise, the clear differential pattern of R7 disappeared when we shuffled the order of
cells (Supplementary Fig. S4B), which suggests the TSS-level analysis can capture distinct regulation status that is
masked by gene-level analysis. Furthermore, when comparing the transcription factors binding possibility to the top 500
cluster-specific TSS regions by using Homer, we found that S4 and S9 showed enrichment of different transcription factor
family motifs, namely nuclear receptors (NR) and basic leucine zipper (bZIP) respectively, as illustrated in Fig. 2D.
Subsequently, we surveyed the T'SS profiles in all 15 organs and asked if the TSS profiles are more similar within
cell types or organs. In total, 21,125 T'SSs were detected by merging all cells from 15 organs and then used to calculate
a Pearson’s correlation coefficient between each cell type in each organ (at a pseudo-bulk level). By performing the
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Figure 1. Developing CamoTSS to identify transcription start site (T'SS) from 5’ tag-based scRNA-seq data. (A) A flow
chart of the 5’ scRNA-seq gene expression library construction (10x Genomics). (B) A schematic of CamoTSS which
includes clustering, filtering and annotation. (C) Classifier embedding in CamoTSS includes a logistic regression model
and a convolutional neural network model. Ranked ATAC-seq peaks were used as ground truth labels for the T'SS clusters
when training classifiers. (D) Receiver operating characteristic (ROC) curves for TSS classification with three groups of
features by using logistic regressions; the curves are for pooled non-redundant TSSs form iPSC and DMFB datasets (Left
panel; Methods; individual sample shown in Supp. Fig. S1). ROC curves showing using iPSC data as train dataset and
DMFEB as test dataset (Right panel). Ten-fold cross-validation is used for the evaluation. (E) The distributions of RNA
POL2, H3K4me3, H3K27ac and H3K36me3 signals around the TSSs detected by us and the random regions produced by
bedtools. RNA POL2, H3K4me3 and H3K27ac show enrichment around TSSs while H3K36me3 is enriched downstream of
our TSSs. (F) Tracks plots of two examples (PTPN4 and SCP2) show peaks of scRNA-seq, scATC-seq, POL2, H3K27ac
and H3K4me3. Red lines denote the location of our detected TSSs. (G) Pie chart of the percentage of our detected TSS
regions/clusters as annotated by reference genome or novel TSSs. (H) Genomic distribution of the detected TSS regions.
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hierarchical clustering on the correlation, the dendrogram shows that samples of the same cell type (across organs) have a
higher similarity, with few exceptions (Fig. 2E). This “cell type-dominated clustering” pattern implies that most cell types
possess a conserved TSS expression signature. To further illustrate the usage of the T'SS profile at cell type identification,
we compared the top 20 most significant markers at both TSS and gene levels for each cell type in the bladder (Fig. 2F).
Venn diagrams show partial overlap between gene- and T'SS-based markers in all cell types, indicating that T'SS may
serve as additional predictive features for cell type identification, for example, RAMP3_ENST00000242249 as a marker for
endothelial cells and C7_ENST00000488145 for fibroblast (Fig. 2G).

Next, we focused on genes which have at least two TSSs. To identify cell-type differential expression at the TSS level,
we performed a differential analysis between original annotated cell types and searched for genes with both cell-type-specific
TSS shifts (one cell type vs each of others) and non-cell-type-specific TSS (one cell type vs any of others; Methods). We
detected 2,301 genes containing such isoform markers in 15 organs (Supplementary Table 1, Supplementary Fig. S5). Fig.
2H top panel shows an example of such TSS from the zinc finger E-box binding homeobox 2 (ZEB2) gene in muscle, which
is known to be a transcription factor to regulate epithelial to mesenchymal transition associated with many cancers [30].
While the gene-level expression of ZEB2 is less distinct across cell types, we find that among the 2 TSSs detected by
CamoTSS, one TSS without annotation (with minor expression), is almost exclusively expressed in satellite cells. The
histone modification, RNA POL2 and scATAC-seq signals all appeared at the same position of TSS (Supplementary Fig.
S6), which indicates the reliability of T'SS identified by us. As another example, MFSD1 plays an essential role in liver
homeostasis as a lysosomal transporter [31]. It undergoes an isoform shift in fibroblast in the heart, where the expression
of the ENST00000486568 is significantly higher, suggesting distinct cell-type-specific TSS localization (Fig. 2H bottom
panel, Supplementary Fig. S6). To further determine the role of TSS as a cell type marker, we used all of these TSS-level
cell-type markers (cell number > 50) to predict cell type annotated by gene expression profile from the original report,
and achieved accurate predictions on all cell types in the esophagus (Fig. 2I). We were, then, curious about how many
TSS markers of cell type are shared by other organs. To solve this problem, we used the upsetR package [32] to detect the
intersection of genes including TSS markers among organs and found there are still some TSS markers overlapping across
multiple organs (Supplementary Fig. S7). SH3KBP1 shared the same TSS switch among 7 distinct organs in NK/T cell
(Supplementary Fig. S8, Supplementary Fig. S9), indicating the generalizability of TSS as a cell type marker. Next,
we explore the biological function of the TSS markers of each cell type (Fig. 2J, Supplementary Fig.S10). Notably, the
functions of signature TSS of NK/T cells are mainly enriched in terms related to various immune response processes,
including immune system development, cellular responses to stress, regulation of cell activation and regulation of innate
immune.

Altered TSS usages in patients with nasopharyngeal carcinoma

Although alternative promoter usage has been found to be cancer type-specific and predictive of patient prognosis via
bulk RNA-Seq [18], it remains largely unexplored whether and to which extent the precise T'SS usage at a single-cell
resolution can further explain the heterogeneity in the cancer microenvironment. To explore this problem, we applied
CamoTSS to a nasopharynx dataset (5’ scRNA-seq, 10x Genomics) from patients with either nasopharyngeal carcinoma
(NPC; n=7 patients) or nasopharyngeal lymphatic hyperplasia (NLH; n=3 patients), covering 51,001 cells in total (Fig.
3A-B), downloaded from a recent study [33]. Then BRIE2 was run on the 1,784 genes with at least two TSSs across
the whole dataset, among which 547 genes were found with significant differential alternative TSS usage between NPC
and NLH (FDR< 0.01; Supplementary Table 2). Take T cell as an example (Fig. 3C), among the genes that show
alternative-TSS activation in NPC, multiple of them are well-known cancer-related biomarkers such as QSOX1 serving as
a prognosis biomarker in breast cancer [34], DTNBP1 relating with memory and executive functions in brain tumor [35],
and FAM107B associated with gastric cancer [36]. Particularly, two TSSs of CCND3 have been reported to generate
mRNAs with distinct 5 transcript leaders, resulting in protein isoforms with different N-termini [37] (Fig. 3C).
Additionally, cell type-specific differential T'SS usages between cancer status were also identified, for example, SIDT2 is
only detected in B cells (Supplementary Fig. S11), which aligns well with a recent report on the cell-type-specific genetic
effects to its isoform expression involving TSS changes |38]. Another prominent example is LIMS1, which contains three
major cell-type specific TSSs, including TSS1 (LIMS1-215) as a leading T'SS for B cells, TSS2 (LIMS1-201) for Myeloid
cells and TSS3 (LIMS1-210) for T cells (Fig. 3D). Interestingly if focusing on the proportion of the top two TSSs in T cells
(TSS1 and TSS3), we further found that proportion of the minor TSS (TSS1, LIMS1-215) shows a significant up-regulation
in cancer condition (NPC) compared to NHL (Fig. 3E), consistent with the trend of expressed cell proportions across
patients (Supplementary Fig.12 SA-B). Surprisingly, Myeloid cells show an opposite trend, where the proportion of the
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Figure 2. CamoTSS analysis on TSSs between cell types across 15 human organs. (A) UMAP projection of RNA profile
(left) and TSS profile (middle and right) in muscle. The T cell cluster is highlighted in the colors. All the other cells are
colored gray. (B) Cell type annotation from the original paper’s single organ (muscle). (C) Cell type annotation from
the original paper’s merged annotation (15 organs) with a finer resolution. (D) The top de novo motifs enriched in the
top 500 cluster-specific peaks of S4 and S9. P values were calculated by using binomial tests. (E) Heatmap of Pearson’s
correlation of expression of common TSS among all cells from all organs. (F) Venn diagrams of top 20 significant TSS
markers and RNA expression markers in 8 cell clusters of the bladder. (G) tSNE plots of TSS data specific marker.
(H) tSNE plots show alternative TSS marker masked at gene level. (I) ROC curves for prediction of cell types from
the first 20 PCs of T'SS matrix by using a random forest in a multi-label classification. Models were evaluated by using
10-fold cross-validation, whereby the overall average is obtained by merging all cell types at a micro level. (J) Enrichment
network representing the top 20 enriched terms of significant alternative TSS. The enriched terms that displayed high
similarity were grouped together and presented as a network diagram. In this diagram, each node corresponds to an
enriched term and is assigned a color based on its cluster. The size of each node reflects the number of enriched genes,
while the thickness of the lines connecting nodes represents the similarity score between the enriched terms.
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same minor TSS (TSS1) decreases in NPC (Fig. 3F and Supplementary Fig.S12C-D), demonstrating the complexity of
TSS regulation and its coupled modulation of cell types and disease conditions. To further understand the potential
functions associated with NLH and NPC-specific TSSs at different cell types, we examined GO terms enriched in the
TSS-shift gene sets between NLH and NPC for each cell type (Fig. 3G, Supplementary Fig. S13). Specifically, in T
cells, the genes with differential TSS usage show enrichment in GO terms related to hemopoiesis, regulation of leukocyte
activation, pathway in cancer and negative regulation of apoptotic signalling pathway, suggesting that an abundant

TSS-mediated diversity is required for these genes associated with fundamental immune and cancer response properties.

To inform the potential regulatory mechanism leading to the alternative usage of cancer-related TSS, we used FIMO
(v4.11.2) to find validated motifs in JASPAR in the NLH- and NPC-elevated TSS sequences. Take CTCF as an example,
it can bind three motif patterns in the JASPAR database, including MA0139.1, MA1929.1 and MA1930.1. As Fig. 3H
and Supplementary Fig. S14 show, the sequence logo of CTCF binding sequences detected by FIMO is highly similar
to that downloaded from the JASPAR database, which confirms the reliability of our method. Then we counted the
frequency of the database-curated motifs occurring in the two sets of TSSs (n=528 for T cells and n=>556 for B cells) that
are elevated in NLH or NPC. Interestingly, more binding sites were consistently observed in the NLH group in both T
cells (Fig. 3I) and B cells (Supplementary Fig. S15A), which suggests a global change of transcription factor activities in
this cancer. Such systematic bias is not likely caused by random chance, as no obvious difference is observed if the two
groups of TSSs (n=>528) are randomly selected from the expressed TSSs in the NPC group (Supplementary Fig. S15B).

To explore the underlying reason, the significant differential TFs were counted according to their classes. More than
half (55.7%) of the differential TFs belong to C2H2 zinc finger factor class, while this proportion is only one-fifth when
counting all TFs (Supplementary Fig. S16). This phenomenon is particularly striking for the top 10 most significant
differential TFs, which are all in the C2H2 zinc finger factor class (Supplementary Fig. S17). All of these indicate the
C2H2 zinc finger factor class play an essential role in the regulation of alternative TSS in this cancer, which has been
reported in a previous study [39]. In addition, we also compared motif patterns bound by the top 10 significant TF with
random motifs and discovered top 10 motifs have higher GC percentages, which is consistent with the binding pattern of
C2H2 zinc finger factor class (Supplementary Fig. S17).

On top of that, to explain the inclined trend between NLH and NPC, we extracted 200bp (+/- 100bp) sequence around
significant TSS start of NLH and NPC separately as two groups test data and exploit our pre-trained convolutional
neural network to predict the probability of being a positive sample. As Supplementary Fig. S18 shows, more T'SSs in the
NLH group were predicted as positive (i.e. the probability is larger than 0.9) compared with the NPC group (n=239
vs 175) and fewer T'SSs in the NLH group were predicted as negative sample (i.e. the probability is smaller than 0.1)
comparing with NPC group (n=175 vs 229). The difference is significant (P=4.9e-5, Fisher exact test), which indicates
the sequence strengths around cancer-specific TSSs become weaker compared to normal samples. To confirm the role of
these significant differential TSS in NPC, we explored the function of these TFs and discovered a highly related GO term
“transcriptional misregulation in cancer” (Supplementary Fig. S19). We next asked if the expression profile of these TFs
aligns with their binding frequency. Taking the critical and well-studied CTCF as an example, though the expression
level of expressed cells is similar between these two groups, the proportion of expressed cells is significantly higher in NLH
(Fig. 3J, Supplementary Fig. S20), consistent with the report from another group [40]. Also, the whole expression profiles
of all significant TFs show a consistent trend with the binding frequency changes, and an unbiased clustering analysis of
them well segregated NLH and NPC samples (Fig. 3K).

Transcription start site shifting during human thymic development

Even though scRNA-seq is extensively used to study human development, the actual mechanism of choosing TSS in
different development stages in various cell types remains unknown. To explore developmental-stage-specific T'SS usage,
we analysed a profile of transcription initiation events in three development time points of human thymus, including
11-week and 12-week in prenatal and 30-month in postnatal at distinct cell types (Fig. 4A-B). Next, we focused on genes
with multiple TSSs and detected their TSS shift across time points at the single cell level respectively between W11
vs W12, W11 vs M30 and W12 vs M30 (FDR<0.01; Fig. 4C, Supplementary Table3). Pairwise comparisons between
time points show that similar genes with differential TSS-shifting patterns appear in 11-week Vs 30-week and 12-week
Vs 30-week in T cells, which suggests that the closer the development distance, the more similar alternative T'SS usage
patterns are. The same trend was also observed in other cell types (Supplementary Fig. S21, Supplementary Table 3).
We then summarised genes which are widely significantly differential in all three time points (Fig. 4D, Supplementary
Table 4) or just have TSS-shift in a certain development time point (Supplementary Fig. S22, Supplementary Table 4).
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Figure 3. CamoTSS identifies differential alternative TSS usage from nasopharyngeal carcinoma (A,B) UMAP plot of
gene-level expression, annotated with cell types (A) and disease status (B). (C) Volcano plot to show the relationship
between ELBO_gain and effect size on logit(PSI) for detecting differential TSS between NPC and NLH patients. (D)
Genome track plot of LIST1 in different cell types of NLH and NPC patients. (E,F) Violin plot on example gene LIST1
for T cell(E) and Myeloids (F) in NLH and NPC patients. The y-axis PSI denotes the proportion of TSS1 (LIST1-215;
minor TSS here) among the top two TSSs in each cell type. (G) Bar plot showing the enriched terms of genes with
differential TSS usage between NLH and NPC patients in the T cell. (H) WebLogo of the base frequency of MA1929.1 (i.e.
one motif of CTCF) enriched in the sequences detected by FIMO (top) and displayed in the JASPAR database (bottom).
(I) Scatter plot of the binding frequency of human TFs on 528 TSS regions elevated in NLH and NPC patients (shown is
based on T cells). (J) Box plot of expressed cell proportion of CTCF between NLH and NPC. (K) Heatmap shows the
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For those triple differential TSSs (across all time point pairs), the dynamics patterns can be either monotonic (26 for
TSS1 increasing and 44 for TSS1 decreasing) or transient (45 for TSS1 upregulation first and 28 for TSS1 downregulation
first; Fig. 4D, Supplementary Table5). Of note, the increase or decrease is relative, depending on the definition of TSS1
and TSS2. Notably, most genes containing TSS shift during three stages are well studied in immune development and
promoter research such as RAC2, playing dual roles in neutrophil motility and active retention in zebrafish hematopoietic
tissue [41] and SLC3A2, helping branched-chain amino acids (BCAAs) to control Regulatory T cell maintenance [42]. In
addition, many genes with differential TSS usage only between two certain stages also play critical roles in development
such as FCHOL1, involved in T-cell development and function in humans [43] and ST6GALI which can enhance B cell
development and produce IgG in a CD22-dependent manner in vivo [44] To decipher the function of genes with alternative
TSS, we performed GO enrichment analysis and found enriched GO terms are highly relevant to cell cycle, development
and stress response (Fig. 4E).

Next, inspired by the work from Haberle and colleagues [16], we also aimed to discover narrow shifts within one TSS
region (i.e., cluster) during thymic development. The bona fide TSS clusters detected in the first step were selected and then
we utilized a sliding-window approach to denoise and get reliable “CTSS” (CAGE-based TSS, i.e., at a single-nucleotide
resolution) in one TSS cluster (Fig. 4F; Methods). To detect these narrow shifts within one TSS cluster (usually within
100bp), we first selected two farthest CTSSs within one cluster and then exploited BIRE2 to detect alternative CTSS
usage during the three time points in each cell type. In total, we found 1263 genes with significant CTSS shifts between
any two development points (163 between W11 and W12, 451 between W11 vs M30, 649 between W12 vs M30; FDR<0.01;
Fig. 4G and Supplementary Fig. S24), with higher overlap between the two prenatal stages vs the postnatal stage. In
other words, these significant T'SS regions contain CTSS shifting from one end to another during thymus development, for
example, USPL1 and SETD5 (Fig. 4H-I), both of which were reported as important genes for development in zebrafish [45]
or mammals [46]. To unveil the potential functions of these genes with narrow shifting CTSSs between each pair of time
points, we performed GO terms enrichment and found that recurrent terms included cell cycle, mitotic and translation
(Supplementary Fig. S25), suggesting that the alternative CTSS usage within one TSS region may play an essential role
in thymus development.

Discussion

In this work, we present CamoTSS, a computational method for de novo detecting TSS from 5 tag-based scRNA-
seq data. This method enjoys a data-driven design and embeds a classifier to accurately detect TSSs, and enables
efficient identification of alternative T'SS usage between single-cell populations by seamlessly leveraging our BRIE2 model.
Specifically, this method first adopts a hierarchical clustering algorithm to determine the potential TSS clusters, followed
by filtering the false positive clusters mainly via an embedded classifier from reads and/or sequence-based features.
Finally, it annotates those genuine T'SS clusters with known transcript annotations (e.g., from a GENCODE GTF file)
by a Hungarian algorithm and counts the UMIs of each TSS at a single-cell level. Generally, the four sequence-based
features with a logistic regression model provide high accuracy, hence are used in practice by default. On the other hand,
our convolutional neural network module, by extracting sequence features from the query TSS, can achieve comparable
performance and further improve the accuracy when combined with the reads-based features. Additionally, as shown in
the NPC data, this sequence-based model can further reveal the weakened TSS patterns in a disease condition.

While CamoTSS can identify all TSS clusters, we focused on the analysis of alternative TSS usage in this study,
covering broad biological scenarios including cell types across 15 human organs, cancer conditions from multiple samples
and thymus development with three time points. Differential TSS usage in different cell types was observed in multiple
organs, where TSS clusters provide additional molecular signatures otherwise masked by gene expression and help to
identify cell clusters with higher purity. Importantly, compared to NLH individuals, differential T'SS usage, especially a
general preference toward weaker promoter, was detected in all major nasopharynx cell types of NPC patients, which may
be regulated by TFs from C2H2 zinc finger factor class. In addition, we also found hundreds of genes with TSS-shift during
thymus development stages and many of them have narrow shifts within 100bp in a cell type-specific manner. Taken
together, the TSS-level information, especially the alternative TSS usage, can provide more detailed cellular phenotypes
and may imply regulatory patterns across various biological contexts. Considering the almost free access to the T'SS
from the 5’ scRNA-seq data, CamoTSS may introduce a new paradigm in analysing such data and resolving the cellular
heterogeneity in a finer-grained resolution with better interpretation from the regulatory perspective.

Additionally, there are also open challenges in the T'SS analysis. First, when we performed alternative TSS usage, we
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Figure 4. CamoTSS identifies differential alternative TSS usage from human thymus development. (A,B) UMAP
visualization of all cells (35629) in thymus development. Each dot is one cell, with colors coded according to the time
points (A) and cell types (B). (C) Volcano plot showing the relationship between ELBO_gain and effect size on logit(PSI)
for detecting differential TSS between week11 and week12 (Top), weekll and month30 (Middle), week12 and month30
(Bottom). (D) Line chart showing four patterns of example genes which are all significant at three development stage
pairs. (E) Bar plot showing the enriched terms of genes with alternative TSS usage between week 11 and month 30 in
the T cell. (F) Illustration of the window sliding algorithm for identifying CTSS within one TSS cluster. Count and
fold change parameters were used to filter noise. (G) Volcano plot between ELBO _gain and effect size on logit(PSI)
for detecting differential CTSS between week1l and month30 in T cell. (H) Violin plot of PSI value of USPL1 and
SETD5 among week11, week12 and month30. The two farthest CTSSs were picked up to calculate PSI for each gene. (I)
Histogram showing the coverage of reads 1 with unencoded G at the cap obtained from 5’ scRNA-seq in USPL1 (Left)
and SETD5 (Right). The grey and red lines represent CTSSs identified by CamoTSS, while the red line shows the two
farthest CTSS used for differential CTSS analysis with BRIE2.
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mainly support the analysis of proportional change of the two major TSSs among cell populations. However, there can be
more than two TSSs playing critical roles, especially when ranging from different cell types and diseases in one setting.
Therefore, an extended model with support to jointly analyse multiple TSSs would account for such compositional change.
Second, a large fraction of public 5’ scRNA-seq datasets, e.g., on GEO, may only contain cDNA on read 2 for various
reasons. Therefore, extending our CamoTSS to support a read2-only mode with high accuracy can be another timely
contribution to data mining from the exponentially increasing single-cell data across the community. For addressing this
potential challenge, our sequence-based neural network model would play a more important role in specifying the TSS
region. Third, considering that the cell-by-T'SS UMI count matrix can serve as a more informative input compared to the
conventional cell-by-gene count matrix, it remains to be further examined if the downstream analysis pipeline needs to be
adapted, especially when integrating with data from other platforms, e.g., 3’ scRNA-seq data.

Materials and Methods

scRN A-seq initial data analysis

The raw fasta files including readsl (>100bp) and reads2 were downloaded, and then sequences were aligned to the Homo
sapiens reference genome (hg38) to generate pair-end read alignment bam file by using the cellranger count pipeline
(with parameter ——chemistry SC5P-PE) of 10x Genomics CellRanger (v3.1) software. The possorted_genome_bam.bam
file was manually filtered by using xf :i:25 tag before performing reads counting, same strategy according to the 10x
Genomics criteria [47]. In most instances, we aggregated the bam file from each donor sample by using an in-house script
(https://github.com/StatBiomed /CamoTSS). In brief, it adds sample ID to the cell barcode by using pysam package [48]
and then merges all bam files by using samtools merge [48].

Construnction of CamoTSS method

CamoTSS is a stepwise computational method to identify T'SS clusters and it includes three major steps: to cluster reads
into TSS clusters/regions, to detect true clusters, and to annotate bona fide TSS clusters.

Stepl: Cluster for reads start site

Preprocessed bam file was used as input to perform clustering for subsequent promoter evaluation. We fetch all reads 1
for each gene by using BRIE [6]. All obtained reads 1 then filtered according to the cell barcode list specified by users.
We remove strand invasion artifacts by aligning the DNA sequence starting from the -14 base and ending at the aligned
start sit of readsl to the TSO sequence (5-TTTCTTATATGGG-3’). The read is regarded as a strand invader when the
edit distance is less than 3. The edit distance was calculated by utilizing editdistance python package. The reads were
also filtered according to the SCAFE criteria to precisely calculate the number of unencoded G [24]. In brief, we require
reads 1 that 1) should contain the last 5nt of T'S oligo (i.e. ATGGG) and the edit distance is less than 4, 2) start with a
softclip region (i.e. ”7S” in CIGAR string) and the value of ”S” is more than 6 and less than 20, 3) the match region
following the softclip region is more than 5bp. If the number of fetched reads is more than 10,000, we randomly selected
10,000 reads from all reads in that gene to make sure the efficiency of our software.

The start position of reads was extracted and then input to agglomerative clustering which is a kind of from-bottom-
to-up hierarchical clustering method. In brief, it first determines the proximity matrix containing the Euclidean distance
between each start position using a distance function. Then, this matrix is updated to display the distance between each
cluster. Here, we use the average linkage method to define the distance between two clusters, which can be calculated by

m
1 na ng
LAB) = —— 33 D(Xa. Xz 1)
i=1j=1

If the linkage distance between two clusters is at or above 100bp, then the two clusters will not be merged.

Step2: Filter false positive cluster

Although we discarded some aberrant reads which are strand invasion artifacts and affect the counting of unencoded G,
quite a lot of clusters still can be observed located at the end of the gene body via integrative genomics viewer (IGV). We
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added another filtering step to efficiently identify high-confidence transcription start site clusters. The total reads counts

within one cluster are set to be more than 50 UMIs and the distance between two neighboring clusters is more than 300bp.

In addition, We designed and tested three models to distinguish high-confidence T'SS from false positive clusters, and
compared them with the overlapped peaks from ATAC-seq to select the most suitable model to embed into our pipeline.

1. The first model is “logistic regression” with four reads-based features (next paragraph). We collected the ATAC-seq
and scRNA-seq data of human dermal fibroblasts (DMFB) and induced pluripotent stem cells (iPSC) from one batch
experiment of a laboratory [24]. For ATAC-seq data, the bigwig file was downloaded and transformed to a bedGraph
file by using UCSC Genome Browser’s big WigToBedGraph tool. Then liftOver was utilized to convert the bedGraph
coordinates from hgl9 to hg38. Peaks from ATAC-seq were ranked based on the p-value and the top and bottom 5%
peaks were defined as ground-truth positive and negative peaks, respectively. Then the bam files of DMFB and iPSC
from scRNA-seq were input to our software CamoTSS to detect clusters without filtering with a classifier. These clusters
were defined to gold positive (n=5,560) and negative samples (n=5,432) by using bedtools (v2.26.0) [49] to intersect
(parameter: -f 0.1) with ATAC-based positive and negative peaks, followed by removal of double-detected TSS regions
if combining multiple datasets.

Then we extracted four features including cluster count, summit count, the standard deviation, and unencoded G
percentage for each cluster. The cluster count refers to the total UMI counts within one cluster and the summit count is
the maximum UMI count for a certain position within the cluster. The standard deviation was calculated by statistics
python package to measure the dispersion of the cluster (treating each UMI as a sample). An intact mRNA with the cap
structure can reverse transcribe to cDNA possessing an additional dGMP and ¢cDNA with an extra dGMP cannot be
produced by cap-free RNA [50]. This evidence suggests unencoded G percentage within one cluster can be regarded as
an essential feature to identify the transcription start site. Because of the number uncertainty of extra added dGMP,
reads whose CIGAR string starts with “14S”, “155” and “16S” are all considered as reads with unencoded G. Finally,
total samples (n=10,992) with four properties were used to train logistic regression model at 10-fold cross-validation by
implementing Scikit-learn python package (v1.0.2). We choose 0.5 as the default threshold and classify samples with a
probability greater than 0.5 as a true transcription start site cluster.

2. The second model is a “convolutional neural network”. The same dataset (n=10,992) used in the logistic regression
model was also used to train this deep learning model. We utilized bedtools (v2.26.0) : getfasta to extract 200bp
sequence shifting around the cluster summit position. These sequences were transformed to numbers between 0 and 3
representing the 4 possible nucleotides and were then one-hot encoded to provide a categorical representation of nucleotide
in numerical space to train this neural network (i.e. A: [1,0,0,0], T: [0,1,0,0], C: [0,0,1,0], G: [0,0,0,1]). The convolutional
neural network was constructed with PyTorch (v1.12.1) and it consists of two convolution layers connecting to Rectified
Linear Unit (ReLU) for activation, followed by batch normalization, one max pooling and a dropout layer (probability of
dropout: 0.4). The output from dropout layer was flattened and fed to fully connected layers (32 neurons) with a ReLU
activation function. Then the second fully connected layers of 2 neurons were connected with the sigmoid function to

calculate the probability of classification. The first convolutional layer has 128 filters with 8-mer width and 4 channels.

The second convolutional layer has 64 filters, where the filter size is 4x4. This model can be summarized as follow,

6i — fSigmoidfLinearfLinear,ReLUfFlattenfDropoutfklampoolingfBatchNormfConv,ReLUfconu,ReLU (Yz) (2)

where X; denotes the one-hot encoded matrix (4, 200). All 10,992 One-Hot-Encoded matrices were split into a training
set, test set and validation set according to the 6:2:2 ratio. Then this model was trained with a batch size of 256 and 500
epochs with SGD optimizer with a learning rate of 0.003 and momentum of 0.8. The model with the lowest validation
loss during training was kept at last.

3. The third model is the “combination of logistic regression and convolutional neural network”. The 32 dimensions
features of the first fully connected layer were saved and combined with the four cluster features mentioned above as
input features (36 dimensions) to the logistic regression. The same dataset was used to train logistic regression at 10-fold
cross-validation. The difference between this model and the first model is the features used to train logistic regression
changing from 4 to 36 (i.e., 4+32). Of note, we have also implemented another version of the combined model with jointly
training the CNN models, namely concatenating the four reads-based features to the second-last layer before the sigmoid
activation (namely it becomes 36 instead of 32). This setting archives minor improvement compared to the separated
training, hence is only supported as an option to choose.

We assess the performance of the three methods above by plotting the receiver operating characteristics (ROC) curves
and calculating the area under the curve (AUC) values, which can systematically evaluate the sensitivities and specificities
of models.
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Step3: Annotate clusters

In order to connect detected clusters with existing gene annotation, the start site of transcripts from a comprehensive gene
annotation GTF file was assigned to the position with the highest count as the label of clusters by using the Hungarian
algorithm. The cost matrix was created by calculating the distance between the start site of each known transcript and
the summit position of a query TSS cluster (i.e., with the highest UMI counts within each cluster). Our goal is to find a
complete assignment of clusters to transcripts with overall minimal distance, which means to minimize Eq[3]

Ne Nt

X™ = argmin Z Z Co Xt (3)

c=1t=1

where X is a boolean matrix (X[c,t]=1 if row c is assigned to column t) and C is the cost matrix, denoting the genomic
coordinate distance mentioned above. The optimize.linear sum_assignment function from scipy python package
was used to solve this assignment problem. After assigning a transcript to one cluster, we named this cluster as the
corresponding transcript if the transcript is in the cluster. On the other hand, the cluster is defined as a new TSS.

Detect CTSS within one cluster

Once the TSS clusters (regions) were detected, CamoTSS can further support detection of CTSS at a single-nucleotide
resolution. First, reads 1 were filtered to keep those with ‘unencoded G’ (i.e. CIGAR string starts with “14S”, “15S” and
“16S”). Then the UMI counts for each position were calculated. To further denoise the signal of CTSS, a sliding window
algorithm was used to calculate the fold change, as follows,

1
FC:IC:;)/—JF
WZi:lCi+1

where W is the window size, and the default value is 15 in CamoTSS, and C; denotes the UMI counts for the ¢ position
within the downstream-oriented window (i = 0 means the query position). The bona fide CTSSs within each cluster were
obtained after filtering according to the fold change and UMI counts values defined by users. In the thymus development
dataset, we used the default setting (fold change=6, UMI counts=100).

(4)

Evaluation of epigenetic features and RNA POL2 enrichment of detected TSS

The processed histone modification data (i.e. bigWig file) of PBMC were downloaded from the Roadmap project
in ENCODE. The target of histone Chip-seq includes H3K27ac (accession: ENCFF067MDM), H3K4me3 (accession:
ENCFF074XHZ) and H3K36me3 (accession: ENCFFI53FFP). The aligned RNA POL2 data of PBMC obtained from
Chip-seq targeting POLR2A was downloaded from ENCODE and the accession is ENCFF595NCO. The fold change (FC)
data of each signal compared with the input signal was used for the histone modification data. The scRNA-seq data of
PBMC [51] was dealt with CamoTSS to obtain the region of TSS (i.e. bed file). Additionally, we used bedtools random
to generate a random set of intervals in bed format as the negative control. Then the computeMatrix from deepTools
was utilized to calculate the histone signal score of TSS and random region [options: computeMatrix reference-point
--referencePoint TSS -b 5000 -a 5000]. The matrix generated by computeMatrix was input to plotProfile to
create a profile for the score.

Genomic tracks were obtained with pyGenomeTracks (v 3.7). We downloaded aligned bam files of 10k PBMC
scATAC-seq from the 10x Genomics website (https://www.10xgenomics.com/resources/datasets/10k-human-pbmes-atac-
v2-chromium-controller-2-standard). For scRNA-seq data and scATAC-seq, we use bamCoverage from deepTools to convert
the alignment file of reads (bam file) to the coverage track (bigWig file). The inputs to pyGenomeTracks are bigWig files
of scRNA-seq, scATAC-seq, RNA POL2 and other histone markers. The interval of TSS (bed file) detected by CamoTSS
was used for highlight and the GENCODE GTF file (hg38) only containing the needed transcript was used for annotation.

Analysis of genomic feature of TSS

We inputted the hg38 annotation file to gencode_env package (https://github.com/saketke/gencode regions) to obtain the
genomic interval of 5’ UTR, 3’ UTR, intron and exon and then selected the start site of the TSS clusters as the symbol of
them to count genomic feature distribution of TSS.
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Identification of cell-type, disease and development stage-specific TSS and CTSS

Preprocessing of data was done by scanpy (v 1.9.3) [52]. For the raw TSS hbad files (containing cell-by-TSS) of all three
datasets, we filter cells according to the expression hbad file (containing cell-by-genes). The cell annotation information
and UMAP or tSNE visualization coordinates from the expression hbad file were mapped to cells in the TSS h5ad file.
For the 15 organ dataset, we normalized each cell by total counts (target_sum=1e4) over all genes. For NPC and thymic
dataset, the T'SS UMI reads counts were divided by the total number of reads in the same cell and then multiple with 1e6
to normalize to counts per million (CPM). Then all of these count matrices were transformed with loglp.

For detection of cell-type specific TSS masked at the gene level in the 15 organ dataset, we first filter cell types whose
cell number is less than 100. For the remaining cell clusters, a t-test was performed and the difference in expression mean
was calculated for each T'SS between the cluster and its complement on the loglp count. We picked up TSS clusters that
were significantly upregulated in the cluster relative to the complement of the cluster. In addition, the alternative T'SS
within the same gene cannot display the same pattern. In other words, if the alternative TSS was upregulated compared
with the remaining cell clusters, then the degree of upregulation cannot be significant. All t-tests used a significance level
of FDR<0.01 (Bonferroni corrected).

For NPC and thymic dataset, BRIE2 (v 2.2.0) [53] was utilized to identify differential disease-associated or development-
associated T'SS or CTSS at single-cell resolution. We built an h5ad file for each cell type containing two layers for the
expression of two alternative T'SSs with the highest expression (or two alternative CTSSs with the farthest distance)
of the corresponding gene. The file containing cell detection rate and cell state information for each cell type was also
created to input to BRIE2 as a design matrix. Detecting differential T'SS was performed using the brie-quant module
for all pairwise comparisons [options: --batchSize 1000000 --minCell 10 --interceptMode gene --testBase full
--LRTindex O] and genes with differential TSS between two diseases or development states were defined as FDR < 0.01.

Hierarchical clustering analysis

To investigate the similarity of TSS profiles across different organs and cell types, we first normalized the combined TSS
profile of 15 organs (i.e. combined at bam file level and then run CamoTSS). Specifically, we divided the UMI counts
for each TSS by the total UMI counts for all T'SS in each cell type. The Pearson correlation coefficient was calculated
by using normalized T'SS expression of each cell type in each organ and then used to perform a hierarchical clustering
analysis.

Functional enrichment and motif enrichment analysis

We utilized the Metascape online web server (v3.5.20230101) [54] to perform GO enrichment analysis [options: Expression
Analysis] and selected the top 20 enriched terms to do enrichment network visualization. Then we used Cytoscape (v
3.9.1) to modify and visualize the network of enriched terms.

We used bedtools getfasta to extract the sequence of NPC- and NLH-elevated TSSs (proportional) and then
downloaded 727 human TF motifs from JASPAR CORE 2022 [55]. FIMO (v 4.11.2 MEME-suite) [56] was used to search
TF motif occurrences within the TSS sequence of different conditions. Significant occurrences were defined by a g-value
threshold of 0.05. Then we counted the occurrence frequency of each TF motif in the TSS sets in each disease state and
calculated statistical significance by using Fisher’s exact test: p-value < 0.01. Then each patient’s average expression of
these significant TFs was used to perform hierarchical clustering. Weblogo (CLI) [57] was used to generate sequence logo of
FIMO-searched and database-downloaded sequences [options: -F pdf -A dna --color-scheme classic --fineprint
"' --errorbars No.

Data availability

The 5’ scRNA-seq and bulk ATAC-seq of iPSC and Human dermal fibroblasts used to do training dataset were downloaded
from ArrayExpress under the accessions E-MTAB-10385 and E-MTAB-10381 [24]. Previously published 5’ scRNA-seq
data that were reanalyzed here are available in the GEO or ArrayExpress under the primary accession code “GSE111360”
(PBMC) [51], “GSE159929” (15 organs) [29], “GSE150825” (nasopharyngeal carcinoma) [33], “E-MTAB-8581” (human
thymic development) [58]. The cell type annotation is available within the article and its supplementary files, with a copy
in the reproducibility GitHub repository.
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Codes availability

CamoTSS is a publicly available Python package at https://github.com/StatBiomed/CamoTSS. Detailed documentation
and analysis procedures to reproduce results in this paper are also uploaded to this repository.
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